
Package ‘roads’
June 22, 2022

Title Road Network Projection

Version 1.0.0

Date 2023-03-11

URL https://github.com/LandSciTech/roads,

https://landscitech.github.io/roads/

Description Project road network development based on an existing road
network, target locations to be connected by roads and a cost surface. Road
projection methods include minimum spanning tree with least cost path
(Kruskal’s algorithm (1956) <doi:10.2307/2033241>), least cost path
(Dijkstra's algorithm (1959) <doi:10.1007/BF01386390>) or snapping.
These road network projection methods are ideal for use with land cover
change projection models.

License Apache License (>= 2)

Encoding UTF-8

LazyData true

Imports raster, dplyr, igraph, sp, data.table, SpaDES.tools, sf,
stars, units, rlang, methods, tidyselect

RoxygenNote 7.1.2

Suggests testthat (>= 2.1.0), knitr, rmarkdown, viridis

VignetteBuilder knitr

Depends R (>= 2.10)

Collate 'CLUSexample.R' 'buildSimList.R' 'buildSnapRoads.R'
'demoScen.R' 'getClosestRoad.R' 'getGraph.R'
'getLandingsFromTarget.R' 'lcpList.R' 'mstList.R'
'pathsToLines.R' 'projectRoads.R' 'rasterToLineSegments.R'
'shortestPaths.R' 'plotRoads.R' 'rasterizeLine.R'

BugReports https://github.com/LandSciTech/roads/issues

NeedsCompilation no

1

https://github.com/LandSciTech/roads
https://landscitech.github.io/roads/
https://doi.org/10.2307/2033241
https://doi.org/10.1007/BF01386390
https://github.com/LandSciTech/roads/issues


2 CLUSexample

Author Sarah Endicott [aut] (<https://orcid.org/0000-0001-9644-5343>),
Kyle Lochhead [aut],
Josie Hughes [aut, cre],
Patrick Kirby [aut],
Her Majesty the Queen in Right of Canada as represented by the Minister

of the Environment [cph] (Copyright holder for included functions
buildSimList, getLandingsFromTarget, pathsToLines, plotRoads,
projectRoads, rasterizeLine, rasterToLineSegments),

Province of British Columbia [cph] (Copyright holder for included
functions getGraph, lcpList, mstList, shortestPaths,
getClosestRoad, buildSnapRoads)

Maintainer Josie Hughes <josie.hughes@ec.gc.ca>

Repository CRAN

Date/Publication 2022-06-22 07:40:07 UTC

R topics documented:
CLUSexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
demoScen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getLandingsFromTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
plotRoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
projectRoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
rasterizeLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
rasterToLineSegments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Index 11

CLUSexample Data from the CLUS example

Description

From Kyle Lochhead and Tyler Muhly’s CLUS road simulation example

Usage

data(CLUSexample)

Format

A named list where: $cost is an object of class RasterLayer representing road cost $landings is an
object of class SpatialPoints representing landing locations $roads is an object of class RasterLayer
representing existing roads

https://orcid.org/0000-0001-9644-5343


demoScen 3

demoScen Demonstration set of 10 input scenarios

Description

A demonstration set of scenarios that can be used as input to projectRoads method.

Usage

data(demoScen)

Format

A list of sub-lists, with each sub-list representing an input scenario. The scenarios (sub-lists) each
contain the following components:

scen.number An integer value representing the scenario number (generated scenarios are num-
bered incrementally from 1).

road.rast A logical RasterLayer representing existing roads. TRUE is existing road. FALSE is not
existing road.

road.line A SpatialLines object representing existing roads.

road.line.sf A sf object representing existing roads.

cost.rast A RasterLayer representing the cost of developing new roads on a given cell.

landings.points A SpatialPointsDataFrame representing landings sets and landing locations within
each set. The data frame includes a field named ’set’ which contains integer values represent-
ing the landings set that each point belongs to

landings.points.sf A sf object representing landings sets and landing locations within each set.
The data frame includes a field named ’set’ which contains integer values representing the
landings set that each point belongs to

landings.stack A RasterStack representing the landings and landings sets. Each logical Raster-
Layer in the RasterStack represents one landings set. Values of TRUE are a landing in the
given set. Values of FALSE are not.

landings.poly A SpatialPolygonsDataFrame representing a single set of polygonal landings.

landings.poly.sf A sf object representing a single set of polygonal landings.

See Also

projectRoads



4 getLandingsFromTarget

getLandingsFromTarget Get landing points inside harvest blocks

Description

Generate landing points inside polygons representing harvested area. There are three different sam-
pling types available: "centroid" is the default and will return the centroid or a point that is inside
the polygon if the centroid is not (see st_point_on_surface); "random" takes a random sample
based on the given landingDens see (st_sample); "regular" intersects the polygons with a regular
grid with cell size sqrt(1/landingDens), if a polygon does not intersect with the grid its centroid
is used.

Usage

getLandingsFromTarget(harvest, landingDens = NULL, sampleType = "centroid")

Arguments

harvest sf, SpatialPolygons or RasterLayer object with harvested areas. If it is a Raster-
Layer with more than one unique value other than 0 each value will be run sep-
arately which will produce different results from a 0/1 raster but will be much
slower.

landingDens number of landings per unit area. This should be in the same units as the CRS
of the harvest. Note that 0.001 points per m2 is > 1000 points per km2 so this
number is usually very small for projected CRS.

sampleType character. "centroid" (default), "regular" or "random". Centroid returns one
landing per harvest block, which is guaranteed to be in the harvest block for
sf objects but not for rasters. Regular returns points from a grid with density
landingDens that overlap the harvested areas. Random returns a random set
of points from each polygon where the number is determined by the area of
the polygons and landingDens. If harvest is a raster the centroid is always
returned as one of the landings to ensure all harvest areas get at least one landing.

Details

Note that the landingDens is in points per unit area where the unit of area is determined by the
CRS. For projected CRS this should likely be a very small number i.e. < 0.001.

Value

an sf simple feature collection with an ID column and POINT geometry

Examples

# Get centroid
outCent <- getLandingsFromTarget(demoScen[[1]]$landings.poly)
raster::plot(demoScen[[1]]$landings.poly)



plotRoads 5

plot(outCent, col = "red", add = TRUE)

# Get random sample with density 0.1 points per unit area
outRand <- getLandingsFromTarget(demoScen[[1]]$landings.poly, 0.1, sampleType = "random")

raster::plot(demoScen[[1]]$landings.poly)
plot(outRand, col = "red", add = TRUE)

# Get regular sample with density 0.1 points per unit area
outReg <- getLandingsFromTarget(demoScen[[1]]$landings.poly, 0.1, sampleType = "regular")

raster::plot(demoScen[[1]]$landings.poly)
plot(outReg, col = "red", add = TRUE)

plotRoads Plot projected roads

Description

Plot the results of projectRoads

Usage

plotRoads(sim, mainTitle, subTitle = paste0("Method: ", sim$roadMethod), ...)

Arguments

sim sim list result from projectRoads

mainTitle A title for the plot

subTitle A sub title for the plot, by default the roadMethod is used

... Other arguments passed to raster plot call for the costSurface

Value

Creates a plot using base graphics

Examples

# demo scenario 1
scen <- demoScen[[1]]

# landing set 1 of scenario 1:
land.pnts <- scen$landings.points.sf[scen$landings.points.sf$set==1,]

prRes <- projectRoads(land.pnts, scen$cost.rast, scen$road.line.sf, "lcp")
plotRoads(prRes, "Title")



6 projectRoads

projectRoads Project road network

Description

Project road locations based on existing roads, planned landings, and a cost surface that defines the
cost of building roads.

Usage

projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = NULL,
neighbourhood = "octagon",
sim = NULL,
roadsOut = NULL,
roadsInCost = TRUE

)

## S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing'
projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = NULL,
neighbourhood = "octagon",
sim = NULL,
roadsOut = NULL,
roadsInCost = TRUE

)

## S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,list'
projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = NULL,
neighbourhood = "octagon",
sim = NULL,



projectRoads 7

roadsOut = NULL,
roadsInCost = TRUE

)

Arguments

landings sf polygons or points, RasterLayer, SpatialPolygons*, SpatialPoints*, matrix,
containing features to be connected to the road network. Matrix should contain
columns x, y with coordinates, all other columns will be ignored.

cost RasterLayer. Cost surface where existing roads must be the only cells with a
cost of 0. If existing roads do not have 0 cost set roadsInCost = FALSE and
they will be burned in.

roads sf lines, SpatialLines*, RasterLayer. Existing road network.

roadMethod Character. Options are "mst", "lcp", "snap".

plotRoads Boolean. Should the resulting road network be plotted. Default FALSE.

mainTitle Character. A title for the plot

neighbourhood Character. ’rook’,’queen’, or ’octagon’. The cells that should be considered
adjacent. ’octagon’ option is a modified version of the queen’s 8 cell neigh-
bourhood in which diagonals weights are 2^0.5x higher than horizontal/vertical
weights.

sim list. Returned from a previous iteration of projectRoads. cost, roads, and
roadMethod are ignored if a sim list is provided.

roadsOut Character. Either "raster", "sf" or NULL. If "raster" roads are returned as a raster
in the sim list. If "sf" the roads are returned as an sf object which will contain
lines if the roads input was sf lines but a geometry collection of lines and points
if the roads input was a raster. The points in the geometry collection represent
the existing roads while new roads are created as lines. If NULL (default) then
the returned roads are sf if the input is sf or Spatial* and raster if the input was
a raster.

roadsInCost Logical. The default is TRUE which means the cost raster is assumed to include
existing roads as 0 in its cost surface. If FALSE then the roads will be "burned
in" to the cost raster with a cost of 0.

Details

Three different methods for projecting road networks have been implemented:

• "snap": Connects each landing directly to the closest road without reference to the cost or
other landings

• "lcp": Least Cost Path connects each landing to the closest point on the road by determining
the least cost path based on the cost surface provided, it does not consider other landings

• "mst": Minimum Spanning Tree connects all landings to the road by determining the least cost
path to the road or other landings based on the cost surface



8 projectRoads

Value

a list with components:

• roads: the projected road network, including new and input roads.

• costSurface: the input cost surface, this is not updated to reflect the new roads that were added.

• roadMethod: the road simulation method used.

• landings: the landings used in the simulation.

• g: the graph that describes the cost of paths between each cell in the cost raster. This is updated
based on the new roads so that vertices were connected by new roads now have a cost of 0.
This can be used to avoid recomputing the graph in a simulation with multiple time steps.

Examples

doPlots <- interactive()
### using: scenario 1 / sf landings / least-cost path ("lcp")
# demo scenario 1
scen <- demoScen[[1]]

# landing set 1 of scenario 1:
land.pnts <- scen$landings.points.sf[scen$landings.points.sf$set==1,]

prRes <- projectRoads(land.pnts, scen$cost.rast, scen$road.line.sf, "lcp",
plotRoads = doPlots, mainTitle = "Scen 1: SPDF-LCP")

### using: scenario 1 / RasterLayer landings / minimum spanning tree ("mst")
# demo scenario 1
scen <- demoScen[[1]]

# the RasterLayer version of landing set 1 of scenario 1:
land.rLyr <- scen$landings.stack[[1]]

prRes <- projectRoads(land.rLyr, scen$cost.rast, scen$road.line.sf, "mst",
plotRoads = doPlots, mainTitle = "Scen 1: Raster-MST")

### using: scenario 2 / matrix landings raster roads / snapping ("snap")
# demo scenario 2
scen <- demoScen[[2]]

# landing set 5 of scenario 2, as matrix:
land.mat <- scen$landings.points[scen$landings.points$set==5,]@coords

prRes <- projectRoads(land.mat, scen$cost.rast, scen$road.rast, "snap",
plotRoads = doPlots, mainTitle = "Scen 2: Matrix-Snap")

### using: scenario 7 / SpatialPolygonsDataFrame landings / minimum spanning tree ("mst")
# demo scenario 7
scen <- demoScen[[7]]

# polygonal landings of demo scenario 7:



rasterizeLine 9

land.poly <- scen$landings.poly

prRes <- projectRoads(land.poly, scen$cost.rast, scen$road.rast, "mst",
plotRoads = doPlots, mainTitle = "Scen 7: SpPoly-MST")

# don't run to avoid examples being too long
## Not run:
## using scenario 7 / Polygon landings raster / minimum spanning tree
# demo scenario 7
scen <- demoScen[[7]]
# rasterize polygonal landings of demo scenario 7:
land.polyR <- raster::rasterize(scen$landings.poly, scen$cost.rast)

prRes <- projectRoads(land.polyR, scen$cost.rast, scen$road.rast, "mst",
plotRoads = doPlots, mainTitle = "Scen 7: PolyRast-MST")

## End(Not run)

rasterizeLine Faster rasterize for lines

Description

Rasterize a line using stars because fasterize doesn’t work on lines and rasterize is slow

Usage

rasterizeLine(sfLine, rast, value)

Arguments

sfLine an sf object to be rasterized
rast a raster to use as template for the output raster
value a number value to give the background ie 0 or NA

Value

a RasterLayer where the value of cells that touch the line will be the row index of the line in the sf

Examples

roadsLine <- sf::st_sf(geometry = sf::st_sfc(sf::st_linestring(
matrix(c(0.5, 4.5, 4.5, 4.51),

ncol = 2, byrow = TRUE)
)))

rasterizeLine(roadsLine, CLUSexample$cost, 0)



10 rasterToLineSegments

rasterToLineSegments Convert raster to lines

Description

Converts rasters that represent lines into an sf object. Raster is first converted to points and then
lines are drawn between the nearest points. If there are two different ways to connect the points that
have the same distance both are kept which can cause doubled lines. USE WITH CAUTION.

Usage

rasterToLineSegments(rast)

Arguments

rast raster representing lines all values > 0 are assumed to be lines

Value

an sf simple feature collection

Examples

roadRast <- demoScen[[1]]$road.rast
# Note this is imperfect because the line is doubled where the two roads
# intersect
roadLine <- rasterToLineSegments(roadRast)



Index

∗ datasets
CLUSexample, 2
demoScen, 3

CLUSexample, 2

demoScen, 3

getLandingsFromTarget, 4

plotRoads, 5
projectRoads, 3, 5, 6
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,list-method

(projectRoads), 6
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing-method

(projectRoads), 6

rasterizeLine, 9
rasterToLineSegments, 10

st_point_on_surface, 4
st_sample, 4

11


	CLUSexample
	demoScen
	getLandingsFromTarget
	plotRoads
	projectRoads
	rasterizeLine
	rasterToLineSegments
	Index

