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2 Contents

Scope and Purpose of this Document

This document is a user manual for the R package r♦❝♦❝♦. It is only meant as a gentle introduction

into how to use the basic functions implemented in this package. Not all features of the R package

are described in full detail. Such details can be obtained from the documentation enclosed in the

R package. Further note the following: (1) this is not an introduction to robust rank correlation;

(2) this is not an introduction to R. If you lack the background for understanding this manual, you

first have to read literature on these subjects.
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1 Introduction

Correlation measures are among the most basic tools in statistical data analysis and machine learn-

ing. They are applied to pairs of observations to measure to which extent the two observations

comply with a certain model. The most prominent representative is surely Pearson’s product

moment coefficient [1, 15], often nonchalantly called correlation coefficient for short. Pearson’s

product moment coefficient can be applied to numerical data and assumes a linear relationship as

the underlying model; therefore, it can be used to detect linear relationships, but no non-linear

ones.

Rank correlation measures [9, 12, 14] are intended to measure to which extent a monotonic

function is able to model the inherent relationship between the two observables. They neither

assume a specific parametric model nor specific distributions of the observables. They can be

applied to ordinal data and, if some ordering relation is given, to numerical data too. Therefore,

rank correlation measures are ideally suited for detecting monotonic relationships, in particular, if

more specific information about the data is not available. The two most common approaches are

Spearman’s rank correlation coefficient (short Spearman’s rho) [17, 18] and Kendall’s tau (rank

correlation coefficient) [2, 11, 12]. Another simple rank correlation measure is the gamma rank

correlation measure according to Goodman and Kruskal [9].

The rank correlation measures cited above are designed for ordinal data. However, as argued

in [5], they are not ideally suited for measuring rank correlation for numerical data that are per-

turbed by noise. Consequently, [5] introduces a family of robust rank correlation measures. The

idea is to replace the classical ordering of real numbers used in Goodman’s and Kruskal’s gamma

[9] by some fuzzy ordering [10, 3, 4] with smooth transitions — thereby ensuring that the corre-

lation measure is continuous with respect to the data. This package provides this family of rank

correlation measures along with corresponding statistical tests (as introduced in [6]). Moreover,

the package also implements the Gaussian rank correlation estimator [7] and a corresponding sta-

tistical test.

2 Installation

2.1 Installation via CRAN

The R package r♦❝♦❝♦ (current version: 1.1.7) is part of the Comprehensive R Archive Network

(CRAN)1. The simplest way to install the package, therefore, is to enter the following command

into your R session:

✐♥st❛❧❧✳♣❛❝❦❛❣❡s✭✧r♦❝♦❝♦✧✮

If you use R on Windows or Mac OS, you can also conveniently use the package installation

menu of your R GUI.

1❤tt♣✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴



4 3 Getting Started

2.2 Manual installation from source

Under special circumstances, e.g. if you want to compile the C++ code included in the package

with some custom options, you may prefer to install the package manually from source. To this

end, open the package’s page at CRAN2 and then proceed as follows:

1. Download r♦❝♦❝♦❴✶✳✶✳✼✳t❛r✳❣③ and save it to your harddisk.

2. Open a shell/terminal/command prompt window and change to the directory where you put

r♦❝♦❝♦❴✶✳✶✳✼✳t❛r✳❣③. Enter

❘ ❈▼❉ ■◆❙❚❆▲▲ r♦❝♦❝♦❴✶✳✶✳✼✳t❛r✳❣③

to install the package.

Note that this might require additional software on some platforms. Windows requires Rtools3 to

be installed and to be available in the default search path (environment variable P❆❚❍). Mac OS X

requires Xcode developer tools4 (make sure that you have the command line tools installed with

Xcode).

2.3 Compatibility issues

All versions downloadable from CRAN have been built using the latest version, R 3.5.0. However,

the package should work without severe problems on R versions ≥3.0.0.

3 Getting Started

To load the package, enter the following in your R session:

❧✐❜r❛r②✭r♦❝♦❝♦✮

You will probably see a message that package ❘❝♣♣ has been loaded (in case it has not been

loaded previously in the current R session). Apart from this, you can be sure that the package

has been installed successfully if this command terminates without any further error message or

warning. If so, the package is ready for use now.

The package includes both a user manual (this document) and a reference manual (help pages

for each function). To view the user manual, enter

✈✐❣♥❡tt❡✭✧r♦❝♦❝♦✧✮

Help pages can be viewed using the ❤❡❧♣ command. It is recommended to start with

2❤tt♣✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴✇❡❜✴♣❛❝❦❛❣❡s✴r♦❝♦❝♦✴✐♥❞❡①✳❤t♠❧
3❤tt♣✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴❜✐♥✴✇✐♥❞♦✇s✴❘t♦♦❧s✴
4❤tt♣s✿✴✴❞❡✈❡❧♦♣❡r✳❛♣♣❧❡✳❝♦♠✴t❡❝❤♥♦❧♦❣✐❡s✴t♦♦❧s✴
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❤❡❧♣✭r♦❝♦❝♦✮

For demonstration purposes, let us first create an artificial toy data set:

①✶ ❁✲ r♥♦r♠✭✶✺✮

②✶ ❁✲ ✷ ✯ ①✶ ✰ r♥♦r♠✭❧❡♥❣t❤✭①✶✮✱ s❞❂✵✳✷✺✮

♣❧♦t✭①✶✱ ②✶✮
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Obviously, these are linearly correlated Gaussian data, so Pearson’s product moment correlation

coefficient [1, 15] would be the optimal choice. We use these data anyway, only for illustration

purposes. The function r♦❝♦❝♦✭✮ can be used to compute the robust rank correlation coefficient

as follows:

r♦❝♦❝♦✭①✶✱ ②✶✮

★★ ❬✶❪ ✵✳✾✽✺✻✽✸✸

To perform a robust rank correlation test, use the function r♦❝♦❝♦✳t❡st:

r♦❝♦❝♦✳t❡st✭①✶✱ ②✶✱ ❛❧t❡r♥❛t✐✈❡❂✧t✇♦✳s✐❞❡❞✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✶ ❛♥❞ ②✶ ✭❧❡♥❣t❤ ❂ ✶✺✮
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★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✺✼✺✽✾✺ ✴ r② ❂ ✵✳✸✶✺✶✸✽✹

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✾✽✺✻✽✸✸

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

The argument ❛❧t❡r♥❛t✐✈❡ works in the same way as for the standard function ❝♦r✳t❡st✭✮.

The function r♦❝♦❝♦✳t❡st✭✮ is a generic method that can be called on two numeric vectors

(as above) or, alternatively, using a formula to conveniently extract two columns from a data frame:

❞❛t❛✭✐r✐s✮

♣❧♦t✭⑦ ❙❡♣❛❧✳▲❡♥❣t❤ ✰ P❡t❛❧✳▲❡♥❣t❤✱ ✐r✐s✮
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r♦❝♦❝♦✳t❡st✭⑦ ❙❡♣❛❧✳▲❡♥❣t❤ ✰ P❡t❛❧✳▲❡♥❣t❤✱ ✐r✐s✱ ❛❧t❡r♥❛t✐✈❡❂✧t✇♦✳s✐❞❡❞✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ❙❡♣❛❧✳▲❡♥❣t❤ ❛♥❞ P❡t❛❧✳▲❡♥❣t❤ ✭❧❡♥❣t❤ ❂ ✶✺✵✮

★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✸ ✴ r② ❂ ✵✳✸✺

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✼✾✹✵✾✹✾

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮
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All examples above use default settings for the fuzzy orderings that are used to define the

rank correlation coefficient. In the following section, we introduce the concept behind the robust

gamma rank correlation coefficient in greater depth and describe how to adjust the corresponding

settings properly.

4 Adjusting Similarities and t-Norms

4.1 Background

The robust gamma rank correlation coefficient requires the definition of two strict fuzzy orderings

[4], RX and RY . A strict fuzzy ordering is a two-place function that measures to which degree its

second argument is strictly larger than its first argument. Given a data set consisting of n pairs of

observations (where n ≥ 2)

(xi, yi)
n
i=1, (1)

RX is used for comparing x observations and RY is used for comparing y observations.

Given a data set as in Eq. (1), the strict fuzzy orderings RX and RY are used to compute two

important numbers, the number of concordant pairs C̃ and the number of discordant pairs D̃:

C̃ =

n
∑

i=1

∑

j 6=i

T̄ (RX(xi, xj), RY (yi, yj))

D̃ =
n
∑

i=1

∑

j 6=i

T̄ (RX(xi, xj), RY (yj , yi))

The function T̄ is a triangular (t-norm) [13] that is used to aggregate degrees of relationships

between pairs of x observations and the corresponding degrees for y observations (see below).

The final robust gamma rank correlation coefficient is then computed as

γ̃ =
C̃ − D̃

C̃ + D̃

in perfect analogy to Goodman’s and Kruskal’s gamma [9].

4.2 Choosing the Family of Similarities

It should be clear from the description above that the robust gamma rank correlation coefficient

requires the following ingredients:

1. A fuzzy ordering RX for the x observations

2. A fuzzy ordering RY for the y observations

3. A t-norm T̄ for aggregation.



8 4 Adjusting Similarities and t-Norms

Table 1: Overview of strict fuzzy orderings implemented in the r♦❝♦❝♦ package:

Setting Similarity Strict fuzzy ordering

✧❧✐♥❡❛r✧ E(x, x′) = max(0, 1− 1

r
|x− x′|) R(x, x′) = max(0,min(1, 1

r
(x′ − x)))

✧❡①♣✧ E(x, x′) = exp(− 1

r
|x− x′|) R(x, x′) = max(0, 1− exp(− 1

r
(x′ − x)))

✧❣❛✉ss✧ E(x, x′) = exp(− 1

2r2
(x− x′)2) R(x, x′) =

{

1− exp(− 1

2r2
(x− x′)2) if x ≤ x′

0 otherwise

✧❡♣st♦❧✧ E(x, x′) =

{

1 if |x− x′| ≤ r

0 otherwise
R(x, x′) =

{

1 if x′ > x+ r

0 otherwise

✧❝❧❛ss✐❝❛❧✧ E(x, x′) =

{

1 if x = x′

0 otherwise
R(x, x′) =

{

1 if x′ > x

0 otherwise

For RX and RY , the r♦❝♦❝♦ package provides five possible choices which are identified by the

similarity that is used to define the strict fuzzy ordering (for more details see [4, 5]). Table 1

provides an overview.

Obviously, in all five cases, the strict fuzzy ordering R is computed from the similarity E in

the following way:

R(x, x′) =

{

1− E(x, x′) if x′ > x

0 otherwise

Further note that the choices ✧❡♣st♦❧✧ and ✧❝❧❛ss✐❝❛❧✧ are not continuous. The former is the

well-known ε-intolerant similarity that has been discussed widely in the context of the Poincaré

paradox (note that this similarity is not a transitive relation). The latter setting ✧❝❧❛ss✐❝❛❧✧

corresponds to the classical Goodman and Kruskal gamma.

The functions r♦❝♦❝♦✭✮ and r♦❝♦❝♦✳t❡st✭✮ choose the first variant ✧❧✐♥❡❛r✧ by default,

both for x and y observations. If one wants to choose a different setting or two different strict fuzzy

orderings for x and y observations, the s✐♠✐❧❛r✐t② argument can be used. For demonstrating this,

we create a noisy data set from a function f that has a large flat area:

①✷ ❁✲ r♥♦r♠✭✶✺✮

❢✷ ❁✲ ❢✉♥❝t✐♦♥✭①✮ ✐❢❡❧s❡✭① ❃ ✵✳✽✱ ① ✲ ✵✳✽✱ ✐❢❡❧s❡✭① ❁ ✲✵✳✽✱ ① ✰ ✵✳✽✱ ✵✮✮

②✷ ❁✲ ❢✷✭①✷✮ ✰ r♥♦r♠✭❧❡♥❣t❤✭①✷✮✱ s❞❂✵✳✶✮

♣❧♦t✭①✷✱ ②✷✮
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As said before, ✧❧✐♥❡❛r✧ is the default choice:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ ❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✸✺✼✷✾✷ ✴ r② ❂ ✵✳✵✷✻✸✾✺✾✷

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✷✻✶✺

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

This default setting makes sense in particular if no information about the data, their distribu-

tion, or not even the noise distribution is known. Now let us try some different settings:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂✧❣❛✉ss✧✱

❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t②✿ ❣❛✉ss

★★ r① ❂ ✵✳✶✸✺✼✷✾✷ ✴ r② ❂ ✵✳✵✷✻✸✾✺✾✷
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★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✼✵✺✷✽✽✷

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂❝✭✧❝❧❛ss✐❝❛❧✧✱ ✧❣❛✉ss✧✮✱

❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t② ❢♦r ①✿ ❝❧❛ss✐❝❛❧

★★ s✐♠✐❧❛r✐t② ❢♦r ②✿ ❣❛✉ss ✭r② ❂ ✵✳✵✷✻✸✾✺✾✷✮

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✹✻✼✽✻✶

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

Particularly note the latter of the two examples: different settings for x and y observations can

be done by supplying a vector to the s✐♠✐❧❛r✐t② argument, where the first element determines

the choice for x observations and the second element determines the choice for y observations.

4.3 Parametrizing Similarities

So far, we have neglected that four of the five similarities/fuzzy orderings listed in Table 1 require

an additional parameter r. In all four cases, r controls the importance of observations that are

close to each other. The smaller r, the more similar observations are taken into account when

computing the numbers of concordant and discordant pairs. This entails that, the smaller r, the

easier noise can corrupt the result. The larger r, the less similar observations are considered, i.e.

the more noise-tolerant the result will be. However, that does not mean that the largest possible r

is the best choice. An overly large r can result in unspecific and unsignificant results. The r♦❝♦❝♦

package allows for setting one r for both x and y observations:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂✧❣❛✉ss✧✱ r❂✵✳✶✱ ❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t②✿ ❣❛✉ss

★★ r① ❂ ✵✳✶ ✴ r② ❂ ✵✳✶

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵
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★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✼✻✸✽✺✻✽

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ✵✳✵✵✶ ✭✶ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

It is also possible to specify different values of r for x and y observations. Analogously to the

parameter s✐♠✐❧❛r✐t②, this can be done by supplying a two-element vector to the parameter r:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂❝✭✧❧✐♥❡❛r✧✱ ✧❣❛✉ss✧✮✱ r❂❝✭✵✳✵✺✱ ✵✳✶✮✱

❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t② ❢♦r ①✿ ❧✐♥❡❛r ✭r① ❂ ✵✳✵✺✮

★★ s✐♠✐❧❛r✐t② ❢♦r ②✿ ❣❛✉ss ✭r② ❂ ✵✳✶✮

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✼✹✷✻✽✼

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

It should be clear from the formulas in Table 1 that r = 0 is either invalid or does not make

sense. The r♦❝♦❝♦ package still admits choosing a zero value. In this case, r♦❝♦❝♦ makes an

automatic adjustment of r to 10% of the interquartile range (the difference between the 75% and

the 25% quantile) of the observation under consideration:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂❝✭✧❧✐♥❡❛r✧✱ ✧❣❛✉ss✧✮✱ r❂✵✱

❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t② ❢♦r ①✿ ❧✐♥❡❛r ✭r① ❂ ✵✳✶✸✺✼✷✾✷✮

★★ s✐♠✐❧❛r✐t② ❢♦r ②✿ ❣❛✉ss ✭r② ❂ ✵✳✵✷✻✸✾✺✾✷✮

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✹✾✼✽✽✹

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ✵✳✵✵✶ ✭✶ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

■◗❘✭①✷✮ ✯ ✵✳✶

★★ ❬✶❪ ✵✳✶✸✺✼✷✾✷

■◗❘✭②✷✮ ✯ ✵✳✶

★★ ❬✶❪ ✵✳✵✷✻✸✾✺✾✷
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Table 2: Overview of strict fuzzy orderings implemented in the r♦❝♦❝♦ package:

Setting t-Norm

✧♠✐♥✧ (default) TM(x, y) = min(x, y)

✧♣r♦❞✧ TP(x, y) = x · y

✧❧✉❦❛s✐❡✇✐❝③✧ TL(x, y) = max(0, x+ y − 1)

In the results above, note the values r① and r② in the output of r♦❝♦❝♦✳t❡st✭✮. These are the

values that have been specified or that have been determined automatically. The computations of

10% of the interquartile range should demonstrate that this is what takes place when r is set to 0.

Note that this is also done by default if the argument r is not specified.

4.4 Choosing the t-Norm for Aggregation

As mentioned above, the robust gamma rank correlation coefficient further requires to specify a

t-norm T̄ that is used for aggregation of the ordering measures from x and y observations. The

r♦❝♦❝♦ package offers three built-in t-norms that can be selected by specifying the t♥♦r♠ argu-

ment when calling the functions r♦❝♦❝♦✭✮ and r♦❝♦❝♦✳t❡st✭✮. Table 2 provides an overview.

Here is an example that uses the product t-norm for aggregation:

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ s✐♠✐❧❛r✐t②❂❝✭✧❧✐♥❡❛r✧✱ ✧❣❛✉ss✧✮✱ t♥♦r♠❂✧♣r♦❞✧✱

❛❧t❡r♥❛t✐✈❡❂✧❣r❡❛t❡r✧✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t② ❢♦r ①✿ ❧✐♥❡❛r ✭r① ❂ ✵✳✶✸✺✼✷✾✷✮

★★ s✐♠✐❧❛r✐t② ❢♦r ②✿ ❣❛✉ss ✭r② ❂ ✵✳✵✷✻✸✾✺✾✷✮

★★ t✲♥♦r♠✿ ♣r♦❞

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ❣r❡❛t❡r t❤❛♥ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✺✶✸✷✾✷

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ❁ ✷✳✷❡✲✶✻ ✭✵ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

The choice of the t-norm T̄ is not particularly critical and should not have a strong influence

on the significance of results. Most users will suffice with the default setting ✧♠✐♥✧. The choice

✧♣r♦❞✧ produces similar, but slightly smoother results which may be suitable in combination with

the only differentiable fuzzy ordering (s✐♠✐❧❛r✐t②❂✧❣❛✉ss✧).

Even though the choice is not critical, the r♦❝♦❝♦ package also offers the choice of user-

defined t-norms by supplying a two-place function as t♥♦r♠ argument. Here is an example with

some Yager t-norm [13, 19]:
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❉r❛st✐❝t◆♦r♠ ❁✲ ❢✉♥❝t✐♦♥✭①✱ ②✮

④

✐❢ ✭① ❂❂ ✶✮ ②

❡❧s❡ ✐❢ ✭② ❂❂ ✶✮ ①

❡❧s❡ ✵

⑥

❨❛❣❡rt◆♦r♠ ❁✲ ❢✉♥❝t✐♦♥✭❧❛♠❜❞❛✮

④

❢✉♥ ❁✲ ❢✉♥❝t✐♦♥✭①✱ ②✮

④

✐❢ ✭❧❛♠❜❞❛ ❂❂ ✵✮

❉r❛st✐❝t◆♦r♠✭①✱ ②✮

❡❧s❡ ✐❢ ✭✐s✳✐♥❢✐♥✐t❡✭❧❛♠❜❞❛✮✮

♠✐♥✭①✱ ②✮

❡❧s❡

♠❛①✭✵✱ ✶ ✲ ✭✭✶ ✲ ①✮❫❧❛♠❜❞❛ ✰ ✭✶ ✲ ②✮❫❧❛♠❜❞❛✮❫✭✶ ✴ ❧❛♠❜❞❛✮✮

⑥

❛ttr✭❢✉♥✱ ✧♥❛♠❡✧✮ ❁✲ ♣❛st❡✭✧❨❛❣❡r t✲♥♦r♠ ✇✐t❤ ❧❛♠❜❞❛ ❂✧✱ ❧❛♠❜❞❛✮

❢✉♥

⑥

r♦❝♦❝♦✭①✷✱ ②✷✱ t♥♦r♠❂❨❛❣❡rt◆♦r♠✭✵✳✺✮✮

★★ ❬✶❪ ✵✳✻✸✻✼✷✺✺

r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ t♥♦r♠❂❨❛❣❡rt◆♦r♠✭✵✳✷✮✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✸✺✼✷✾✷ ✴ r② ❂ ✵✳✵✷✻✸✾✺✾✷

★★ t✲♥♦r♠✿ ❨❛❣❡r t✲♥♦r♠ ✇✐t❤ ❧❛♠❜❞❛ ❂ ✵✳✷

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✸✻✼✷✺✺

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ✵✳✵✵✷ ✭✷ ♦❢ ✶✵✵✵ ✈❛❧✉❡s✮

Note that the r♦❝♦❝♦ package performs only a few basic checks on a user-defined t-norm. It

remains the duty of the user to ensure that the function is actually a valid t-norm.

The three built-in t-norms (see Table 2) are efficiently implemented in C++ and called with

the help of the ❘❝♣♣ package [8] while user-defined t-norms have to be evaluated in R loops. Even

though we use the ❝♦♠♣✐❧❡r package (if available) to pre-compile the user-defined t-norm, this

may still result in a drastic slowdown of computations, particularly for larger data sets or when
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using r♦❝♦❝♦✳t❡st✭✮ with ❡①❛❝t❂❚❘❯❊ (see end of next section).

5 A Note on Permutation Testing

Classical rank correlation measures only depend on the sorting of x and y observations. Thus,

for a given number of samples n, one can deduce the distribution of the test statistic under the

H0 hypothesis as a simple function of the number of samples n. We neither want to make any

prior assumption about the distribution of data nor does the complex inner structure of the robust

gamma rank correlation coefficient and the variety of possible parameter settings allow for an

analytic deduction of the test statistic’s distribution. Therefore, we use permutation testing for

estimating the null distribution of the test statistic under the assumption of independence. This

is done in the following way: For a given data set (xi, yi)
n
i=1

, we first compute the robust rank

correlation coefficient according to the specified parameters. Then we create K random shuffles

(y′i)
n
i=1

of (yi)
n
i=1

and compute the robust rank correlation coefficient for (xi, y
′
i)
n
i=1

according

to the specified parameters. Due to the shuffling, (xi)
n
i=1

and (y′i)
n
i=1

are independent, where

(y′i)
n
i=1

has the same marginal distribution as (yi)
n
i=1

. Thus, the robust rank correlation coefficients

obtained for a sufficiently large number of shuffles allows for estimating the distribution of the test

statistics under the H0 hypothesis with given marginal distributions and we can estimate the test’s

p-value in the following simple way:

as the relative frequency the test statistics’ absolute value exceeded the absolute value of the

test statistic for the unshuffled data in case we perform a two-sided test,

as the relative frequency the test statistic was greater than the test statistic for the unshuffled

data in case we perform a one-sided test with alternative hypothesis that there is a positive

correlation, and

as the relative frequency the test statistic was less than the test statistic for the unshuffled

data in case we perform a one-sided test with alternative hypothesis that there is a negative

correlation.

This p-value is contained in the slot ♣✳✈❛❧✉❡ of the output object the test returns. This output

object further contains a slot ❝♦✉♥t that corresponds to the absolute number of times

the test statistics’ absolute value exceeded the absolute value of the test statistic for the

unshuffled data in case we perform a two-sided test,

the test statistic was greater than the test statistic for the unshuffled data in case we perform

a one-sided test with alternative hypothesis that there is a positive correlation, and

the test statistic was less than the test statistic for the unshuffled data in case we perform a

one-sided test with alternative hypothesis that there is a negative correlation.

Please note that these p-values are only estimates. The smaller the number of shuffles, the

higher the variance of the estimates. This number of shuffles performed by r♦❝♦❝♦✳t❡st✭✮ is

controlled by the parameter ♥✉♠t❡sts (the default is 1000). We concur that 1000 samples are

sufficient (at least with high probability) if one wants to test whether the association is significant
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with a significance threshold of 95% or 99%. If the user, however, is interested in much more

exact estimates of the p-value or if he/she wants to test against much more stringest significance

thresholds, it may be necessary to perform much higher numbers of shuffles. Needless to mention,

this will also result in an increase of computation times, where the computation time grows linearly

with the number of shuffles.

Here is an example with 100,000 shuffles, where we use the option st♦r❡❱❛❧✉❡❂❚❘❯❊ to get

access to the rank correlation values for all random shuffles:

r❡s ❁✲ r♦❝♦❝♦✳t❡st✭①✷✱ ②✷✱ ♥✉♠t❡sts❂✶✵✵✵✵✵✱ st♦r❡❱❛❧✉❡s❂❚❘❯❊✮

r❡s

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷ ❛♥❞ ②✷ ✭❧❡♥❣t❤ ❂ ✶✺✮

★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✸✺✼✷✾✷ ✴ r② ❂ ✵✳✵✷✻✸✾✺✾✷

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✻✷✻✶✺

★★ ❡st✐♠❛t❡❞ ♣✲✈❛❧✉❡ ❂ ✵✳✵✵✵✾✼ ✭✾✼ ♦❢ ✶✵✵✵✵✵ ✈❛❧✉❡s✮

For small data sets (not more than 10 samples), the package further provides computations of

exact p-values. This can be enforced by passing the argument ❡①❛❝t❂❚❘❯❊ to r♦❝♦❝♦✳t❡st✭✮. In

this case, all possible permutations are considered (using the Steinhaus-Johnson-Trotter algorithm;

see, e.g., [16]) and the exact p-value is computed as the quotient of the above count (slot ❝♦✉♥t)

over the number of trials (the factorial of the length of ① and ②):

r♦❝♦❝♦✳t❡st✭①✷❬✶✿✽❪✱ ②✷❬✶✿✽❪✱ ❡①❛❝t❂❚❘❯❊✮

★★

★★ ❘♦❜✉st ●❛♠♠❛ ❘❛♥❦ ❈♦rr❡❧❛t✐♦♥✿

★★

★★ ❞❛t❛✿ ①✷❬✶✿✽❪ ❛♥❞ ②✷❬✶✿✽❪ ✭❧❡♥❣t❤ ❂ ✽✮

★★ s✐♠✐❧❛r✐t②✿ ❧✐♥❡❛r

★★ r① ❂ ✵✳✶✷✺✸✽✵✽ ✴ r② ❂ ✵✳✵✷✷✵✺✾✶✶

★★ t✲♥♦r♠✿ ♠✐♥

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❣❛♠♠❛ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ s❛♠♣❧❡ ❣❛♠♠❛ ❂ ✵✳✹✶✶✵✻✺✹

★★ ❡①❛❝t ♣✲✈❛❧✉❡ ❂ ✵✳✶✼✼✶✸✷✾ ✭✼✶✹✷ ♦❢ ✹✵✸✷✵ ✈❛❧✉❡s✮

Using the exact test for 10 samples results in 10! = 3.6288 × 106 permutations that have to

be considered. For the built-in t-norms, such a computation should finish within a few seconds.

However, in conjunction with a user-defined t-norm, computations may be significantly longer, in

the range of several minutes.
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Kendall’s rank correlation test is based on a normal approximation of the null distribution. The

following picture suggests that a normal approximation may also be suitable for the robust rank

correlation test (data from the above example with 100,000 shuffles):

❤✐st✭r❡s❅♣❡r♠✳❣❛♠♠❛✱ ❜r❡❛❦s❂✶✵✵✱ ♣r♦❜❛❜✐❧✐t②❂❚❘❯❊✱ ①❧❛❜❂✧❣❛♠♠❛✧✱

♠❛✐♥❂✧❉✐str✐❜✉t✐♦♥ ♦❢ ❣❛♠♠❛ ❢♦r r❛♥❞♦♠ s❤✉❢❢❧❡s✧✮

♣❧♦t✭❢✉♥❝t✐♦♥✭①✮ ❞♥♦r♠✭①✱ ♠❡❛♥❂r❡s❅❍✵❣❛♠♠❛✳♠✉✱ s❞❂r❡s❅❍✵❣❛♠♠❛✳s❞✮✱

♠✐♥✭r❡s❅♣❡r♠✳❣❛♠♠❛✮✱ ♠❛①✭r❡s❅♣❡r♠✳❣❛♠♠❛✮✱ ❝♦❧❂✧r❡❞✧✱ ❧✇❞❂✷✱ ❛❞❞❂❚❘❯❊✮

Distribution of gamma for random shuffles
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However, statistical analyses have shown that the null distributions are seldom normal. Any-

way, the r♦❝♦❝♦ package also provides p-values based on the normal approximation in the slot

♣✳✈❛❧✉❡✳❛♣♣r♦① of the resulting output object:

r❡s❅♣✳✈❛❧✉❡✳❛♣♣r♦①

★★ ❬✶❪ ✵✳✵✵✶✾✸✼✻✷✹

The user should be warned, however, that these p-values are systematically biased and that

he/she is recommended to use the standard p-values as described above (for a sufficiently large

number of shuffles).

6 The Gaussian Rank Correlation Estimator

The Gaussian rank correlation estimator [7] is a simple and well-performing alternative to our

proposed robust gamma rank correlation coefficient. Since, to our best knowledge, no R im-

plementation has been available so far, we implemented this rank correlation measure and the

corresponding test in the r♦❝♦❝♦ package. Example:
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❣❛✉ss✳❝♦r✭①✶✱ ②✶✮

★★ ❬✶❪ ✵✳✾✼✽✸✻✾✽

❣❛✉ss✳❝♦r✳t❡st✭①✶✱ ②✶✱ ❛❧t❡r♥❛t✐✈❡❂✧t✇♦✳s✐❞❡❞✧✮

★★

★★ ●❛✉ss✐❛♥ r❛♥❦ ❝♦rr❡❧❛t✐♦♥ ❡st✐♠❛t♦r

★★

★★ ❞❛t❛✿ ①✶ ❛♥❞ ②✶

★★ t ❂ ✶✼✳✵✺✸✱ ❞❢ ❂ ✶✸✱ ♣✲✈❛❧✉❡ ❂ ✷✳✽✶❡✲✶✵

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❝♦rr❡❧❛t✐♦♥ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ ✾✺ ♣❡r❝❡♥t ❝♦♥❢✐❞❡♥❝❡ ✐♥t❡r✈❛❧✿

★★ ✵✳✾✸✹✹✷✸✽ ✵✳✾✾✷✾✼✷✸

★★ s❛♠♣❧❡ ❡st✐♠❛t❡s✿

★★ ❝♦r

★★ ✵✳✾✼✽✸✻✾✽

❣❛✉ss✳❝♦r✳t❡st✭⑦ ❙❡♣❛❧✳▲❡♥❣t❤ ✰ P❡t❛❧✳▲❡♥❣t❤✱ ✐r✐s✱ ❛❧t❡r♥❛t✐✈❡❂✧t✇♦✳s✐❞❡❞✧✮

★★

★★ ●❛✉ss✐❛♥ r❛♥❦ ❝♦rr❡❧❛t✐♦♥ ❡st✐♠❛t♦r

★★

★★ ❞❛t❛✿ ❙❡♣❛❧✳▲❡♥❣t❤ ❛♥❞ P❡t❛❧✳▲❡♥❣t❤

★★ t ❂ ✷✶✳✹✶✼✱ ❞❢ ❂ ✶✹✽✱ ♣✲✈❛❧✉❡ ❁ ✷✳✷❡✲✶✻

★★ ❛❧t❡r♥❛t✐✈❡ ❤②♣♦t❤❡s✐s✿ tr✉❡ ❝♦rr❡❧❛t✐♦♥ ✐s ♥♦t ❡q✉❛❧ t♦ ✵

★★ ✾✺ ♣❡r❝❡♥t ❝♦♥❢✐❞❡♥❝❡ ✐♥t❡r✈❛❧✿

★★ ✵✳✽✷✹✵✾✸✽ ✵✳✾✵✸✽✸✵✷

★★ s❛♠♣❧❡ ❡st✐♠❛t❡s✿

★★ ❝♦r

★★ ✵✳✽✻✾✺✶✼✼

7 Change Log

Version 1.1.5:

registered C/C++ subroutines

cleanup and streamlining of C++ code

Version 1.1.4:

added special options for dealing with cases in which observables do not show any

variation

fixed automatic computation of tolerances for cases where IQR is 0
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Version 1.1.3:

vignette engine changed from Sweave to knitr

fix of on-demand loading of ❝♦♠♣✐❧❡r package

random number generation in compiled code switched to R API

moved ◆❊❲❙ to ✐♥st✴◆❊❲❙

namespace fixes

Version 1.1.2:

updated citation

adapted dependency and linking to Rcpp version 0.11.1 (to avoid issues on Mac OS)

minor correction of package namespace

improvements of consistency of error and warning messages

adaptations of help pages and package vignette

Version 1.1.1:

adapted dependencies and linking to Rcpp version 0.11.0

cleared up package dependencies

Version 1.1.0:

estimation of p-values now based on relative frequencies

Gaussian rank correlation estimator and test added

corresponding adaptations of man pages and vignette

updated citation

moved vignette to ’✈✐❣♥❡tt❡s’ according to the new guidelines

Version 1.0.1:

improved estimation of p-values

added exact computation of p-values (only for 10 or less samples)

corresponding adaptations of man pages and vignette

Version 1.0.0: first official release, released October 3, 2011

7.1 Upgrading to Version 1.1.1 or newer

Users who upgrade to Version 1.1.1 (or newer) from an older version should be aware that the

package now requires Rcpp Version 0.11.0 (or newer). This issue can simply be solved by re-

installing Rcpp from CRAN using ✐♥st❛❧❧✳♣❛❝❦❛❣❡s✭✧❘❝♣♣✧✮.
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8 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer, M. Krone, and F. Klawonn (2013). Testing noisy numerical data for

monotonic association. Inform. Sci. 245:21–37. DOI: 10.1016/j.ins.2012.11.026.

U. Bodenhofer and F. Klawonn (2008). Robust rank correlation coefficients on the

basis of fuzzy orderings: initial steps. Mathware Soft Comput. 15(1):5–20.

To obtain a BibTEX entry of the reference, you can enter the following into your R session:

t♦❇✐❜t❡①✭❝✐t❛t✐♦♥✭✧r♦❝♦❝♦✧✮✮
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