Package 'rpca'

July 31, 2015
Type Package
Title RobustPCA: Decompose a Matrix into Low-Rank and Sparse
Components
Version 0.2.3
Date 2015-07-19
Author Maciek Sykulski [aut, cre]
Maintainer Maciek Sykulski macieksk@gmail.com
Description Suppose we have a data matrix, which is the superposition of a low-rank compo-
nent and a sparse component. Candes, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust princi-
pal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can re-
cover each component individually under some suitable assumptions. It is possible to re-
cover both the low-rank and the sparse components exactly by solving a very convenient con-
vex program called Principal Component Pursuit; among all feasible decompositions, sim-
ply minimize a weighted combination of the nuclear norm and of the L1 norm. This package im-
plements this decomposition algorithm resulting with Robust PCA approach.
License GPL-2 I GPL-3
Imports compiler
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-31 01:15:38

R topics documented:

rpca-package 2
F2norm 3
rpca 4
thresh. 11 6
thresh.nuclear 7
Index 9

RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components

Description

Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.

Details

Index of help topics:

```
F2norm Frobenius norm of a matrix
rpca Decompose a matrix into a low-rank component
        and a sparse component by solving Principal
        Components Pursuit
rpca-package RobustPCA: Decompose a Matrix into Low-Rank and
        Sparse Components
thresh.l1 Shrinkage operator
thresh.nuclear Thresholding operator
```

This package contains rpca function,
which decomposes a rectangular matrix M into a low-rank component, and a sparse component, by solving a convex program called Principal Component Pursuit:

$$
\begin{array}{cc}
\text { minimize } & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

where $\|L\|_{*}$ is the nuclear norm of L (sum of singular values).

Note
Use citation("rpca") to cite this R package.

Author(s)

Maciek Sykulski [aut, cre]
Maintainer: Maciek Sykulski <macieksk@ gmail.com>

References

Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.

Yuan, X., \& Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 12.

See Also
rpca

F2norm Frobenius norm of a matrix

Description

Frobenius norm of a matrix.

Usage

F2norm(M)

Arguments

M A matrix.

Value

Frobenius norm of M .

Examples

```
## The function is currently defined as
function (M)
sqrt(sum(M^2))
F2norm(matrix(runif(100),nrow=5))
```


Description

This function decomposes a rectangular matrix M into a low-rank component, and a sparse component, by solving a convex program called Principal Component Pursuit.

```
Usage
    rpca(M,
        lambda = 1/sqrt(max(dim(M))), mu = prod(dim(M))/(4 * sum(abs(M))),
        term.delta = 10^(-7), max.iter = 5000, trace = FALSE,
        thresh.nuclear.fun = thresh.nuclear, thresh.l1.fun = thresh.l1,
        F2norm.fun = F2norm)
```


Arguments

M
a rectangular matrix that is to be decomposed into a low-rank component and a sparse component $M=L+S$.
lambda parameter of the convex problem $\|L\|_{*}+\lambda\|S\|_{1}$ which is minimized in the Principal Components Pursuit algorithm. The default value is the one suggested in Candès, E. J., section 1.4, and together with reasonable assumptions about L and S guarantees that a correct decomposition is obtained.
mu parameter from the augumented Lagrange multiplier formulation of the PCP, Candès, E. J., section 5. Default value is the one suggested in references.
term.delta The algorithm terminates when $\|M-L-S\|_{F} \leq \delta\|M\|_{F}$ where $\left\|\|_{F}\right.$ is Frobenius norm of a matrix.
max.iter Maximal number of iterations of the augumented Lagrange multiplier algorithm. A warning is issued if the algorithm does not converge by then.
trace Print out information with every iteration.
thresh.nuclear.fun, thresh.l1.fun, F2norm.fun
Arguments for internal use only.

Details

These functions decompose a rectangular matrix M into a low-rank component, and a sparse component, by solving a convex program called Principal Component Pursuit:

$$
\begin{gathered}
\text { minimize }
\end{gathered}\|L\|_{*}+\lambda\|S\|_{1}
$$

where $\|L\|_{*}$ is the nuclear norm of L (sum of singular values).

Value

The function returns two matrices S and L , which have the property that $L+S \simeq M$, where the quality of the approximation depends on the argument term. delta, and the convergence of the algorithm.

S The sparse component of the matrix decomposition.
$\mathrm{L} \quad$ The low-rank component of the matrix decomposition.
L.svd The singular value decomposition of L, as returned by the function La.svd .
convergence\$converged
TRUE if the algorithm converged with respect to term. delta.
convergence\$iterations
Number of performed iterations.
convergence\$final.delta
The final iteration delta which is compared with term. delta.
convergence\$all.delta
All delta from all iterations.

Author(s)

Maciek Sykulski [aut, cre]

References

Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.

Yuan, X., \& Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 12.

Examples

```
data(iris)
M <- as.matrix(iris[,1:4])
Mcent <- sweep(M,2,colMeans(M))
res <- rpca(Mcent)
## Check convergence and number of iterations
with(res$convergence,list(converged,iterations))
## Final delta F2 norm divided by F2norm(Mcent)
with(res$convergence,final.delta)
## Check properites of the decomposition
with(res,c(
all(abs( L+S - Mcent ) < 10^-5),
all( L == L.svd$u%*%(L.svd$d*L.svd$vt) )
))
# [1] TRUE TRUE
## The low rank component has rank 2
```

```
length(res$L.svd$d)
## However, the sparse component is not sparse
## - thus this data set is not the best example here.
mean(res$S==0)
## Plot the first (the only) two principal components
## of the low-rank component L
rpc<-res$L.svd$u%*%diag(res$L.svd$d)
plot(jitter(rpc[,1:2],amount=.001),col=iris[,5])
## Compare with classical principal components
pc <- prcomp(M,center=TRUE)
plot(pc$x[,1:2],col=iris[,5])
points(rpc[,1:2],col=iris[,5],pch="+")
## "Sparse" elements distribution
plot(density(abs(res$S),from=0))
curve(dexp(x,rate=1/mean(abs(res$S))),add=TRUE,lty=2)
## Plot measurements against measurements corrected by sparse components
par(mfcol=c(2,2))
for(i in 1:4) {
plot(M[,i],M[,i]-res$S[,i],col=iris[,5],xlab=colnames(M)[i])
}
```

thresh. $11 \quad$ Shrinkage operator

Description

Shrinkage operator: $\mathrm{S}[\mathrm{x}]=\operatorname{sgn}(\mathrm{x}) \max (|\mathrm{x}|-\operatorname{thr}, 0)$. For description see section 5 of Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?.

Usage

thresh.l1(x, thr)

Arguments

x
a vector or a matrix.
thr threshold $>=0$ to shrink with.

Value

$$
\mathrm{S}[\mathrm{x}]=\operatorname{sgn}(\mathrm{x}) \max (|\mathrm{x}|-\mathrm{thr}, 0)
$$

References

Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11

Yuan, X., \& Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 12.

See Also

thresh.nuclear

Examples

```
## The function is currently defined as
function(x,thr){sign(x)*pmax(abs(x)-thr,0)}
summary(thresh.l1(runif(100),0.3))
```

thresh.nuclear Thresholding operator

Description

Thresholding operator, an application of the shrinkage operator on a singular value decomposition: $\mathrm{D}[\mathrm{X}]=\mathrm{U} \mathrm{S}[$ Sigma V . For description see section 5 of Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?.

Usage

thresh.nuclear (M, thr)

Arguments

M a rectangular matrix.
thr threshold $>=0$ to shrink singular values with.

Value

Returned is a thresholded Singular Value Decomposition with thr subtracted from singular values, and values smaller than 0 dropped together with their singular vectors.
u, d, vt as in return value of La.svd
L
the resulting low-rank matrix: $L=U D V^{t}$

References

Candès, E. J., Li, X., Ma, Y., \& Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11
Yuan, X., \& Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 12.

See Also

thresh. 11

Examples

```
## The function is currently defined as
function (M, thr) {
        s <- La.svd.cmp(M)
        dd <- thresh.l1(s$d, thr)
        id <- which(dd != 0)
        s$d <- dd[id]
        s$u <- s$u[, id, drop = FALSE]
        s$vt <- s$vt[id, , drop = FALSE]
        s$L <- s$u %*% (s$d * s$vt)
        s
    }
```

l<-thresh.nuclear(matrix(runif(600), nrow=20), 2)
1\$d

Index

*Topic Frobenius norm
F2norm, 3
*Topic low-rank and sparse
components
rpca, 4
*Topic package
rpca-package, 2
*Topic robust pca
rpca, 4
rpca-package, 2
*Topic rpca rpca, 4 rpca-package, 2
*Topic shrinkage operator thresh.11, 6
*Topic thresholding operator
thresh.nuclear, 7
F2norm, 3
rpca, 2, 3, 4
rpca-package, 2
thresh.11, 6, 8
thresh.nuclear, 7, 7

