
Package ‘rportfolios’
August 19, 2016

Version 1.0-1

Date 2016-08-18

Title Random Portfolio Generation

Author Frederick Novomestky <fn334@nyu.edu>

Maintainer Frederick Novomestky <fn334@nyu.edu>

Depends R (>= 2.0.1), truncdist

Description A collection of tools used to generate
various types of random portfolios. The weights of these
portfolios are random variables derived from truncated
continuous random variables.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2016-08-19 13:37:41

R topics documented:
collapse.segments . 2
extract.segments . 3
overweight.segments . 4
portfolio.composite . 5
portfolio.difference . 6
portfolio.diversification . 7
ractive . 8
ractive.test . 10
random.active . 11
random.active.test . 13
random.benchmark . 14
random.benchmark.test . 16
random.bounded . 18
random.bounded.test . 20
random.equal . 23

1

2 collapse.segments

random.equal.test . 24
random.general . 25
random.general.test . 27
random.longonly . 29
random.longonly.test . 30
random.longshort . 32
random.longshort.test . 34
random.shortonly . 35
random.shortonly.test . 36
rbenchmark . 38
rbenchmark.test . 39
rbounded . 41
rbounded.test . 43
requal . 46
requal.test . 47
rgeneral . 49
rgeneral.test . 50
rlongonly . 52
rlongonly.test . 53
rlongshort . 55
rlongshort.test . 56
rshortonly . 58
rshortonly.test . 59
segment.complement . 60
set.segments . 61
underweight.segments . 62

Index 64

collapse.segments Collapse a list or vectors of portfolio segments

Description

This function returns a vector of investment indices from the given segments vector or list of vectors.

Usage

collapse.segments(segments)

Arguments

segments A vector or list of vectors that defint the portfolio segments

Value

A vector of investment indices.

extract.segments 3

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

###
define the segments
###

I <- list()
I[[1]] <- c(1, 2, 3)
I[[2]] <- c(4, 5)
I[[3]] <- c(6, 7)
I[[4]] <- c(8, 9, 10)
collapse.segments(I)
collapse.segments(I[[1]])
collapse.segments(I[[2]])
collapse.segments(I[[3]])
collapse.segments(I[[4]])

extract.segments Extract Investment Segment Exposures

Description

This function extracts the investment exposures from one or more portfolios for the specified in-
vestment segments.

Usage

extract.segments(portfolios, segments, collapse = FALSE)

Arguments

portfolios A vector or matrix that defines the portfolios

segments A vector or list of vectors that defines the investment segments

collapse A logical value. If TRUE, only the investment segment exposures are returned

Details

If the collapse argument is FALSE, the segment complement exposures are zero and the invest-
ment segment exposures are taken from the portfolios. If the collapse argument is TRUE, then
only the investment segment exposures are returned. The private function vector.extract.segments
is used to perform the extraction. For matrices of investment weights, the apply function is used
with vector.extract.segments to obtain a matrix of extracted segment weights. The transpose
of this matrix is returned.

4 overweight.segments

Value

A vector for one portfolio or a matrix for multiple portfolios.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

onePortfolio <- random.longonly(10)
I <- list()
I[[1]] <- c(1, 2, 3)
I[[2]] <- c(4, 5)
I[[3]] <- c(6, 7)
I[[4]] <- c(8, 9, 10)
extract.segments(onePortfolio, I[[1]], FALSE)
extract.segments(onePortfolio, I[[1]], TRUE)

overweight.segments Overweight Active Investment Segment Exposures

Description

This function overweights the investment exposures of the given portfolios in the given investment
segments by the proportion xo of the total exposure in the segment complement.

Usage

overweight.segments(portfolios, segments, x.o)

Arguments

portfolios A vector or matrix that defines the portfolios

segments A vector or list of vectors that defines the investment segments

x.o A positive real value for the proportion of total passive exposure allocated to the
active exposures

Details

if xo = 0, then the original portfolios are returned. If xo = 1, then the total exposure of the
segment complement, or passive segment, is allocated to the active investment segment of all the
portfolios. The private function vector.overweight.segments does the actual work. If the ar-
gument portfolios is a matrix, then the apply function is used with private function to obtain a
matrix of weights. The transpose of this matrix is returned.

Value

A vector of adjusted investment exposures for one portfolio or a matrix for more than one portfolio.

portfolio.composite 5

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Grinold, R. C. and R. H. Kahn, 1999. Active Portfolio Management: Quantitative Approach for
Providing Superior Returns and Controlling Risk, Second Edition, McGraw-Hill, New York, NY.

See Also

segment.complement

Examples

onePortfolio <- random.longonly(10)
I <- list()
I[[1]] <- c(1, 2, 3)
I[[2]] <- c(4, 5)
I[[3]] <- c(6, 7)
I[[4]] <- c(8, 9, 10)
overweight.segments(onePortfolio, I[[1]], 0)
overweight.segments(onePortfolio, I[[1]], .1)

portfolio.composite Merge portfolios into a composite

Description

This function merges a list of portfolios using a specified set of weights. The components in the list
can be single portfolio vectors a matrix of portfolios.

Usage

portfolio.composite(portfolios, weights = NULL)

Arguments

portfolios A list of vectors or matrices corresponding to portfolios of investments

weights A numeric vector of weights for the components

Details

The private function vector.composite is used to create a single portfolio from a list of portfolio
weight vectors. The private function matrix.composite generates the weighted composite matrix
from a list of portfolio weight matrices.

Value

A vector or matrix.

6 portfolio.difference

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

segments <- list()
segments[[1]] <- c(1, 2, 3)
segments[[2]] <- c(4, 5)
segments[[3]] <- c(6, 7)
segments[[4]] <- c(8, 9, 10)
weights <- c(.3, .2, .2, .3)
vectors <- list()
matrices <- list()
for (i in 1:4) {
vectors[[i]] <- random.longonly(10, segments=segments[[i]])
matrices[[i]] <- rlongonly(200, 10, segments=segments[[i]])
}
combined.vectors <- portfolio.composite(vectors, weights)
combined.matrices <- portfolio.composite(matrices, weights)

portfolio.difference Portfolio Difference Measure

Description

This function computes a measure of the difference between one or more portfolios and a bench-
mark portfolio.

Usage

portfolio.difference(portfolios, x.b, method = c("relative", "absolute"))

Arguments

portfolios A numeric vector or matrix that defines the portfolio exposures

x.b A numeric vector that defines the benchmark exposures

method A character value that defines the difference measure

Details

The absolute deviation between a portfolio x and a benchmark xb is denoted by Da (x,xb) and is

computed as Da (x,xb) =
1
2

n∑
i=1

|xi − xb,i|.

The relative deviation between a portfolio and a benchmark is denoted by Dr (x,xb) and is com-

puted as Dr (x,xb) =
1
n

n∑
i=1

|xi−xb,i|
xi+xb,i

.

The private function vector.difference performs the actual calculation of the difference based
on the given method.

portfolio.diversification 7

Value

A single numeric measure for one portfolio or a numeric vector for a collection of portfolios

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Worthington, A. C., 2009. Household Asset Portfolio Diversification: Evidence from the House-
hold, Income and Labour Dynamics in Australia (Hilda) Survey, Working Paper, Available at SSRN:
http://ssrn.com/abstract=1421567.

Examples

onePortfolio <- random.longonly(100, 75)
aBenchmark <- rep(0.01, 100)
portfolio.difference(onePortfolio, aBenchmark, method="absolute")
portfolio.difference(onePortfolio, aBenchmark, method="relative")

portfolio.diversification

Portfolio Diversification Measure

Description

This function computes one of several portfolio diversification measures for a single portfolio or a
collection of portfolios.

Usage

portfolio.diversification(portfolios, method = c("naive", "herfindahl",
"herfindahl-hirschman", "hannah-kay", "shannon"), alpha = 2)

Arguments

portfolios a vector or matrix of portfolio exposures

method a character value for the method used to compute the measure

alpha a numeric value for parameter required for the Hannah-Kay measure

Details

The function ocmputes a portfolio diversification measure for a single portfolio or for a collection
of portfolios organized as a matrix.

Value

A vector with one or more values.

8 ractive

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Worthington, A. C., 2009. Household Asset Portfolio Diversification: Evidence from the House-
hold, Income and Labour Dynamics in Australia (Hilda) Survey, Working Paper, Available at SSRN:
http:////ssrn.com//abstract=1421567.

Examples

onePortfolio <- random.longonly(100, 75)
naive <- portfolio.diversification(onePortfolio, method = "naive")
herfindahl <- portfolio.diversification(onePortfolio, method = "herfindahl")
herfindahl.hirschman <- portfolio.diversification(onePortfolio, method = "herfindahl-hirschman")
hannah.kay <- portfolio.diversification(onePortfolio, method = "hannah-kay")
shannon <- portfolio.diversification(onePortfolio, method = "shannon")

ractive Generate random active portfolios

Description

This function generates m random actively managed portfolios relative to a given benchmark port-
folio. Each portfolio is the combination of a benchmark portfolio and a notional neutral long short
portfolio with given gross notional exposure. The number of non zero positions in the long short
portfolios is k.

Usage

ractive(m, x.b, x.g, k = length(x.b), segments = NULL, max.iter = 2000,
eps = 0.001)

Arguments

m A positive integer value for the number of portfolios in the sample

x.b A numeric vector with the investment weights in the benchmark portfolio

x.g A positive numeric value for the gross notional exposure in the long short port-
folio

k A positive integer value for the number of non zero positions in the long short
portfolio

segments A vector or list of vectors that defines the portfolio segments

max.iter A positive integer value for the maximum iterations for the long short portfolio

eps A small positive real value for the convergence criteria for the gross notional
exposure

ractive 9

Details

The function executes the function random.active using the R function sapply. The result returned
is the transpose of the matrix generated in the previous step.

Value

A numeric m × n matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Grinold, R. C. and R. H. Kahn, 1999. Active Portfolio Management: Quantitative Approach for
Providing Superior Returns and Controlling Risk, Second Edition, McGraw-Hill, New York, NY.

Qian, E. E., R. H. Hua and E. H. Sorensen, 2007. Quantitative Equity Portfolio Management,
Chapman \& Hall, London, UK.

Scherer, B., 2007. Portfolio Construction and Risk Budgeting, Third Edition, Risk Books, London,
UK.

See Also

random.active

Examples

###
benchmark consists of 20 equally weighted investments
###
x.b <- rep(1, 30) / 30
###
the gross notional exposure of the long short portfolio is a benchmark weight
###
x.g <- 1 / 30
###
generate 100 random active portfolios with 30 non zero positions in the long short portfolios
###
x.matrix <- ractive(100, x.b, x.g)
###
generate 100 random active portfolios with 10 non zero positions in the long short portfolios
###
y.matrix <- ractive(100, x.b, x.g, 10)

10 ractive.test

ractive.test Generate random active portfolios

Description

This function generates m random actively managed portfolios relative to a given benchmark port-
folio. Each portfolio is the combination of a benchmark portfolio and a notional neutral long short
portfolio with given gross notional exposure. The number of non zero positions in the long short
portfolios is k. The function is used to evaluate the computational performance of the portfolio
generation algorithm.

Usage

ractive.test(m, x.b, x.g, k = length(x.b), segments = NULL, max.iter = 2000, eps = 0.001)

Arguments

m A positive integer value for the number of portfolios in the sample

x.b A numeric vector with the investment weights in the benchmark portfolio

x.g A positive numeric value for the gross notional exposure in the long short port-
folio

k A positive integer value for the number of non zero positions in the long short
portfolio

segments A vector or list of vectors that defines the portfolio segments

max.iter A positive integer value for the maximum iterations for the long short portfolio

eps A small positive real value for the convergence criteria for the gross notional
exposure

Details

The function executes the function random.active.test using the R function lapply. The result
is a list containing the investment weight vector and the number of iterations. These data are stored
in a matrix of investment weights and a vector of iterations. This list is returned.

Value

A list with two named components.

xmatrix An m× n matrix of investment weights

iters An m× 1 vector with the number of iterations used to obtain the portfolios

Author(s)

Frederick Novomestky <fn334@nyu.edu>

random.active 11

References

Grinold, R. C. and R. H. Kahn, 1999. Active Portfolio Management: Quantitative Approach for
Providing Superior Returns and Controlling Risk, Second Edition, McGraw-Hill, New York, NY.

Qian, E. E., R. H. Hua and E. H. Sorensen, 2007. Quantitative Equity Portfolio Management,
Chapman \& Hall, London, UK.

Scherer, B., 2007. Portfolio Construction and Risk Budgeting, Third Edition, Risk Books, London,
UK.

See Also

random.active.test

Examples

###
benchmark consists of 20 equally weighted investments
###
x.b <- rep(1, 30) / 30
###
the gross notional exposure of the long short portfolio is a benchmark weight
###
x.g <- 1 / 30
###
generate 100 random active portfolios with 30 non zero positions in the long short portfolios
###
x.matrix <- ractive.test(100, x.b, x.g)
###
generate 100 random active portfolios with 10 non zero positions in the long short portfolios
###
y.matrix <- ractive.test(100, x.b, x.g, 10)

random.active Random actively managed portfolio

Description

This function generates an actively managed random portfolio relative to a given benchmark port-
folio. The active portfolio is the sum of the benchmark portfolio and a notional neutral long short
portfolio with given gross notional exposure. The number of non zero positions in the long short
portfolio is k.

Usage

random.active(x.b, x.g, k = length(x.b), segments = NULL, max.iter = 2000,
eps = 0.001)

12 random.active

Arguments

x.b A numeric vector with the investment weights in the benchmark portfolio

x.g A positive numeric value for the gross notional exposure in the long short port-
folio

k A positive integer value for the number of non zero positions in the long short
portfolio

segments A vector or list of vectors that defines the portfolio segments

max.iter A positive integer value for the maximum iterations for the long short portfolio

eps A small positive real value for the convergence criteria for the gross notional
exposure

Details

The algorithm uses the function random.longshort to generate long portfolios that have identical
total long and short exposures equal to one half the given gross notional exposure x.g. The resultant
portfolio x.ls is algebraically added to the benchmark portfolio x.b.

Value

An n× 1 numeric vector with the investment weights.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Jacobs, B. I. and K. N. Levy, 1997. The Long and Short of Long-Short Investing, Journal of
Investing, Spring 1997, 73-86.

Jacobs, B. I., K. N. Levy and H. M. Markowitz, 2005. Portfolio Optimization with Factors, Scenar-
ios and Realist Short Positions, Operations Research, July/August 2005, 586-599.

See Also

random.longshort

Examples

###
the benchmark portfolios consists of 30 equally weighted investments
###
x.b <- rep(1, 30) / 30
###
the gross notional exposure of the long short portfolio is a benchmark weight
###
x.g <- 1 / 30
###
generate 100 active portfolios with 30 non zero positions in the long short portolios

random.active.test 13

###
x <- random.active(x.b, x.g)
###
generate 100 active portfolios with 10 non zero positions in the long short portolios
###
y <- random.active(x.b, x.g, 10)

random.active.test Random actively managed portfolio

Description

This function generates an actively managed random portfolio relative to a given benchmark port-
folio. The active portfolio is the sum of the benchmark portfolio and a notional neutral long short
portfolio with given gross notional exposure. The number of non zero positions in the long short
portfolio is k. The function is used to evaluate the performance of the portfolio generation algo-
rithm.

Usage

random.active.test(x.b, x.g, k = length(x.b), segments = NULL, max.iter = 2000,
eps = 0.001)

Arguments

x.b A numeric vector with the investment weights in the benchmark portfolio
x.g A positive numeric value for the gross notional exposure in the long short port-

folio
k A positive integer value for the number of non zero weights in the long short

portfolio
segments A vector or list of vectors that defines the portfolio segments
max.iter A positive integer value for the maximum iterations for generating the long short

portfolio
eps A small positive real value for the convergence criteria for the gross notional

exposure

Details

The algorithm uses the function random.longshort.test to generate long portfolios that have
identical total long and short exposures equal to one half the given gross notional exposure x.g.
The resultant portfolio x.ls is algebraically added to the benchmark portfolio x.b.

Value

A list with two named components.

x An n× 1 numerical vector of investment weights
iter An integer value for the number of iterations used to obtain the investment

weights

14 random.benchmark

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Grinold, R. C. and R. H. Kahn, 1999. Active Portfolio Management: Quantitative Approach for
Providing Superior Returns and Controlling Risk, Second Edition, McGraw-Hill, New York, NY.

Qian, E. E., R. H. Hua and E. H. Sorensen, 2007. Quantitative Equity Portfolio Management,
Chapman \& Hall, London, UK.

Scherer, B., 2007. Portfolio Construction and Risk Budgeting, Third Edition, Risk Books, London,
UK.

See Also

random.longshort

Examples

###
benchmark consists of 20 equally weighted investments
###
x.b <- rep(1, 30) / 30
###
gross notion exposure is one of the investment weights
###
x.g <- 1 / 30
###
generate 100 active portfolios with 30 non zero positions in the long short portfolio
###
x.result <- random.active.test(x.b, x.g)
###
generate 100 active portfolios with 10 non zero positions in the long short portfolio
###
y.result <- random.active.test(x.b, x.g, 10)

random.benchmark Random Naive Benchmark Portfolios

Description

This function generates a vector of investment weights for a benchmark portfolio where the weights
are non-negative and the sume of the weights is a given total. The weights are naively derived from
an i.i.d. sample of positively truncated random variables.

random.benchmark 15

Usage

random.benchmark(n = 2, k = n, segments = NULL, x.t = 1,
margins = c("unif", "beta", "exp", "frechet",
"gamma", "gev", "gpd", "gumbel", "lnorm", "logis", "norm",
"weibull"), ...)

Arguments

n A positive integer for the number of investments in the portfolio
k A positive integer for the number of non-zero exposures or cardinality
segments A vector or list of vectors that defines the investment segments
x.t A positive real value for the sum of the investment exposures
margins A character value for the underlying distribution of the truncated random vari-

able. The default is a uniform distribution
... Other arguments passed to the random variate simulation function

Details

If the segments argument is a NULL value, then the benchmark has full cardinality, k = n, or
partial cardinality, k < n. In the case of partial cardinality, an investment segment is defined by a
simple random sample without replacement of k investment indices from the n investments. When
the segments argument is not NULL, the investment segment is constructed from the argument.
The investment segment is represented by the set A with cardinality k. If argument k and segments
are not specified, then then A = {i|1 ≤ i ≤ n} For the k non-zero investment exposures, a random
sample of size k is drawn from the truncated random variable, Si i ∈ A. The non-zero investment

exposures are given by xi = Si

/∑
j∈A

Sj , i ∈ A.

Currently, there are twelve truncated distributions available. They are the uniforn (the default), beta,
exponential, Frechet, gamma, generalized extreme value (gev), generalized Pareto (gpd), Gumbel,
log normal, logistic, normal and Weibull distributions. Random samples are truncated to the positive
half of the real line.

Value

A numeric n× 1 vector of investment exposures.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Qian, E. E., R. H. Hua and E. H. Sorensen, 2007. Quantitative Equity Portfolio Management,
Chapman \& Hall, London, UK.

See Also

random.benchmark.test

16 random.benchmark.test

Examples

###
long only portfolio of 30 investments with 30 non-zero positions
the margins of the truncated random variables are uniform
###
p.1 <- random.benchmark(30)
###
long only portfolio of 30 investments with 10 non-zero positions
the margins of the truncated random variables are uniform
###
p.2 <- random.benchmark(30, 10)
###
long only portfolio of 30 investments with 30 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.3 <- random.benchmark(30, margins="lnorm", meanlog=0, sdlog=1)
###
long only portfolio of 30 investments with 10 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.4 <- random.benchmark(30, 10, margins="lnorm", meanlog=0, sdlog=1)

random.benchmark.test Random Naive Benchmark Portfolio

Description

This function generates a vector of investment weights for a benchmark portfolio where the weights
are non-negative and the sume of the weights is a given total. The weights are naively derived from
an i.i.d. sample of truncated random variables. This function is used to evaluate the performance of
the portfolio generation algorithm.

Usage

random.benchmark.test(n = 2, k = n, segments = NULL, x.t = 1,
margins = c("unif", "beta", "exp", "frechet",
"gamma", "gev", "gpd", "gumbel", "lnorm", "logis", "norm",
"weibull"), ...)

Arguments

n A positive integer for the number of investments in the portfolio

k A positive integer for the number of non-zero exposures or cardinality

segments A vector or list of vectors that defines the investment segments

x.t A positive real value for the sum of the investment exposures

random.benchmark.test 17

margins A character value for the underlying distribution of the truncated random vari-
able. The default is a uniform distribution

... Other arguments passed to the random variate simulation function

Details

The details are described in the function random.benchmark.

Value

A list with two named components.

x An m× n numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.benchmark

Examples

###
long only portfolio of 30 investments with 30 non-zero positions
the margins of the truncated random variables are uniform
###
p.1 <- random.benchmark.test(30)
###
long only portfolio of 30 investments with 10 non-zero positions
the margins of the truncated random variables are uniform
###
p.2 <- random.benchmark.test(30, 10)
###
long only portfolio of 30 investments with 30 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.3 <- random.benchmark.test(30, margins="lnorm", meanlog=0, sdlog=1)
###
long only portfolio of 30 investments with 10 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.4 <- random.benchmark.test(30, 10, margins="lnorm", meanlog=0, sdlog=1)

18 random.bounded

random.bounded Random bounded portfolio

Description

This function generates a portfolio of n investments where the weights are constrained to be within
investment specific lower and upper bounds.

Usage

random.bounded(n = 2, x.t = 1, x.l = rep(0, n), x.u = rep(x.t, n), max.iter = 1000)

Arguments

n An integer value for the number of investments in the portfolio

x.t Numeric value for the sum of the investment weights

x.l Numeric vector for the lower bounds on the investment weights

x.u Numeric vector for the upper bound on the investment weights

max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The simulation method is an extension the method in the function random.longonly. The desired
portfolio x =

[
x1 x2 · · · xn

]′
is defined x = xl + z, that is, the sum of a portfolio of lower

bounds with total allocation 1′ xl and the portfolio z with total allocation xt − 1′ xl. This second
portfolio has non-negative weights and upper bounds equal to the range vector xr = xu − xl.

In the function random.longonly, all investment weights have the same lower and upper bounds. In
random.bounded investment weights can have different bounds. Therefore, rather than performing
a random sampling without replacement of the weights, random.bounded begins with the selection
of the indices i1, i2, . . . , in as a random sample without replacement of the set of investment weight
subscripts. The subscript of the index sample defines the order in which the random weights are
generated. The allocations in z are scaled uniform random variables.

After completing this acceptance rejection procedure, the function determines any unallocated sur-
plus which is the total allocation minus the sum of the lower bounds. If there is any surplus, then
the allocation gap is computed as the difference of the upper bounds and the current investment
allocations. Investments are chosen at random and minimum of the surplus and the gap is added
to the allocation. The surplus is reduced by this amount and the adjustment is performed for each
investment.

Value

A numeric vector with investment weights.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

random.bounded 19

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.

Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.

Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.

Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

See Also

random.longonly

Examples

###
standard long only portfolio
###
p.1 <- random.bounded(30, 1)
###
3% lower bound for all investments
100% upper bound for all investments
###
x.lb.all.3 <- rep(0.03, 30)
x.ub.all.100 <- rep(1, 30)
p.2 <- random.bounded(30, 1, x.l = x.lb.all.3, x.u= x.ub.all.100)
###
4% upper bound for all investments
3% lower bound for all investments
x.ub.all.4 <- rep(0.04, 30)
p.3 <- random.bounded(30, 1, x.l = x.lb.all.3, x.u = x.ub.all.4)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
100% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.4 <- random.bounded(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.100)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
100% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.5 <- random.bounded(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.100)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
4% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))

20 random.bounded.test

p.6 <- random.bounded(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.4)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
4% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.7 <- random.bounded(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.4)
###
3% lower bound for all investments
4% upper bound for 1-10, 5% upper bound for 11-20 and 4% upper boundfor 21-30
###
x.ub.4.5.4 <- c(rep(0.04, 10), rep(0.05, 10), rep(0.04, 10))
p.8 <- random.bounded(30, 1, x.l = x.lb.all.3, x.u= x.ub.4.5.4)
###
3% lower bound for all investments
5% upper bound for 1-10, 4% upper bound for 11-20 and 5% upper bound for 21-30
###
x.ub.5.4.5 <- c(rep(0.05, 10), rep(0.04, 10), rep(0.05, 10))
p.9 <- random.bounded(30, 1, x.l = x.lb.all.3, x.u= x.ub.5.4.5)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.10 <- random.bounded(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.4.5.4)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.11 <- random.bounded(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.4.5.4)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.12 <- random.bounded(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.5.4.5)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.13 <- random.bounded(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.5.4.5)

random.bounded.test Random bounded portfolio

Description

This function generates a portfolio of n investments where the weights are constrained to be within
investment specific lower and upper bounds.

Usage

random.bounded.test(n = 2, x.t = 1, x.l = rep(0, n), x.u = rep(x.t, n), max.iter = 1000)

random.bounded.test 21

Arguments

n An integer value for the number of investments in the portfolio

x.t Numeric value for the sum of the investment weights

x.l Numeric vector for the lower bounds on the investment weights

x.u Numeric vector for the upper bound on the investment weights

max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The simulation method is an extension the method in the function random.longonly. The desired
portfolio x =

[
x1 x2 · · · xn

]′
is defined x = xl + z, that is, the sum of a portfolio of lower

bounds with total allocation 1′ xl and the portfolio z with total allocation xt − 1′ xl. This second
portfolio has non-negative weights and upper bounds equal to the range vector xr = xu − xl.

In the function random.longonly, all investment weights have the same lower and upper bounds. In
random.bounded investment weights can have different bounds. Therefore, rather than performing
a random sampling without replacement of the weights, random.bounded begins with the selection
of the indices i1, i2, . . . , in as a random sample without replacement of the set of investment weight
subscripts. The subscript of the index sample defines the order in which the random weights are
generated. The allocations in z are scaled uniform random variables.

After completing this acceptance rejection procedure, the function determines any unallocated sur-
plus which is the total allocation minus the sum of the lower bounds. If there is any surplus, then
the allocation gap is computed as the difference of the upper bounds and the current investment
allocations. Investments are chosen at random and minimum of the surplus and the gap is added
to the allocation. The surplus is reduced by this amount and the adjustment is performed for each
investment.

Value

A numeric vector with investment weights.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.

Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.

Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.

Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

22 random.bounded.test

See Also

random.longonly

Examples

###
standard long only portfolio
###
p.1 <- random.bounded.test(30, 1)
###
3% lower bound for all investments
100% upper bound for all investments
###
x.lb.all.3 <- rep(0.03, 30)
x.ub.all.100 <- rep(1, 30)
p.2 <- random.bounded.test(30, 1, x.l = x.lb.all.3, x.u= x.ub.all.100)
###
4% upper bound for all investments
3% lower bound for all investments
x.ub.all.4 <- rep(0.04, 30)
p.3 <- random.bounded.test(30, 1, x.l = x.lb.all.3, x.u = x.ub.all.4)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
100% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.4 <- random.bounded.test(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.100)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
100% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.5 <- random.bounded.test(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.100)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
4% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.6 <- random.bounded.test(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.4)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
4% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.7 <- random.bounded.test(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.4)
###
3% lower bound for all investments
4% upper bound for 1-10, 5% upper bound for 11-20 and 4% upper boundfor 21-30
###
x.ub.4.5.4 <- c(rep(0.04, 10), rep(0.05, 10), rep(0.04, 10))
p.8 <- random.bounded.test(30, 1, x.l = x.lb.all.3, x.u= x.ub.4.5.4)
###

random.equal 23

3% lower bound for all investments
5% upper bound for 1-10, 4% upper bound for 11-20 and 5% upper bound for 21-30
###
x.ub.5.4.5 <- c(rep(0.05, 10), rep(0.04, 10), rep(0.05, 10))
p.9 <- random.bounded.test(30, 1, x.l = x.lb.all.3, x.u= x.ub.5.4.5)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.10 <- random.bounded.test(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.4.5.4)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.11 <- random.bounded.test(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.4.5.4)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.12 <- random.bounded.test(30, 1, x.l = x.lb.3.2.3, x.u = x.ub.5.4.5)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.13 <- random.bounded.test(30, 1, x.l = x.lb.2.3.2, x.u = x.ub.5.4.5)

random.equal Random equal weighted portfolios

Description

This function generates a random portfolio of n investments in which there are only k positive equal
weights. The weights sum to the given value xt.

Usage

random.equal(n = 2, k = n, segments = NULL, x.t = 1)

Arguments

n A positive integer for the number of investments in the portfolio
k A positive integer for the number of investments with positive equal weights
segments A vector or list of vectors that defines the portfolio segments
x.t A positive numeric value for the sum of weights

Details

The R function sample is used to generate a simple random sample without replacement of k values
from the integers 1, 2, . . . , n. These are the subscripts into an n× 1 zero vector to assign the equal
weight xt/k.

24 random.equal.test

Value

An n × 1 numeric vector of investment weights for the equal weighted portfolio. The weights are
proportions of invested capital.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

x <- random.equal(30, 5)

random.equal.test Random equal weighted portfolios

Description

This function generates a random portfolio of n investments in which there are only k positive equal
weights. The sum of the weights is xt. The function is used to evaluate the performance of the
portfolio generation algorithm.

Usage

random.equal.test(n = 2, k = n, segments = NULL, x.t = 1)

Arguments

n A positive integer for the number of investments in the portfolio

k A positive integer for the number of investments with positive equal weights

segments A vector or list of vectors that defines the portfolio segments

x.t The sum of the investment weights

Details

The R function sample is used to generate a simple random sample without replacement of k values
from the integers 1, 2, . . . , n. These are the subscripts into an n× 1 zero vector to assign the equal
weight xt/k.

Value

A list with two named components.

x An n× 1 numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

random.general 25

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Evans, J. and S. Archer, 1968. Diversification and the Reduction of Risk: An Empirical Analysis,
Journal of Finance, 23, 761-767.

Upson, R. B., P. F. Jessup and K. Matsumoto, 1975. Portfolio Diversification Strategies, Financial
Analysts Journal, 31(3), 86-88.

Elton, E. J. and M. J. Gruber, 1977. Risk Reduction and Portfolio Size: An Analytical Solution,
Journal of Business, 50(4), 415-437.

Bird, R. and M. Tippett, 1986. Naive Diversification and Portfolio Risk - A Note, Management
Science, 32(2), 244-251.

Statman, M., 1987. How many stocks make a diversified portfolio, Journal of Financial and Quan-
titative Analysis, 22, 353-363.

Newbould, G. D. and P. S. Poon, 1993. The minimum number of stocks needed for diversification,
Financial Practice and Education, 3, 85-87.

O’Neal, E. S., 1997. How Many Mutual Funds Constitute a Diversified Mutual Fund Portfolio,
Financial Analysts Journal, 53(2), 37-46.

Statman, M., 2004. The diversification puzzle, Financial Analysts Journal, 60, 48-53.

Benjelloun, H. and Siddiqi, 2006. Direct diversification with small stock portfolios. Advances in
Investment Analysis and Portfolio Management, 2, 227-252.

Benjelloun, H., 2010. Evans and Archer - forty years later, Investment Management and Financial
Innovation, 7(1), 98-104.

Examples

###
equally weighted portfolio of 30 investments of which 5 are non-zero and
the rest are zero. the weights sum to 1.
###
result <- random.equal.test(30, 5)

random.general Random general portfolio

Description

This function generates a general random portfolio of n investments with k long or short positiobs,
The probability that a a non-zero investment weight is positive is p. The maximum absolute expo-
sure for any investment is x.u. The default value is 1.

Usage

random.general(n = 2, k=n, segments=NULL, p = 0.5, x.u = 1)

26 random.general

Arguments

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non-zero positions

segments A vector or list of vectors that defines the portfolio segments

p A positive numeric value for the probability that an investment weight is positive

x.u A positive numeric value for the maximum absolute exposure to an investment

Details

If k < n the function random.general is recursively called with n set equal to k to obtain a
k × 1 vector of non-zero long and short weights. The R function sample is used to generate a
simple random sample without replacement of k values from the integers 1, 2, . . . , n. These are the
subscripts into an n× 1 zero vector to assign the k non-zero weights. This vector is returned.

If k = n, the R function rbinom is used to generate a vector of plus and minus ones corresponding
to the long and short positions. The R function runif is used to generate uniformly distributed
values between 0 and 1. These are scaled by x.u and then multiplied by the signs. The sum of the
investment weights is not restricted.

Value

An n× 1 numeric vector of investment weights for the equal weighted portfolio.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

###
long only portfolio of 30 investments with 30 non zero positions
###
x.long <- random.general(30, p=1.0)
###
long only portfolio of 30 investments with 10 non zero positions
###
y.long <- random.general(30, 10, p=1.0)
###
short only portfolio of 30 investments with 30 non zero positions
###
x.short <- random.general(30, p=0.0)
###
short only portfolio of 30 investments with 10 non zero positions
###
y.short <- random.general(30, 10, p=1.0)
###
long short portfolio of 30 investments with 30 non zero positions
###
x.long.short <- random.general(30, p=0.5)
###

random.general.test 27

long short portfolio of 30 investments with 10 non zero positions
###
y.long.short <- random.general(30, 10, p=0.5)
###
long bias portfolio of 30 investments with 30 non zero positions
###
x.long.bias <- random.general(30, p=0.7)
###
long bias portfolio of 30 investments with 10 non zero positions
###
y.long.bias <- random.general(30, 10, p=0.7)
###
short bias portfolio of 30 investments with 30 non zero positions
###
x.short.bias <- random.general(30, p=0.3)
###
short bias portfolio of 30 investments with 10 non zero positions
###
y.short.bias <- random.general(30, 10, p=0.3)

random.general.test Random general portfolio

Description

This function generates a general random portfolio of n investments with k long and short positions.
The probability that a non-zero investment weight is positive is p. The maximum absolute exposure
for any investment is x.u. The default value is 1. The function is used to evaluate the performance
of the portfolio generation algorithm.

Usage

random.general.test(n = 2, k = n, segments = NULL, p = 0.5, x.u = 1)

Arguments

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non-zero positions

segments A vector or list of vectors that defines the portfolio segments

p A positive numeric value for the probability that an investment weight is positive

x.u A positive numeric value for the maximum absolute exposure to an investment

Details

If k < n the function random.general.test is recursively called with n set equal to k to obtain
a k × 1 vector of non-zero long and short weights. The R function sample is used to generate a
simple random sample without replacement of k values from the integers 1, 2, . . . , n. These are the
subscripts into an n× 1 zero vector to assign the k non-zero weights. This vector is returned.

28 random.general.test

If k = n, the R function rbinom is used to generate a vector of plus and minus ones corresponding
to the long and short positions. The R function runif is used to generate uniformly distributed
values between 0 and 1. These are scaled by x.u and then multiplied by the signs. The sum of the
investment weights is not restricted.

Value

A list with two named components.

x An n× 1 numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

Examples

###
long only portfolio of 30 investments with 30 non-zero positions
###
result.x.long <- random.general.test(30, p=1.0)
###
long only portfolio of 30 investments with 10 non-zero positions
###
result.y.long <- random.general.test(30, 10, p=1.0)
###
short only portfolio of 30 investments with 30 non-zero positions
###
result.x.short <- random.general.test(30, p=0.0)
###
short only portfolio of 30 investments with 10 non-zero positions
###
result.y.short <- random.general.test(30,10, p=0.0)
###
long short portfolio of 30 investments with 30 non-zero positions
###
result.x.long.short <- random.general.test(30, p=0.5)
###
long short portfolio of 30 investments with 10 non-zero positions
###
result.y.long.short <- random.general.test(30, 10, p=0.5)
###
long bias portfolio of 30 investments with 30 non-zero positions
###
result.x.long.bias <- random.general.test(30, p=0.7)
###
long bias portfolio of 30 investments with 10 non-zero positions
###
result.y.long.bias <- random.general.test(30, 10, p=0.7)
###

random.longonly 29

short bias portfolio of 30 investments with 30 non-zero positions
###
result.x.short.bias <- random.general.test(30, p=0.3)
###
short bias portfolio of 30 investments with 10 non-zero positions
###
result.y.short.bias <- random.general.test(30, 10, p=0.3)

random.longonly Random long only portfolio

Description

This function generates a vector of investment weights for a portfolio where the weights are non-
negative, do not exceed a given upper and and the sum of the weights is a given total. The number
of non zero positions is k.

Usage

random.longonly(n = 2, k = n, segments = NULL, x.t = 1, x.l=0,
x.u = x.t, max.iter = 1000)

Arguments

n An integer value for the number of investments in the portfolio
k An integer value for the number of non zero weights
segments A vector or list of vectors that defines the portfolio segments
x.t Numeric value for the sum of the investment weights
x.l Numeric value for the lower bound on an investment weight
x.u Numeric value for the upper bound on an investment weight
max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The simulation method combines the acceptance rejection method used for generating gamma and
gaussian random variables with a continuous analog of the method used in Ross (2006) to generate
a vector of multinomial random variables. n−1 random variables are constructed where the first U1

is uniformly distributed in the interval [Xl, Xt]. Random variable U2 is a uniform random variable
in [Xl, Xt − U1] given U1. Random variable U3 is a uniform random variable in [0, Xt − U1 − U2]
given U1 and U2. This conditional generation of uniform random variables stops with Un−1 which

is uniform on

[
Xl, Xt −

n−2∑
j=1

Uj

]
given the first n − 2 random variables. if Xt −

n−1∑
j=1

Uj is less

than or equal to Xu, then the final random variable is Un = Xt −
n−1∑
j=1

Uj . Otherwise, the above

procedure of generating uniform random variables conditionally is repeated until this condition is
satisfied. The vector W is a random sample of size n of the values in vector X where the sampling
is performed without replacement.

30 random.longonly.test

Value

A numeric vector with investment weights.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.

Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.

Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.

Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

Examples

###
long only portfolio of 30 investments with 30 non-zero positions
###
x <- random.longonly(30)
###
long only portfolio of 30 investments with 10 non-zero positions
###
y <- random.longonly(30, 10)

random.longonly.test Random long only portfolio

Description

This function generates a vector of investment weights for a portfolio where the weights are non-
negative, do not exceed a given upper and and the sum of the weights is a given total. The number
of non zero positions is k. This function is used to evaluation the computational performance of the
portfolio generation algorithm.

Usage

random.longonly.test(n = 2, k = n, segments = NULL, x.t = 1, x.l=0,
x.u = x.t, max.iter = 1000)

random.longonly.test 31

Arguments

n An integer value for the number of investments in the portfolio

k An integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t Numeric value for the sum of the investment weights

x.l Numeric value for the lower bound on an investment weight

x.u Numeric value for the upper bound on an investment weight

max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The simulation methods combines the acceptance rejection method used for generating gamma and
gaussian random variables with a continuous analog of the method used in Ross (2006) to generate
a vector of multinomial random variables. n−1 random variables are constructed where the first U1

is uniformly distributed in the interval [Xl, Xt]. Random variable U2 is a uniform random variable
in [Xl, Xt − U1] given U1. Random variable U3 is a uniform random variable in [0, Xt − U1 − U2]
given U1 and U2. This conditional generation of uniform random variables stops with Un−1 which

is uniform on

[
Xl, Xt −

n−2∑
j=1

Uj

]
given the first n − 2 random variables. if Xt −

n−1∑
j=1

Uj is less

than or equal to Xu, then the final random variable is Un = Xt −
n−1∑
j=1

Uj . Otherwise, the above

procedure of generating uniform random variables conditionally is repeated until this condition is
satisfied. The vector W is a random sample of size n of the values in vector U where the sampling
is performed without replacement.

Value

A list with two named components.

xmatrix An m× n matrix of investment weights

iters An m× 1 vector with the number of iterations used to obtain the portfolios

A list with two named components.

x An n× 1 numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

32 random.longshort

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.
Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.
Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.
Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

Examples

###
long only portfolio of 30 investments with 30 non-zero positions
###
result.x <- random.longonly.test(30)
###
long only portfolio of 30 investments with 10 non-zero positions
###
result.y <- random.longonly.test(30, 10)

random.longshort Generate random long short porfolio

Description

This function generates a vector of investment weights for a long short portfolio where the the gross
notional exposure is x.t.long + x.t.short and the net notional exposure is x.t.long - x.t.short. There
are k non-zero positions in the portfolio.

Usage

random.longshort(n = 2, k = n, segments = NULL, x.t.long = 1, x.t.short = x.t.long,
max.iter = 2000, eps = 0.001)

Arguments

n A positive integer value for the number of investments in the portfolio
k A positive integer value for the number of non zero weights
segments A vector or list of vectors that defines the portfolio segments
x.t.long A positive real value for the sum of the long exposures
x.t.short A positive real value for the sum of the absolute value of the short exposures
max.iter A positive integer value for the maximum iterations in the acceptance rejection

method
eps A small positive real value for the convergence criteria for the gross notional

exposure

random.longshort 33

Details

The function implements an algorithm in which the outer structure is the iterative acceptance rejec-
tion method. Within each iteration, the R function random.longonly is used to construct a long
only investment weight vector x.long where the sum of these weights is x.t.long. The R function
random.shortonly is used to construct a short only investment eight vector random.short such
that the sum of the absolute value of these weights is x.t.long. The sum of these two weight
vectors, x.longshort, satisfies the net notional requirement of the desired portfolio. If the abso-
lute value of computed gross notiona exposure for x.longshort minus $x.t.long + x.t.short$ is less
than the argument eps, then the desired portfolio is generated and result is returned. Otherwise, the
process is repeated within the acceptance rejection loop until (1) the required portfolio is generated
or 2 the iteration limit is exceeded.

Value

An n× 1 vector of investment weights for the long short portfolio.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Jacobs, B. I. and K. N. Levy, 1997. The Long and Short of Long-Short Investing, Journal of
Investing, Spring 1997, 73-86.

Jacobs, B. I., K. N. Levy and H. M. Markowitz, 2005. Portfolio Optimization with Factors, Scenar-
ios and Realist SHort Positions, Operations Research, July/August 2005, 586-599.

See Also

random.longonly, random.shortonly

Examples

###
long short portfolio of 30 investments with 30 non-zero positions
###
x <- random.longshort(30)
###
long short portfolio of 30 investments with 10 non-zero positions
###
y <- random.longshort(30, 10)

34 random.longshort.test

random.longshort.test Random long short portfolio test

Description

This function generates a vector of investment weights for a portfolio with a given net and gross
notional exposure. There are k non-zero positions in the portfolio. The function is used to evaluate
the performance of the portfolio generation algorithm.

Usage

random.longshort.test(n = 2, k = n, segments = NULL, x.t.long = 1, x.t.short = x.t.long,
max.iter = 2000, eps = 0.001)

Arguments

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non zero positions

segments A vector or list of vectors that defines the portfolio segments

x.t.long A positive real value for the sum of the long exposures

x.t.short A positive real value for the sum of the absolute value of the short exposures

max.iter A positive integer value for the maximum iterations in the acceptance rejection
method

eps A small positive real value for the convergence criteria for the gross notional
exposure

Details

The function uses the same portfolio generation method described in random.longshort. The
arguments x.t, x.t.long and x.t.short are proportions of total invested capital.

Value

A list with two named components.

x An n× 1 numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.eu>

random.shortonly 35

References

Jacobs, B. I. and K. N. Levy, 1997. The Long and Short of Long-Short Investing, Journal of
Investing, Spring 1997, 73-86.

Jacobs, B. I., K. N. Levy and H. M. Markowitz, 2005. Portfolio Optimization with Factors, Scenar-
ios and Realist SHort Positions, Operations Research, July/August 2005, 586-599.

See Also

random.longonly, random.longshort, random.shortonly

Examples

###
long short portfolio of 30 investments with 30 non-zero positions
###
x.result <- random.longshort.test(30)
###
long short portfolio of 30 investments with 10 non-zero positions
###
x.result <- random.longshort.test(30, 10)

random.shortonly Random short only portfolio

Description

This function generates a vector of investment weights for a portfolio where the weights are non-
positive, absolute weights do not exceed a given upper and and the sum of the absolute weights
weights is a given total. The number of non zero positions in the portfolio is k.

Usage

random.shortonly(n = 2, k = n, segments = NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

Arguments

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t A positive numeric value for the sum of the absolute value of investment weights

x.l A positive numeric value for the lower bound on the absolute value of investment
weights

x.u A positive numeric value for the upper bound on the absolute value of investment
weights

max.iter A positive integer value for the maximum iterations in the rejection method

36 random.shortonly.test

Details

The function random.longonly is used to generate a long only portfolio that satisfies the lower
bound, upper bound and sum of weight conditions. The value returned is a vector with the opposite
signs.

Value

An n× 1 numeric vector of investment weights for the short only portfolio.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.longonly

Examples

###
generate short only portfolio of 30 investments with 30 non-zero positions
###
x <- random.shortonly(30)
###
generate short only portfolio of 30 investments with 10 non-zero positions
###
y <- random.shortonly(30, 10)

random.shortonly.test Random short only portfolio

Description

This function generates a vector of investment weights for a portfolio where the weights are non-
positive, absolute weights do not exceed a given upper and and the sum of the absolute weights is a
given total. The number of non zero positions in the portfolio is k. The function is used to evaluate
the performance of the portfolio generation algorithm.

Usage

random.shortonly.test(n = 2, k = n, segments = NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

random.shortonly.test 37

Arguments

n An integer value for the number of investments in the portfolio

k An integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t Numeric value for the sum of the absolute value of the investment weights

x.l Numeric value for the lower bound on the absolute value of an investment weight

x.u Numeric value for the upper bound on the absolute value of an investment
weight

max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The function uses random.longonly.test to generate a long only portfolio in test mode. The
component x compute is used to define the short portfolio. The short portfolio together with the
component iter, the number of iterations used to construct the long only portfolio, are stored in a
list of named components.

Value

A list with two named components

x An n× 1 numerical vector of investment weights

iter An integer value for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.shortonly

Examples

###
generate a short only portfolio of 30 investments with 30 non-zero positions
###
x.result <- random.shortonly.test(30)
###
generate a short only portfolio of 30 investments with 10 non-zero positions
###
y.result <- random.shortonly.test(30, 10)

38 rbenchmark

rbenchmark Generate random naive benchmark portfolios

Description

This function generates m random long only benchmark portfolios with n investments where the
sume of the weights equals a given amount. The weights are naively derived from an i.i.d. sample
of truncated random variables.

Usage

rbenchmark(m, n = 2, k = n, segments = NULL, x.t = 1,
margins = c("unif", "beta", "exp", "frechet",
"gamma", "gev", "gpd", "gumbel", "lnorm", "logis", "norm",
"weibull"), ...)

Arguments

m A positive integer value for the number of portfolios

n A positive integer for the number of investments in the portfolio

k A positive integer for the number of non-zero exposures or cardinality

segments A vector or list of vectors that defines the investment segments

x.t A positive real value for the sum of the investment exposures

margins A character value for the underlying distribution of the truncated random vari-
able. The default is a uniform distribution

... Other arguments passed to the random variate simulation function

Details

The function executes the function random.benchmark using the R function sapply. The result
returned is the transpose of the matrix generated in the previous step.

Value

A numeric m × n matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.benchmark

rbenchmark.test 39

Examples

###
100 long only portfolios of 30 investments with 30 non-zero positions
the margins of the truncated random variables are uniform
###
p.1.matrix <- rbenchmark(100, 30)
###
100 long only portfolios of 30 investments with 10 non-zero positions
the margins of the truncated random variables are uniform
###
p.2.matrix <- rbenchmark(100, 30, 10)
###
100 long only portfolios of 30 investments with 30 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.3.matrix <- rbenchmark(100, 30, margins="lnorm", meanlog=0, sdlog=1)
###
100 long only portfolios of 30 investments with 10 non-zero positions
the margins of the truncated random variables are log norm
with zero log mean and unit log standard deviation
###
p.4.matrix <- rbenchmark(100, 30, 10, margins="lnorm", meanlog=0, sdlog=1)

rbenchmark.test Generate random naive benchmark portfolios

Description

This function generates m random long only benchmark portfolios with n investments where the
sume of the weights equals a given amount. The weights are naively derived from an i.i.d. sample
of truncated random variables. This function is used to evaluate the performance of the portfolio
generation algorithm.

Usage

rbenchmark.test(m, n = 2, k = n, segments = NULL, x.t = 1,
margins = c("unif", "beta", "exp", "frechet",
"gamma", "gev", "gpd", "gumbel", "lnorm", "logis", "norm",
"weibull"), ...)

Arguments

m A positive integer value for the number of portfolios

n A positive integer for the number of investments in the portfolio

k A positive integer for the number of non-zero exposures or cardinality

segments A vector or list of vectors that defines the investment segments

40 rbenchmark.test

x.t A positive real value for the sum of the investment exposures

margins A character value for the underlying distribution of the truncated random vari-
able. The default is a uniform distribution

... Other arguments passed to the random variate simulation function

Details

The function executes the function random.benchmark.test using the R function lapply. The
result which is a list contains the investment weight vectors and number of iterations. Thse data are
stored in a matrix of investment weights and a vector of iterations. These arrays are returned as a
list.

Value

A list with two named components.

xmatrix A numerical m× n matrix of investment weights

iters An integer m× 1 vector for the number iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.benchmark.test

Examples

###
100 long only portfolios of 30 investments with 30 non-zero positions
the margins of the truncated random variables are uniform
###
p.1.result <- rbenchmark.test(100, 30)
###
100 long only portfolios of 30 investments with 10 non-zero positions
the margins of the truncated random variables are uniform
###
p.2.result <- rbenchmark.test(100, 30, 10)
###
100 long only portfolios of 30 investments with 30 non-zero positions
the margins of the truncated random variables are log normal
with zero log mean and unit log standard deviation
###
p.3.result <- rbenchmark.test(100, 30, margins="lnorm", meanlog=0, sdlog=1)
###
100 long only portfolios of 30 investments with 10 non-zero positions
the margins of the truncated random variables are log norm
with zero log mean and unit log standard deviation
###

rbounded 41

p.4.result <- rbenchmark.test(100, 30, 10, margins="lnorm", meanlog=0, sdlog=1)

rbounded Random bounded portfolios

Description

This function generates m portfolios of n investments where the weights are constrained to be within
investment specificd lower and upper bounds.

Usage

rbounded(m, n = 2, x.t = 1, x.l = rep(0, n), x.u = rep(x.t, n), max.iter = 1000)

Arguments

m An integer value for the number of portfolios to be generated
n An integer value for the number of investments in the portfolio
x.t Numeric value for the sum of the investment weights
x.l Numeric vector for the lower bounds on the investment weights
x.u Numeric vector for the upper bound on the investment weights
max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The function executes the function random.bounded using the R function sapply. The result re-
turned is the transpose of the matrix generated in the previous step.

Value

A numeric m × n matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.
Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.
Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.
Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.
Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

42 rbounded

See Also

random.bounded

Examples

###
standard long only portfolio
###
p.1.matrix <- rbounded(400, 30, 1, rep(0, 30), rep(1, 30))

###
3% lower bound for all investments
100% upper bound for all investments
###
x.lb.all.3 <- rep(0.03, 30)
x.ub.all.100 <- rep(1, 30)
p.2.matrix <- rbounded(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.all.100)
###
4% upper bound for all investments
3% lower bound for all investments
x.ub.all.4 <- rep(0.04, 30)
p.3.matrix <- rbounded(400, 30, 1, x.l = x.lb.all.3, x.u = x.ub.all.4)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
100% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.4.matrix <- rbounded(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.100)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
100% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.5.matrix <- rbounded(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.100)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
4% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.6.matrix <- rbounded(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.4)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
4% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.7.matrix <- rbounded(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.4)
###
3% lower bound for all investments
4% upper bound for 1-10 5% for 11-20 and 4% for 21-30
###
x.ub.4.5.4 <- c(rep(0.04, 10), rep(0.05, 10), rep(0.04, 10))
p.8.matrix <- rbounded(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.4.5.4)

rbounded.test 43

###
3% lower bound for all investments
5% upper bound for 1-10 4% for 11-20 and 5% for 21-30
###
x.ub.5.4.5 <- c(rep(0.05, 10), rep(0.04, 10), rep(0.05, 10))
p.9.matrix <- rbounded(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.5.4.5)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.10.matrix <- rbounded(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.4.5.4)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.11.matrix <- rbounded(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.4.5.4)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.12.matrix <- rbounded(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.5.4.5)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.13.matrix <- rbounded(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.5.4.5)

rbounded.test Random bounded portfolios

Description

This function generates m portfolios of n investments where the weights are constrained to be within
investment specificd lower and upper bounds. This function is used to evaluation the computational
performance of the portfolio generation algorithm.

Usage

rbounded.test(m, n = 2, x.t = 1, x.l = rep(0, n), x.u = rep(x.t, n), max.iter = 1000)

Arguments

m An integer value for the number of portfolios to be generated

n An integer value for the number of investments in the portfolio

x.t Numeric value for the sum of the investment weights

x.l Numeric vector for the lower bounds on the investment weights

x.u Numeric vector for the upper bound on the investment weights

max.iter An integer value for the maximum iteration in the acceptance rejection loop

44 rbounded.test

Details

The function executes the function random.bounded using the R function sapply. The result re-
turned is the transpose of the matrix generated in the previous step.

Value

A list with two named components.

xmatrix An m× n matrix of investment weights

iters An m× 1 vector with the number of iterations used to obtain the portfolios

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Sape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.

Kinderman, A. J. and J. G. Ramage, 1976. Computer Generation of Normal Random Variables,
Journal of the American Statistical Association, December 1976, 71(356), 893.

Marsaglia, G. and T. A. Bray, 1964. A Convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.

Tadikamalla, P. R., (1978). Computer generation of gamma random variables - II, Communications
of the ACM, 21 (11), November 1978, 925-928.

See Also

random.bounded

Examples

###
standard long only portfolio
###
p.1.matrix <- rbounded.test(400, 30, 1)

###
3% lower bound for all investments
100% upper bound for all investments
###
x.lb.all.3 <- rep(0.03, 30)
x.ub.all.100 <- rep(1, 30)
p.2.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.all.100)
###
4% upper bound for all investments
3% lower bound for all investments
x.ub.all.4 <- rep(0.04, 30)

rbounded.test 45

p.3.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.all.3, x.u = x.ub.all.4)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
100% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.4.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.100)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
100% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.5.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.100)
###
2% lower bound for 1-10, 3% lower bound for 11-20, 2% lower bound for 21-30
4% upper bound for all investments
###
x.lb.2.3.2 <- c(rep(0.02, 10), rep(0.03, 10), rep(0.02, 10))
p.6.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.all.4)
###
3% lower bound for 1-10, 2% lower bound for 11-20, 3% lower bound for 21-30
4% upper bound for all investments
###
x.lb.3.2.3 <- c(rep(0.03, 10), rep(0.02, 10), rep(0.03, 10))
p.7.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.all.4)
###
3% lower bound for all investments
4% upper bound for 1-10 5% for 11-20 and 4% for 21-30
###
x.ub.4.5.4 <- c(rep(0.04, 10), rep(0.05, 10), rep(0.04, 10))
p.8.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.4.5.4)
###
3% lower bound for all investments
5% upper bound for 1-10 4% for 11-20 and 5% for 21-30
###
x.ub.5.4.5 <- c(rep(0.05, 10), rep(0.04, 10), rep(0.05, 10))
p.9.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.all.3, x.u= x.ub.5.4.5)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.10.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.4.5.4)
###
2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
4% upper bound for 1-10 5% for 11-20 4% for 21-30
###
p.11.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.4.5.4)
###
3% lower bound for 1-10, 2% for 11-20, 3% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.12.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.3.2.3, x.u = x.ub.5.4.5)
###

46 requal

2% lower bound for 1-10, 3% for 11-20, 2% for 21-30
5% upper bound for 1-10 4% for 11-20 5% for 21-30
###
p.13.matrix <- rbounded.test(400, 30, 1, x.l = x.lb.2.3.2, x.u = x.ub.5.4.5)

requal Generate equal weighted portfolios

Description

This function generates m random equal portfolios with k non-zero, equal weights and the sum of
the weights equals xt.

Usage

requal(m, n = 2, k = n, x.t=1)

Arguments

m A positive integer for the number of portfolios in the sample

n A positive integer for the number of non-zero equal weights

k A positive integer for the number of investments in the portfolio

x.t A positive number for the sum of the weights

Details

The function executes the function random.equal using the R function sapply. The result returned
is the transpose of the matrix generated in the previous step.

Value

A numeric m × n matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Evans, J. and S. Archer, 1968. Diversification and the Reduction of Risk: An Empirical Analysis,
Journal of Finance, 23, 761-767.

Upson, R. B., P. F. Jessup and K. Matsumoto, 1975. Portfolio Diversification Strategies, Financial
Analysts Journal, 31(3), 86-88.

Elton, E. J. and M. J. Gruber, 1977. Risk Reduction and Portfolio Size: An Analytical Solution,
Journal of Business, 50(4), 415-437.

requal.test 47

Bird, R. and M. Tippett, 1986. Naive Diversification and Portfolio Risk - A Note, Management
Science, 32(2), 244-251.

Statman, M., 1987. How many stocks make a diversified portfolio, Journal of Financial and Quan-
titative Analysis, 22, 353-363.

Newbould, G. D. and P. S. Poon, 1993. The minimum number of stocks needed for diversification,
Financial Practice and Education, 3, 85-87.

O’Neal, E. S., 1997. How Many Mutual Funds Constitute a Diversified Mutual Fund Portfolio,
Financial Analysts Journal, 53(2), 37-46.

Statman, M., 2004. The diversification puzzle, Financial Analysts Journal, 60, 48-53.

Benjelloun, H. and Siddiqi, 2006. Direct diversification with small stock portfolios. Advances in
Investment Analysis and Portfolio Management, 2, 227-252.

Benjelloun, H., 2010. Evans and Archer - forty years later, Investment Management and Financial
Innovation, 7(1), 98-104.

See Also

random.equal

Examples

###
generate 100 equal weighted portfolios of 30 investments with 10 non zero positions
###
x.matrix <- requal(100, 30, 10)

requal.test Generate equal weighted portfolios

Description

This function generates m random equal portfolios with k non-zero, equal weights and the sum
of the weights equals xt. This function is used to evaluate the computation performance of the
portfolio generation algorithm

Usage

requal.test(m, n = 2, k = n, x.t = 1)

Arguments

m A positive integer for the number of portfolios in the sample

n A positive integer for the number of non-zero equal weights

k A positive integer for the number of investments in the portfolio

x.t A positive number for the sum of the weights

48 requal.test

Details

The function executes the function random.equal using the R function sapply. The result returned
is the transpose of the matrix generated in the previous step. This is not an iterative function so that
the number of iterations is 1 for all of the portfolios.

Value

A list with two named components.

xmatrix An m× n matrix of investment weights

iters An m× 1 vector with the number of iterations used to obtain the portfolios

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Evans, J. and S. Archer, 1968. Diversification and the Reduction of Risk: An Empirical Analysis,
Journal of Finance, 23, 761-767.

Upson, R. B., P. F. Jessup and K. Matsumoto, 1975. Portfolio Diversification Strategies, Financial
Analysts Journal, 31(3), 86-88.

Elton, E. J. and M. J. Gruber, 1977. Risk Reduction and Portfolio Size: An Analytical Solution,
Journal of Business, 50(4), 415-437.

Bird, R. and M. Tippett, 1986. Naive Diversification and Portfolio Risk - A Note, Management
Science, 32(2), 244-251.

Statman, M., 1987. How many stocks make a diversified portfolio, Journal of Financial and Quan-
titative Analysis, 22, 353-363.

Newbould, G. D. and P. S. Poon, 1993. The minimum number of stocks needed for diversification,
Financial Practice and Education, 3, 85-87.

O’Neal, E. S., 1997. How Many Mutual Funds Constitute a Diversified Mutual Fund Portfolio,
Financial Analysts Journal, 53(2), 37-46.

Statman, M., 2004. The diversification puzzle, Financial Analysts Journal, 60, 48-53.

Benjelloun, H. and Siddiqi, 2006. Direct diversification with small stock portfolios. Advances in
Investment Analysis and Portfolio Management, 2, 227-252.

Benjelloun, H., 2010. Evans and Archer - forty years later, Investment Management and Financial
Innovation, 7(1), 98-104.

See Also

random.equal

rgeneral 49

Examples

###
generate 100 equal weighted portfolios of 30 investments with 10 non zero positions
###
result <- requal.test(100, 30, 10)

rgeneral Generate random general portfolios

Description

This function generates m random general portfolios with n investments each. There are k positions
that can be positive or negative. The probability that a given investment weight is positive is p. The
maximum absolute exposure is x.u which has 1 as the default

Usage

rgeneral(m, n = 2, k = n, segments = NULL, p = 0.5, x.u = 1)

Arguments

m A positive integer value for the number of portfolios

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non-zero investment positions

segments A vector or list of vectors that defines the portfolio segments

p A positive numeric value for the probability that a non-zero position is positive

x.u A positive numeric value for the maximum absolute exposure to an investment

Details

The function executes the function random.general using the R function sapply. The result re-
turned is the transpose of the matrix generated in the previous step.

Value

An m× n numeric matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.general

50 rgeneral.test

Examples

###
100 long only portfolios of 30 investments with 30 non-zero positions
###
x.long <- rgeneral(100, 30, p=1.0)
###
100 long only portfolios of 30 investments with 10 non-zero positions
###
y.long <- rgeneral(100, 30, 10, p=1.0)
###
100 short only portfolios of 30 investments with 30 non-zero positions
###
x.short <- rgeneral(100, 30, p=0.0)
###
100 short only portfolios of 30 investments with 10 non-zero positions
###
y.short <- rgeneral(100, 30, 10, p=0.0)
###
100 long short portfolios of 30 investments with 30 non-zero positions
###
x.long.short <- rgeneral(100, 30, p=0.5)
###
100 long short portfolios of 30 investments with 10 non-zero positions
###
y.long.short <- rgeneral(100, 30, 10, p=0.5)
###
100 long bias portfolios of 30 investments with 30 non-zero positions
###
x.long.bias <- rgeneral(100, 30, p=0.7)
###
100 long bias portfolios of 30 investments with 10 non-zero positions
###
y.long.bias <- rgeneral(100, 30, 10, p=0.7)
###
100 short bias portfolios of 30 investments with 30 non-zero positions
###
x.short.bias <- rgeneral(100, 30, p=0.3)
###
100 short bias portfolios of 30 investments with 10 non-zero positions
###
y.short.bias <- rgeneral(100, 30, 10, p=0.3)

rgeneral.test Generate random general portfolios

Description

This function generates m random general portfolios with n investments each that can have k pos-
itive or negative. The probability that a given investment weight is positive is p. The maximum

rgeneral.test 51

absolute exposure is x.u which has 1 as the default The function is used to evaluate the performance
of the portfolio generation algorithm.

Usage

rgeneral.test(m, n = 2, k = n, segments = NULL, p = 0.5, x.u = 1)

Arguments

m A positive integer value for the number of portfolios

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non-zero long and short positions

segments A vector or list of vectors that defines the portfolio segments

p A positive numeric value for the probability that a position is positive

x.u A positive numeric value for the maximum absolute exposure to an investment

Details

The function executes the function random.general.test using the R function lapply. The result
which is a list contains the investment weight vectors and number of iterations. Thse data are stored
in a matrix of investment weights and a vector of iterations. These arrays are returned as a list.

Value

A list with two named components.

xmatrix An m× n numerical matrix of investment weights

iters An m×1 integer vector for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.general.test

Examples

###
100 long only portfolios of 30 investments
###
x.long <- rgeneral.test(100, 30, p=1.0)
y.long <- rgeneral.test(100, 30, 10, p=1.0)
###
100 short only portfolios of 30 investments
###
x.short <- rgeneral.test(100, 30, p=0.0)

52 rlongonly

y.short <- rgeneral.test(100, 30, 10, p=0.0)
###
100 long short portfolios of 30 investments
###
x.long.short <- rgeneral.test(100, 30, p=0.5)
y.long.short <- rgeneral.test(100, 30, 10, p=0.5)
###
100 long bias portfolios of 30 investments
###
x.long.bias <- rgeneral.test(100, 30, p=0.7)
y.long.bias <- rgeneral.test(100, 30, 10, p=0.7)
###
100 short bias portfolios of 30 investments
###
x.short.bias <- rgeneral.test(100, 30, p=0.3)
y.short.bias <- rgeneral.test(100, 30, 10, p=0.3)

rlongonly Generate random long only portfolios

Description

This function generates m random long only portfolios with n investments with each investment
weight bounded in an interval and the sum of the weights equals a given amount. The number of
non-zero positions is k.

Usage

rlongonly(m, n = 2, k = n, segments = NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

Arguments

m A positive integer value for the number of portfolios

n A positive integer value for the number of investments in each portfolio

k A positive integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t A positive numeric value for the sum of investment weights

x.l A positive numeric value for the lower bound of an investment weight

x.u A positive numeric value for the upper bound of an investment weight

max.iter A positive integer value for the number of rejection iterations

Details

The function executes the function random.longonly using the R function sapply. The result re-
turned is the transpose of the matrix generated in the previous step.

rlongonly.test 53

Value

A numeric m × n matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.longonly

Examples

###
100 long only portfolios of 30 investments with 30 non-zero positions
###
x.matrix <- rlongonly(100, 30)
###
100 long only portfolios of 30 investments with 10 non-zero positions
###
y.matrix <- rlongonly(100, 30, 10)

rlongonly.test Generate random long only portfolios

Description

This function generates m random long only portfolios with n investments with each investment
weight bounded in an interval and the sum of the weights equals a given amount. The number
of non-zero positions is k. This function is used to test the algorithm that generates the random
portfolios.

Usage

rlongonly.test(m, n = 2, k = n, segments = NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

Arguments

m A positive integer value for the number of portfolios
n A positive integer value for the number of investments in each portfolio
k A positive integer value for the number of non zero weights
segments A vector or list of vectors that defines the portfolio segments
x.t A positive numeric value for the sum of investment weights
x.l A positive numeric value for the lower bound of an investment weight
x.u A positive numeric value for the upper bound of an investment weight
max.iter A positive integer value for the number of rejection iterations

54 rlongonly.test

Details

The function executes the function random.longonly.test using the R function lapply. The
result which is a list contains the investment weight vectors and number of iterations. Thse data are
stored in a matrix of investment weights and a vector of iterations. These arrays are returned as a
list.

Value

A list with two named components.

xmatrix A numerical m× n matrix of investment weights

iters An integer m× 1 vector for the number iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Cheng, R. C. H., 1977. The Generation of Gamma Variables with Non-integral Shape Parameter,
Journal of the Royal Statistical Society, Series C (Applied Statistics), 26(1), 71.

Marsaglia, G. and T. A. Bray, 1964. A convenient method for generating normal variables, SIAM
Review, 6(3), July 1964, 260-264.

Ross, S. M. (2006). Simulation, Fourth Edition, Academic Press, New York NY.

See Also

random.longonly.test

Examples

###
generate 100 long only portfolios with 30 investments and 30 non-zero positions
###
x.result <- rlongonly.test(100, 30)
###
generate 100 long only portfolios with 30 investments and 10 non-zero positions
###
y.result <- rlongonly.test(100, 30, 10)

rlongshort 55

rlongshort Generate long short portfolios

Description

This function generates m random long short portfolios with n investments with the given gross and
net notional exposure requirements. There are k non-zero positions in the portfolio.

Usage

rlongshort(m, n = 2, k = n, segments = NULL, x.t.long = 1, x.t.short = x.t.long,
max.iter = 2000, eps = 0.001)

Arguments

m A positive integer value for the number of portfolios generated

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t.long A positive real value for the sum of the long exposures

x.t.short A positive real value for the sum of the absolute value of the short exposures

max.iter A positive integer value for the maximum iterations in the acceptance rejection
method

eps A small positive real value for the convergence criteria for the gross notional
exposure

Details

The arguments x.t, x.t.long and x.t.short are proportions of total invested capital.

Value

An m× n numeric matrix of investment weights for the long short portfolios

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Jacobs, B. I. and K. N. Levy, 1997. The Long and Short of Long-Short Investing, Journal of
Investing, Spring 1997, 73-86.

Jacobs, B. I., K. N. Levy and H. M. Markowitz, 2005. Portfolio Optimization with Factors, Scenar-
ios and Realist SHort Positions, Operations Research, July/August 2005, 586-599.

56 rlongshort.test

See Also

random.longshort

Examples

###
100 portfolios of 30 investments with 30 non-zero positions
###
x.matrix <- rlongshort(100, 30)
###
100 portfolios of 30 investments with 10 non-zero positions
###
y.matrix <- rlongshort(100, 30, 20)

rlongshort.test Generate random long short portfolios

Description

This function generates m random long short portfolios with n investments that satisfy the given
gross and net notional exposure requirements. There are k non-zero positions in each portfolio. The
function is used to evaluate the performance of the portfolio generation algorithm.

Usage

rlongshort.test(m, n = 2, k = n, segments=NULL, x.t.long = 1, x.t.short = x.t.long,
max.iter = 2000, eps = 0.001)

Arguments

m A positive integer value for the number of portfolios generated

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t.long A positive real value for the sum of the long exposures

x.t.short A positive real value for the sum of the absolute value of the short exposures

max.iter A positive integer value for the maximum iterations in the acceptance rejection
method

eps A small positive real value for the convergence criteria for the gross notional
exposure

rlongshort.test 57

Details

The function executes the function random.longshort.test using the R function lapply. The
result which is a list contains the investment weight vectors and number of iterations. Thse data
are stored in a matrix of investment weights and a vector of iterations. These arrays are returned
as a list. Gross notional exposure for each portfolio is x.t.long + x.t.short and net notional
exposure is x.t.long - x.t.short. The argument eps is the tolerance applied towards the the
gross notional exposure of each portfolio.

Value

A list with two named components.

xmatrix A numerical m× n matrix of investment weights

iters An m×1 integer vector for the number of iterations used to obtain the investment
weights

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Jacobs, B. I. and K. N. Levy, 1997. The Long and Short of Long-Short Investing, Journal of
Investing, Spring 1997, 73-86.

Jacobs, B. I., K. N. Levy and H. M. Markowitz, 2005. Portfolio Optimization with Factors, Scenar-
ios and Realistic Short Positions, Operations Research, July/August 2005, 586-599.

See Also

random.longshort.test

Examples

###
100 long short portfolios with 30 investments and 30 non-zero positions
###
x.result <- rlongshort.test(100, 30)
###
100 long short portfolios with 30 investments and 20 non-zero positions
###
y.result <- rlongshort.test(100, 30, 20)

58 rshortonly

rshortonly Generate short only portfolios

Description

This function generates m random short only portfolios with n investments with each investment
absolute weight bounded in an interval and the sum of the absolute value of weights equals a given
amount.

Usage

rshortonly(m, n = 2, k = n, segments=NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

Arguments

m A positive integer value for the number of portfolios

n A positive integer value for the number of investments in the portfolio

k A positive integer value for the number of non zero weights

segments A vector or list of vectors that defines the portfolio segments

x.t A positive numeric value for the sum of the absolute value of investment weights

x.l A positive numeric value for the lower bound on the absolute value of investment
weights

x.u A positive numeric value for the upper bound on the absolute value of investment
weights

max.iter A positive integer value for the maximum iterations in the rejection method

Details

The function executes the function random.shortonly using the R function sapply. The result
returned is the transpose of the matrix generated in the previous step.

Value

A numeric imesn matrix. The rows are the portfolios and the columns are the investment weights
for each portfolio

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.shortonly

rshortonly.test 59

Examples

x.matrix <- rshortonly(100, 30)
y.matrix <- rshortonly(100, 30, 10)

rshortonly.test Generate random short only portfolios

Description

This function generates m random short only portfolios with n investments where each investment
absolute weight bounded in an interval and the sum of the absolute weights equals a given amount.
This function is used to test the algorithm that generates the random portfolios. The number of non
zero positions in the portfolio is k. The function is used to evaluate the performance of the portfolio
generation algorithm.

Usage

rshortonly.test(m, n = 2, k = n, segments = NULL, x.t = 1, x.l = 0,
x.u = x.t, max.iter = 1000)

Arguments

m A positive integer value for the number of portfolios

n An integer value for the number of investments in the portfolio

k An integer value for the number of non zero weights

segments A vector or list of vectors that define the portfolio segments

x.t Numeric value for the sum of the absolute value of the investment weights

x.l Numeric value for the lower bound on the absolute value of an investment weight

x.u Numeric value for the upper bound on the absolute value of an investment
weight

max.iter An integer value for the maximum iteration in the acceptance rejection loop

Details

The function executes the function random.shortonly.test using the R function lapply. The
result which is a list contains the investment weight vectors and number of iterations. Thse data are
stored in a matrix of investment weights and a vector of iterations. These arrays are returned as a
list.

Value

A list with two named components.

xmatrix An m× n numerical matrix of investment weights

iters An m×1 integer vector for the number of iterations used to obtain the investment
weights

60 segment.complement

Author(s)

Frederick Novomestky <fn334@nyu.edu>

See Also

random.longonly.test

Examples

###
generate 100 short only portfolios of 30 investments with 30 non zero positions
###
x.result <- rshortonly.test(100, 30)
###
generate 100 short only portfolios of 30 investments with 10 non zero positions
###
x.result <- rshortonly.test(100, 30, 10)

segment.complement Complement of Investment Segments

Description

This function returns a vector of investments that are in a portfolio with n investments but not in the
given investment segments

Usage

segment.complement(n, segments)

Arguments

n A positive integer for the number of investments in a portfolio

segments A vector or list of vectors that defines the investment segments

Details

If the investments in the given segment are for the entire portfolio, a NULL value is returned. If the
segments argument is NULL, then the entire portfolio of n investments is returned.

Value

A vector of investments or a NULL value.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

set.segments 61

Examples

###
define the segments
###

I <- list()
I[[1]] <- c(1, 2, 3)
I[[2]] <- c(4, 5)
I[[3]] <- c(6, 7)
I[[4]] <- c(8, 9, 10)
segment.complement(10, I)
segment.complement(10, NULL)
segment.complement(10, I[[1]])
segment.complement(10, I[[2]])
segment.complement(10, I[[3]])
segment.complement(10, I[[4]])

set.segments Set segment weights from portfolios

Description

This function assigns the given investment weights to larget portfolios using the investment indices
in the segments

Usage

set.segments(portfolios, n, segments)

Arguments

portfolios A vector or matrix of investment weights for the segments

n A positive integer value for the number of investments in the larger portfolio

segments A vector or list of vectors that defines the segment investments

Details

A private function vector.set.segments is used to take weights in a given portfolio vector and
assign them to a larger vector using the collapsed investment index vector. If the portfolios
argument is a matrix, then the R function apply is used to perform this task for each row vector.

Value

A vector or matrix.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

62 underweight.segments

See Also

collapse.segments

Examples

###
simulate 300 long only portfolios with 30 investments
###
portfolios <- rlongonly(300, 30)
###
define six segments with five investments in each
###
segment1 <- 1:5
segment2 <- 11:15
segment3 <- 21:25
segment4 <- 31:35
segment5 <- 41:45
segment6 <- 51:55
segments <- list(segment1, segment2, segment3, segment4, segment5, segment6)
newPortfolios <- set.segments(portfolios, 60, segments)

underweight.segments Underweight Active Investment Segment Exposures

Description

This function underweight the investment exposures of the given portfolios in the given active in-
vestment segments by the proportion xu of the total exposure in the active segment.

Usage

underweight.segments(portfolios, segments, x.u)

Arguments

portfolios A numeric vector or matrix for the portfolio investment exposures

segments A vector or list of vectors that define the active investment segment

x.u A positive real value for the proportion of total active exposure allocated to the
passive investment exposures

Details

if xu = 0, then the original portfolios are returned. If xu = 1, then the total exposure of the active
segment is allocated to the passive investment segment of all the portfolios. The private function
vector.underweight.segments i performs the actual work and returns a vector. If portfolios is
a matrix of investment weights, then the apply function is used with the private function to obtain a
matrix of weights. The transpose of this matrix is returned.

underweight.segments 63

Value

A vector of adjusted investment exposures for one portfolio or a matrix for more than one portfolio.

Author(s)

Frederick Novomestky <fn334@nyu.edu>

References

Grinold, R. C. and R. H. Kahn, 1999. Active Portfolio Management: Quantitative Approach for
Providing Superior Returns and Controlling Risk, Second Edition, McGraw-Hill, New York, NY.

See Also

segment.complement

Examples

onePortfolio <- random.longonly(10)
I <- list()
I[[1]] <- c(1, 2, 3)
I[[2]] <- c(4, 5)
I[[3]] <- c(6, 7)
I[[4]] <- c(8, 9, 10)
underweight.segments(onePortfolio, I[[1]], 0)
underweight.segments(onePortfolio, I[[1]], .1)

Index

∗Topic math
collapse.segments, 2
extract.segments, 3
overweight.segments, 4
portfolio.composite, 5
portfolio.difference, 6
portfolio.diversification, 7
ractive, 8
ractive.test, 10
random.active, 11
random.active.test, 13
random.benchmark, 14
random.benchmark.test, 16
random.bounded, 18
random.bounded.test, 20
random.equal, 23
random.equal.test, 24
random.general, 25
random.general.test, 27
random.longonly, 29
random.longonly.test, 30
random.longshort, 32
random.longshort.test, 34
random.shortonly, 35
random.shortonly.test, 36
rbenchmark, 38
rbenchmark.test, 39
rbounded, 41
rbounded.test, 43
requal, 46
requal.test, 47
rgeneral, 49
rgeneral.test, 50
rlongonly, 52
rlongonly.test, 53
rlongshort, 55
rlongshort.test, 56
rshortonly, 58
rshortonly.test, 59

segment.complement, 60
set.segments, 61
underweight.segments, 62

collapse.segments, 2, 62

extract.segments, 3

overweight.segments, 4

portfolio.composite, 5
portfolio.difference, 6
portfolio.diversification, 7

ractive, 8
ractive.test, 10
random.active, 9, 11
random.active.test, 11, 13
random.benchmark, 14, 17, 38
random.benchmark.test, 15, 16, 40
random.bounded, 18, 42, 44
random.bounded.test, 20
random.equal, 23, 47, 48
random.equal.test, 24
random.general, 25, 49
random.general.test, 27, 51
random.longonly, 19, 22, 29, 33, 35, 36, 53
random.longonly.test, 30, 54, 60
random.longshort, 12, 14, 32, 35, 56
random.longshort.test, 34, 57
random.shortonly, 33, 35, 35, 37, 58
random.shortonly.test, 36
rbenchmark, 38
rbenchmark.test, 39
rbounded, 41
rbounded.test, 43
requal, 46
requal.test, 47
rgeneral, 49
rgeneral.test, 50
rlongonly, 52

64

INDEX 65

rlongonly.test, 53
rlongshort, 55
rlongshort.test, 56
rshortonly, 58
rshortonly.test, 59

segment.complement, 5, 60, 63
set.segments, 61

underweight.segments, 62

	collapse.segments
	extract.segments
	overweight.segments
	portfolio.composite
	portfolio.difference
	portfolio.diversification
	ractive
	ractive.test
	random.active
	random.active.test
	random.benchmark
	random.benchmark.test
	random.bounded
	random.bounded.test
	random.equal
	random.equal.test
	random.general
	random.general.test
	random.longonly
	random.longonly.test
	random.longshort
	random.longshort.test
	random.shortonly
	random.shortonly.test
	rbenchmark
	rbenchmark.test
	rbounded
	rbounded.test
	requal
	requal.test
	rgeneral
	rgeneral.test
	rlongonly
	rlongonly.test
	rlongshort
	rlongshort.test
	rshortonly
	rshortonly.test
	segment.complement
	set.segments
	underweight.segments
	Index

