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Abstract

The rscala software is a simple, two-way bridge between R and Scala that allows users
to leverage the unique strengths of both languages in a single project. Scala classes can
be instantiated from R and Scala methods can be called. Arbitrary Scala code can be
executed on-the-fly from within R and callbacks to R are supported. R packages can be
developed based on Scala. Conversely, rscala also enables R code to be embedded within
a Scala application. The rscala package is available on CRAN and has no dependencies
beyond base R and the Scala standard library.
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1. Introduction

This paper introduces rscala (Dahl 2018c), software that provides a bridge between R (R Core
Team 2018) and Scala (Odersky et al. 2004). The goal of rscala is to allow users to leverage
the unique strengths of Scala and R in a single program. For example, R packages can
implement computationally intensive algorithms in Scala and, conversely, Scala applications
can take advantage of the vast array of statistical packages in R. Callbacks from embedded
Scala into R are supported. The rscala package is available on the Comprehensive R Archive
Network (CRAN). Also, R can be embedded within a Scala application by adding a one-line
dependency declaration in Scala Build Tool (SBT).

Scala is a general-purpose programming language that strikes a balance between execution
speed and programmer productivity. Scala programs run on the Java virtual machine (JVM)
at speeds comparable to Java. Scala features object-oriented, functional, and imperative pro-
gramming paradigms, affording developers flexibility in application design. Scala code can
be concise, thanks in part to: type inference, higher-order functions, multiple inheritance
through traits, and a large collection of libraries. Scala also supports pattern matching, oper-
ator overloading, optional and named parameters, and string interpolation. Scala encourages
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immutable data types and pure functions (i.e., functions without side-effects) to simplify par-
allel processing and unit testing. In short, the Scala language implements many of the most
productive ideas in modern computing. To learn more about Scala, we suggest Programming
in Scala (Odersky et al. 2016) as an excellent general reference.

Because Scala is flexible, concise, and quick to execute, it is emerging as an important tool for
scientific computing. For example, Spark (Zaharia et al. 2016) is a cluster-computing frame-
work for massive datasets written in Scala. Several books have been published recently on
using Scala for data science (Bugnion 2016), scientific computing (Jancauskas 2016), machine
learning (Nicolas 2014; Karim and Alla 2017), and probabilistic programming (Pfeffer 2016).
We believe that Scala deserves consideration when looking for an efficient and convenient
general-purpose programming language to complement R.

R is a scripting language and environment developed by statisticians for statistical computing
and graphics. Like Scala, R supports a functional programming style and provides immutable
data types. Scala programmers who learn R will find many familiar concepts, despite the
syntactical differences. R has a large user base and over 13,000 actively maintained packages
on CRAN. Hence, the Scala community has a lot to gain from an integration with R.

R code can be very concise and expressive, but may run significantly slower than compiled
languages. In fact, computationally intensive algorithms in R are typically implemented in
compiled languages such as C, C++, Fortran, and Java. The rscala package adds Scala to this
list of high-performance languages that can be used to write R extensions. The rscala package
is similar in concept to Rcpp (Eddelbuettel and François 2011), an R integration for C and
C++, and rJava (Urbanek 2018), an R integration for Java. Though the rscala integration is
not as comprehensive as Rcpp and rJava, it provides the following important features to blend
R and Scala. First, rscala allows arbitrary Scala snippets to be included within an R script
and Scala objects can be created and referenced directly within R code. These features allow
users to integrate Scala solutions in an existing R workflow. Second, rscala supports callbacks
to R from Scala, which allow developers to implement general, high-performance algorithms in
Scala (e.g., root finding methods) based on user-supplied R functions. Third, rscala supports
developing R packages based on Scala which allows Scala developers to make their work
available to the R community. Finally, the rscala software makes it easy to incorporate R in
a Scala application without even having to install the R package. In sum, rscala’s feature-set
makes it easy to exploit the strengths of R and Scala in a single project.

We now discuss the implementation of rscala and some existing work. Since Scala code
compiles to Java byte code and runs on the JVM, one could access Scala from R via rJava

and then benefit from the speed of shared memory. We originally implemented our Scala

bridge using this technique, but later moved to a custom TCP/IP protocol for the following
reasons. First, rJava and Scala both use custom class loaders which, in our experience, conflict
with each other in some cases. Second, since rJava links to a single instance of the JVM,
one rJava-based package can configure the JVM in a manner that is not compatible with
a second rJava-based package. The rscala package creates a new instance of the JVM for
each bridge to avoid such conflicts. Third, the simplicity of no dependencies beyond Scala’s
standard library and base R is appealing from a user’s perspective. Finally, callbacks in rJava

are provided by the optional JRI component, which is only available if R is built as a shared
library. While this is the case on many platforms, it is not universal and therefore callbacks
could not be a guaranteed feature of rscala software if it were based on rJava’s JRI.
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The discussion of the design of rscala has so far focused on accessing Scala from R. The
rscala software also supports accessing R from Scala using the same TCP/IP protocol. This
ability is an offshoot of the callback functionality. Since Scala can call Java libraries, those
who are interested in accessing R from Scala should also consider the Java libraries Rserve

(Urbanek 2013) and RCaller (Satman 2014). Rserve is also “a TCP/IP server which allows
other programs to use facilities of R” (http://www.rforge.net/Rserve). Rserve clients are
available for many languages including Java. Rserve is fast and provides a much richer API
than rscala. Like rJava, however, Rserve also requires that R be compiled as a shared library.
Also, Windows has some limitations such that Rserve users are advised not to “use Windows
unless you really have to” (http://www.rforge.net/Rserve/doc.html).

The paper is organized as follows. Section 2 describes using Scala from R. Some of the more
important topics presented there include the data types supported by rscala, embedding Scala

snippets in an R script, executing methods of Scala references, and calling back into R from
Scala. We also discuss how to develop R packages based on Scala. Section 3 describes using
R from Scala. In both Sections 2 and 3, concise examples are provided to help describe the
software’s functionality. Section 4 provides a case study to show how Scala can easily be
embedded in R to significantly reduce computation time for a simulation study. We conclude
in Section 5 with potential features for future work.

2. Accessing Scala in R

This section provides a guide to accessing Scala from R. Those interested in the reverse —
accessing R from Scala — will also benefit from understanding the ideas presented here.

2.1. Installation

The rscala package is available on the Comprehensive R Archive Network (CRAN) and can
be installed by executing the following R expression.

install.packages("rscala")

The rscala package requires Scala, which itself requires Java. System administrators can install
Scala and Java using their operating system’s software management system (e.g., “sudo apt

install scala” on Ubuntu based systems). Administrators and users can also do a manual
installation. To get the currently supported major versions of Scala, use:

names(rscala::scalaVersionJARs())

## [1] "2.11" "2.12" "2.13"

The simplest way to satisfy these dependencies, however, is with the scalaConfig function:

rscala::scalaConfig()

This function tries to find Scala and Java on the user’s computer and, if needed, downloads
and installs Scala and Java in the user’s ~/.rscala directory. Because this is a user-level
installation, administrator privileges are not required.

http://www.rforge.net/Rserve
http://www.rforge.net/Rserve/doc.html
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2.2. Instantiating a Scala bridge

Load and attach the rscala package in an R session with the library function:

library("rscala")

Create a Scala bridge using the scala function:

s <- scala()

The scala function takes several arguments to control how Scala is run, including options to
add JAR files to the classpath and control the memory usage. Details on this and all other
functions are provided in the R documentation for the package (e.g., help(scala)).

A Scala session is only valid during the R session in which it is created and cannot be saved
and restored through, for example, the save and load functions. Multiple Scala bridges can
be created in the same R session. Each Scala bridge runs independently with its own memory
and classpath. A Scala bridge cannot be shared across multiple R processes/threads.

2.3. Evaluating Scala snippets

Snippets of Scala code can be compiled and executed within an R session using several op-
erators. The most basic operator is the + operator which runs code in Scala’s global names-
pace and always returns NULL. Consider, for example, computing the binomial coefficient
(

n

k

)

=
∏

k

i=1
(n − i + 1)/i. The code below uses Scala’s def statement to define the function.

The expression 1 to k creates a range and the higher-order map method of the range applies
the expression (n-i+1) / i.toDouble to each element i in the range. Finally, the results
are multiplied together by the product method.

s + '

def binomialCoefficient(n: Int, k: Int) = {

( 1 to k ).map( i => ( n - i + 1 ) / i.toDouble ).product.toInt

}

'

## NULL

This definition is available in subsequent Scala expressions:

s + 'println("10 choose 3 is " + binomialCoefficient(10, 3) + ".")'

## 10 choose 3 is 120.

## NULL

Notice the side effect of printing 120 to the console. The behavior for console printing is
controlled by arguments of the scala function. Default values are set such that console
output is displayed in typical environments.
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Scala snippets can also be evaluated with the * operator. Whereas the + operator evaluates
in Scala’s global namespace and returns NULL, the * operator evaluates in a local block and
always returns the result of the last expression:

choose(10, 3) == s * 'binomialCoefficient(10, 3)'

## [1] TRUE

2.4. Scalar and copyable types

A Scala result of type Byte, Int, Double, Boolean, or String is passed back to R as a
length-one vector of raw, integer, double, logical, or character, respectively. We refer to these
as the scalar types supported by the rscala package. Further, Scala arrays and rectangular
arrays of arrays of the scalar types are passed to R as vectors and matrices of the equivalent
R types. We call copyable types those types that are scalar types, arrays of scalar types, and
rectangular arrays of arrays of the scalar types. The name emphasizes the fact that these
data structures are serialized and copied between Scala and R. This may be costly for large
data. Table 1 shows the mapping of Scala and R types using code examples. The example
below shows how the Scala and R expressions produce the same result.

fromScala <- s * 'Array(Array(1, 2, 3), Array(4, 5, 6))'

fromR <- matrix(1:6, nrow = 2, byrow = TRUE)

identical(fromScala, fromR)

## [1] TRUE

2.5. Passing data to Scala

It was shown previously that data of copyable types is returned to R when evaluating Scala

snippets using the * operator. Conversely, data of copyable types can be passed to Scala

snippets. A Scala bridge is represented in R as a function. Arguments passed to a Scala

bridge are made available to the associated Scala snippet:

s(name = "Hannah") * 'name.toUpperCase == name.toUpperCase.reverse'

## [1] TRUE

The previous example demonstrates using a single named argument, but any number of named
or unnamed arguments can be used:

names <- c("Hannah", "David", "Reinier")

s(names, convertToUpperCase = TRUE) * '

val x = if ( convertToUpperCase ) names.map(_.toUpperCase) else names

x.map { y => y == y.reverse }

'

## [1] TRUE FALSE TRUE
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Scalar Vectors / Arrays Matrices / Rectangular arrays of arrays

as.raw(3) as.raw(c(1, 2)) matrix(as.raw(c(1, 2)), nrow = 2)

3.toByte Array(1.toByte, 2.toByte) Array(Array(1.toByte), Array(2.toByte))

TRUE c(TRUE, FALSE) matrix(c(TRUE, FALSE), nrow = 2)

true Array(true, false) Array(Array(true), Array(false))

1L c(1L, 2L, 3L) matrix(c(1L, 2L), nrow = 2)

1 Array(1, 2, 3) Array(Array(1), Array(2))

1.0 c(1.0, 2.0, 3.0) matrix(c(1.0, 2.0), nrow = 2)

1.0 Array(1.0, 2.0, 3.0) Array(Array(1.0), Array(2.0))

"a" c("a", "b", "c") matrix(c("a", "b"), nrow = 2)

"a" Array("a", "b", "c") Array(Array("a"), Array("b"))

Table 1: Scala values of type Byte, Int, Double, Boolean, or String (labeled “scalar”), as
well as arrays and rectangular arrays of arrays of these types, are copied from Scala to R as
length-one vectors, vectors, and matrices of the equivalent R types. These are called copyable
types. Each cell in the table contains two lines: an R expression (top) and the equivalent
Scala expression (bottom).

Note that, for unnamed arguments, the identifiers (e.g., names in the previous example) are
used as Scala variable names. Since Scala has different rules for variable names than does R,
only the intersection of valid variable names in both Scala and R can be used. For example,
use.upper and _useUpper would be invalid arguments to a Scala bridge, the first being an
invalid identifier in Scala and the second being invalid in R.

The previous example also illustrates that vectors are typically passed to Scala as arrays (e.g.,
names in the previous example), except vectors of length one are passed not as arrays but as
scalars (e.g., in the previous example, convertToUpperCase is a scalar). If the user wants
to ensure that a vector is passed as an array, R’s “as-is” function I is used. In the example
below, the length of x is random but the Scala code is valid because x is wrapped in I to
guarantee that it is passed as an array.

x <- letters[sample(length(letters), rbinom(1, size = 2, prob = 0.5))]

s(x = I(x)) * 'x.map(_.toUpperCase).mkString'

## [1] "B"

2.6. Scala references

If the result of a Scala expression is not a copyable type, the * operator returns a reference
to a Scala object that can be used in subsequent evaluations. If a Scala reference is desired,
even when working with copyable types, use the ˆ operator.
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In the next example, an instance of the class scala.util.Random is created and, because the
result is not a copyable type, a Scala reference is returned. Second, a Scala reference to an
array of integers is returned — despite the fact that this is a copyable type — because the ˆ

operator is used.

rng <- s * 'new scala.util.Random()'

rng

## rscala reference of type scala.util.Random

oneToTenReference <- s ^ 'Array.range(1, 11)'

oneToTenReference

## rscala reference of type Array[Int]

Scala references can also be passed as arguments to a Scala bridge:

s(rng, len = 15L) * 'rng.alphanumeric.take(len).mkString'

## [1] "tbkHeFBlMByY0xm"

2.7. The $ operator

Accessing methods and variables of Scala objects

Taking inspiration from rJava’s high-level $ operator, methods associated with Scala references
can be called directly using the $ operator:

rng$setSeed(24234L)

rng$nextInt(10L)

## [1] 4

oneToTenReference$sum()

## [1] 55

As with arguments to a Scala bridge, variables of copyable types and Scala references may be
used as arguments when employing the $ operator. If the result of a method call on a Scala

reference is not a copyable type, then a Scala reference is returned. If a Scala reference is
desired even when working with copyable types, add a dot immediately after the $ operator:

rng$.nextInt(10L)

## rscala reference of type Int
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The value of an instance variable may be accessed as if there was a method of the same name
taking no arguments. For example, the value self in an instance of scala.util.Random is
accessed as:

rng$self()

## rscala reference of type java.util.Random

In an interactive R session, the rscala package provides rudimentary tab-completion for
method names of Scala references.

Other uses of the $ operator

There are several other uses of the $ operator. In the next example, the following are generated
with the $ operator: an instance of the class scala.util.Random, an instance of a mutable
hash map, and a null reference of type String.

seed <- 123L

rng <- s$.new_java.util.Random(seed)

map <- s$".new_scala.collection.mutable.HashMap[String, Double]"()

nullString <- s$.null_String()

Note the use of quotes for the hash map in the previous example. Scala has type parameteri-
zation which is similar to (but arguably more advanced than) generics in Java and templates
in C++. In many instances, the Scala compiler infers the type parameter, but the user may
need or want to explicitly provide it. When using the $ operator, quoting may be needed since
the type involves characters that are not allowed in R identifiers (e.g., [ and ]). Likewise,
names of Scala methods may not be valid identifiers in R and may also need to be quoted
to avoid parsing errors in R. For example, note that the List’s append method :+ is quoted
here:

myList <- s$List(1L, 2L, 3L)

augmentedList <- myList$':+'(100L)

paste0(augmentedList$toString(), " now contains 100.")

## [1] "List(1, 2, 3, 100) now contains 100."

The next example shows usage of the $ operator to access a previously defined function (e.g.,
binomialCoefficient), a method of a companion object (e.g., Array’s range method), a
factory method of a companion object (e.g., List’s implied apply method), and a method of
a singleton object (e.g., scala.util.Properties’s versionNumberString method).

s$binomialCoefficient(10L, 3L) == choose(10, 3)

## [1] TRUE
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oneToTenReference <- s$.Array.range(1L, 11L)

myScalaList <- s$List(1, 2, 3, 4)

s$scala.util.Properties.versionNumberString()

## [1] "2.13.1"

2.8. Interfacing with Java

Scala runs on the JVM and since it supports instantiating Java classes and calling object and
static methods, the rscala package automatically provides this support as well. For example,
we can find the system’s time zone through a chain of calls using the standard Java library:

s$java.util.TimeZone.getDefault()$getDisplayName()

## [1] "Mountain Standard Time"

2.9. Callbacks to R from Scala

When the scala function creates a Scala bridge, an instance of org.ddahl.rscala.RClient

is bound to the identifier R within Scala. It is through this instance that callbacks to the R

interpreter are possible. The RClient class is thread-safe. Its source code and Scaladoc are
located on GitHub: https://github.com/dbdahl/rscala/.

All of the evaluation methods of this class take the same arguments. The first argument
is a template for an R expression, where %- is a placeholder for items that are provided as
variable arguments. The result type is indicated by the suffix of the method name evalXY,
where X ∈ {R, I, D, L, S} and Y ∈ {0, 1, 2}. The value of X indicates whether the result
from R should be interpreted as raw, integer, double, logical, or character, respectively. The
value of Y indicates whether the result should be interpreted as a scalar, an array, or a
rectangular array of arrays, respectively. The method evalObject returns a Scala reference
to an arbitrary R object which can be passed as an argument to another evaluation method.
Several examples are below.

s * '

R.eval("primes <- %-", Array(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))

val rFunction = R.evalObject("function(x) x * primes")

val primesTimesTwo = R.evalI1("%-(2)", rFunction)

R.evalI2("matrix(%-, nrow = %-)", primesTimesTwo, 2)

'

## [,1] [,2] [,3] [,4] [,5]

## [1,] 4 10 22 34 46

## [2,] 6 14 26 38 58

exists("primes")

## [1] TRUE

https://github.com/dbdahl/rscala/
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A more interesting use case is calling a user-supplied R function from Scala. First, consider
an R function that computes f(n, α), the expectation of the Ewens(n, α) distribution, i.e., the
expected number of clusters when sampling n observations from a discrete random measure
obtained from a Dirichlet process with mass parameter α.

f <- function(n, alpha) sapply(alpha, function(a) sum(a / (1:n + a - 1)))

f(100, 1.0)

## [1] 5.187378

In a Bayesian analysis, the Ewens distribution is a prior distribution in random partition
models and α is a hyperparameter. In the prior elicitation process, practitioners may want to
find the value of α that corresponds to the expert’s anticipated number of clusters. Thus, the
task is to numerically solve f(n, α) = µ for α, given fixed values for n and µ. To be specific,
suppose n = 1000 and µ = 10. The value α can be obtained using root finding methods.
Here, we demonstrate the bisection method implemented in Scala. Note that the function’s
first argument, func, is a user-defined R function.

bisection <- function(func, lower = 1.0, upper = 1.0, epsilon = 0.0000001) {

s(lower, upper, epsilon) * '

def g(x: Double) = R.evalD0("func(%-)", x)

val (fLower, fUpper) = (g(lower), g(upper))

if ( fLower * fUpper > 0 ) sys.error("Root is not straddled.")

type D = Double

@scala.annotation.tailrec

def engine(l: D, u: D, fLower: D, fUpper: D): Double = {

if ( math.abs( l - u ) <= epsilon ) ( l + u ) / 2

else {

val c = ( l + u ) / 2

val fCenter = g(c)

if ( fLower * fCenter < 0 ) engine(l, c, fLower, fCenter)

else engine(c, u, fCenter, fUpper)

}

}

engine(lower, upper, fLower, fUpper)

'

}

bisection(function(a) f(1000, a) - 10, 0.1, 20)

## [1] 1.443818

The most important aspect of the previous example is in the first line of the Scala snippet,
where the evalD0 method calls the R function func and returns the result as a Double.

The rscala package supports infinite recursion (subject to available resources) between R and
Scala. For example, the recursive.sum function below repeatedly calls itself from Scala to
compute 0 + 1 + 2 + . . . + n:
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recursive.sum <- function(n) s(n) * '

if ( n <= 0 ) 0L else n + R.evalI0("recursive.sum(%-)", n - 1)

'

recursive.sum(10)

## [1] 55

2.10. Speed considerations

Section 4 considers the speed and ease of implementating a simulation study in R, C++ via
Rcpp, and Scala via rscala. It is not a comprehensive comparison of the performance of these
languages. For that, we refer readers to benchmarks available on the web. Here we simply
highlight performance characteristics of rscala itself.

All calls into Scala require compilation before invocation. Subsequent uses of the same code
skip the time-consuming compilation due to caching. Consider, for example, two calls to the
method nextGaussian of an instance of java.util.Random:

rng_rscala <- s$.new_java.util.Random()

first <- system.time( rng_rscala$nextGaussian() )['elapsed']

second <- system.time( rng_rscala$nextGaussian() )['elapsed']

c(first = first, second = second, ratio = first / second)

## first.elapsed second.elapsed ratio.elapsed

## 0.110 0.001 110.000

By way of comparison, rJava provides two means to call the nextGaussian method. Suppose
that rngRJava is the result of instantiating an object of class scala.util.Random using rJava.
The high-level $ operator of rJava can call this method using rngRJava$nextGaussian().
Alternatively, the rJava’s low-level interface provides the .jcall function. The next example
and Table 2 compare the speed of rscala’s rng$nextGaussian() and rJava’s two ways of
calling the same method.

library("rJava")

rJava::.jinit()

rng_rJava <- .jnew("java.util.Random")

rng_rJava_LowLevel <- function() .jcall(rng_rJava, "D", "nextGaussian")

microbenchmark::microbenchmark(times = 1000, rng_rJava_LowLevel(),

rng_rscala$nextGaussian(), rng_rJava$nextGaussian())

The results in Table 2 indicate that rJava’s low-level .jcall interface is much faster than
the other techniques, but rscala’s implementation of the $ operator is itself much faster than
that of rJava. We recommend that R users avoid calling short-lived Scala code in tight inner
loops where microsecond delays can add up.

2.11. Developing packages based on rscala

The rscala package enables developers to use Scala in their own R packages to implement
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Expression Package Q1 Mean Median Q3

rng_rJava_LowLevel() rJava 22.37 32.42 24.23 34.68
rng_rscala$nextGaussian() rscala 163.25 204.98 187.06 217.12
rng_rJava$nextGaussian() rJava 789.27 880.52 814.63 853.13

Table 2: Comparison of execution time of various ways to call the nextGaussian method
of an instance of the java.util.Random class. Since the method itself is relatively fast, the
timings here are an indication of the overhead involved with the various techniques. Each
expression was evaluated 1000 times and the results are in microseconds.

computationally intensive algorithms. For example, the shallot (Dahl 2018b) and bamboo

(Dahl 2018a) packages on CRAN use Scala via rscala to implement statistical methodology
of their associated journal articles (Dahl et al. 2017; Li et al. 2014). Readers are encouraged
to study those examples in addition to our description here.

An R package based on rscala should include rscala in the Imports field of the package’s
DESCRIPTION file. Also, add import(rscala) to the NAMESPACE file. A package based on
rscala may instantiate a Scala bridge in the package’s .onLoad function. To make the bridge
available to the other functions in the package, the author should assign the bridge to the
package environment. The .onLoad function may be as simple as:

.onLoad <- function(libname, pkgname) {

assign("s", scala(), envir = parent.env(environment()))

}

To reduce check times on CRAN servers which many not have Scala installed, a package
developer many alternatively instantiate the Scala bridge in a function called before the first
usage of the bridge. See, for example, the scalaEnsure function in the shallot and bamboo

packages.

If the package is to access precompiled code from a JAR file, we suggest cross compiling
against the major versions supplied by:

names(rscala::scalaVersionJARs())

## [1] "2.11" "2.12" "2.13"

This is done in part by adding a line to SBT’s build.sbt file, like:

crossScalaVersions := Seq("2.11.12", "2.12.11", "2.13.1")

The JAR files should be copied to directories inst/java/scala-X.XX relative to the package
root, where X.XX represent a major version of Scala (e.g., 2.13). The cross compiling and
copying of JAR files is automated by the rscala::scalaSBT function. If JAR files of compiled
Java code are to be included in the package, they should be placed directly in the inst/java

directory of the source package. As another aid, the rscala::scalaDevelDownloadJARs

function is meant to be called from bare code of a package that depends on rscala in a
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script such as zzz.R. When called during package installation, it downloads JAR files to the
appropriate directories and avoids the need to distribute some JAR files in the source package.

To make the JAR file available to the package’s R functions, the name of the package should
be passed as the first argument to the scala function, e.g.:

.onLoad <- function(libname, pkgname) {

assign("s", scala(pkgname), envir = parent.env(environment()))

}

It is common in the .onLoad function to define global imports, classes, objects, and func-
tions using the + operator. We recommend, however, that this be accomplished through
the scalaLazy function to delay the evaluation until necessary. This gives the Scala bridge
the chance to start up without blocking R’s read-eval-print loop. For example, the .onLoad

function of the bamboo package is:

.onLoad <- function(libname, pkgname) {

s <- scala(pkgname)

scalaLazy(function(s) s + 'import org.ddahl.bamboo._')

assign("s", s, envir = parent.env(environment()))

}

Since packages should not leave external processes (in this case, Scala) running when the
package is unloaded, the package should close the Scala bridge in the .onUnload function,
e.g.:

.onUnload <- function(libpath) {

close(s)

}

Finally, a package can piggy-back on another package by using its Scala bridge. For example,
consider two fictious packages: pkg1 and pkg2. The pkg2 package can use the Scala bridge
from the pkg1 package and, assuming pkg2 is installed when pkg1 is loaded, the additional
JAR files of pkg2 will already available. That is, the .onLoad function for the pkg2 package
might be:

.onLoad <- function(libname, pkgname) {

s <- pkg1:::s

assign("s", envir = parent.env(environment()))

}

In this case, since the pkg2 package is not the original owner of the Scala bridge, the pkg2

package should not call close(s) in an .onUnload function.

3. Accessing R in Scala
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So far we have demonstrated accessing Scala from R. Conversely, rscala can also embed an
R interpreter in a Scala application via the org.ddahl.rscala.RClient class. In this case,
however, there is not an existing instance of the R interpreter. The R client spawns an R

instance, immediately starts the embedded R server, and connects R to Scala.

The RClient class is thread-safe. Source code and Scaladoc are located on GitHub: https:

//github.com/dbdahl/rscala/. As a convenience, rscala’s JAR file is available in stan-
dard repositories for use by dependency management systems. To use RClient in a Scala

application, simply add the following line to SBT’s build.sbt file:

libraryDependencies += "org.ddahl" %% "rscala" % "(VERSION)"

where (VERSION) is replaced with the current package version. Note that, since the necessary
R code is bundled in the JAR file, the rscala package does not need to be installed in R. An
embedded R interpreter is instantiated as follows:

scala> val R = org.ddahl.rscala.RClient()

This assumes that the registry keys option was not disabled during the R installation on
Windows. On other operating systems, R is assumed to be in the search path. If these as-
sumptions are not met or a particular installation of R is desired, the path to the R executable
may be specified explicitly (e.g., org.ddahl.rscala.RClient("/path/to/R_HOME/bin/R")).
Console output from R is not automatically serialized back to Scala.

The rscala package can be an easy and convenient way to access statistical functions, facilitate
calculations, manage data, and produce plots in a Scala application. Consider, for example,
wrapping R’s qnorm function to define a method in Scala by the same name:

scala> val R = org.ddahl.rscala.RClient()

+ type D = Double

+ def qnorm(x: D, mean: D = 0, sd: D = 1, lowerTail: Boolean = true) = {

+ R.evalD0("qnorm(%-, %-, %-, lower.tail = %-)", x, mean, sd, lowerTail)

+ }

+ val alpha = 0.05

+ println(s"Pr( Z >= ${qnorm(alpha, lowerTail = false)} ) = $alpha.")

Pr( Z >= 1.6448536269514726 ) = 0.05.

The next example uses R’s dataset eurodist to compute the European city that is closest, on
average, to all other European cities. While this statistical calculation is easily implemented
in R, one can imagine a Scala application that needs to perform a more taxing calculation
that leverages R’s rich data-processing functions.

scala> val R = org.ddahl.rscala.RClient()

+ val distances = R.evalD2("as.matrix(eurodist)")

+ val cities = R.evalS1("attr(eurodist, 'Labels')")

+ val centralCity = distances.map(_.sum).zip(cities).minBy(_._1)._2

+ println(s"Europe's central city is $centralCity.")

https://github.com/dbdahl/rscala/
https://github.com/dbdahl/rscala/
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Europe's central city is Lyons.

Spark, a cluster-computing framework for massive datasets, is another example of a Scala

application that might benefit from access to R. Spark provides an application programming
interface to Scala, Java, R, and Python. R users who are not already familiar with Scala

would be best served by accessing Spark from R using a dedicated package such as sparklyr

or sparkr. Scala developers, however, might prefer to program directly with Spark’s machine
learning library (MLlib) in Scala and to supplement its functionality with R through rscala.
Recall that every RClient has its own workspace, so several instances can be used to overcome
the single-threaded nature of R. One could, for example, use software to manage a pool of
RClient objects on each worker node. One potential limitation is the cost of pushing large
datasets over the TCP/IP bridge.

4. Case study: Simulation study accelerated with rscala

While the previously mentioned shallot and bamboo packages demonstrate the ability to
develop packages based on rscala, we demonstrate in this section the ease with which com-
putationally intensive statistical procedures can be implemented by embedding Scala code in
an R script. The algorithm is embarrassingly parallel and we consider two means of paral-
lelization: one using Scala’s Future class and the other using R’s parallel package. By way of
comparison, we include a pure R implementation of the same algorithm, and also an imple-
mentation that uses inline C++ code via the Rcpp package. All four implementations define
a function that takes an arbitrary R function for sampling.

We investigate a simulation study of the coverage probability of a bootstrap confidence interval
procedure. Consider a population parameter β1/β2, where β1 and β2 are population quantiles
associated with probabilities p1 and p2, respectively. Based on a sample of n observations, a
point estimator of the parameter is the ratio of the corresponding sample quantiles, and the
following bootstrap procedure can be used to find a confidence interval when the population
distribution is unspecified. The sample estimate is recorded for each of nSamples bootstrap
samples. A bootstrap confidence interval is given by (l, u), where l and u are quantiles of the
bootstrap sampling distribution associated with α/2 and 1 − α/2, respectively. Although the
nominal coverage is 1 − α, interest lies in computing the actual coverage probability of this
bootstrap confidence interval procedure using a Monte Carlo simulation study. nIntervals

samples from the population are obtained from a user-supplied sampling function. Although
the code is general, we sample n = 100 observations from the standard normal distribution
and set p1 = 0.75 and p2 = 0.35, making β1/β2 ≈ −1.75. We use nIntervals = 10,000 Monte
Carlo replicates, each having nSamples = 10,000 bootstrap samples.

The four implementations are listed in Appendix A. (The code is also available in the package:
system.file("doc/bootstrap-coverage.R",package="rscala")). The R implementation
is the shortest and the rscala implementations are somewhat more concise than that of Rcpp.
The Rcpp implementation is written in a C style. All but one implementation use the parallel

package to harness all available cores; the first rscala implementation uses Scala’s Future class
for parallelism and, when sampling the data, a single instance of RClient is used by multiple
JVM threads to call back to R. On machines with many cores, having each thread wait its
turn to access the one R instance will likely slow down the execution. In the second rscala

implementation, each CPU core has a separate R instance with a corresponding RClient.
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Machine Implementation Min. Q1 Mean Median Q3 Max.

U
b
u
n
tu

4
co

re
s

Pure R

Rcpp 255.0 257.6 259.6 259.4 262.7 263.4
rscala #1 171.1 174.6 174.8 175.1 175.6 177.0
rscala #2 187.2 191.8 192.4 193.0 193.7 196.3

U
b
u
n
tu

56
co

re
s Pure R 324.8 325.8 327.9 328.3 329.4 332.2

Rcpp 16.0 16.0 16.5 16.3 17.1 17.6
rscala #1 17.2 17.3 18.0 17.9 18.7 19.1
rscala #2 13.6 13.7 15.0 13.8 14.0 26.0

M
ac

8
co

re
s

Pure R

Rcpp 133.2 134.2 135.9 136.3 136.5 142.1
rscala #1 82.7 82.8 84.5 83.8 84.9 92.3
rscala #2 87.0 88.6 90.2 89.8 90.8 98.2

W
in

d
ow

s
8

co
re

s

Pure R

Rcpp 116.4 116.6 117.0 116.7 116.9 119.0
rscala #1 58.0 58.0 58.5 58.1 58.6 60.4
rscala #2 65.0 65.2 67.6 66.3 69.7 74.5

Table 3: Elapsed time (in seconds) for the four implementations of the bootstrap simulation
study, executed 10 times on four different machines. The rscala implementations had the
fastest execution times.

We tested on machines running Ubuntu 16.04 with 4 and 56 cores, Mac High Sierra with 8
cores, and Windows 10 with 8 cores. R was installed from CRAN binaries for all machines
except the 4-core Ubuntu machine, where R was compiled from source. All machines used R

3.5.1, Scala 2.12, Java 8, Rcpp 0.12.19, and a pre-release version of rscala 3.2.1.

Elapsed times (in seconds) for 10 replications of the simulation study are found in Table 3.
For the sake of time, the pure R implementation was only run on the 56-core Ubuntu machine.
The pure R implementation ran about 23 times slower than the fastest implementation. The
Rcpp implementation and the two rscala implementations were similar in terms of speed on
the 56-core Ubuntu machine. The second rscala implementation (which uses the parallel

package) was the fastest overall on the 56-core machine, and the first rscala implementation
shows a performance penalty from sharing a single instance of RClient when many cores are
present. On the machines with fewer cores, the first rscala implementation was the fastest
and both rscala implementations were somewhat faster than the Rcpp implementation.

5. Conclusion

This paper introduced the rscala software to bridge R and Scala, which allows a user to leverage
their skills in both languages and to exploit strengths in each language. For example, R users
can implement computationally intensive algorithms in Scala, write R packages based on
Scala, and access Scala libraries from R. Scala programmers can take advantage of R’s tools
for data analysis and graphics from within a Scala application.
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We are exploring possible improvements for our software. First, we are exploring a mechanism
to allow the R user to interrupt Scala computations without destroying the TCP/IP bridge.
Second, we are exploring support for transcompiling a subset of R syntax into Scala code
to avoid the overhead of callbacks from Scala to R. Experimental support has already been
implemented. For example, s ˆ function(x = stD1) sd(x) / mean(x) returns a Scala ref-
erence of type Array[Double] => Double which computes the coefficient of variation without
calling back to R.
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A. Code for case study in Section 4

Below is the code that was used in the simulation study for the bootstrap coverage in Section 4.

makeConfidenceInterval <- function(p, n) {

me <- qnorm(0.975) * sqrt( p * ( 1 - p ) / n )

c(estimate = p, lower = p - me, upper = p + me)

}

p1 <- 0.75

p2 <- 0.35

truth <- qnorm(p1) / qnorm(p2)

n <- 100

alpha <- 0.05

cat("######## rscala implementation #1")

library(rscala)

s <- scala()

coverage.rscala1 <- function(f, n, truth, p1, p2, nSamples, a, nIntervals) {
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coverage <- s(n = as.integer(n[1]), truth = as.double(truth[1]),

p1 = as.double(p1[1]), p2 = as.double(p2[1]),

nSamples = as.integer(nSamples[1]), a = as.double(a[1]),

nIntervals = as.integer(nIntervals[1])) * '

import scala.util.Random

import scala.concurrent.{Await, Future, duration}

import scala.concurrent.ExecutionContext.Implicits.global

def quantile(sorted: Array[Double], p: Double) = {

val i = ((sorted.length - 1) * p).asInstanceOf[Int]

val delta = (sorted.length-1) * p - i

( 1 - delta ) * sorted(i) + delta * sorted( i + 1 )

}

def statistic(x: Array[Double]) = {

scala.util.Sorting.quickSort(x)

quantile(x, p1) / quantile(x, p2)

}

def resample(x: Array[Double], rng: Random) = Array.fill(x.length) {

x(rng.nextInt(x.length))

}

def ciContains(x: Array[Double], rng: Random) = {

val bs = Array.fill(nSamples) { statistic(resample(x, rng)) }

scala.util.Sorting.quickSort(bs)

quantile(bs, a / 2) <= truth && truth <= quantile(bs, 1 - a / 2)

}

Await.result( Future.sequence( List.fill(nIntervals) {

val dataset = R.evalD1("f(%-)", n)

val seed = R.evalI0("sample(c(-1, 1), 1) * sample.int(2 ^ 31 - 1, 1)")

val r = new Random(seed)

Future { ciContains(dataset, r) }

}), duration.Duration.Inf).count(identity) / nIntervals.toDouble

'

makeConfidenceInterval(coverage, nIntervals)

}

cat("######## All the remaining implementation use the parallel package.")

library(parallel)

cluster <- makeCluster(detectCores())
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cat("######## rscala implementation #2")

clusterEvalQ(cluster, {

library(rscala)

s <- scala()

ciContains.rscala2 <- function(f, n, truth, p1, p2, nSamples, a) {

s(n = as.integer(n[1]), truth = as.double(truth[1]),

p1 = as.double(p1[1]), p2 = as.double(p2[1]),

nSamples = as.integer(nSamples[1]), a = as.double(a[1])) * '

import scala.util.Random

def quantile(sorted: Array[Double], p: Double) = {

val i = (( sorted.length - 1 ) * p).asInstanceOf[Int]

val delta = ( sorted.length - 1 ) * p - i

( 1 - delta ) * sorted(i) + delta * sorted( i + 1 )

}

def statistic(x: Array[Double]) = {

scala.util.Sorting.quickSort(x)

quantile(x, p1) / quantile(x, p2)

}

def resample(x: Array[Double], rng: Random) = Array.fill(x.length) {

x(rng.nextInt(x.length))

}

val x = R.evalD1("f(%-)", n)

val seed = R.evalI0("sample(c(-1, 1), 1) * sample.int(2 ^ 31 - 1, 1)")

val r = new Random(seed)

val bs = Array.fill(nSamples) { statistic(resample(x, r)) }

scala.util.Sorting.quickSort(bs)

quantile(bs, a / 2) <= truth && truth <= quantile(bs, 1 - a / 2)

'

}

})

coverage.rscala2 <- function(f, n, truth, p1, p2, nSamples, a, nIntervals) {

clusterExport(cluster, c("f", "n", "truth", "p1", "p2", "nSamples", "a"),

envir = environment())

coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

ciContains.rscala2(f, n, truth, p1, p2, nSamples, a)

}))

makeConfidenceInterval(coverage, nIntervals)

}
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cat("######## Pure R implementation")

coverage.pureR <- function(f, n, truth, p1, p2, nSamples, a, nIntervals) {

statistic <- function(x) {

q <- quantile(x, probs = c(p1, p2))

q[1] / q[2]

}

ciContains.pureR <- function(x) {

samples <- numeric(nSamples)

for ( i in seq_along(samples) ) {

samples[i] <- statistic(sample(x, replace = TRUE))

}

ci <- quantile(samples, probs = c(a / 2, 1 - a / 2))

( ci[1] <= truth ) && ( truth <= ci[2] )

}

clusterExport(cluster, c("f", "n", "truth", "p1", "p2", "nSamples", "a"),

envir = environment())

coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

ciContains.pureR(f(n))

}))

makeConfidenceInterval(coverage, nIntervals)

}

cat("######## Rcpp implementation")

clusterEvalQ(cluster, {

library(Rcpp)

sourceCpp(code = "

#include <Rcpp.h>

using namespace Rcpp;

double quantile(double *sorted, int length, double p) {

int i = (int) (( length - 1 ) * p);

double delta = ( length - 1 ) * p - i;

return ( 1 - delta ) * sorted[i] + delta * sorted[ i + 1 ];

}

int compare_double(const void* a, const void* b) {

double aa = *(double*) a;

double bb = *(double*) b;

if ( aa == bb ) return 0;

return aa < bb ? -1 : 1;

}
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double statistic(double *x, int length, double p1, double p2) {

qsort(x, length, sizeof(double), compare_double);

return quantile(x, length, p1) / quantile(x, length, p2);

}

double *resample(double *x, int length) {

double *y = (double*) malloc( length * sizeof(double) );

for ( int i = 0; i < length; i++ ) {

y[i] = x[ (int) (Rf_runif(0, 1) * length) ];

}

return y;

}

// [[Rcpp::export]]

bool ciContains(NumericVector data, double truth,

double p1, double p2, int nSamples, double a) {

double *y = (double*) malloc( nSamples * sizeof(double) );

for ( int i = 0; i < nSamples; i++ ) {

int length = data.size();

double *z = resample(data.begin(), length);

y[i] = statistic(z, length, p1, p2);

free(z);

}

qsort(y, nSamples, sizeof(double), compare_double);

bool result = ( quantile(y, nSamples, a / 2) <= truth ) &&

( quantile(y, nSamples, 1 - a / 2) >= truth );

free(y);

return result;

}

")

})

coverage.Rcpp <- function(f, n, truth, p1, p2, nSamples, a, nIntervals) {

clusterExport(cluster, c("f", "n", "truth", "p1", "p2", "nSamples", "a"),

envir = environment())

coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

ciContains(f(n), truth, p1, p2, nSamples, a)

}))

makeConfidenceInterval(coverage, nIntervals)

}

cat("######## Benchmarks")

system2("hostname")

sessionInfo()
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library(microbenchmark)

engine <- function(nSamples, nIntervals, times) microbenchmark(

pureR = coverage.pureR(

rnorm, n, truth, p1, p2, nSamples, alpha, nIntervals),

Rcpp = coverage.Rcpp(

rnorm, n, truth, p1, p2, nSamples, alpha, nIntervals),

rscala1 = coverage.rscala1(

rnorm, n, truth, p1, p2, nSamples, alpha, nIntervals),

rscala2 = coverage.rscala2(

rnorm, n, truth, p1, p2, nSamples, alpha, nIntervals),

times = times)

engine(nSamples = 10000L, nIntervals = 10000L, times = 10)
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