Package 'rsdNE'

January 5, 2022

Type Package

Title Response Surface Designs with Neighbour Effects (rsdNE)

Version 1.0.0

Maintainer Ashutosh Dalal <ashutosh.dalal97@gmail.com>

Description Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied.

Integrating these effects in the response surface model improves the experiment's precision (Jaggi, S., Sarika and Sharma, V.K. (2010)http://doi.org/10.100/http:

//krishi.icar.gov.in/jspui/handle/123456789/4364>;

Verma A., Jaggi S., Varghese, E., Varghese, C., Bhowmik, A., Datta, A. and Hemavathi M. (2021)DOI:10.1080/03610918.2021.1890123).

This package includes sym(), asym1(), asym2() functions that generates response surface designs which are rotatable under a

polynomial model of a given order without interaction term incorporating neighbour effects.

License GPL (>= 2)

Encoding UTF-8

Repository CRAN

RoxygenNote 7.1.2

NeedsCompilation no

Author Ashutosh Dalal [aut, cre],

Seema Jaggi [aut, ctb],

Eldho Varghese [aut, ctb],

Subhasish Sarkar [aut],

Arpan Bhowmik [aut],

Cini Varghese [aut],

Anindita Datta [aut],

Soumen Pal [aut]

Date/Publication 2022-01-05 10:10:05 UTC

2 asym1

R topics documented:

asym1							,	Th	is	ge	ene	era	ite	S	a e	cla	ass	s o	f c	asy	ym	ım	et	ric	r	ote	ata	ıbl	le.	re.	spe	on	se	S	ur	fa	ce	d	e-	
Index																																								7
	sym .			•		•		•							•					•	•						•	•			•		•							4
	asym1 asym2																																							

Description

This function generates asymmetrical rotatable response surface designs in the presence of neighbour effects for 2n factors, n factors at 2 levels and another n factors at 3 levels.

signs with neighbour effects under a second order model

Usage

```
asym1(n1, n2, c)
```

Arguments

n1	n1 factors having 2 levels, 1<=n1<=5
n2	n2 factors having 3 levels, 1<=n2<=5
С	Value of alpha (Coefficient of neighbour effects), 0<=c<=1

Value

This function generates rotatable designs as well as Z_prime_Z matrix, inv(Z_primeZ) matrix and variance estimated response for the (2^n1 * 3^n2) factorial combination.

Note

Here 3 types of cases have been considered: $(2^n1^*3^n2)$, where, n1=n2=n; (2^n1^*3) , w

Author(s)

Ashutosh Dalal, Division of Design of Experiments,ICAR-IASRI, New Delhi. Seema Jaggi, Education Division, ICAR, Krishi Anusandhan Bhawan - II, Pusa, New Delhi. Eldho Varghese,Fishery Resources Assessment Division,ICAR-CMFRI, Kochi. Subhasish Sarkar, Division of Computer Application,ICAR-IASRI, New Delhi. Arpan Bhowmik, Division of Design of Experiments,ICAR-IASRI, New Delhi. Cini Varghese, Division of Design of Experiments,ICAR-IASRI, New Delhi. Anindita Datta, Division of Design of Experiments,ICAR-IASRI, New Delhi. Soumen Pal, Division of Computer Application,ICAR-IASRI, New Delhi.

asym2

References

Verma et al.2021, Communication in Statistics - Simulation and Computation

Examples

```
library(rsdNE)
asym1(1,1,0.5)
##X matrix
      [,1] [,2] [,3] [,4]
#[1,]
       1
            -1
                  -1
#[2,]
        1
             1
                  1
                        1
#[3,]
        1
                   0
                        0
             1
#[4,]
        1
                        1
#[5,]
        1
                        1
#[6,]
                        0
#[7,]
                        1
#[8,]
        1
             1
##Z prime Z matrix
      [,1] [,2] [,3] [,4]
#[1,]
       24
                   0
             0
                      16
#[2,]
        0
             12
                   0
                        0
#[3,]
        0
             0
                   1
                        0
             0
#[4,]
       16
                  0
                       11
##Z prime Z imverse matrix
                        [,3] [,4]
      [,1]
                  [,2]
#[1,] 1.375 0.00000000
                               -2
#[2,] 0.000 0.08333333
#[3,] 0.000 0.00000000
                                0
#[4,] -2.000 0.00000000
#[1] "total number of runs" "6"
#[1] "variance of esitmated response" "1.4583"
```

asym2

This generates a class of asymmetric rotatable response surface designs with neighbour effects under a polynomial model of order max(s1,s2)-1

Description

This function generates asymmetrical rotatable response surface designs in the presence of neighbour effects for (n1 + n2) factors, n1 factors at s1 levels and another n2 factors at s2 levels.

Usage

```
asym2(s1, n1, s2, n2, c)
```

4 sym

Arguments

s1	Number of levels of n1 factors, 1 <s1<=8< th=""></s1<=8<>
n1	Number of factors, 1<=n1<=4
s2	Number of levels of n2 factors, 1 <s2<=8< td=""></s2<=8<>
n2	Number of factors, 1<=n2<=4
С	Value of alpha (Coefficient of neighbour effects), 0<=c<=1

Value

his function generates rotatable designs as well as Z_prime_Z matrix, inv(Z_primeZ) matrix and variance estimated response for the $(s1^n1 * s2^n2)$ factorial combination.

Note

Here s1 and s2 both not even at the same time and s1 not equal to s2.

Author(s)

Ashutosh Dalal, Division of Design of Experiments,ICAR-IASRI, New Delhi. Seema Jaggi, Education Division, ICAR, Krishi Anusandhan Bhawan - II, Pusa, New Delhi. Eldho Varghese,Fishery Resources Assessment Division,ICAR-CMFRI, Kochi. Subhasish Sarkar, Division of Computer Application,ICAR-IASRI, New Delhi. Arpan Bhowmik, Division of Design of Experiments,ICAR-IASRI, New Delhi. Cini Varghese, Division of Design of Experiments,ICAR-IASRI, New Delhi. Anindita Datta, Division of Design of Experiments,ICAR-IASRI, New Delhi. Soumen Pal, Division of Computer Application,ICAR-IASRI, New Delhi.

References

Dalal, 2021, Unpublished M.Sc. Thesis, IARI, New Delhi

Examples

```
library(rsdNE)
asym2(2,2,5,2,0.5)
```

sym

This generates a class of symmetric rotatable response surface designs with neighbour effects under a polynomial model of order (s1-1)

Description

This function generates symmetrical rotatable response surface designs in the presence of neighbour effects for n1 factors each at s1 levels.

Usage

```
sym(s1, n1, c)
```

sym 5

Arguments

s1	Number of levels of n1 factors, 1 <s1<=6< th=""></s1<=6<>
n1	Number of factors, $1 < n1 < =4$
С	Value of alpha (Coefficient of neighbour effects), 0<=c<=1

Value

his function generates rotatable designs as well as Z_prime_Z matrix, inv(Z_primeZ) matrix and variance estimated response for the (s1^n1) factorial combination.

Author(s)

Ashutosh Dalal, Division of Design of Experiments,ICAR-IASRI, New Delhi. Seema Jaggi, Education Division, ICAR, Krishi Anusandhan Bhawan - II, Pusa, New Delhi. Eldho Varghese,Fishery Resources Assessment Division,ICAR-CMFRI, Kochi. Subhasish Sarkar, Division of Computer Application,ICAR-IASRI, New Delhi. Arpan Bhowmik, Division of Design of Experiments,ICAR-IASRI, New Delhi. Cini Varghese, Division of Design of Experiments,ICAR-IASRI, New Delhi. Anindita Datta, Division of Design of Experiments,ICAR-IASRI, New Delhi. Soumen Pal, Division of Computer Application,ICAR-IASRI, New Delhi.

References

Sarika et al. 2009, Communications in Statistics-Theory and Methods; Sarika et al. 2013, Ars Combinatoria

Examples

```
library(rsdNE)
sym(2,2,0.5)
##output:
## X matrix
      [,1] [,2] [,3]
# [1,]
             -1
         1
# [2,]
         1
              1
                   1
# [3,]
         1
             1
                  -1
# [4,]
         1
             -1
                   1
# [5,]
         1
             -1
                  -1
# [6,]
# [7,]
# [8,]
         1
                 -1
# [9,]
             -1
                 -1
         1
#[10,]
         1
## Z prime Z matrix
     [,1] [,2] [,3]
#[1,]
      32
             0
#[2,]
        0
             4
                  0
#[3,]
        0
             0
## Z prime Z inverse matrix
     [,1] [,2] [,3]
#[1,] 0.03125 0.00 0.00
```

6 sym

```
#[2,] 0.00000 0.25 0.00
```

^{#[3,] 0.00000 0.00 0.25}

^{#[1] &}quot;total number of runs" "8"

^{#[1] &}quot;variance of esitmated response" "0.5312"

Index

 $\begin{array}{c} \text{asym1, 2} \\ \text{asym2, 3} \end{array}$

sym, 4