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Abstract

We describe an efficient algorithm and implementation for predictions for parametic and
penalized Markov multi-state models. Predictions include state occupancy probabilities,
transition probabilities, prevalence, length of stay, relative survival, screening sensitivity,
and costs. The algorithm uses a system of ordinary differential equations to calculate the
predictions and their gradients, with standard errors calculated using the delta method.
These methods have applications to a range of disciplines, including descriptive epidemiol-
ogy, causal inference and economic evaluations.
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1. Introduction

Multi-state models form a very broad class of models that includes standard survival models
with an initial and final state, competing risks with multiple final states, and illness-death
models, with an initial healthy state, an illness state and a death state. This model class is
useful for representing movement through a discrete set of states. As a motivating example,
we are interested in the clinical pathways for cancer screening, diagnosis and treatment, taking
account of utilities and costs. Using observational data, screening or treatment assignment may
be confounded with patient characteristics, so we are also interested in using standardisation
or the parametric g-formula to adjust for differences between groups.

Predictions from multi-state models could include: transition hazards between states; transition
probabilities for being in a particular state conditional on an initial state; state occupation
probabilities for being in a particular state given an observed distribution of initial states; length
of stay in a given state; prevalence for the live health states; contrasts of these predictions,
including standardisation; and ratios of these predictions (Touraine, Helmer, and Joly 2016;
Crowther and Lambert 2017).

Much of the literature on multi-state models has focused on counting processes (e.g. Andersen,
Borgan, Gill, and Keiding 1993; Andersen and Keiding 2002; Putter, Fiocco, and Geskus
2007). For implementations, Allignol, Schumacher, and Beyersmann (2011) use the Aalen-
Johansen estimator to estimate transition probabilities, and de Wreede, Fiocco, and Putter
(2011) predict transition probabilities and their standard errors for transitions modelled using
Cox regression. These implementations can also estimate length of stay and contrasts, however
variance estimates would then require the non-parametric bootstrap. Ryalen, Stensrud, and
Røysland (2018) use stochastic differential equations to transform non-parametric cumulative
hazard estimates into a variety of predictions. This approach is shown to work for Aalen’s
additive hazard model, but it is unclear whether the approach extend to Cox regression models.
Their methods are a non-parametric analogue to our development.

Parametric and penalised survival models have potential advantages for multi-state models, in-
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cluding the ready incorporation of time-varying effects and for predictions outside of observed
data (Touraine et al. 2016; Crowther and Lambert 2017). Iacobelli and Carstensen (2013) sim-
ulate from Poisson regression models on different time scales to predict for multi-state models.
Blaser, Vizcaya, Estill, Zahnd, Kalesan, Egger, Gsponer, and Keiser (2015) provide a simula-
tion framework for multi-state models with random times based on piece-wise constant hazards.
Crowther and Lambert (2017) combine parametric time-to-event models to predict transition
probabilities and length of stay. The authors use simulations, with variance estimation using
the parametric bootstrap. None of these approaches scales well to allow for standardisation
across moderate sized datasets.

Predictions for Markov models can use ordinary differential equation solvers to solve Kol-
mogorov’s forward differential equation. Recently, Jackson (2016) predicted length of stay
using differential equations. Titman (2011) also demonstrated that the gradients for transition
probabilities (or sensitivity equations) can be estimated by augmenting the system of differ-
ential equations. Variance estimates for predictions can be calculated using the delta method
and gradients for the predictors (Gentleman, Lawless, Lindsey, and Yan 1994). This provides
an opportunity to efficiently calculate a range of predictions from multi-state models.

We have two objectives: first, to develop efficient methods for predictions for smooth, non-

homogeneous multi-state Markov models with variance estimation using the multivariate delta

method; and, second, to demonstrate that these methods support the use of multi-state models
across descriptive statistics, causal inference, and economics. Importantly, our restriction to
Markov models is not a heavy constraint: Datta and Satten (2001) have shown that the
state occupation probabilities are consistently estimated under moderate conditions even when
the time scale is mis-specified. Length of stay, prevalence, utilities and costs, when they are
integrated functions of the state occupation probabilities, are also expected to be consistent
under similar conditions.

In outline, we provide a theoretical development of a set of ordinary differential equations,
simulate to assess the small sample properties, provide some examples and conclude with a
brief discussion.

2. Methods

Assumptions

For the predictions, the main inputs are (i) a multi-state model specification, (ii) the models
for the transition intensities, and (iii) and the initial values for the states. We assume that
the transition intensities are estimated using maximum (penalised) likelihood estimation, with
stacked estimated parameters β̂ and stacked estimated variance-covariance matrix Σ̂. The
estimated parameters could be from either model fit for all transitions, one model for each
transition or a combination of models for different transitions.

For a formal development, the asymptotic properties for parametric survival models were devel-
oped by Borgan (1984) and Andersen et al. (1993). Under Cramér-like conditions, the authors
show that that the maximum likelihood parameters β̂ are asymptotically normal. Sufficient
conditions include uniform convergence, that the hazard is thrice differentiable with respect
to the parameters, boundedness of the hazard function, and that the hazard is bounded away
from zero (Borgan 1984). We can then estimate the asymptotic variance for the predictions
using the multivariate delta method, which will be asymptotically normal if the parameters
are asymptotically normal and the gradients of the predictions exist (see Theorem 3.4.6 in Sen
and Singer (1993)). Ryalen et al. (2018) developed asymptotic properties for non-parametric
stochastic differential equations under Hadamard continuity. We will assess these asymptotic
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properties using simulations.

Notation

For vectors v, v1 and v2 and matrices M , M1 and M2, let v1 ◦ v2 and M1 ◦ M2 be the
Hadamard element-wise products, and let v1 ⊘ v2 and M1 ⊘ M2 be Hadamard element-wise
division. We also define M ◦ v = M ◦ (v1T ) and M ⊘ v = M ⊘ (v1T ). We assume that ◦
and ⊘ have higher operator precedence than addition and subtraction. Let diag(v) represent
a square matrix with zeros in the off-diagonal and v on the diagonal. We represent a vector of
ones using 1 and an identity matrix by I.

We define the gradient for a prediction φ(t0, t) with respect to an estimated model parameter

β̂m by φ′
m(t0, t) ≡

∂φ(t0, t)
∂βm

∣

∣

∣

∣

βm=β̂m

.

General approach applied to transition and state occupancy probabilities

Let the set of states be indexed by i and j. We define the matrix of transition probabilities

P (t0, t) = (Pij(t0, t)) as the probabilities of being in state j at time t given being in an initial
state i at entry time t0. For smooth hazards, the Markov property is expressed through
Kolmogorov’s forward differential equation, such that

dP (t0, t)

dt
= P (t0, t)Q(t) (1)

P (t0, t0) = I (2)

where Q(t) = (Qij(t)) is a matrix of transition intensities at time t1 from state i to state j when
i 6= j (conceptualised as the rates from state i to state j), and where Qii(t) = −

∑

j 6=i Qij(t)
(conceptualised as the rates out of state i).

Following Titman (2011), Kolmogorov’s forward differential equation can be augmented to
calculate the gradient for P (t0, t) with respect to the model coefficients. Titman showed that

dP ′
m(t0, t)

dt
= P ′

m(t0, t)Q(t) + P (t0, t)Q′
m(t) (3)

P ′
m(t0, t0) = 0 (4)

Note that this requires the evaluation of the gradients for the transition intensities with respect
to β̂m. Algorithm 1 is defined as:

input : P (t0, t0), Q(t), {Q′
m(t)} ∀m, t0, tmax

output: P (t0, t), {P ′
m(t0, t)} ∀m for t ∈ [t0, tmax)

begin

define the ODE based on Equations (1)–(4);
run an ODE solver from time t0 to time tmax;

end

This algorithm could be done separately for each covariate pattern or the ODEs can be extended
to multiple covariates by stacking the equations. Using the multivariate delta method, the
estimated covariance matrix for P (t0, t) is

var(P (t0, t)) = P ′
m(t0, t)T Σ̂ P ′

m(t0, t)

Let the vector π(t0, t0) = (πj(t0, t0)) represent the initial state occupation probabilities of being
in state j at time t0. The state occupation probabilities of being in state j at time t > t0 can be

1Technically, this is t−.
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calculated by π(t0, t)T = (πj(t0, t)) = π(t0, t0)T P (t0, t). Differential equations can be readily
calculated for the state occupation probabilities.

This general approach can be applied to a variety of predictions. The other predictions may
require that a set of differential equations be defined for several related predictions, including
their gradients, in combination with the delta method for variance estimation.

Example 1: Length of stay and restricted mean survival time

The ordinary differential equations in Equations (1)–(4) can be further augmented to calculate
the integral Lij(t0, t) =

∫ t
t0

Pij(t0, v)dv. The additional differential equations are then

dL(t0, t)

dt
= P (t0, t) (5)

dL′
m(t0, t)

dt
= P ′

m(t0, t) (6)

L(t0, t0) = L′
m(t0, t0) = 0 (7)

where the matrix L(t0, t) is the the length of stay or sojourn time for state j given an initial
state i at time t0. Algorithm 1 would be augmented to include Equations (5)–(7) to calculate
transition and state occupation probabilities and the lengths of stay.

For restricted mean survival times and life expectancy, we can weight the length of stay by a
vector w = (wj), where wj = 1 for a live state j, and wj = 0 for a death state j. We then have
that the restricted mean survival is L(t0, t)w. Moreover, as t → ∞, L(t0, t)w will measure life
expectancy.

Example 2: Prevalence

Let the prevalence for the live states be defined by

P̃ (t0, t) = (P (t0, t)diag(w)) ⊘ (P (t0, t)w)

where the weight vector w again has elements that are 1 for a live state and 0 for a death
state. Generalising a result for illness-death models by Brinks and Hoyer (2018) to multi-state
models, we have that

dP̃ (t0, t)

dt
=

((

dP (t0, t)

dt
diag(w)

)

◦ (P (t0, t)w) − (P (t0, t)diag(w)) ◦

(

dP (t0, t)

dt
w

))

⊘ (P (t0, t)w) ⊘ (P (t0, t)w)

with an initial value that P̃ (t0, t0) = diag(w). Alternatively, we can calculate logit(P̃ (t0, t)) =
log(P̃ (t0, t)) − log(11T − P̃ (t0, t)), which has a gradient of

∂

∂βm
logit(P̃ (t0, t))

∣

∣

∣

∣

βm=β̂m

=
((

P ′
m(t0, t)diag(w)

)

◦ (P (t0, t)w) − (P (t0, t)diag(w)) ◦
(

P ′
m(t0, t)w

))

⊘ P̃ (t0, t) ⊘
(

11T − P̃ (t0, t)
)

⊘ (P (t0, t)w) ⊘ (P (t0, t)w)

Similarly, we could calculate the proportion of person-time in the live health states, which is
calculated by L̃(t0, t) = (L(t0, t)diag(w)) ⊘ (L(t0, t)w). The development for these predictions
follows closely that for prevalence.

Example 3: Linear combinations, differences and standardisation

Linearity combinations of these estimators are straightforward to calculate, as the gradients are
then also linear. Let φ(t0, t|xk) represent an estimator, such as transition probabilities, state
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Z

X φ(t0, t|X, Z)

Figure 1: Directed acyclic graph showing predictions φ(t0, t|X, Z) as a function of the target
exposure X and confounders Z.

occupation probabilities or length of stay, conditional on covariate vector xk. Given weights
wk for k = 1, . . . , K, we can calculate the weighted sums

φ̄(t0, t) =
K
∑

k=1

wkφ(t0, t|xk)

φ̄′
m(t0, t) =

K
∑

k=1

wkφ′
m(t0, t|xk)

For differences, we can define K = 2, w1 = 1 and w2 = −1.

Standardisation can be defined in terms of the mean prediction under a counterfactual exposure.
For example, consider a binary exposure X with confounders Zi across a sample or population
indexed by i. The standardised estimator for everyone been unexposed or exposed to X is then

φ̄0(t0, t) = EZ(φ(t0, t|X = 0, Z)) =
1

n

n
∑

i=1

φ(t0, t|X = 0, Zi)

φ̄1(t0, t) = EZ(φ(t0, t|X = 1, Z))

Under no unmeasured confounding and positivity, we could give a causal interpretation to
contrasts such as φ̄1(t0, t)−φ̄0(t0, t), φ̄1(t0, t)⊘φ̄1(t0, t) or 11T −φ̄1(t0, t)⊘EZ,X(φ(t0, t|XZ)).
These marginal estimators can be interpreted as applications of the parametric g-formula .

Example 4: Ratios

We can augment the system of differential equations to calculate the ratios for specific es-
timators (Ryalen et al. 2018). Let a matrix of ratios of state occupation probabilities be
R(t0, t|x1, x2) = π(t0, t|x1) ⊘ π(t0, t|x2). Then

dR(t0, t|x1, x2)

dt

T

=
((

π(t0, t|x1)T P (t0, t|x1)Q(t|x1)
)

−
(

π(t0, t|x2)T P (t0, t|x2)Q(t|x2)
)

◦ R(t0, t|x1, x2)
)

⊘ P (t0, t|x2)

R(t0, t0) = 1

where P (t0, t|x2) > 0. Alternatively, we can calculate the gradient for log(φ(t0, t|x1) ⊘
φ(t0, t|x2)) (that is, the log ratio), which is

∂

∂βm
log (φ(t0, t|x1) ⊘ φ(t0, t|x2))

∣

∣

∣

∣

βm=β̂m

= φ′
m(t0, t|x1) ⊘ φ(t0, t|x1) − φ′

m(t0, t|x2) ⊘ φ(t0, t|x2)

This evaluation depends on φ(t0, t|x2) being non-zero.

Example 5: Utilities and costs

The approach readily incorporates utilities and costs. For utilities, we have the cumulative
discounted utilities Ui(t0, t) =

∑

j

∫ t
t0

Pij(t0, v)uj(v)e−λvdv, where uj(v) is the utility for state
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j at time v and λ = log(1 + δ) is the rate of decline for a discount rate δ. The augmented
differential equations are then

dU(t0, t)

dt
= P (t0, t)u(t)e−λt (8)

dU ′
m(t0, t)

dt
=
(

P ′
m(t0, t)u(t) + P (t0, t)u′

m(t)
)

e−λt (9)

U(t0, t0) = U ′
m(t0, t0) = 0 (10)

In health economics, the discounted, quality-adjusted life-years are calculated by the product
of the initial state probabilities and the utilities, such that QALY(t0, t) = π(t0, t0)T U(t0, t),
with gradient QALY′

m(t0, t) = π(t0, t0)T U ′
m(t0, t).

Costs may be represented as accumulated costs or costs at a point in time. Let costs per
unit time for being in state i at time t be represented by the vector function c(t) = (ci(t)) and
model for costs for transitions from state i to state j at time t, represented by the matrix C(t) =
(Cij(t)), with Cii(t) = 0. Then the cumulative discounted costs C(t0, t) can be represented by
the equations

dC(t0, t)

dt
= P (t0, t) (c(t) + (Q(t) ◦ C(t)) 1) e−λt (11)

dC ′
m(t0, t)

dt
=
(

P ′
m(t0, t) (c(t) + (Q(t) ◦ C(t)) 1) +

P (t0, t)
(

c′
m(t) +

(

Q′
m(t) ◦ C(t) + Q(t) ◦ C

′
m(t)

)

1
)

)

e−λt (12)

C(t0, t0) = C ′
m(t0, t0) = 0 (13)

Note that these require the evaluation of the gradients for the utility and cost functions. The
total costs are calculated by weighting by the initial state probabilities, such that Costs(t0, t) =
π(t0, t0)T C(t0, t), with gradient Costs′

m(t0, t) = π(t0, t0)T C ′
m(t0, t). We can also consider

incremental cost-effectiveness ratios, estimated by

ICER(t0, t|x1, x2) =
Costs(t0, t|x1) − Costs(t0, t|x2)

QALY(t0, t|x1) − QALY(t0, t|x2)

The gradient of the log of the ICER is

∂

∂βm
log(ICER(t0, t|x1, x2))

∣

∣

∣

∣

βm=β̂m

=
Costs′

m(t0, t|x1) − Costs′
m(t0, t|x2)

Costs(t0, t|x2) − Costs(t0, t|x1)
−

QALY′
m(t0, t|x1) − QALY′

m(t0, t|x2)

QALY(t0, t|x1) − QALY(t0, t|x2)

Finally, we can expand the equations to record the utilities or costs for different states. We
can extend Equations (8) and (11) to

dŨ(t0, t)

dt
=
(

P (t0, t) ◦
(

1 u(t)T
))

e−λt

dC̃(t0, t)

dt
=
(

P (t0, t) ◦
(

1 c(t)T + 1 ((Q(t) ◦ C(t)) 1)T
))

e−λt

for matrices Ũ and C̃, where Ũij is the cumulative utility for state j given an initial state i,
and C̃ij is the cumulative cost for being in state j or a transition from state j given an initial
state i.
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Example 6: Transformations

For causal inference and health economic evaluations, it is often useful to combine evidence from
different data sources to transform the baseline transitions. We introduce five such transforma-
tions. First, we can turn off a transition, where the transformed hazard h∗(t|x) = 0 × h(t|x).
One advantage of this zero-model formulation is that we can keep the same variance-covariance
matrix for the baseline transitions, which supports a straightforward comparison between
the interventions. Second, we may have a hazard ratio exp(φ) with 95% confidence inter-
val (exp(φl), exp(φu)), such as from a meta-analysis. The variance for the log hazard ratio is
((φu − φl)/2/1.96)2. The transformed hazard is h∗(t|x, φ) = exp(φ)h(t|x), with the gradient of
the hazard h∗ with respect to the parameters of h(t|x) being exp(φ)∇h(t|x), and the gradient
with respect to φ being exp(φ)h(t|x). Third, we may have an acceleration factor exp(φ). Then
the transformed hazard is h∗(t|x, φ) = exp(φ)h(exp(φ)t|x), with the gradient of the hazard h∗

with respect to the parameters of h(t exp(φ)|x) being exp(φ)∇h(t exp(φ)|x), and the gradient
with respect to φ being t exp(2φ)h′(t exp(φ)|x) + exp(φ)h(t exp(φ)|x). Fourth, we can add
transition hazards together, such that the transformed hazard is h∗(t|x) = h1(t|x) + h2(t|x).
The gradient of the sum is equal to the sum of the gradients. Fifth, we can include smooth
mathematical functions with no uncertainty. A useful example of this would be to use a spline
interpolation function for the log of background mortality rates from vital statistics for use in
relative survival (or excess hazards) modelling. The spline interpolation has the advantage of
being smooth for the ordinary differential equation solver.

Variance and interval estimation

For an estimator φ(t0, t) with support on the real line, a confidence interval can be calculated
from the variance-covariance matrix V = φ′

m(t0, t) Σ̂ φ′
m(t0, t) and normal quantiles z at the

α level with bounds φ(t0, t) ± z(1− α

2
)

√

diag(V ). For estimators that are on the open interval
(0, 1), the gradient can be calculated using an identity or logit transformations. Similarly, for
estimators that are on the open interval (0, ∞), the gradient can be calculated using an identity
of log transformations.

Integration of hazards that are functions of log(time)

Many parametric survival models are implemented in terms of log(time), including flexible
parametric survival models and accelerated failure time models. Integration of the ordinary
differential equation solvers from the origin for such models can lead to numerical issues. We
offer two approaches to address these issues. First, we can truncate small values for time,
such that t∗ = max(t, ǫ), e.g. using ǫ =1e-5. Defining cumulative hazards as Hij(t0, t) =
∫ t

t0
Qij(u)du, the value for Hij(0, ǫ) may be poorly estimated by ǫQij(ǫ). Moreover, the hazards

will generally not be smooth at t = ǫ.

Second, we could directly calculate initial values at t = ǫ using cumulative hazard estimates.
Let the matrix of cumulative hazard intensities from 0 to ǫ be H(t0, t) = (Hij(t0, t)) and let
H ′

m(t0, t) =
∫ t

t0
Q′

m(u)du. The transition probabilities at ǫ can be calculated approximately by

P (0, ǫ) ≈ mexp(H(0, ǫ))

P ′
m(0, ǫ) ≈ H ′

m(0, ǫ)

L(0, ǫ) ≈ ǫ(I + P (0, ǫ))/2

L′
m(0, ǫ) ≈ ǫP ′

m(0, ǫ)/2

U(0, ǫ) ≈ ǫP (0, ǫ)u(ǫ)e−λǫ/2

U ′
m(0, ǫ) ≈ ǫ(P ′

m(0, ǫ)u(ǫ) + P (0, ǫ)u′
m(ǫ))e−λǫ/2
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where mexp(M) is the matrix exponential for a matrix M .

3. Implementation

We have implemented the algorithm in R as the rstpm2::markov_msm function. The current
implementation allows for: independent models for each of the transitions; a rich set of models
for each transitions (see Appendix B); predictions for state occupation and transition intensi-
ties, length of stay, utilities and costs; and useful post-processing facilities, including weighted
standardisation, differences and ratios.

4. Simulations

To assess the small sample properties compared with the asymptotics properties, we undertook
several simulations. We fitted a Markov illness-death model with Weibull transition rates with
a shape parameter of 1.5 and a scale parameter of 10 for the transitions Healthy → Illness,
Healthy → Death, and Illness → Death. We simulated for 1000 individuals with censoring
min(20,Uniform(0,30)). We fitted the transitions using Weibull regression using the aftreg

model from the eha package. The expected state occupation probabilities were predicted
using the ODE solver with the true parameters. For each simulation, we predicted the state
occupation probabilities, bias, confidence intervals using five transformations (plain confidence
intervals, and confidence intervals based on log-log, log, logit and arcsin transformations), and
coverage. We then calculated the mean bias, mean squared error and coverage across 1000
simulations.

Across the 1000 simulations, the mean bias for the state occupation probabilities for any of the
three states across time varied between -0.0006 and 0.0008, while the mean squared error varied
between 0 and 0.0002. Coverage was generally close to 0.95 for each of the transformation
methods (Figure 2), particularly given that the binomial variability at 950/1000 has a 95%
confidence interval of (0.945,0.963). The “plain” untransformed approach performs poorly
close to start for the initial state.

Across the 1000 simulations, the mean bias for the length of stay for any of the three states
across time varied between -0.006 and 0.008 , while the mean squared error varied between
0 and 0.004. Coverage was generally close to 0.95 for both of the transformation methods
(Figure 3).

5. Example

We will extend an analysis by Crowther and Lambert (2017) of the Rotterdam Breast Cancer
Data (Sauerbrei, Royston, and Look 2007; Foekens, Peters, Look, Portengen, Schmitt, Kramer,
Brünner, Jänicke, Meijer-van Gelder, Henzen-Logmans, and et al. 2000). This dataset includes
patients who were treated for primary breast cancer in Rotterdam during 1978–1993. Treat-
ment included primary surgery, with either mastectomy or breast conserving therapy, with
possible referral for radiation treatment within three months of surgery. Study exclusion crite-
ria included: (i) patient tissue based on biopsy only; (ii) metastatic disease at primary surgery
or within one month of surgery; (iii) relapse or residual disease within one month of surgery;
(iv) relapse prior to referral to radiation therapy; or (v) a previous primary cancer. For the
analysis, patients were also excluded if they had adjuvant treatment but were node-negative,
or if they had missing information on the number of positive nodes. After these exclusions,
data were available for 2982 patients.

Following the analysis by Crowther and Lambert (2017), we model for three states, including (1)
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Figure 2: State occupation coverage for a Markov illness-death model with Weibull-distributed
times, fitted using Weibull regression models. The panels represent confidence intervals based
on different transformation methods.

the initial post-surgery state, (2) relapse and (3) death, with transitions (1)→(2) for death from
the post-surgery state with hazard h1(t), (1)→(3) for relapse with hazard h2(t), and (2)→(3)
for death from the relapse state with hazard h3(t). All three transitions are modelled using time
since surgery as the primary time scale. Crowther and Lambert used flexible parametric survival
models on the log cumulative hazard scale, where Hj(t|x) =

∫ t
0 hj(u|x)du = exp(sj(t)+ηj(t, x))

for baseline sj(t) and linear predictors ηj(t, x) defined by

η1(t, x) = β1age + β2nodes + β3hormon + I(20 < size ≤ 50)s4(t)+

I(size > 50)s5(t) + I(pr_1)s6(t)

η2(t, x) = β1age + β2nodes + β3hormon+

β4I(20 < size ≤ 50) + β4I(size > 50) + β5I(pr_1)

η3(t, x) = β1age + β2nodes + β3hormon+

β4I(20 < size ≤ 50) + β4I(size > 50) + I(pr_1)s7(t)

where age is the age in years at cancer treatment, nodes is the number of positive lymph nodes,
hormon is an indicator for whether the patient was on hormonal therapy, size is the tumour size
(mm), pr_1 is the log of one plus the progesterone level (fmol/L), I(p) is an indicator function
with value 1 when the predicate p is true and value 0 otherwise, s0(t) =

∑3
j=0 Bj(log(t))β0j for

a natural splines basis function Bj() with knots at the quantiles for log of the events times, and
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Figure 3: Length of stay coverage for a Markov illness-death model with Weibull-distributed
times, fitted using Weibull regression models. The panels represent confidence intervals based
on different transformation methods.

sk(t) = βk0+βk1 log(t) for k > 1. The parameters are assumed to be distinct between the linear
predictors. The hazards are calculated from the cumulative hazard using hj(t|x) = H ′

j(t|x).
Note that ratios of these hazards may not have a simple interpretation, particularly with
continuous or multiple time-varying effects (see Appendix). Moreover, age is expected to be
closely related to the mortality rates and modelling using a single parameter may not capture
this important variation. For ease of comparison, we do not further investigate changes in the
model formulations and focus on predictions from these fitted models.

For predictions, Crowther and Lambert used conditional predictions for a patient aged 54
years with a transformed progesterone level of 3 (that is, progesterone = exp(3) − 1 = 19.1
fmol/L), with the number of positive lymph nodes varying between 0, 10 and 20, and with
each of the three levels for tumour size. We are able to model and predict for conditional
relationships in less than 20 seconds (code included in the documentation for the rstpm2

package on CRAN). We now focus on marginal or standardised predictions for patients aged
50–59 years. In particular, we will compare state occupation probabilities and length of stay
under counterfactual tumour sizes.

Let the subjects aged 50–59 years be indexed by k = 1 . . . K and let X represent tumour size
and Z represent the other covariates. Then the predictions under the counterfactual X̂ = x
are modelled by

P1j(0, t|X̂ = x) = EZ(P1j(0, t|Z, X̂ = x))

=
1

K

K
∑

k=1

P1j(0, t|Z = zk, X̂ = x)

L1j(0, t|X̂ = x) = EZ(L1j(0, t|Z, X̂ = x))

The specific counterfactuals are that all patients have a tumour size that is either (i) ≤ 20
mm, (ii) > 20 mm and ≤ 50 mm, or (iii) > 50 mm. The age restriction is due to the strong
age dependence for each of the transitions. Differences in state occupation probabilities and
length of stay by the counterfactuals are show in Figures 4 and 5, respectively. There is clear
evidence that smaller tumour sizes are associated with fewer early relapses and a lower risk of
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death for fifteen years after treatment.
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Figure 4: Differences in standardised state occupation probabilities by state and by contrasts
for counterfactual tumour size, for female breast cancer patients aged 50–59 years and diagnosed
1978–1993, Rotterdam

We also explored other model formulations, including penalised log-hazard models (hj(t|x) =
exp(sj(t) + ηj(t, x))) and accelerated failure time models (Sj(t|x) = S0j(

∫ t
0 exp(ηj(t, x))du),

where S0j(t) = exp(− exp(sj(t)))).

6. Discussion

In summary, we describe how to predict from Markov multi-state models with smooth transition
intensities using ordinary differential equations. A variety of predictions can be estimated,
together with interval estimation based on the multivariate delta method. The method is
suitable for a range of models, including Poisson regression, parametric and flexible accelerated
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Figure 5: Differences in standardised length of stay by state and by contrasts for counterfactual
tumour size, for female breast cancer patients aged 50–59 years and diagnosed 1978–1993,
Rotterdam

failure time models, and parametric and penalised generalised survival models. Applications
of these methods could range from descriptive epidemiology, to causal inference, through to
health economic evaluations of cost-effectiveness.

The recent article by Ryalen et al. (2018) provides a non-parametric analogue to our devel-
opment. Those non-parametric methods can readily be extended to many of the estimators
described herein, including standardisation, quality-adjusted life-years and costs. The asymp-
totic theory for the non-parametric approach has been shown to hold for Aalen’s additive
hazards model; it is unclear whether non-parametric estimators for accelerated failure and pro-
portional hazards models will satisfy the assumptions in Theorems 1 and 2 of Ryalen et al.

(2018). Moreover, it is arguable when an additive hazards scale is suitable for covariate adjust-
ment, for example, for modelling all-cause or cause-specific survival with age at cancer diagnosis
as a covariate. We suggest that (smooth) accelerated failure time models may provide a useful
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alternative regression model framework which is also collapsible.

Under the conditions described by Datta and Satten (2001), predictions that are functions of
the state occupation probability are, under suitable regularity assumptions, expected to be
consistently estimated irrespective of whether the Markov assumption holds. However other
predictions (e.g. transition probabilities, or the proportion to ever pass through a state) may
not be consistently estimated. Moreover, the efficiency of the predictions when the time scale
has been mis-specified may be low. Alternative approaches include individual-based simula-
tions, with variance estimation using the bootstrap Crowther and Lambert (2017), which are
expected to be computationally expensive.
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Appendix A: Time-varying effects for log cumulative hazards models

For modelling on the log cumulative hazard scale with a linear predictor η(t, xi) given time t
and covariates xi, the cumulative hazard H(t|xi) can be represented by

H(t|xi) = exp(η(t, xi))

=⇒ h(t|xi) = exp(η(t, xi))
∂

∂t
η (t, xi)

where h(t|xi) is the hazard. The hazard ratio comparing covariates x1 and x0 is then

h(t|x1)

h(t|x0)
= exp(η(t, x1) − η(t, x0))

(

1 +
∂
∂t

(η (t, x1) − η (t, x0))
∂
∂t

η (t, x0)

)

(14)

We have the following cases for the interpretation of the hazard ratios:

Case 1 Time-independent effects: if ∂
∂t

(η (t, x1) − η (t, x0)) = 0, then Equation (14) gives the
ratio exp(η(t, x1) − η(t, x0)). This case will hold when the difference in the linear predic-
tors is independent of t. Usefully, the log hazard ratio is then the difference in the linear
predictors, which has a straightforward interpretation.

A sufficient condition is that the covariates that change between x1 and x0 are indepen-
dent of t. As a specific example, for a linear predictor η(t, xi) = s0(t)+η0(xi) for baseline
s0(t) and linear predictor η0(xi), then the log hazard ratio equals η0(x1) − η0(x0), which
is a proportional hazards model.
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Case 2 Small time-varying effects: if ∂
∂t

(η (t, x1) − η (t, x0)) ≪ ∂
∂t

η (t, x0), then h(t|x1)
h(t|x0) ≈ exp(η(t, x1)−

η(t, x0)). For this case, the partial derivative with respect to time for the change in the
linear predictor is small compared with partial derivative for the linear predictor for x0.
This suggests that the interpretation for moderately small time-varying effects will be
straightforward (up to an approximation).

Case 3 Stratified model: if we have a stratified linear predictor η(t, xi, j) = sj(t) + ηj(xi) for
stratum j with baseline sj(t) and linear predictor ηj(xi), then

h(t|x1, j)

h(t|x0, k)
= exp

(

sj(t) + ηj(x1) + log(s′
j(t)) −

(

sk(t) + ηk(x0) + log(s′
k(t))

)

)

(15)

If j = k then h(t|x1,j)
h(t|x0,k) = exp(ηj(x1) − ηj(x0)), which is proportional hazards. If j 6= k,

then Equation (15) can be interpreted as having separable effects (on the log hazard
scale) for the time effects and for the other covariates.

Case 4 Linear time-varying effect: if we have a linear predictor η(t, xi, ui) = s0(t) + xis1(t) +
η0(vi) for a scalar xi and a vector of other covariates vi, then

h(t|x1, v1)

h(t|x0, v0)
= exp ((x1 − x0)s1(t) + η0(v1) − η0(v0))

(

1 +
(x1 − x0)s′

1(t)

s′
0(t) + x0s′

1(t)

)

From the ratio (x1 − x0)s′
1(t)/(s′

0(t) + x0s′
1(t)), we see that the time-varying hazard ratio

depends on both the baseline value x0 and the difference x1 − x0. The interpretation
of the effect will be straightforward when xi is for a binary indicator (e.g. x0 = 0 and
x1 = 1).

Case 5 Multiple time-varying effects: if we have a linear predictor η(t, xi, ui) = s0(t) + xis1(t) +
uis2(t) + η0(vi) for scalars xi and ui and a vector of other covariates vi, then

h(t|x1, u1, v1)

h(t|x0, u0, v0)
= exp ((x1 − x0)s1(t) + (u1 − u0)s2(t) + η0(v1) − η0(v0)) ×

(

1 +
(x1 − x0)s′

1(t) + (u1 − u0)s′
2(t)

s′
0(t) + x0s′

1(t) + u0s′
2(t)

)

From the ratio in the last line, we see that the hazard ratio depends on both the baseline
values x0 and u0 and the differences x1 − x0 and u1 − u0. The multiple effects will be
straightforward to interpret if xi and ui are binary indicators for strata (see Case 3).

In summary, time-independent effects and stratified models have a straightforward interpreta-
tion, however continuous time-varying effects and multiple time-varying effects on a log cumu-
lative hazard scale are more difficult to interpret in terms of hazard ratios.

Appendix B: Hazard specifications

For Table 1, the generality of the linear predictor may be constrained by the model class;
For example, flexsurv::flexsurvspline only allows for spline interactions between time
and covariates. The baseline survival models for flexsurv::flexsurvreg and eha::aftreg

are from a parametric family, while the baseline survival for rstpm2::aft is where the log
cumulative hazards are based on splines. The generalised survival models also allow for other
transformations, including proportional odds, probit and additive hazards models. Arbitrary
smooth hazards can be defined using hazFun; as an example, a spline interpolation for log-
hazards is defined using splineFun. The transformation functions at the end of the table are
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Class Model R function Specificationa

Parametric Poisson regression stats::glm log(h(t|x)) = η(t, x)
Accelerated failure time flexsurv::flexsurvreg S(t|x) = S0(exp(η(x))t)

eha::aftreg S(t|x) = S0(exp(η(x))t)

rstpm2::aft S(t|x) = S0(
∫ t

0 exp(η(u, x))du)
Generalized survival flexsurv::flexsurvspline log(H(t|x)) = η(t, x)

rstpm2::stpm2 log(H(t|x)) = η(t, x)
Penalised Poisson regression mgcv::gam log(h(t|x)) = η(t, x)

Log-hazard survPen::survPen log(h(t|x)) = η(t, x)
Generalised survival rstpm2::pstpm2 log(H(t|x)) = η(t, x)

Transformation Zero rstpm2::zeroModel h∗(t|x) = 0
Hazard ratio rstpm2::hrModel h∗(t|x, φ) = h(t|x)φ
Accelerated failure rstpm2::aftModel h∗(t|x, φ) = h(φt|x)φ
Additive models rstpm2::addModel h∗(t|x) = h1(t|x) + h2(t|x)
Hazard function rstpm2::hazFun h(t|x)
Spline interpolation rstpm2::splineFun h(t|x) = exp(s(t))

aNotes: η(t, x) and η(x) are linear predictors for time t and covariates x, and S0(t) is a baseline survival
model.

Table 1: Hazard specifications

meant to take one or more models as inputs and predict rates that are functions of the given
models. Formally, Poisson regression models are models for rates rather than for hazards.

Appendix C: Smooth accelerated failure time models

The smooth accelerated failure time models implemented by rstpm2::aft and the Stata com-
mand staft have not been described elsewhere. Survival for these models at time t with
covariates x is defined by

S(t|x) = S0

(
∫ t

0
exp(η(u, x))du

)

where S0(t) = exp (− exp (s(log(t)))) is baseline survival, s(u) is a smooth function with sup-
port on the real line (e.g. natural splines), and exp(η(u, x)) is a time-varying acceleration
factor. We can replace the integration for the acceleration factor by a cumulative function
exp(η1(log(t), x)), such that

∫ t

0
exp(η(u, x))du = exp(η1(log(t), x))

=⇒ η(t, x) = η1(log(t), x) + log

(

∂

∂t
η1(log(t), x)

)

such that we can calculate the time-varying acceleration factor by differentiation. The cumula-
tive linear predictor η1(log(t), x) can be defined using a smooth function of log time (e.g. using
natural splines). We can calculate the hazards by

h(t|x) =
d

dt
exp (s(η1(log(t), x)))

= exp (s(η1(log(t), x))) s′(η1(log(t), x))
∂

∂t
η1(log(t), x)

This model has been implemented in R and Stata for left truncated and right censored data.
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