
Package ‘rxode2’
May 17, 2022

Version 2.0.7

Title Facilities for Simulating from ODE-Based Models

Maintainer Matthew L. Fidler <matthew.fidler@gmail.com>

Depends R (>= 4.0.0)

Suggests Matrix, DT, covr, crayon, curl, data.table (>= 1.12.4),
digest, dplyr (>= 0.8.0), ggrepel, gridExtra, htmltools, knitr,
learnr, microbenchmark, nlme, remotes, rlang, rmarkdown,
scales, shiny, stringi, symengine, testthat, tidyr, usethis,
vdiffr (>= 1.0), withr, xgxr, pillar, tibble, units (>= 0.6-0),
rsconnect, devtools, patchwork, nlmixr2data

Imports PreciseSums (>= 0.3), Rcpp (>= 0.12.3), assertthat, backports,
checkmate, cli (>= 2.0.0), dparser (>= 0.1.8), ggplot2, inline,
lotri (>= 0.4.0), magrittr, memoise, methods, rex, qs, sys,
tools, utils

Description Facilities for running simulations from ordinary
differential equation ('ODE') models, such as pharmacometrics and other
compartmental models. A compilation manager translates the ODE model
into C, compiles it, and dynamically loads the object code into R for
improved computational efficiency. An event table object facilitates
the specification of complex dosing regimens (optional) and sampling
schedules. NB: The use of this package requires both C and
Fortran compilers, for details on their use with R please see
Section 6.3, Appendix A, and Appendix D in the ``R Administration and
Installation'' manual. Also the code is mostly released under GPL. The
'VODE' and 'LSODA' are in the public domain. The information is available
in the inst/COPYRIGHTS.

BugReports https://github.com/nlmixr2/rxode2/issues/

NeedsCompilation yes

VignetteBuilder knitr

License GPL (>= 3)

URL https://nlmixr2.github.io/rxode2/,

https://github.com/nlmixr2/rxode2/

1

https://github.com/nlmixr2/rxode2/issues/
https://nlmixr2.github.io/rxode2/
https://github.com/nlmixr2/rxode2/

2 R topics documented:

RoxygenNote 7.1.2

Biarch true

LinkingTo dparser (>= 1.3.1-0), PreciseSums (>= 0.3), RcppEigen (>=
0.3.3.3.0), RcppArmadillo (>= 0.9.300.2.0), sitmo, StanHeaders
(>= 2.21.0), BH

Encoding UTF-8

LazyData true

Language en-US

Config/testthat/edition 3

Author Matthew L. Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>),
Melissa Hallow [aut],
Wenping Wang [aut],
Zufar Mulyukov [ctb],
Alan Hindmarsh [ctb],
Awad H. Al-Mohy [ctb],
Matt Dowle [ctb],
Cleve Moler [ctb],
David Cooley [ctb],
Drew Schmidt [ctb],
Arun Srinivasan [ctb],
Ernst Hairer [ctb],
Gerhard Wanner [ctb],
Goro Fuji [ctb],
Hadley Wickham [ctb],
Jack Dongarra [ctb],
Linda Petzold [ctb],
Martin Maechler [ctb],
Matteo Fasiolo [ctb],
Morwenn [ctb],
Nicholas J. Higham [ctb],
Roger B. Sidje [ctb],
Simon Frost [ctb],
Kevin Ushey [ctb],
Yu Feng [ctb]

Repository CRAN

Date/Publication 2022-05-17 17:50:02 UTC

R topics documented:
.copyUi . 5
.handleSingleErrTypeNormOrTFoceiBase . 6
.modelHandleModelLines . 6
.quoteCallInfoLines . 7
.rxLinCmtGen . 8
.rxWithOptions . 9

https://orcid.org/0000-0001-8538-6691

R topics documented: 3

.rxWithWd . 9
add.dosing . 10
add.sampling . 13
as.et . 15
assertRxUi . 16
cvPost . 18
erf . 21
et . 21
etExpand . 26
etRbind . 27
etRep . 30
etSeq . 33
eventTable . 36
gammap . 38
gammapDer . 39
gammapInv . 39
gammaq . 40
gammaqInv . 41
genShinyApp.template . 42
getRxThreads . 44
ini.rxUi . 45
logit . 46
lowergamma . 48
model.function . 49
phi . 50
plot.rxSolve . 51
probit . 51
rinvchisq . 52
rxAllowUnload . 53
rxAppendModel . 54
rxAssignControlValue . 55
rxAssignPtr . 56
rxbeta . 56
rxbinom . 57
rxcauchy . 59
rxCbindStudyIndividual . 60
rxchisq . 61
rxClean . 63
rxCompile . 63
rxControlUpdateSens . 65
rxCreateCache . 66
rxD . 67
rxDelete . 68
rxDerived . 68
rxDfdy . 70
rxEvid . 71
rxexp . 72
rxf . 73

4 R topics documented:

rxFun . 74
rxgamma . 76
rxgeom . 77
rxGetControl . 79
rxGetLin . 79
rxGetrxode2 . 80
rxGetSeed . 81
rxHtml . 82
rxIndLinState . 82
rxIndLinStrategy . 83
rxIndLin_ . 83
rxInv . 84
rxIsCurrent . 85
rxLhs . 85
rxLock . 86
rxNorm . 86
rxnorm . 87
rxode2 . 88
rxOptExpr . 96
rxord . 97
rxParams . 98
rxPkg . 100
rxpois . 101
rxPp . 102
rxPreferredDistributionName . 104
rxProgress . 105
rxRandNV . 106
rxRateDur . 107
rxRemoveControl . 107
rxRename . 108
rxReservedKeywords . 109
rxRmvn . 109
rxS . 112
rxSetControl . 113
rxSetCovariateNamesForPiping . 113
rxSetIni0 . 115
rxSetProd . 115
rxSetProgressBar . 116
rxSetSeed . 116
rxSetSum . 118
rxShiny . 118
rxSimThetaOmega . 120
rxSolve . 123
rxStack . 136
rxState . 137
rxSumProdModel . 138
rxSupportedFuns . 138
rxSuppressMsg . 139

.copyUi 5

rxSymInvChol . 140
rxSyncOptions . 141
rxSyntaxFunctions . 141
rxt . 142
rxTempDir . 143
rxTheme . 143
rxToSE . 144
rxTrans . 145
rxUiGet.cmtLines . 146
rxunif . 148
rxUnloadAll . 150
rxUse . 150
rxValidate . 151
rxweibull . 151
rxWinSetup . 153
rxWithSeed . 153
stat_amt . 154
stat_cens . 157
summary.rxode2 . 158
update.rxUi . 159
uppergamma . 159

Index 161

.copyUi This copies the rxode2 UI object so it can be modified

Description

This copies the rxode2 UI object so it can be modified

Usage

.copyUi(ui)

Arguments

ui Original UI object

Value

Copied UI object

Author(s)

Matthew L. Fidler

6 .modelHandleModelLines

.handleSingleErrTypeNormOrTFoceiBase

Handle the single error for normal or t distributions

Description

Handle the single error for normal or t distributions

Usage

.handleSingleErrTypeNormOrTFoceiBase(env, pred1)

Arguments

env Environment for the parsed model

pred1 The data.frame of the current error

Value

A list of the lines added. The lines will contain

• rx_yj_ which is an integer that corresponds to the transformation type.

• rx_lambda_ is the transformation lambda

• rx_low_ The lower boundary of the transformation

• rx_hi_ The upper boundary of the transformation

• rx_pred_f_ The prediction function

• rx_pred_ The transformed prediction function

• rx_r_ The transformed variance

Author(s)

Matthew Fidler

.modelHandleModelLines

Handle model lines

Description

Handle model lines

.quoteCallInfoLines 7

Usage

.modelHandleModelLines(
modelLines,
rxui,
modifyIni = FALSE,
append = FALSE,
auto = TRUE,
envir

)

Arguments

modelLines The model lines that are being considered

rxui The rxode2 UI object

modifyIni Should the ini() be considered

append This is a boolean to determine if the lines are appended in piping. The possible
values for this is:

• TRUE which is when the lines are appended to the model instead of replaced
(default)

• FALSE when the lines are replaced in the model
• NA is when the lines are pre-pended to the model instead of replaced

auto This boolean tells if piping automatically selects the parameters should be char-
acterized as a population parameter, between subject variability, or a covariate.
When TRUE this automatic selection occurs. When FALSE this automatic selec-
tion is turned off and everything is added as a covariate (which can be promoted
to a parameter with the ini statement). By default this is TRUE, but it can be
changed by options(rxode2.autoVarPiping=FALSE).

envir Environment for evaluation

Value

New UI

Author(s)

Matthew L. Fidler

.quoteCallInfoLines Returns quoted call information

Description

Returns quoted call information

8 .rxLinCmtGen

Usage

.quoteCallInfoLines(callInfo, envir = parent.frame())

Arguments

callInfo Call information

envir Environment for evaluation (if needed)

Value

Quote call information. for name=expression, change to name<-expression in quoted call list.
For expressions that are within brackets ie {}, unlist the brackets as if they were called in one single
sequence.

Author(s)

Matthew L. Fidler

.rxLinCmtGen Internal function to generate the model variables for a linCmt() model

Description

Internal function to generate the model variables for a linCmt() model

Usage

.rxLinCmtGen(lenState, vars)

Arguments

lenState Length of the state

vars Variables in the model

Value

Model variables of expanded linCmt model

Author(s)

Matthew L. Fidler

.rxWithOptions 9

.rxWithOptions Temporarily set options then restore them while running code

Description

Temporarily set options then restore them while running code

Usage

.rxWithOptions(ops, code)

Arguments

ops list of options that will be temporarily set for the code

code The code to run during the sink

Value

value of code

Examples

.rxWithOptions(list(digits = 21), {
print(pi)

})

print(pi)

.rxWithWd Temporarily set options then restore them while running code

Description

Temporarily set options then restore them while running code

Usage

.rxWithWd(wd, code)

Arguments

wd working directory to temporarily set the system to while evaluating the code

code The code to run during the sink

10 add.dosing

Value

value of code

Examples

.rxWithWd(tempdir(), {
getwd()

})

getwd()

add.dosing Add dosing to eventTable

Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr. It
can also be accessed by eventTable$add.dosing(...)

Usage

add.dosing(
eventTable,
dose,
nbr.doses = 1L,
dosing.interval = 24,
dosing.to = 1L,
rate = NULL,
amount.units = NA_character_,
start.time = 0,
do.sampling = FALSE,
time.units = NA_character_,
...

)

Arguments

eventTable eventTable object; When accessed from object it would be eventTable$

dose numeric scalar, dose amount in amount.units;

nbr.doses integer, number of doses;
dosing.interval

required numeric scalar, time between doses in time.units, defaults to 24 of
time.units="hours";

dosing.to integer, compartment the dose goes into (first compartment by default);

rate for infusions, the rate of infusion (default is NULL, for bolus dosing;

add.dosing 11

amount.units optional string indicating the dosing units. Defaults to NA to indicate as per the
original EventTable definition.

start.time required dosing start time;

do.sampling logical, should observation sampling records be added at the dosing times? De-
faults to FALSE.

time.units optional string indicating the time units. Defaults to "hours" to indicate as per
the original EventTable definition.

... Other parameters passed to et().

Value

eventTable with updated dosing (note the event table will be updated anyway)

Author(s)

Matthew L. Fidler

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;

12 add.dosing

d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

add.sampling 13

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

plot(repCycle4, C2)

add.sampling Add sampling to eventTable

Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr. It
can also be accessed by eventTable$add.sampling()

Usage

add.sampling(eventTable, time, time.units = NA)

Arguments

eventTable An eventTable object. When accessed from object it would be eventTable$

time a vector of time values (in time.units).

time.units an optional string specifying the time units. Defaults to the units specified when
the EventTable was initialized.

Value

eventTable with updated sampling. (Note the event table will be updated even if you don’t reassign
the eventTable)

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

14 add.sampling

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

as.et 15

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

plot(repCycle4, C2)

as.et Coerce object to data.frame

Description

Coerce object to data.frame

Usage

as.et(x, ...)

Default S3 method:
as.et(x, ...)

Arguments

x Object to coerce to et.

... Other parameters

16 assertRxUi

Value

An event table

assertRxUi Assert properties of the rxUi models

Description

Assert properties of the rxUi models

Usage

assertRxUi(model, extra = "", .var.name = .vname(model))

assertRxUiPrediction(model, extra = "", .var.name = .vname(model))

assertRxUiSingleEndpoint(model, extra = "", .var.name = .vname(model))

assertRxUiTransformNormal(model, extra = "", .var.name = .vname(model))

assertRxUiNormal(model, extra = "", .var.name = .vname(model))

assertRxUiMuRefOnly(model, extra = "", .var.name = .vname(model))

assertRxUiEstimatedResiduals(model, extra = "", .var.name = .vname(model))

assertRxUiPopulationOnly(model, extra = "", .var.name = .vname(model))

assertRxUiMixedOnly(model, extra = "", .var.name = .vname(model))

assertRxUiRandomOnIdOnly(model, extra = "", .var.name = .vname(model))

Arguments

model Model to check

extra Extra text to append to the error message (like "for focei")

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

Details

These functions have different types of assertions

• assertRxUi – Make sure this is a proper rxode2 model (if not throw error)

• assertRxUiSingleEndpoint – Make sure the rxode2 model is only a single endpoint model
(if not throw error)

assertRxUi 17

• assertRxUiTransformNormal – This needs to be a normal or transformably normal residual
distribution

• assertRxUiNormal – This needs to be a normal residual distribution

• assertRxUiEstimatedResiduals – This makes sure that the residual error parameter are
estimated (not modeled).

• assertRxUiPopulationOnly – This makes sure the model is the population only model (no
mixed effects)

• assertRxUiMixedOnly – This makes sure the model is a mixed effect model (not a population
effect)

• assertRxUiPrediction – This makes sure the model has predictions

• assertRxUiMuRefOnly – This make sure that all the parameters are mu-referenced

• assertRxUiRandomOnIdOnly – This makes sure there is only random effects at the ID level

Value

the rxUi model

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

assertRxUi(one.cmt)
assertRxUi(rnorm) # will fail

18 cvPost

assertRxUiSingleEndpoint(one.cmt)

cvPost Sample a covariance Matrix from the Posterior Inverse Wishart distri-
bution.

Description

Note this Inverse wishart rescaled to match the original scale of the covariance matrix.

Usage

cvPost(
nu,
omega,
n = 1L,
omegaIsChol = FALSE,
returnChol = FALSE,
type = c("invWishart", "lkj", "separation"),
diagXformType = c("log", "identity", "variance", "nlmixrSqrt", "nlmixrLog",
"nlmixrIdentity")

)

Arguments

nu Degrees of Freedom (Number of Observations) for covariance matrix simula-
tion.

omega Either the estimate of covariance matrix or the estimated standard deviations in
matrix form each row forming the standard deviation simulated values

n Number of Matrices to sample. By default this is 1. This is only useful when
omega is a matrix. Otherwise it is determined by the number of rows in the input
omega matrix of standard deviations

omegaIsChol is an indicator of if the omega matrix is in the Cholesky decomposition. This is
only used when codetype="invWishart"

returnChol Return the Cholesky decomposition of the covariance matrix sample. This is
only used when codetype="invWishart"

type The type of covariance posterior that is being simulated. This can be:

• invWishart The posterior is an inverse wishart; This allows for correla-
tions between parameters to be modeled. All the uncertainty in the param-
eter is captured in the degrees of freedom parameter.

• lkj The posterior separates the standard deviation estimates (modeled out-
side and provided in the omega argument) and the correlation estimates. The
correlation estimate is simulated with the rLKJ1(). This simulation uses
the relationship eta=(nu-1)/2. This is relationship based on the proof of

cvPost 19

the relationship between the restricted LKJ-distribution and inverse wishart
distribution (XXXXXX). Once the correlation posterior is calculated, the
estimated standard deviations are then combined with the simulated corre-
lation matrix to create the covariance matrix.

• separation Like the lkj option, this separates out the estimation of the
correlation and standard deviation. Instead of using the LKJ distribution to
simulate the correlation, it simulates the inverse wishart of the identity ma-
trix and converts the result to a correlation matrix. This correlation matrix is
then used with the standard deviation to calculate the simulated covariance
matrix.

diagXformType Diagonal transformation type. These could be:

• log The standard deviations are log transformed, so the actual standard
deviations are exp(omega)

• identity The standard deviations are not transformed. The standard devi-
ations are not transformed; They should be positive.

• variance The variances are specified in the omega matrix; They are trans-
formed into standard deviations.

• nlmixrSqrt These standard deviations come from an nlmixr omega matrix
where diag(chol(inv(omega))) = x^2

• nlmixrLog These standard deviations come from a nlmixr omega matrix
omega matrix where diag(chol(solve(omega))) = exp(x)

• nlmixrIdentity These standard deviations come from a nlmixr omega
matrix omega matrix where diag(chol(solve(omega))) = x

The nlmixr transformations only make sense when there is no off-diagonal cor-
relations modeled.

Details

If your covariance matrix is a 1x1 matrix, this uses an scaled inverse chi-squared which is equivalent
to the Inverse Wishart distribution in the uni-directional case.

In general, the separation strategy is preferred for diagonal matrices. If the dimension of the ma-
trix is below 10, lkj is numerically faster than separation method. However, the lkj method
has densities too close to zero (XXXX) when the dimension is above 10. In that case, though
computationally more expensive separation method performs better.

For matrices with modeled covariances, the easiest method to use is the inverse Wishart which
allows the simulation of correlation matrices (XXXX). This method is more well suited for well
behaved matrices, that is the variance components are not too low or too high. When modeling non-
linear mixed effects modeling matrices with too high or low variances are considered sub-optimal
in describing a system. With these rules in mind, it is reasonable to use the inverse Wishart.

Value

a matrix (n=1) or a list of matrices (n > 1)

Author(s)

Matthew L.Fidler & Wenping Wang

20 cvPost

References

Alvarez I, Niemi J and Simpson M. (2014) Bayesian Inference for a Covariance Matrix. Conference
on Applied Statistics in Agriculture. https://newprairiepress.org/cgi/viewcontent.cgi?
article=1004&context=agstatconference

Wang1 Z, Wu Y, and Chu H. (2018) On Equivalence of the LKJ distribution and the restricted
Wishart distribution. arXiv:1809.04746

Examples

Sample a single covariance.
draw1 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2))

Sample 3 covariances
set.seed(42)
draw3 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3)

Sample 3 covariances, but return the cholesky decomposition
set.seed(42)
draw3c <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3, returnChol = TRUE)

Sample 3 covariances with lognormal standard deviations via LKJ
correlation sample
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}), type = "lkj")

or return cholesky decomposition
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}),
type = "lkj",
returnChol = TRUE
)

Sample 3 covariances with lognormal standard deviations via separation
strategy using inverse Wishart correlation sample
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}), type = "separation")

or returning the cholesky decomposition
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}),
type = "separation",
returnChol = TRUE
)

https://newprairiepress.org/cgi/viewcontent.cgi?article=1004&context=agstatconference
https://newprairiepress.org/cgi/viewcontent.cgi?article=1004&context=agstatconference

erf 21

erf Error function

Description

Error function

Usage

erf(x)

Arguments

x vector or real values

Value

erf of x

Author(s)

Matthew L. Fidler

Examples

erf(1.0)

et Event Table Function

Description

Event Table Function

Usage

et(x, ..., envir = parent.frame())

S3 method for class 'rxode2'
et(x, ..., envir = parent.frame())

S3 method for class 'rxSolve'
et(x, ..., envir = parent.frame())

S3 method for class 'rxParams'
et(x, ..., envir = parent.frame())

22 et

Default S3 method:
et(
x,
...,
time,
amt,
evid,
cmt,
ii,
addl,
ss,
rate,
dur,
until,
id,
amountUnits,
timeUnits,
addSampling,
envir = parent.frame(),
by = NULL,
length.out = NULL

)

Arguments

x This is the first argument supplied to the event table. This is named to allow et
to be used in a pipe-line with arbitrary objects.

... Times or event tables. They can also be one of the named arguments below.

envir the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.

time Time is the time of the dose or the sampling times. This can also be unspecified
and is determined by the object type (list or numeric/integer).

amt Amount of the dose. If specified, this assumes a dosing record, instead of a
sampling record.

evid Event ID; This can be:

Numeric Value Description
0 An observation. This can also be specified as evid=obs
1 A dose observation. This can also be specified as evid=dose
2 A non-dose event. This can also be specified as evid=other
3 A reset event. This can also be specified as evid=reset.
4 Dose and reset event. This can also be specified as evid=doseReset or evid=resetDose

Note a reset event resets all the compartment values to zero and turns off all
infusions.

et 23

cmt Compartment name or number. If a number, this is an integer starting at 1. Neg-
ative compartments turn off a compartment. If the compartment is a name, the
compartment name is changed to the correct state/compartment number before
running the simulation. For a compartment named "-cmt" the compartment is
turned off.

Can also specify `cmt` as `dosing.to`,
`dose.to`, `doseTo`, `dosingTo`, and
`state`.

ii When specifying a dose, this is the inter-dose interval for ss, addl and until
options (described below).

addl The number of additional doses at a inter-dose interval after one dose.

ss Steady state flag; It can be one of:

Value Description
0 This dose is not a steady state dose
1 This dose is a steady state dose with the between/inter-dose interval of ii
2 Superposition steady state

When ss=2 the steady state dose that uses the super-position principle to allow
more complex steady states, like 10 mg in the morning and 20 mg at night, or
dosing at 8 am 12 pm and 8 pm instead of every 12 hours. Since it uses the
super positioning principle, it only makes sense when you know the kinetics are
linear.
All other values of SS are currently invalid.

rate When positive, this is the rate of infusion. Otherwise:

Value Description
0 No infusion is on this record
-1 Modeled rate (in rxode2:rate(cmt) =); Can be et(rate=model).
-2 Modeled duration (in rxode2: dur(cmt) =); Can beet(dur=model) or et(rate=dur).

When a modeled bioavailability is applied to positive rates (rate > 0), the dura-
tion of infusion is changed. This is because the data specify the rate and amount,
the only think that modeled bioavailability can affect is duration.
If instead you want the modeled bioavailability to increase the rate of infusion
instead of the duration of infusion, specify the dur instead or model the duration
with rate=2.

dur Duration of infusion. When amt and dur are specified the rate is calculated from
the two data items. When dur is specified instead of rate, the bioavailability
changes will increase rate instead of duration.

until This is the time until the dosing should end. It can be an easier way to figure out
how many additional doses are needed over your sampling period.

id A integer vector of IDs to add or remove from the event table. If the event table

24 et

is identical for each ID, then you may expand it to include all the IDs in this
vector. All the negative IDs in this vector will be removed.

amountUnits The units for the dosing records (amt)

timeUnits The units for the time records (time)

addSampling This is a boolean indicating if a sampling time should be added at the same time
as a dosing time. By default this is FALSE.

by When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

length.out The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

Value

A new event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;

et 25

d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

26 etExpand

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

plot(repCycle4, C2)

etExpand Expand additional doses

Description

Expand additional doses

Usage

etExpand(et)

Arguments

et Event table to expand additional doses for.

Value

New event table with addl doses expanded

Author(s)

Matthew Fidler

Examples

ev <- et(amt = 3, ii = 24, until = 240)
print(ev)
etExpand(ev) # expands event table, but doesn't modify it

print(ev)

ev$expand() ## Expands the current event table and saves it in ev

etRbind 27

etRbind Combining event tables

Description

Combining event tables

Usage

etRbind(
...,
samples = c("use", "clear"),
waitII = c("smart", "+ii"),
id = c("merge", "unique")

)

S3 method for class 'rxEt'
rbind(..., deparse.level = 1)

Arguments

... The event tables and optionally time between event tables, called waiting times
in this help document.

samples How to handle samples when repeating an event table. The options are:

• "clear" Clear sampling records before combining the datasets
• "use" Use the sampling records when combining the datasets

waitII This determines how waiting times between events are handled. The options
are:

• "smart" This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

• "+ii" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval

id This is how rbind will handle IDs. There are two different types of options:

• merge with id="merge", the IDs are merged together, overlapping IDs
would be merged into a single event table.

• unique with id="unique", the IDs will be renumbered so that the IDs in
all the event tables are not overlapping.

deparse.level The deparse.level of a traditional rbind is ignored.

28 etRbind

Value

An event table

Author(s)

Matthew L Fidler

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days

etRbind 29

qd <- et(timeUnits="hr") %>%
et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

plot(repCycle4, C2)

30 etRep

etRep Repeat an rxode2 event table

Description

Repeat an rxode2 event table

Usage

etRep(
x,
times = 1,
length.out = NA,
each = NA,
n = NULL,
wait = 0,
id = integer(0),
samples = c("clear", "use"),
waitII = c("smart", "+ii"),
ii = 24

)

S3 method for class 'rxEt'
rep(x, ...)

Arguments

x An rxode2 event table

times Number of times to repeat the event table

length.out Invalid with rxode2 event tables, will throw an error if used.

each Invalid with rxode2 event tables, will throw an error if used.

n The number of times to repeat the event table. Overrides times.

wait Waiting time between each repeated event table. By default there is no waiting,
or wait=0

id A integer vector of IDs to add or remove from the event table. If the event table
is identical for each ID, then you may expand it to include all the IDs in this
vector. All the negative IDs in this vector will be removed.

samples How to handle samples when repeating an event table. The options are:

• "clear" Clear sampling records before combining the datasets
• "use" Use the sampling records when combining the datasets

waitII This determines how waiting times between events are handled. The options
are:

etRep 31

• "smart" This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

• "+ii" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval

ii When specifying a dose, this is the inter-dose interval for ss, addl and until
options (described below).

... Times or event tables. They can also be one of the named arguments below.

Value

An event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;

32 etRep

d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

etSeq 33

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

plot(repCycle4, C2)

etSeq Sequence of event tables

Description

This combines a sequence of event tables.

Usage

etSeq(..., samples = c("clear", "use"), waitII = c("smart", "+ii"), ii = 24)

S3 method for class 'rxEt'
seq(...)

Arguments

... The event tables and optionally time between event tables, called waiting times
in this help document.

samples How to handle samples when repeating an event table. The options are:

• "clear" Clear sampling records before combining the datasets
• "use" Use the sampling records when combining the datasets

waitII This determines how waiting times between events are handled. The options
are:

• "smart" This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

• "+ii" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval

ii If there was no inter-dose intervals found in the event table, assume that the
interdose interval is given by this ii value. By default this is 24.

34 etSeq

Details

This sequences all the event tables in added in the argument list By default when combining
the event tables the offset is at least by the last inter-dose interval in the prior event table (or ii). If
you separate any of the event tables by a number, the event tables will be separated at least the wait
time defined by that number or the last inter-dose interval.

Value

An event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on rxode2: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, rxode2

Examples

library(rxode2)
library(units)

Model from rxode2 tutorial
mod1 <-rxode2({

KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

});

These are making the more complex regimens of the rxode2 tutorial

etSeq 35

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%

et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")

et <- seq(infusion,qd)

infusionQd <- rxSolve(mod1, et)

plot(infusionQd, C2)

2wk-on, 1wk-off

qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(mod1, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(mod1, et)

36 eventTable

plot(repCycle4, C2)

eventTable Create an event table object

Description

Initializes an object of class ‘EventTable’ with methods for adding and querying dosing and obser-
vation records

Usage

eventTable(amount.units = NA, time.units = NA)

Arguments

amount.units string denoting the amount dosing units, e.g., “mg”, “ug”. Default to NA to
denote unspecified units. It could also be a solved rxode2 object. In that case,
eventTable(obj) returns the eventTable that was used to solve the rxode2 object.

time.units string denoting the time units, e.g., “hours”, “days”. Default to "hours".
An eventTable is an object that consists of a data.frame storing ordered time-
stamped events of an (unspecified) PK/PD dynamic system, units (strings) for
dosing and time records, plus a list of functions to add and extract event records.
Currently, events can be of two types: dosing events that represent inputs to the
system and sampling time events that represent observations of the system with
‘amount.units’ and ‘time.units’, respectively.

Value

A modified data.frame with the following accessible functions:

• get.EventTable() returns the current event table

• add.dosing() adds dosing records to the event table.

• get.dosing() returns a data.frame of dosing records.

• clear.dosing() clears or deletes all dosing from event table

• ‘add.sampling() adds sampling time observation records to the event table.

• get.sampling()returns a data.frame of sampled observation records.

• clear.sampling() removes all sampling from event table.

• get.obs.rec() returns a logical vector indicating whether each event record represents an
observation or not.

• get.nobs() returns the number of observation (not dosing) records.

• get.units() returns a two-element character vector with the dosing and time units, respec-
tively

eventTable 37

• copy() makes a copy of the current event table. To create a copy of an event table object use
qd2 <- qd$copy()

• expand() Expands the event table for multi-subject solving. This is done by qd$expand(400)
for a 400 subject data expansion

Author(s)

Matthew Fidler, Melissa Hallow and Wenping Wang

See Also

et(), rxode2()

Examples

create dosing and observation (sampling) events
QD 50mg dosing, 5 days followed by 25mg 5 days
#
qd <- eventTable(amount.units = "mg", time.units = "days")
#
qd$add.dosing(dose = 50, nbr.doses = 5, dosing.interval = 1, do.sampling = FALSE)
#
sample the system's drug amounts hourly the first day, then every 12 hours
for the next 4 days
qd$add.sampling(seq(from = 0, to = 1, by = 1 / 24))
qd$add.sampling(seq(from = 1, to = 5, by = 12 / 24))
#
print(qd$get.dosing()) # table of dosing records
print(qd$get.nobs()) # number of observation (not dosing) records
#
BID dosing, 5 days
bid <- eventTable("mg", "days") # only dosing
bid$add.dosing(

dose = 10000, nbr.doses = 2 * 5,
dosing.interval = 12, do.sampling = FALSE

)
#
Use the copy() method to create a copy (clone) of an existing
event table (simple assignments just create a new reference to
the same event table object (closure)).
#
bid.ext <- bid$copy() # three-day extension for a 2nd cohort
bid.ext$add.dosing(

dose = 5000, nbr.doses = 2 * 3,
start.time = 120, dosing.interval = 12, do.sampling = FALSE

)

You can also use the Piping operator to create a table

qd2 <- eventTable(amount.units = "mg", time.units = "days") %>%
add.dosing(dose = 50, nbr.doses = 5, dosing.interval = 1, do.sampling = FALSE) %>%
add.sampling(seq(from = 0, to = 1, by = 1 / 24)) %>%

38 gammap

add.sampling(seq(from = 1, to = 5, by = 12 / 24))
print(qd2$get.dosing()) # table of dosing records
print(qd2$get.nobs()) # number of observation (not dosing) records

Note that piping with %>% will update the original table.

qd3 <- qd2 %>% add.sampling(seq(from = 5, to = 10, by = 6 / 24))
print(qd2$get.nobs())
print(qd3$get.nobs())

gammap Gammap: normalized lower incomplete gamma function

Description

This is the gamma_p from the boost library

Usage

gammap(a, z)

Arguments

a The numeric ’a’ parameter in the normalized lower incomplete gamma

z The numeric ’z’ parameter in the normalized lower incomplete gamma

Details

The gamma p function is given by:

gammap = lowergamma(a, z)/gamma(a)

Value

gammap results

Author(s)

Matthew L. Fidler

Examples

gammap(1, 3)
gammap(1:3, 3)
gammap(1, 1:3)

gammapDer 39

gammapDer gammapDer: derivative of gammap

Description

This is the gamma_p_derivative from the boost library

Usage

gammapDer(a, z)

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

z The numeric ’z’ parameter in the upper incomplete gamma

Value

lowergamma results

Author(s)

Matthew L. Fidler

Examples

gammapDer(1:3, 3)

gammapDer(1, 1:3)

gammapInv gammapInv and gammapInva: Inverses of normalized gammap func-
tion

Description

gammapInv and gammapInva: Inverses of normalized gammap function

Usage

gammapInv(a, p)

gammapInva(x, p)

40 gammaq

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

p The numeric ’p’ parameter in the upper incomplete gamma

x The numeric ’x’ parameter in the upper incomplete gamma

Details

With the equation:

p = gammap(a, x)

The ’gammapInv’ function returns a value ’x’ that satisfies the equation above

The ’gammapInva’ function returns a value ’q’ that satisfies the equation above

NOTE: gammapInva is slow

Value

inverse gammap results

Author(s)

Matthew L. Fidler

Examples

gammapInv(1:3, 0.5)

gammapInv(1, 1:3 / 3.1)

gammapInv(1:3, 1:3 / 3.1)

gammapInva(1:3, 1:3 / 3.1)

gammaq Gammaq: normalized upper incomplete gamma function

Description

This is the gamma_q from the boost library

Usage

gammaq(a, z)

Arguments

a The numeric ’a’ parameter in the normalized upper incomplete gamma

z The numeric ’z’ parameter in the normalized upper incomplete gamma

gammaqInv 41

Details

The gamma q function is given by:

gammaq = uppergamma(a, z)/gamma(a)

Value

gammaq results

Author(s)

Matthew L. Fidler

Examples

gammaq(1, 3)
gammaq(1:3, 3)
gammaq(1, 1:3)

gammaqInv gammaqInv and gammaqInva: Inverses of normalized gammaq func-
tion

Description

gammaqInv and gammaqInva: Inverses of normalized gammaq function

Usage

gammaqInv(a, q)

gammaqInva(x, q)

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

q The numeric ’q’ parameter in the upper incomplete gamma

x The numeric ’x’ parameter in the upper incomplete gamma

Details

With the equation:

q = gammaq(a, x)

The ’gammaqInv’ function returns a value ’x’ that satisfies the equation above

The ’gammaqInva’ function returns a value ’a’ that satisfies the equation above

NOTE: gammaqInva is slow

42 genShinyApp.template

Value

inverse gammaq results

Author(s)

Matthew L. Fidler

Examples

gammaqInv(1:3, 0.5)

gammaqInv(1, 1:3 / 3)

gammaqInv(1:3, 1:3 / 3.1)

gammaqInva(1:3, 1:3 / 3.1)

genShinyApp.template Generate an example (template) of a dosing regimen shiny app

Description

Create a complete shiny application for exploring dosing regimens given a (hardcoded) PK/PD
model.

Usage

genShinyApp.template(
appDir = "shinyExample",
verbose = TRUE,
ODE.config = list(ode = "model", params = c(KA = 0.294), inits = c(eff = 1), method =

"lsoda", atol = 1e-08, rtol = 1e-06)
)

write.template.server(appDir)

write.template.ui(appDir, statevars)

Arguments

appDir a string with a directory where to store the shiny app, by default is "shinyExample".
The directory appDir will be created if it does not exist.

verbose logical specifying whether to write messages as the shiny app is generated. De-
faults to TRUE.

ODE.config model name compiled and list of parameters sent to rxSolve().

genShinyApp.template 43

statevars List of statevars passed to to the write.template.ui() function. This usually
isn’t called directly.

A PK/PD model is defined using rxode2(), and a set of parameters and initial
values are defined. Then the appropriate R scripts for the shiny’s user interface
ui.R and the server logic server.R are created in the directory appDir.

The function evaluates the following PK/PD model by default:

C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

This can be changed by the ODE.config parameter.

To launch the shiny app, simply issue the runApp(appDir) R command.

Value

None, these functions are used for their side effects.

Note

These functions create a simple, but working example of a dosing regimen simulation web applica-
tion. Users may want to modify the code to experiment creating shiny applications for their specific
rxode2 models.

See Also

rxode2(),eventTable(), and the package shiny (https://shiny.rstudio.com).

Examples

remove myapp when the example is complete
on.exit(unlink("myapp", recursive = TRUE, force = TRUE))
create the shiny app example (template)
genShinyApp.template(appDir = "myapp")
run the shiny app
if (requireNamespace("shiny", quietly=TRUE)) {

library(shiny)
runApp("myapp") # Won't launch in environments without browsers

}

https://shiny.rstudio.com

44 getRxThreads

getRxThreads Get/Set the number of threads that rxode2 uses

Description

Get/Set the number of threads that rxode2 uses

Usage

getRxThreads(verbose = FALSE)

setRxThreads(threads = NULL, percent = NULL, throttle = NULL)

rxCores(verbose = FALSE)

Arguments

verbose Display the value of relevant OpenMP settings

threads NULL (default) rereads environment variables. 0 means to use all logical CPUs
available. Otherwise a number >= 1

percent If provided it should be a number between 2 and 100; the percentage of logical
CPUs to use. By default on startup, 50 percent.

throttle 2 (default) means that, roughly speaking, a single thread will be used when
number subjects solved for is <=2, 2 threads when the number of all points is
<=4, etc. The throttle is to speed up small data tasks (especially when repeated
many times) by not incurring the overhead of managing multiple threads.
The throttle will also suppress sorting which ID will be solved first when there
are (nsubject solved)*throttle <= nthreads. In rxode2 this sorting occurs to min-
imize the time for waiting for another thread to finish. If the last item solved is
has a long solving time, all the other solving have to wait for that last costly
solving to occur. If the items which are likely to take more time are solved first,
this wait is less likely to have an impact on the overall solving time.
In rxode2 the IDs are sorted by the individual number of solving points (largest
first). It also has a C interface that allows these IDs to be resorted by total time
spent solving the equation. This allows packages like nlmixr to sort by solving
time if needed.
Overall the the number of threads is throttled (restricted) for small tasks and
sorting for IDs are suppressed.

Value

number of threads that rxode2 uses

ini.rxUi 45

ini.rxUi Ini block for rxode2/nlmixr models

Description

The ini block controls initial conditions for ’theta’ (fixed effects), ’omega’ (random effects), and
’sigma’ (residual error) elements of the model.

Usage

S3 method for class 'rxUi'
ini(x, ..., envir = parent.frame())

S3 method for class '`function`'
ini(x, ..., envir = parent.frame())

ini(x, ..., envir = parent.frame())

Default S3 method:
ini(x, ...)

Arguments

x expression

... Other expressions for ini() function

envir the environment in which unevaluated model expressions is to be evaluated.
May also be NULL, a list, a data frame, a pairlist or an integer as specified to
sys.call.

Details

’theta’ and ’sigma’ can be set using either <- or = such as tvCL <- 1 or equivalently tvCL = 1.
’omega’ can be set with a ~.

Parameters can be named or unnamed (though named parameters are preferred). A named parameter
is set using the name on the left of the assignment while unnamed parameters are set without an
assignment operator. tvCL <- 1 would set a named parameter of tvCL to 1. Unnamed parameters
are set using just the value, such as 1.

For some estimation methods, lower and upper bounds can be set for ’theta’ and ’sigma’ values.
To set a lower and/or upper bound, use a vector of values. The vector is c(lower, estimate,
upper). The vector may be given with just the estimate (c(estimate)), the lower bound and
estimate (c(lower, estimate)), or all three (c(lower, estimate,upper)). To set an estimate
and upper bound without a lower bound, set the lower bound to -Inf, c(-Inf, estimate, upper).
When an estimation method does not support bounds, the bounds will be ignored with a warning.

’omega’ values can be set as a single value or as the values of a lower-triangular matrix. The values
may be set as either a variance-covariance matrix (the default) or as a correlation matrix for the off-
diagonals with the standard deviations on the diagonals. Names may be set on the left side of the

46 logit

~. To set a variance-covariance matrix with variance values of 2 and 3 and a covariance of -2.5 use
~c(2, 2.5,3). To set the same matrix with names of iivKa and iivCL, use iivKa + iivCL~c(2,
2.5, 3). To set a correlation matrix with standard deviations on the diagonal, use cor() like iivKa
+ iivCL~cor(2,-0.5, 3).

Values may be fixed (and therefore not estimated) using either the name fixed at the end of the
assignment or by calling fixed() as a function for the value to fix. For ’theta’ and ’sigma’, either
the estimate or the full definition (including lower and upper bounds) may be included in the fixed
setting. For example, the following are all effectively equivalent to set a ’theta’ or ’sigma’ to a
fixed value (because the lower and upper bounds are ignored for a fixed value): tvCL <- fixed(1),
tvCL <-fixed(0, 1), tvCL <- fixed(0, 1, 2), tvCL <- c(0, fixed(1),2), or tvCL <- c(0, 1,
fixed). For ’omega’ assignment, the full block or none of the block must be set as fixed. Exam-
ples of setting an ’omega’ value as fixed are: iivKa~fixed(1), iivKa + iivCL~fixed(1, 2, 3),
or iivKa + iivCL~c(1, 2, 3, fixed). Anywhere that fixed is used, FIX, FIXED, or fix may be
used equivalently.

For any value, standard mathematical operators or functions may be used to define the value. For
example, exp(2) and 24*30 may be used to define a value anywhere that a number can be used
(e.g. lower bound, estimate, upper bound, variance, etc.).

Values may be labeled using the label() function after the assignment. Labels are are used to
make reporting easier by giving a human-readable description of the parameter, but the labels do
not have any effect on estimation. The typical way to set a label so that the parameter tvCL has a
label of "Typical Value of Clearance (L/hr)" is tvCL <- 1; label("Typical Value of Clearance
(L/hr)").

rxode2/nlmixr2 will attempt to determine some back-transformations for the user. For example,
CL <- exp(tvCL) will detect that tvCL must be back-transformed by exp() for easier interpretation.
When you want to control the back-transformation, you can specify the back-transformation using
backTransform() after the assignment. For example, to set the back-transformation to exp(), you
can use tvCL <- 1; backTransform(exp()).

Value

Ini block

Author(s)

Matthew Fidler

logit logit and inverse logit (expit) functions

Description

logit and inverse logit (expit) functions

logit 47

Usage

logit(x, low = 0, high = 1)

expit(alpha, low = 0, high = 1)

logitNormInfo(mean = 0, sd = 1, low = 0, high = 1, abs.tol = 1e-06, ...)

probitNormInfo(mean = 0, sd = 1, low = 0, high = 1, abs.tol = 1e-06, ...)

Arguments

x Input value(s) in range [low,high] to translate -Inf to Inf

low Lowest value in the range

high Highest value in the range

alpha Infinite value(s) to translate to range of [low, high]

mean logit-scale mean

sd logit-scale standard deviation

abs.tol absolute accuracy requested.

... other parameters passed to integrate()

Details

logit is given by:

logit(p) = -log(1/p-1)

where:

p = x-low/high-low

expit is given by:

expit(p, low, high) = (high-low)/(1+exp(-alpha)) + low

The logitNormInfo() gives the mean, variance and coefficient of variability on the untransformed
scale.

Value

values from logit and expit

Examples

logit(0.25)

expit(-1.09)

logitNormInfo(logit(0.25), sd = 0.1)

logitNormInfo(logit(1, 0, 10), sd = 1, low = 0, high = 10)

48 lowergamma

lowergamma lowergamma: upper incomplete gamma function

Description

This is the tgamma_lower from the boost library

Usage

lowergamma(a, z)

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

z The numeric ’z’ parameter in the upper incomplete gamma

Details

The lowergamma function is given by:

lowergamma(a, z) =

∫ z

0

ta−1 · e−tdt

Value

lowergamma results

Author(s)

Matthew L. Fidler

Examples

lowergamma(1, 3)

lowergamma(1:3, 3)

lowergamma(1, 1:3)

model.function 49

model.function Model block for rxode2/nlmixr models

Description

Model block for rxode2/nlmixr models

Usage

S3 method for class '`function`'
model(x, ..., append = FALSE, auto = TRUE, envir = parent.frame())

S3 method for class 'rxUi'
model(x, ..., append = FALSE, auto = TRUE, envir = parent.frame())

model(
x,
...,
append = FALSE,
auto = getOption("rxode2.autoVarPiping", TRUE),
envir = parent.frame()

)

Default S3 method:
model(x, ..., append = FALSE, envir = parent.frame())

Arguments

x model expression

... Other arguments

append This is a boolean to determine if the lines are appended in piping. The possible
values for this is:

• TRUE which is when the lines are appended to the model instead of replaced
(default)

• FALSE when the lines are replaced in the model
• NA is when the lines are pre-pended to the model instead of replaced

auto This boolean tells if piping automatically selects the parameters should be char-
acterized as a population parameter, between subject variability, or a covariate.
When TRUE this automatic selection occurs. When FALSE this automatic selec-
tion is turned off and everything is added as a covariate (which can be promoted
to a parameter with the ini statement). By default this is TRUE, but it can be
changed by options(rxode2.autoVarPiping=FALSE).

envir the environment in which unevaluated model expressions is to be evaluated.
May also be NULL, a list, a data frame, a pairlist or an integer as specified to
sys.call.

50 phi

Value

Model block with ini information included. ini must be called before model block

Author(s)

Matthew Fidler

phi Cumulative distribution of standard normal

Description

Cumulative distribution of standard normal

Usage

phi(q)

Arguments

q vector of quantiles.

Value

cumulative distribution of standard normal distribution

Author(s)

Matthew Fidler

Examples

phi is equivalent to pnorm(x)
phi(3)

See
pnorm(3)

This is provided for NONMEM-like compatibility in rxode2 models

plot.rxSolve 51

plot.rxSolve Plot rxode2 objects

Description

Plot rxode2 objects

Usage

S3 method for class 'rxSolve'
plot(x, y, ..., log = "", xlab = "Time", ylab = "")

S3 method for class 'rxSolveConfint1'
plot(x, y, ..., xlab = "Time", ylab = "", log = "")

S3 method for class 'rxSolveConfint2'
plot(x, y, ..., xlab = "Time", ylab = "", log = "")

Arguments

x rxode2 object to plot

y Compartments or left-hand-side values to plot either as a bare name or as a
character vector

... Ignored

log Should "" (neither x nor y), "x", "y", or "xy" (or "yx") be log-scale?

xlab, ylab The x and y axis labels

Value

A ggplot2 object

See Also

Other rxode2 plotting: rxTheme()

probit probit and inverse probit functions

Description

probit and inverse probit functions

52 rinvchisq

Usage

probit(x, low = 0, high = 1)

probitInv(x, low = 0, high = 1)

Arguments

x Input value(s) in range [low,high] to translate -Inf to Inf

low Lowest value in the range

high Highest value in the range

Value

values from probit, probitInv and probitNormInfo

Examples

probit(0.25)

probitInv(-0.674)

probitNormInfo(probit(0.25), sd = 0.1)

probitNormInfo(probit(1, 0, 10), sd = 1, low = 0, high = 10)

rinvchisq Scaled Inverse Chi Squared distribution

Description

Scaled Inverse Chi Squared distribution

Usage

rinvchisq(n = 1L, nu = 1, scale = 1)

Arguments

n Number of random samples

nu degrees of freedom of inverse chi square

scale Scale of inverse chi squared distribution (default is 1).

Value

a vector of inverse chi squared deviates.

rxAllowUnload 53

Examples

rinvchisq(3, 4, 1) ## Scale = 1, degrees of freedom = 4
rinvchisq(2, 4, 2) ## Scale = 2, degrees of freedom = 4

rxAllowUnload Allow unloading of dlls

Description

Allow unloading of dlls

Usage

rxAllowUnload(allow)

Arguments

allow boolean indicating if garbage collection will unload of rxode2 dlls.

Value

Boolean allow; called for side effects

Author(s)

Matthew Fidler

Examples

Garbage collection will not unload un-used rxode2 dlls
rxAllowUnload(FALSE);

Garbage collection will unload unused rxode2 dlls
rxAllowUnload(TRUE);

54 rxAppendModel

rxAppendModel Append two rxui models together

Description

Append two rxui models together

Usage

rxAppendModel(model1, model2)

Arguments

model1 rxUi model 1

model2 rxUi model 2

Value

New model with both models appended together

Author(s)

Matthew L. Fidler

Examples

ocmt <- function() {
ini({

tka <- exp(0.45) # Ka
tcl <- exp(1) # Cl
tv <- exp(3.45); # log V
the label("Label name") works with all models
add.sd <- 0.7

})
model({

ka <- tka
cl <- tcl
v <- tv
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

})
}

idr <- function() {
ini({

tkin <- log(1)
tkout <- log(1)

rxAssignControlValue 55

tic50 <- log(10)
gamma <- fix(1)
idr.sd <- 1

})
model({

kin <- exp(tkin)
kout <- exp(tkout)
ic50 <- exp(tic50)
d/dt(eff) <- kin - kout*(1-ceff^gamma/(ic50^gamma+ceff^gamma))
eff ~ add(idr.sd)

})
}

rxAppendModel(ocmt %>% model(ceff=cp,append=TRUE), idr)

rxAssignControlValue Assign Control Variable

Description

Assign Control Variable

Usage

rxAssignControlValue(ui, option, value)

Arguments

ui rxode2 ui function

option Option name in the control to modify

value Value of control to modify

Value

Nothing; called for the side effects

Author(s)

Matthew L. Fidler

56 rxbeta

rxAssignPtr Assign pointer based on model variables

Description

Assign pointer based on model variables

Usage

rxAssignPtr(object = NULL)

Arguments

object rxode2 family of objects

Value

nothing, called for side effects

rxbeta Simulate beta variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxbeta(shape1, shape2, n = 1L, ncores = 1L)

Arguments

shape1 non-negative parameters of the Beta distribution.

shape2 non-negative parameters of the Beta distribution.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxbinom 57

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

beta random deviates

Examples

Use threefry engine

rxbeta(0.5, 0.5, n = 10) # with rxbeta you have to explicitly state n
rxbeta(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbeta(1, 3)

This example uses `rxbeta` directly in the model

rx <- rxode2({
a <- rxbeta(2, 2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

58 rxbinom

Usage

rxbinom(size, prob, n = 1L, ncores = 1L)

Arguments

size number of trials (zero or more).

prob probability of success on each trial.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

binomial random deviates

Examples

Use threefry engine

rxbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxbinom(3, 0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbinom(4, 0.7)

This example uses `rxbinom` directly in the model

rx <- rxode2({
a <- rxbinom(1, 0.5)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxcauchy 59

rxcauchy Simulate Cauchy variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxcauchy(location = 0, scale = 1, n = 1L, ncores = 1L)

Arguments

location location and scale parameters.

scale location and scale parameters.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

Cauchy random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

60 rxCbindStudyIndividual

Examples

Use threefry engine

rxcauchy(0, 1, n = 10) # with rxcauchy you have to explicitly state n
rxcauchy(0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxcauchy(3)

This example uses `rxcauchy` directly in the model

rx <- rxode2({
a <- rxcauchy(2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxCbindStudyIndividual

Bind the study parameters and individual parameters

Description

Bind the study parameters and individual parameters

Usage

rxCbindStudyIndividual(studyParameters, individualParameters)

Arguments

studyParameters

These are the study parameters, often can be generated by sampling from a
population. This can be either a matrix or a data frame

individualParameters

A data frame of individual parameters

Value

Data frame that can be used in rxode2 simulations

rxchisq 61

Author(s)

Matthew Fidler

Examples

Function for coverting coefficient of covariance into a variance
lognCv <- function(x){log((x/100)^2+1)}

set.seed(32)

nSub <- 100
nStud <- 10

#define theta
theta <- c(lka=log(0.5), # log ka

lCl=log(5), # log Cl
lV=log(300) # log V
)

#define theta Matrix
thetaMat <- lotri(lCl ~ lognCv(5),

lV ~ lognCv(5),
lka ~ lognCv(5))

nev <- nSub*nStud

ev1 <- data.frame(COV1=rnorm(nev,50,30),COV2=rnorm(nev,75,10),
COV3=sample(c(1.0,2.0),nev,replace=TRUE))

tmat <-rxRmvn(nStud, theta[dimnames(thetaMat)[[1]]], thetaMat)

rxCbindStudyIndividual(tmat, ev1)

rxchisq Simulate chi-squared variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxchisq(df, n = 1L, ncores = 1L)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

62 rxchisq

Arguments

df degrees of freedom (non-negative, but can be non-integer).

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

chi squared random deviates

Examples

Use threefry engine

rxchisq(0.5, n = 10) # with rxchisq you have to explicitly state n
rxchisq(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxchisq(1)

This example uses `rxchisq` directly in the model

rx <- rxode2({
a <- rxchisq(2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxClean 63

rxClean Cleanup anonymous DLLs by unloading them

Description

This cleans up any rxode2 loaded DLLs

Usage

rxClean(wd)

Arguments

wd What directory should be cleaned; (DEPRECIATED), this no longer does any-
thing.
This unloads all rxode2 anonymous dlls.

Value

TRUE if successful

Author(s)

Matthew L. Fidler

rxCompile Compile a model if needed

Description

This is the compilation workhorse creating the rxode2 model DLL files.

Usage

rxCompile(
model,
dir,
prefix,
force = FALSE,
modName = NULL,
package = NULL,
...

)

S3 method for class 'rxModelVars'
rxCompile(

64 rxCompile

model,
dir = NULL,
prefix = NULL,
force = FALSE,
modName = NULL,
package = NULL,
...

)

S3 method for class 'character'
rxCompile(
model,
dir = NULL,
prefix = NULL,
force = FALSE,
modName = NULL,
package = NULL,
...

)

S3 method for class 'rxDll'
rxCompile(model, ...)

S3 method for class 'rxode2'
rxCompile(model, ...)

Arguments

model This is the ODE model specification. It can be:

• a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

• a file name where the ODE system equation is contained

An ODE expression enclosed in \{\}

(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

dir This is the model directory where the C file will be stored for compiling.

If unspecified, the C code is stored in a temporary directory,
then the model is compiled and moved to the current directory.
Afterwards the C code is removed.

If specified, the C code is stored in the specified directory
and then compiled in that directory. The C code is not removed
after the DLL is created in the same directory. This can be
useful to debug the c-code outputs.

prefix is a string indicating the prefix to use in the C based functions. If missing, it is
calculated based on file name, or md5 of parsed model.

rxControlUpdateSens 65

force is a boolean stating if the (re)compile should be forced if rxode2 detects that the
models are the same as already generated.

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

package Package name for pre-compiled binaries.

... Other arguments sent to the rxTrans() function.

Value

An rxDll object that has the following components

• dllDLL path

• modelmodel specification

• .cA function to call C code in the correct context from the DLL using the .C() function.

• .callA function to call C code in the correct context from the DLL using the .Call() func-
tion.

• argsA list of the arguments used to create the rxDll object.

Author(s)

Matthew L.Fidler

See Also

rxode2()

rxControlUpdateSens This updates the tolerances based on the sensitivity equations

Description

This assumes the normal ODE equations are the first equations and the ODE is expanded by the
forward sensitivities or other type of sensitivity (like adjoint)

Usage

rxControlUpdateSens(rxControl, sensCmt = NULL, ncmt = NULL)

Arguments

rxControl Input list or rxControl type of list

sensCmt Number of sensitivity compartments

ncmt Number of compartments

66 rxCreateCache

Value

Updated rxControl where $atol, $rtol, $ssAtol $ssRtol are updated with different sensitivities
for the normal ODEs (first) and a different sensitivity for the larger compartments (sensitivities).

Author(s)

Matthew L. Fidler

Examples

tmp <- rxControl()

tmp2 <- rxControlUpdateSens(tmp, 3, 6)

tmp2$atol
tmp2$rtol
tmp2$ssAtol
tmp2$ssRtol

rxCreateCache This will create the cache directory for rxode2 to save between ses-
sions

Description

When run, if the R_user_dir for rxode2’s cache isn’t present, create the cache

Usage

rxCreateCache()

Value

nothing

Author(s)

Matthew Fidler

rxD 67

rxD Add to rxode2’s derivative tables

Description

Add to rxode2’s derivative tables

Usage

rxD(name, derivatives)

Arguments

name Function Name

derivatives A list of functions. Each function takes the same number of arguments as the
original function. The first function will construct the derivative with respect to
the first argument; The second function will construct the derivitive with respect
to the second argument, and so on.

Value

nothing

Author(s)

Matthew Fidler

Examples

Add an arbitrary list of derivative functions
In this case the fun(x,y) is assumed to be 0.5*x^2+0.5*y^2

rxD("fun", list(
function(x, y) {

return(x)
},
function(x, y) {

return(y)
}

))

68 rxDerived

rxDelete Delete the DLL for the model

Description

This function deletes the DLL, but doesn’t delete the model information in the object.

Usage

rxDelete(obj)

Arguments

obj rxode2 family of objects

Value

A boolean stating if the operation was successful.

Author(s)

Matthew L.Fidler

rxDerived Calculate derived parameters for the 1-, 2-, and 3- compartment linear
models.

Description

This calculates the derived parameters based on what is provided in a data frame or arguments

Usage

rxDerived(..., verbose = FALSE, digits = 0)

Arguments

... The input can be:

• A data frame with PK parameters in it; This should ideally be a data frame
with one pk parameter per row since it will output a data frame with one
PK parameter per row.

• PK parameters as either a vector or a scalar

verbose boolean that when TRUE provides a message about the detected pk parameters
and the detected compartmental model. By default this is FALSE.

digits represents the number of significant digits for the output; If the number is zero
or below (default), do not round.

rxDerived 69

Value

Return a data.frame of derived PK parameters for a 1-, 2-, or 3-compartment linear model given
provided clearances and volumes based on the inferred model type.

The model parameters that will be provided in the data frame are:

• vc: Central Volume (for 1-, 2- and 3- compartment models)

• kel: First-order elimination rate (for 1-, 2-, and 3-compartment models)

• k12: First-order rate of transfer from central to first peripheral compartment; (for 2- and 3-
compartment models)

• k21: First-order rate of transfer from first peripheral to central compartment, (for 2- and 3-
compartment models)

• k13: First-order rate of transfer from central to second peripheral compartment; (3-compartment
model)

• k31: First-order rate of transfer from second peripheral to central compartment (3-compartment
model)

• vp: Peripheral Volume (for 2- and 3- compartment models)

• vp2: Peripheral Volume for 3rd compartment (3- compartment model)

• vss: Volume of distribution at steady state; (1-, 2-, and 3-compartment models)

• t12alpha: t1/2,α; (1-, 2-, and 3-compartment models)

• t12beta: t1/2,β ; (2- and 3-compartment models)

• t12gamma: t1/2,γ ; (3-compartment model)

• alpha: α; (1-, 2-, and 3-compartment models)

• beta: β; (2- and 3-compartment models)

• gamma: β; (3-compartment model)

• A: true A; (1-, 2-, and 3-compartment models)

• B: true B; (2- and 3-compartment models)

• C: true C; (3-compartment model)

• fracA: fractional A; (1-, 2-, and 3-compartment models)

• fracB: fractional B; (2- and 3-compartment models)

• fracC: fractional C; (3-compartment model)

Author(s)

Matthew Fidler and documentation from Justin Wilkins, <justin.wilkins@occams.com>

References

Shafer S. L. CONVERT.XLS

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applica-
tions (4th). Clipping Williams & Wilkins, Philadelphia, 2010.

70 rxDfdy

Examples

Note that rxode2 parses the names to figure out the best PK parameter

params <- rxDerived(cl = 29.4, v = 23.4, Vp = 114, vp2 = 4614, q = 270, q2 = 73)

That is why this gives the same results as the value before

params <- rxDerived(CL = 29.4, V1 = 23.4, V2 = 114, V3 = 4614, Q2 = 270, Q3 = 73)

You may also use micro-constants alpha/beta etc.

params <- rxDerived(k12 = 0.1, k21 = 0.2, k13 = 0.3, k31 = 0.4, kel = 10, v = 10)

or you can mix vectors and scalars

params <- rxDerived(CL = 29.4, V = 1:3)

If you want, you can round to a number of significant digits
with the `digits` argument:

params <- rxDerived(CL = 29.4, V = 1:3, digits = 2)

rxDfdy Jacobian and parameter derivatives

Description

Return Jacobain and parameter derivatives

Usage

rxDfdy(obj)

Arguments

obj rxode2 family of objects

Value

A list of the jacobian parameters defined in this rxode2 object.

Author(s)

Matthew L. Fidler

See Also

Other Query model information: rxInits(), rxLhs(), rxModelVars(), rxParams(), rxState()

rxEvid 71

rxEvid EVID formatting for tibble and other places.

Description

This is to make an EVID more readable by non pharmacometricians. It displays what each means
and allows it to be displayed in a tibble.

Usage

rxEvid(x)

as.rxEvid(x)

S3 method for class 'rxEvid'
c(x, ...)

S3 method for class 'rxEvid'
x[...]

S3 method for class 'rxEvid'
as.character(x, ...)

S3 method for class 'rxEvid'
x[[...]]

S3 method for class 'rxRateDur'
c(x, ...)

S3 method for class 'rxEvid'
format(x, ...)

S3 method for class 'rxRateDur'
format(x, ...)

S3 method for class 'rxEvid'
print(x, ...)

Arguments

x Item to be converted to a rxode2 EVID specification.

... Other parameters

Value

rxEvid specification

72 rxexp

Examples

rxEvid(1:7)

rxexp Simulate exponential variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxexp(rate, n = 1L, ncores = 1L)

Arguments

rate vector of rates.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

exponential random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxf 73

Examples

Use threefry engine

rxexp(0.5, n = 10) # with rxexp you have to explicitly state n
rxexp(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxexp(1)

This example uses `rxexp` directly in the model

rx <- rxode2({
a <- rxexp(2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxf Simulate F variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxf(df1, df2, n = 1L, ncores = 1L)

Arguments

df1 degrees of freedom. Inf is allowed.

df2 degrees of freedom. Inf is allowed.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

74 rxFun

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

f random deviates

Examples

Use threefry engine

rxf(0.5, 0.5, n = 10) # with rxf you have to explicitly state n
rxf(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxf(1, 3)

This example uses `rxf` directly in the model

rx <- rxode2({
a <- rxf(2, 2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxFun Add user function to rxode2

Description

This adds a user function to rxode2 that can be called. If needed, these functions can be differenti-
ated by numerical differences or by adding the derivatives to rxode2’s internal derivative table with
rxD()

rxFun 75

Usage

rxFun(name, args, cCode)

rxRmFun(name)

Arguments

name This gives the name of the user function

args This gives the arguments of the user function

cCode This is the C-code for the new function

Value

nothing

Author(s)

Matthew L. Fidler

Examples

Right now rxode2 is not aware of the function f
Therefore it cannot translate it to symengine or
Compile a model with it.

try(rxode2("a=fun(a,b,c)"))

Note for this approach to work, it cannot interfere with C
function names or reserved rxode2 specical terms. Therefore
f(x) would not work since f is an alias for bioaviability.

fun <- "
double fun(double a, double b, double c) {

return a*a+b*a+c;
}
" ## C-code for function

rxFun("fun", c("a", "b", "c"), fun) ## Added function

Now rxode2 knows how to translate this function to symengine

rxToSE("fun(a,b,c)")

And will take a central difference when calculating derivatives

rxFromSE("Derivative(fun(a,b,c),a)")

Of course, you could specify the derivative table manually
rxD("fun", list(

function(a, b, c) {

76 rxgamma

paste0("2*", a, "+", b)
},
function(a, b, c) {

return(a)
},
function(a, b, c) {

return("0.0")
}

))

rxFromSE("Derivative(fun(a,b,c),a)")

You can also remove the functions by `rxRmFun`

rxRmFun("fun")

rxgamma Simulate gamma variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxgamma(shape, rate = 1/scale, scale = 1, n = 1L, ncores = 1L)

Arguments

shape shape and scale parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

scale shape and scale parameters. Must be positive, scale strictly.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxgeom 77

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

gamma random deviates

Examples

Use threefry engine

rxgamma(0.5, n = 10) # with rxgamma you have to explicitly state n
rxgamma(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxgamma(1)

This example uses `rxbeta` directly in the model

rx <- rxode2({
a <- rxgamma(2)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxgeom Simulate geometric variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

78 rxgeom

Usage

rxgeom(prob, n = 1L, ncores = 1L)

Arguments

prob probability of success in each trial. 0 < prob <= 1.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

geometric random deviates

Examples

Use threefry engine

rxgeom(0.5, n = 10) # with rxgeom you have to explicitly state n
rxgeom(0.25, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxgeom(0.75)

This example uses `rxgeom` directly in the model

rx <- rxode2({
a <- rxgeom(0.24)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxGetControl 79

rxGetControl rxGetControl option from ui

Description

rxGetControl option from ui

Usage

rxGetControl(ui, option, default)

Arguments

ui rxode2 ui object

option Option to get

default Default value

Value

Option (if present) or default value

Author(s)

Matthew L. Fidler

rxGetLin Get the linear compartment model true function

Description

Get the linear compartment model true function

Usage

rxGetLin(
model,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
verbose = FALSE

)

80 rxGetrxode2

Arguments

model This is the ODE model specification. It can be:

• a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

• a file name where the ODE system equation is contained

An ODE expression enclosed in \{\}

(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

linCmtSens The method to calculate the linCmt() solutions

verbose When TRUE be verbose with the linear compartmental model

Value

model with linCmt() replaced with linCmtA()

Author(s)

Matthew Fidler

rxGetrxode2 Get rxode2 model from object

Description

Get rxode2 model from object

Usage

rxGetrxode2(obj)

Arguments

obj rxode2 family of objects

Value

rxode2 model

rxGetSeed 81

rxGetSeed Get the rxode2 seed

Description

Get the rxode2 seed

Usage

rxGetSeed()

Value

rxode2 seed state or -1 when the seed isn’t set

See Also

rxSetSeed, rxWithSeed, rxWithPreserveSeed

Examples

without setting seed

rxGetSeed()
Now set the seed
rxSetSeed(42)

rxGetSeed()

rxnorm()

rxGetSeed()

don't use the rxode2 seed again

rxSetSeed(-1)

rxGetSeed()

rxnorm()

rxGetSeed()

82 rxIndLinState

rxHtml Format rxSolve and related objects as html.

Description

Format rxSolve and related objects as html.

Usage

rxHtml(x, ...)

S3 method for class 'rxSolve'
rxHtml(x, ...)

Arguments

x rxode2 object

... Extra arguments sent to kable

Value

html code for rxSolve object

Author(s)

Matthew L. Fidler

rxIndLinState Set the preferred factoring by state

Description

Set the preferred factoring by state

Usage

rxIndLinState(preferred = NULL)

Arguments

preferred A list of each state’s preferred factorization

Value

Nothing

rxIndLinStrategy 83

Author(s)

Matthew Fidler

rxIndLinStrategy This sets the inductive linearization strategy for matrix building

Description

When there is more than one state in a ODE that cannot be separated this specifies how it is incor-
porated into the matrix exponential.

Usage

rxIndLinStrategy(strategy = c("curState", "split"))

Arguments

strategy The strategy for inductive linearization matrix building

• curState Prefer parameterizing in terms of the current state, followed by
the first state observed in the term.

• split Split the parameterization between all states in the term by dividing
each by the number of states in the term and then adding a matrix term for
each state.

Value

Nothing

Author(s)

Matthew L. Fidler

rxIndLin_ Inductive linearization solver

Description

Inductive linearization solver

84 rxInv

Arguments

cSub = Current subject number

op • rxode2 solving options

tp • Prior time point/time zeor

yp • Prior state; vector size = neq; Final state is updated here

tf • Final Time

InfusionRate = Rates of each comparment; vector size = neq

on Indicator for if the compartment is "on"

cache 0 = no Cache When doIndLin == 0, cache > 0 = nInf-1

ME the rxode2 matrix exponential function

IndF The rxode2 Inductive Linearization function F

Value

Returns a status for solving

1 = Successful solve

-1 = Maximum number of iterations reached when doing inductive linearization

rxInv Invert matrix using RcppArmadillo.

Description

Invert matrix using RcppArmadillo.

Usage

rxInv(matrix)

Arguments

matrix matrix to be inverted.

Value

inverse or pseudo inverse of matrix.

rxIsCurrent 85

rxIsCurrent Checks if the rxode2 object was built with the current build

Description

Checks if the rxode2 object was built with the current build

Usage

rxIsCurrent(obj)

Arguments

obj rxode2 family of objects

Value

boolean indicating if this was built with current rxode2

rxLhs Left handed Variables

Description

This returns the model calculated variables

Usage

rxLhs(obj)

Arguments

obj rxode2 family of objects

Value

a character vector listing the calculated parameters

Author(s)

Matthew L.Fidler

See Also

rxode2

Other Query model information: rxDfdy(), rxInits(), rxModelVars(), rxParams(), rxState()

86 rxNorm

rxLock Lock/unlocking of rxode2 dll file

Description

Lock/unlocking of rxode2 dll file

Usage

rxLock(obj)

rxUnlock(obj)

Arguments

obj A rxode2 family of objects

Value

nothing; called for side effects

rxNorm Get the normalized model

Description

This get the syntax preferred model for processing

Usage

rxNorm(obj, condition = NULL, removeInis, removeJac, removeSens)

Arguments

obj rxode2 family of objects

condition Character string of a logical condition to use for subsetting the normalized
model. When missing, and a condition is not set via rxCondition, return the
whole code with all the conditional settings intact. When a condition is set with
rxCondition, use that condition.

removeInis A boolean indicating if parameter initialization will be removed from the model

removeJac A boolean indicating if the Jacobians will be removed.

removeSens A boolean indicating if the sensitivities will be removed.

Value

Normalized Normal syntax (no comments)

rxnorm 87

Author(s)

Matthew L. Fidler

rxnorm Simulate random normal variable from threefry/vandercorput genera-
tor

Description

Simulate random normal variable from threefry/vandercorput generator

Usage

rxnorm(mean = 0, sd = 1, n = 1L, ncores = 1L)

rxnormV(mean = 0, sd = 1, n = 1L, ncores = 1L)

Arguments

mean vector of means.

sd vector of standard deviations.

n number of observations

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Value

normal random number deviates

Examples

Use threefry engine

rxnorm(n = 10) # with rxnorm you have to explicitly state n
rxnorm(n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnorm(2, 3) ## The first 2 arguments are the mean and standard deviation

This example uses `rxnorm` directly in the model

rx <- rxode2({
a <- rxnorm()

})

88 rxode2

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

Use vandercorput generator

rxnormV(n = 10) # with rxnorm you have to explicitly state n
rxnormV(n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnormV(2, 3) ## The first 2 arguments are the mean and standard deviation

This example uses `rxnormV` directly in the model

rx <- rxode2({
a <- rxnormV()

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxode2 Create an ODE-based model specification

Description

Create a dynamic ODE-based model object suitably for translation into fast C code

Usage

rxode2(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE

)

rxode2 89

RxODE(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE

)

rxode(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE

)

Arguments

model This is the ODE model specification. It can be:

• a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

• a file name where the ODE system equation is contained

An ODE expression enclosed in \{\}

(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

90 rxode2

wd character string with a working directory where to create a subdirectory accord-
ing to modName. When specified, a subdirectory named after the “modName.d”
will be created and populated with a C file, a dynamic loading library, plus var-
ious other working files. If missing, the files are created (and removed) in the
temporary directory, and the rxode2 DLL for the model is created in the current
directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691e1e_i386.dll

filename A file name or connection object where the ODE-based model specification re-
sides. Only one of model or filename may be specified.

extraC Extra c code to include in the model. This can be useful to specify functions in
the model. These C functions should usually take double precision arguments,
and return double precision values.

debug is a boolean indicating if the executable should be compiled with verbose de-
bugging information turned on.

calcJac boolean indicating if rxode2 will calculate the Jacobain according to the speci-
fied ODEs.

calcSens boolean indicating if rxode2 will calculate the sensitivities according to the spec-
ified ODEs.

collapseModel boolean indicating if rxode2 will remove all LHS variables when calculating
sensitivities.

package Package name for pre-compiled binaries.
... ignored arguments.
linCmtSens The method to calculate the linCmt() solutions
indLin Calculate inductive linearization matrices and compile with inductive lineariza-

tion support.
verbose When TRUE be verbose with the linear compartmental model

Details

The Rx in the name rxode2 is meant to suggest the abbreviation Rx for a medical prescription, and
thus to suggest the package emphasis on pharmacometrics modeling, including pharmacokinetics
(PK), pharmacodynamics (PD), disease progression, drug-disease modeling, etc.

The ODE-based model specification may be coded inside a character string or in a text file, see
Section rxode2 Syntax below for coding details. An internal rxode2 compilation manager object
translates the ODE system into C, compiles it, and dynamically loads the object code into the
current R session. The call to rxode2 produces an object of class rxode2 which consists of a
list-like structure (environment) with various member functions (see Section Value below).

For evaluating rxode2 models, two types of inputs may be provided: a required set of time points
for querying the state of the ODE system and an optional set of doses (input amounts). These inputs
are combined into a single event table object created with the function eventTable() or et().

An rxode2 model specification consists of one or more statements optionally terminated by semi-
colons ; and optional comments (comments are delimited by # and an end-of-line).

A block of statements is a set of statements delimited by curly braces, { ... }.

Statements can be either assignments, conditional if/else if/else, while loops (can be exited by
break), special statements, or printing statements (for debugging/testing)

Assignment statements can be:

rxode2 91

• simple assignments, where the left hand is an identifier (i.e., variable)
• special time-derivative assignments, where the left hand specifies the change of the amount

in the corresponding state variable (compartment) with respect to time e.g., d/dt(depot):
• special initial-condition assignments where the left hand specifies the compartment of the

initial condition being specified, e.g. depot(0) = 0

• special model event changes including bioavailability (f(depot)=1), lag time (alag(depot)=0),
modeled rate (rate(depot)=2) and modeled duration (dur(depot)=2). An example of
these model features and the event specification for the modeled infusions the rxode2 data
specification is found in rxode2 events vignette.

• special change point syntax, or model times. These model times are specified by mtime(var)=time

• special Jacobian-derivative assignments, where the left hand specifies the change in the com-
partment ode with respect to a variable. For example, if d/dt(y) = dy, then a Jacobian for this
compartment can be specified as df(y)/dy(dy) = 1. There may be some advantage to obtain-
ing the solution or specifying the Jacobian for very stiff ODE systems. However, for the few
stiff systems we tried with LSODA, this actually slightly slowed down the solving.

Note that assignment can be done by =, <- or ~.

When assigning with the ~ operator, the simple assignments and time-derivative assignments will
not be output.

Special statements can be:

• Compartment declaration statements, which can change the default dosing compartment
and the assumed compartment number(s) as well as add extra compartment names at the end
(useful for multiple-endpoint nlmixr models); These are specified by cmt(compartmentName)

• Parameter declaration statements, which can make sure the input parameters are in a certain
order instead of ordering the parameters by the order they are parsed. This is useful for keeping
the parameter order the same when using 2 different ODE models. These are specified by
param(par1, par2,...)

An example model is shown below:

simple assignment
C2 = centr/V2;

time-derivative assignment
d/dt(centr) = F*KA*depot - CL*C2 - Q*C2 + Q*C3;

Expressions in assignment and if statements can be numeric or logical.

Numeric expressions can include the following numeric operators +, -, *, /, ^ and those
mathematical functions defined in the C or the R math libraries (e.g., fabs, exp, log, sin, abs).

You may also access the R’s functions in the R math libraries, like lgammafn for the log gamma
function.

The rxode2 syntax is case-sensitive, i.e., ABC is different than abc, Abc, ABc, etc.

Identifiers:
Like R, Identifiers (variable names) may consist of one or more alphanumeric, underscore _ or
period . characters, but the first character cannot be a digit or underscore _.
Identifiers in a model specification can refer to:

https://nlmixr2.github.io/rxode2/articles/rxode2-event-types.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Numerical-analysis-subroutines

92 rxode2

• State variables in the dynamic system (e.g., compartments in a pharmacokinetics model).
• Implied input variable, t (time), tlast (last time point), and podo (oral dose, in the undocu-

mented case of absorption transit models).
• Special constants like pi or R’s predefined constants.
• Model parameters (e.g., ka rate of absorption, CL clearance, etc.)
• Others, as created by assignments as part of the model specification; these are referred as

LHS (left-hand side) variable.

Currently, the rxode2 modeling language only recognizes system state variables and “parame-
ters”, thus, any values that need to be passed from R to the ODE model (e.g., age) should be
either passed in the params argument of the integrator function rxSolve() or be in the supplied
event data-set.
There are certain variable names that are in the rxode2 event tables. To avoid confusion, the
following event table-related items cannot be assigned, or used as a state but can be accessed in
the rxode2 code:

• cmt

• dvid

• addl

• ss

• rate

• id

However the following variables are cannot be used in a model specification:

• evid

• ii

Sometimes rxode2 generates variables that are fed back to rxode2. Similarly, nlmixr generates
some variables that are used in nlmixr estimation and simulation. These variables start with the
either the rx or nlmixr prefixes. To avoid any problems, it is suggested to not use these variables
starting with either the rx or nlmixr prefixes.

Logical Operators:
Logical operators support the standard R operators ==, != >= <= > and <. Like R these can be
in if() or while() statements, ifelse() expressions. Additionally they can be in a standard
assignment. For instance, the following is valid:

cov1 = covm*(sexf == "female") + covm*(sexf != "female")

Notice that you can also use character expressions in comparisons. This convenience comes at a
cost since character comparisons are slower than numeric expressions. Unlike R, as.numeric or
as.integer for these logical statements is not only not needed, but will cause an syntax error if
you try to use the function.

Value

An object (environment) of class rxode2 (see Chambers and Temple Lang (2001)) consisting of the
following list of strings and functions:

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Mathematical-constants

rxode2 93

* `model` a character string holding the source model specification.
* `get.modelVars`a function that returns a list with 3 character

vectors, `params`, `state`, and `lhs` of variable names used in the model
specification. These will be output when the model is computed (i.e., the ODE solved by integration).

* `solve`{this function solves (integrates) the ODE. This
is done by passing the code to [rxSolve()].
This is as if you called `rxSolve(rxode2object, ...)`,
but returns a matrix instead of a rxSolve object.

`params`: a numeric named vector with values for every parameter
in the ODE system; the names must correspond to the parameter
identifiers used in the ODE specification;

`events`: an `eventTable` object describing the
input (e.g., doses) to the dynamic system and observation
sampling time points (see [eventTable()]);

`inits`: a vector of initial values of the state variables
(e.g., amounts in each compartment), and the order in this vector
must be the same as the state variables (e.g., PK/PD compartments);

`stiff`: a logical (`TRUE` by default) indicating whether
the ODE system is stiff or not.

For stiff ODE systems (`stiff = TRUE`), `rxode2` uses
the LSODA (Livermore Solver for Ordinary Differential Equations)
Fortran package, which implements an automatic method switching
for stiff and non-stiff problems along the integration interval,
authored by Hindmarsh and Petzold (2003).

For non-stiff systems (`stiff = FALSE`), `rxode2` uses `DOP853`,
an explicit Runge-Kutta method of order 8(5, 3) of Dormand and Prince
as implemented in C by Hairer and Wanner (1993).

`trans_abs`: a logical (`FALSE` by default) indicating
whether to fit a transit absorption term
(TODO: need further documentation and example);

`atol`: a numeric absolute tolerance (1e-08 by default);

`rtol`: a numeric relative tolerance (1e-06 by default).e

The output of \dQuote{solve} is a matrix with as many rows as there
are sampled time points and as many columns as system variables
(as defined by the ODEs and additional assignments in the rxode2 model

code).}

94 rxode2

* `isValid` a function that (naively) checks for model validity,
namely that the C object code reflects the latest model
specification.

* `version` a string with the version of the `rxode2`
object (not the package).

* `dynLoad` a function with one `force = FALSE` argument
that dynamically loads the object code if needed.

* `dynUnload` a function with no argument that unloads
the model object code.

* `delete` removes all created model files, including C and DLL files.
The model object is no longer valid and should be removed, e.g.,
`rm(m1)`.

* `run` deprecated, use `solve`.
* `get.index` deprecated.
* `getObj` internal (not user callable) function.

Author(s)

Melissa Hallow, Wenping Wang and Matthew Fidler

References

Chamber, J. M. and Temple Lang, D. (2001) Object Oriented Programming in R. R News, Vol. 1,
No. 3, September 2001. https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf.

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

Plevyak, J. dparser, http://dparser.sourceforge.net. Web. 12 Oct. 2015.

See Also

eventTable(), et(), add.sampling(), add.dosing()

Examples

Step 1 - Create a model specification
ode <- "

A 4-compartment model, 3 PK and a PD (effect) compartment
(notice state variable names 'depot', 'centr', 'peri', 'eff')

C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;

https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf
http://dparser.sourceforge.net

rxode2 95

d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

"

m1 <- rxode(model = ode)
print(m1)

Step 2 - Create the model input as an EventTable,
including dosing and observation (sampling) events

QD (once daily) dosing for 5 days.

qd <- eventTable(amount.units = "ug", time.units = "hours")
qd$add.dosing(dose = 10000, nbr.doses = 5, dosing.interval = 24)

Sample the system hourly during the first day, every 8 hours
then after

qd$add.sampling(0:24)
qd$add.sampling(seq(from = 24 + 8, to = 5 * 24, by = 8))

Step 3 - set starting parameter estimates and initial
values of the state

theta <-
c(
KA = .291, CL = 18.6,
V2 = 40.2, Q = 10.5, V3 = 297.0,
Kin = 1.0, Kout = 1.0, EC50 = 200.0

)

init state variable
inits <- c(0, 0, 0, 1)
Step 4 - Fit the model to the data

qd.cp <- m1$solve(theta, events = qd, inits)

head(qd.cp)

This returns a matrix. Note that you can also
solve using name initial values. For example:

inits <- c(eff = 1)
qd.cp <- solve(m1, theta, events = qd, inits)
print(qd.cp)

plot(qd.cp)

You can also directly simulate from a nlmixr model
f <- function() {

ini({
KA <- .291
CL <- 18.6

96 rxOptExpr

V2 <- 40.2
Q <- 10.5
V3 <- 297.0
Kin <- 1.0
Kout <- 1.0
EC50 <- 200.0

})
model({

A 4-compartment model, 3 PK and a PD (effect) compartment
(notice state variable names 'depot', 'centr', 'peri', 'eff')
C2 <- centr/V2
C3 <- peri/V3
d/dt(depot) <- -KA*depot
d/dt(centr) <- KA*depot - CL*C2 - Q*C2 + Q*C3
d/dt(peri) <- Q*C2 - Q*C3
d/dt(eff) <- Kin - Kout*(1-C2/(EC50+C2))*eff
eff(0) <- 1

})
}

u <- f()

this pre-compiles and displays the simulation model
u$simulationModel

qd.cp <-solve(u, qd)

print(qd.cp)

rxOptExpr Optimize rxode2 for computer evaluation

Description

This optimizes rxode2 code for computer evaluation by only calculating redundant expressions
once.

Usage

rxOptExpr(x, msg = "model")

Arguments

x rxode2 model that can be accessed by rxNorm
msg This is the name of type of object that rxode2 is optimizing that will in the

message when optimizing. For example "model" will produce the following
message while optimizing the model:
finding duplicate expressions in model...

rxord 97

Value

Optimized rxode2 model text. The order and type lhs and state variables is maintained while the
evaluation is sped up. While parameters names are maintained, their order may be modified.

Author(s)

Matthew L. Fidler

rxord Simulate ordinal value

Description

Simulate ordinal value

Usage

rxord(...)

Arguments

... the probabilities to be simulated. These should sum up to a number below one.

Details

The values entered into the ’rxord’ simulation will simulate the probability of falling each group.
If it falls outside of the specified probabilities, it will simulate the group (number of probabilities
specified + 1)

Value

A number from 1 to the (number of probabilities specified + 1)

Author(s)

Matthew L. Fidler

Examples

This will give values 1, and 2
rxord(0.5)
rxord(0.5)
rxord(0.5)
rxord(0.5)

This will give values 1, 2 and 3
rxord(0.3, 0.3)
rxord(0.3, 0.3)

98 rxParams

rxord(0.3, 0.3)

rxParams Parameters specified by the model

Description

This returns the model’s parameters that are required to solve the ODE system, and can be used to
pipe parameters into an rxode2 solve

Usage

rxParams(obj, ...)

S3 method for class 'rxode2'
rxParams(
obj,
constants = TRUE,
...,
params = NULL,
inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

)

S3 method for class 'rxSolve'
rxParams(
obj,
constants = TRUE,
...,
params = NULL,
inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,

rxParams 99

nSub = NULL,
nStud = NULL

)

S3 method for class 'rxEt'
rxParams(
obj,
...,
params = NULL,
inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

)

rxParam(obj, ...)

Arguments

obj rxode2 family of objects

... Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

constants is a boolean indicting if constants should be included in the list of parameters.
Currently rxode2 parses constants into variables in case you wish to change them
without recompiling the rxode2 model.

params a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

inits a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

iCov A data frame of individual non-time varying covariates to combine with the
events dataset by merge.

keep Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

thetaMat Named theta matrix.

omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are

100 rxPkg

using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.

dfSub Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

nSub Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

nStud Number virtual studies to characterize uncertainty in estimated parameters.

Value

When extracting the parameters from an rxode2 model, a character vector listing the parameters in
the model.

Author(s)

Matthew L.Fidler

See Also

Other Query model information: rxDfdy(), rxInits(), rxLhs(), rxModelVars(), rxState()

rxPkg Creates a package from compiled rxode2 models

Description

Creates a package from compiled rxode2 models

Usage

rxPkg(
...,
package,
wd = getwd(),
action = c("install", "build", "binary", "create"),
license = c("gpl3", "lgpl", "mit", "agpl3"),
name = "Firstname Lastname",
fields = list()

)

rxpois 101

Arguments

... Models to build a package from

package String of the package name to create

wd character string with a working directory where to create a subdirectory accord-
ing to modName. When specified, a subdirectory named after the “modName.d”
will be created and populated with a C file, a dynamic loading library, plus var-
ious other working files. If missing, the files are created (and removed) in the
temporary directory, and the rxode2 DLL for the model is created in the current
directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691e1e_i386.dll

action Type of action to take after package is created

license is the type of license for the package.

name Full name of author

fields A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. See use_description() for how you can set personalized defaults using
package options.

Value

this function returns nothing and is used for its side effects

Author(s)

Matthew Fidler

rxpois Simulate random Poisson variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxpois(lambda, n = 1L, ncores = 1L)

Arguments

lambda vector of (non-negative) means.

n number of random values to return.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

102 rxPp

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

poission random number deviates

Examples

Use threefry engine

rxpois(lambda = 3, n = 10) # with rxpois you have to explicitly state n
rxpois(lambda = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxpois(4) ## The first arguments are the lambda parameter

This example uses `rxpois` directly in the model

rx <- rxode2({
a <- rxpois(3)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxPp Simulate a from a Poisson process

Description

Simulate a from a Poisson process

rxPp 103

Usage

rxPp(
n,
lambda,
gamma = 1,
prob = NULL,
t0 = 0,
tmax = Inf,
randomOrder = FALSE

)

Arguments

n Number of time points to simulate in the Poisson process

lambda Rate of Poisson process

gamma Asymmetry rate of Poisson process. When gamma=1.0, this simulates a ho-
mogenous Poisson process. When gamma<1.0, the Poisson process has more
events early, when gamma > 1.0, the Poisson process has more events late in the
process.
When gamma is non-zero, the tmax should not be infinite but indicate the end
of the Poisson process to be simulated. In most pharamcometric cases, this will
be the end of the study. Internally this uses a rate of:
l(t) = lambdagamma(t/tmax)^(gamma-1)

prob When specified, this is a probability function with one argument, time, that gives
the probability that a Poisson time t is accepted as a rejection time.

t0 the starting time of the Poisson process

tmax the maximum time of the Poisson process

randomOrder when TRUE randomize the order of the Poisson events. By default (FALSE) it
returns the Poisson process is in order of how the events occurred.

Value

This returns a vector of the Poisson process times; If the dropout is >= tmax, then all the rest of the
times are = tmax to indicate the dropout is equal to or after tmax.

Author(s)

Matthew Fidler

Examples

Sample homogenous Poisson process of rate 1/10
rxPp(10, 1 / 10)

Sample inhomogenous Poisson rate of 1/10

104 rxPreferredDistributionName

rxPp(10, 1 / 10, gamma = 2, tmax = 100)

Typically the Poisson process times are in a sequential order,
using randomOrder gives the Poisson process in random order

rxPp(10, 1 / 10, gamma = 2, tmax = 10, randomOrder = TRUE)

This uses an arbitrary function to sample a non-homogenous Poisson process

rxPp(10, 1 / 10, prob = function(x) {
1 / x

})

rxPreferredDistributionName

Change distribution name to the preferred distribution name term

Description

This is determined by the internal preferred condition name list .errIdenticalDists

Usage

rxPreferredDistributionName(dist)

Arguments

dist This is the input distribution

Value

Preferred distribution term

Author(s)

Matthew Fidler

Examples

rxPreferredDistributionName("dnorm")

rxPreferredDistributionName("add")

can be vectorized

rxPreferredDistributionName(c("add","dnorm"))

rxProgress 105

rxProgress rxode2 progress bar functions

Description

rxProgress sets up the progress bar

Usage

rxProgress(num, core = 0L)

rxTick()

rxProgressStop(clear = TRUE)

rxProgressAbort(error = "Aborted calculation")

Arguments

num Tot number of operations to track

core Number of cores to show. If below 1, don’t show number of cores

clear Boolean telling if you should clear the progress bar after completion (as if it
wasn’t displayed). By default this is TRUE

error With rxProgressAbort this is the error that is displayed

Details

rxTick is a progress bar tick

rxProgressStop stop progress bar

rxProgressAbort shows an abort if rxProgressStop wasn’t called.

Value

All return NULL invisibly.

Author(s)

Matthew L. Fidler

Examples

f <- function() {
on.exit({
rxProgressAbort()

})
rxProgress(100)
for (i in 1:100) {

106 rxRandNV

rxTick()
Sys.sleep(1 / 100)

}
rxProgressStop()

}

f()

rxRandNV Create a random "normal" matrix using vandercorput generator

Description

Create a random "normal" matrix using vandercorput generator

Usage

rxRandNV(nrow = 1, ncol = 1)

Arguments

nrow Number of rows

ncol Number of Columns

Value

Matrix of random numbers

Author(s)

Matthew Fidler

Examples

rxRandNV(1, 1)
rxRandNV(3, 2)

rxRateDur 107

rxRateDur Creates a rxRateDur object

Description

This is primarily to display information about rate

Usage

rxRateDur(x)

S3 method for class 'rxRateDur'
x[...]

as.rxRateDur(x)

S3 method for class 'rxRateDur'
as.character(x, ...)

S3 method for class 'rxRateDur'
x[[...]]

Arguments

x rxRateDur data

... Other parameters

Value

rxRateDur object

rxRemoveControl rxRemoveControl options for UI object

Description

rxRemoveControl options for UI object

Usage

rxRemoveControl(ui)

Arguments

ui rxode2 ui object

108 rxRename

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

rxRename Rename items inside of a rxode2 ui model

Description

rxRename() changes the names of individual variables, lhs, and ode states using new_name = old_name
syntax

Usage

rxRename(.data, ..., envir = parent.frame())

rename.rxUi(.data, ...)

rename.function(.data, ...)

Arguments

.data rxode2 ui function, named data to be consistent with dplyr::rename()

... rename items

envir Environment for evaluation

Value

New model with items renamed

Author(s)

Matthew L. Fidler

Examples

ocmt <- function() {
ini({

tka <- exp(0.45) # Ka
tcl <- exp(1) # Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- exp(3.45) # log V
the label("Label name") works with all models

rxReservedKeywords 109

add.sd <- 0.7
})
model({

ka <- tka
cl <- tcl
v <- tv
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

})
}

ocmt %>% rxRename(cpParent=cp)

rxReservedKeywords A list and description of Rode supported reserved keywords

Description

A list and description of Rode supported reserved keywords

Usage

rxReservedKeywords

Format

A data frame with 3 columns and 98 or more rows

Reserved Name Reserved Keyword Name

Meaning Reserved Keyword Meaning

Alias Keyword Alias

rxRmvn Simulate from a (truncated) multivariate normal

Description

This is simulated with the fast, thread-safe threefry simulator and can use multiple cores to generate
the random deviates.

110 rxRmvn

Usage

rxRmvn(
n,
mu = NULL,
sigma,
lower = -Inf,
upper = Inf,
ncores = 1,
isChol = FALSE,
keepNames = TRUE,
a = 0.4,
tol = 2.05,
nlTol = 1e-10,
nlMaxiter = 100L

)

Arguments

n Number of random row vectors to be simulated OR the matrix to use for simu-
lation (faster).

mu mean vector

sigma Covariance matrix for multivariate normal or a list of covariance matrices. If
a list of covariance matrix, each matrix will simulate n matrices and combine
them to a full matrix

lower is a vector of the lower bound for the truncated multivariate norm

upper is a vector of the upper bound for the truncated multivariate norm

ncores Number of cores used in the simulation

isChol A boolean indicating if sigma is a cholesky decomposition of the covariance
matrix.

keepNames Keep the names from either the mean or covariance matrix.

a threshold for switching between methods; They can be tuned for maximum
speed; There are three cases that are considered:
case 1: a < l < u
case 2: l < u < -a
case 3: otherwise
where l=lower and u = upper

tol When case 3 is used from the above possibilities, the tol value controls the ac-
ceptance rejection and inverse-transformation;
When abs(u-l)>tol, uses accept-reject from randn

nlTol Tolerance for newton line-search

nlMaxiter Maximum iterations for newton line-search

rxRmvn 111

Value

If n==integer (default) the output is an (n x d) matrix where the i-th row is the i-th simulated
vector.

If is.matrix(n) then the random vector are store in n, which is provided by the user, and the
function returns NULL invisibly.

Author(s)

Matthew Fidler, Zdravko Botev and some from Matteo Fasiolo

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

The thread safe multivariate normal was inspired from the mvnfast package by Matteo Fasiolo
https://CRAN.R-project.org/package=mvnfast

The concept of the truncated multivariate normal was taken from Zdravko Botev Botev (2017)
doi:10.1111/rssb.12162 and Botev and L’Ecuyer (2015) doi:10.1109/WSC.2015.7408180 and con-
verted to thread safe simulation;

Examples

From mvnfast
Unlike mvnfast, uses threefry simulation

d <- 5
mu <- 1:d

Creating covariance matrix
tmp <- matrix(rnorm(d^2), d, d)
mcov <- tcrossprod(tmp, tmp)

set.seed(414)
rxRmvn(4, 1:d, mcov)

set.seed(414)
rxRmvn(4, 1:d, mcov)

set.seed(414)
rxRmvn(4, 1:d, mcov, ncores = 2) # r.v. generated on the second core are different

Here we create the matrix that will hold the simulated
random variables upfront.
A <- matrix(NA, 4, d)
class(A) <- "numeric" # This is important. We need the elements of A to be of class "numeric".

set.seed(414)
rxRmvn(A, 1:d, mcov, ncores = 2) # This returns NULL ...

https://CRAN.R-project.org/package=mvnfast
https://doi.org/10.1111/rssb.12162
https://doi.org/10.1109/WSC.2015.7408180

112 rxS

A # ... but the result is here

You can also simulate from a truncated normal:

rxRmvn(10, 1:d, mcov, lower = 1:d - 1, upper = 1:d + 1)

You can also simulate from different matrices (if they match
dimensions) by using a list of matrices.

matL <- lapply(1:4, function(...) {
tmp <- matrix(rnorm(d^2), d, d)
tcrossprod(tmp, tmp)

})

rxRmvn(4, setNames(1:d, paste0("a", 1:d)), matL)

rxS Load a model into a symengine environment

Description

Load a model into a symengine environment

Usage

rxS(x, doConst = TRUE, promoteLinSens = FALSE)

Arguments

x rxode2 object

doConst Load constants into the environment as well.

promoteLinSens Promote solved linear compartment systems to sensitivity-based solutions.

Value

rxode2/symengine environment

Author(s)

Matthew Fidler

rxSetControl 113

rxSetControl rxSetControl options for UI object

Description

rxSetControl options for UI object

Usage

rxSetControl(ui, control)

Arguments

ui rxode2 ui object

control Default value

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

rxSetCovariateNamesForPiping

Assign covariates for piping

Description

Assign covariates for piping

Usage

rxSetCovariateNamesForPiping(covariates = NULL)

Arguments

covariates NULL (for no covariates), or the list of covariates. nlmixr uses this function to
set covariates if you pipe from a nlmixr fit.

Value

Nothing, called for side effects

114 rxSetCovariateNamesForPiping

Author(s)

Matthew L. Fidler

Examples

First set the name of known covariates
Note this is case sensitive

rxSetCovariateNamesForPiping(c("WT","HT", "TC"))

one.compartment <- function() {
ini({
tka <- 0.45 ; label("Log Ka")
tcl <- 1 ; label("Log Cl")
tv <- 3.45 ; label("Log V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.err <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d / dt(depot) <- -ka * depot
d/dt(depot) <- -ka * depot
d / dt(center) <- ka * depot - cl / v * center
cp <- center / v
cp ~ add(add.err)

})
}

now TC is detected as a covariate instead of a population parameter

one.compartment %>%
model({ka <- exp(tka + eta.ka + TC * cov_C)})

You can turn it off by simply adding it back

rxSetCovariateNamesForPiping()

one.compartment %>%
model({ka <- exp(tka + eta.ka + TC * cov_C)})

The covariates you set with `rxSetCovariateNamesForPiping()`
are turned off every time you solve (or fit in nlmixr)

rxSetIni0 115

rxSetIni0 Set Initial conditions to time zero instead of the first observed/dosed
time

Description

Set Initial conditions to time zero instead of the first observed/dosed time

Usage

rxSetIni0(ini0 = TRUE)

Arguments

ini0 When TRUE (default), set initial conditions to time zero. Otherwise the initial
conditions are the first observed time.

Value

the boolean ini0, though this is called for its side effects

rxSetProd Defunct setting of product

Description

Defunct setting of product

Usage

rxSetProd(type = c("long double", "double", "logify"))

Arguments

type used to be type of product

Value

nothing

116 rxSetSeed

rxSetProgressBar Set timing for progress bar

Description

Set timing for progress bar

Usage

rxSetProgressBar(seconds = 1)

Arguments

seconds This sets the number of seconds that need to elapse before drawing the next seg-
ment of the progress bar. When this is zero or below this turns off the progress
bar.

Value

nothing, used for side effects

Author(s)

Matthew Fidler

rxSetSeed Set the parallel seed for rxode2 random number generation

Description

This sets the seed for the rxode2 parallel random number generation. If set, then whenever a seed is
set for the threefry or vandercorput simulation engine, it will use this seed, increment for the number
of seeds and continue with the sequence the next time the random number generator is called.

Usage

rxSetSeed(seed)

Arguments

seed An integer that represents the rxode2 parallel and internal random number gen-
erator seed. When positive, use this seed for random number generation and
increment and reseed any parallel or new engines that are being called. When
negative, turn off the rxode2 seed and generate a seed from the R’s uniform
random number generator. Best practice is to set this seed.

rxSetSeed 117

Details

In contrast, when this is not called, the time that the vandercorput or threefry simulation engines are
seeded it comes from a uniform random number generated from the standard R random seed. This
may cause a duplicate seed based on the R seed state. This means that there could be correlations
between simulations that do not exist This will avoid the birthday problem picking exactly the same
seed using the seed state of the R random number generator. The more times the seed is called, the
more likely this becomes.

Value

Nothing, called for its side effects

Author(s)

Matthew Fidler

References

JD Cook. (2016). Random number generator seed mistakes. https://tinyurl.com/m62v3kv9

See Also

rxGetSeed, rxWithSeed, rxWithPreserveSeed

Examples

rxSetSeed(42)

seed with generator 42
rxnorm()

Use R's random number generator
rnorm(1)

rxSetSeed(42)

reproduces the same number
rxnorm()

But R's random number is not the same

rnorm(1)

If we reset this to use the R's seed
(internally rxode2 uses a uniform random number to span seeds)
This can lead to duplicate sequences and seeds

rxSetSeed(-1)

Now set seed works for both.

https://tinyurl.com/m62v3kv9

118 rxShiny

This is not recommended, but illustrates the different types of
seeds that can be generated.

set.seed(42)

rxnorm()

rnorm(1)

set.seed(42)

rxnorm()

rnorm(1)

rxSetSum Defunct setting of sum

Description

Defunct setting of sum

Usage

rxSetSum(type = c("pairwise", "fsum", "kahan", "neumaier", "c"))

Arguments

type used to be type of product

Value

nothing

rxShiny Use Shiny to help develop an rxode2 model

Description

Use Shiny to help develop an rxode2 model

rxShiny 119

Usage

rxShiny(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
data = data.frame()

)

S3 method for class 'rxSolve'
rxShiny(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
data = data.frame()

)

Default S3 method:
rxShiny(
object = NULL,
params = NULL,
events = NULL,
inits = NULL,
...,
data = data.frame()

)

Arguments

object A rxode2 family of objects. If not supplied a 2-compartment indirect effect
model is used. If it is supplied, use the model associated with the rxode2 object
for the model exploration.

params Initial parameters for model

events Event information (currently ignored)

inits Initial estimates for model

... Other arguments passed to rxShiny. Currently doesn’t do anything.

data Any data that you would like to plot. If the data has a time variable as well as a
compartment or calculated variable that matches the rxode2 model, the data will
be added to the plot of a specific compartment or calculated variable.

Value

Nothing; Starts a shiny server

120 rxSimThetaOmega

Author(s)

Zufar Mulyukov and Matthew L. Fidler

rxSimThetaOmega Simulate Parameters from a Theta/Omega specification

Description

Simulate Parameters from a Theta/Omega specification

Usage

rxSimThetaOmega(
params = NULL,
omega = NULL,
omegaDf = NULL,
omegaLower = as.numeric(c(R_NegInf)),
omegaUpper = as.numeric(c(R_PosInf)),
omegaIsChol = FALSE,
omegaSeparation = "auto",
omegaXform = 1L,
nSub = 1L,
thetaMat = NULL,
thetaLower = as.numeric(c(R_NegInf)),
thetaUpper = as.numeric(c(R_PosInf)),
thetaDf = NULL,
thetaIsChol = FALSE,
nStud = 1L,
sigma = NULL,
sigmaLower = as.numeric(c(R_NegInf)),
sigmaUpper = as.numeric(c(R_PosInf)),
sigmaDf = NULL,
sigmaIsChol = FALSE,
sigmaSeparation = "auto",
sigmaXform = 1L,
nCoresRV = 1L,
nObs = 1L,
dfSub = 0,
dfObs = 0,
simSubjects = TRUE,
simVariability = as.logical(c(NA_LOGICAL))

)

Arguments

params Named Vector of rxode2 model parameters

rxSimThetaOmega 121

omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are
using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.

omegaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

omegaLower Lower bounds for simulated ETAs (by default -Inf)

omegaUpper Upper bounds for simulated ETAs (by default Inf)

omegaIsChol Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

omegaSeparation

Omega separation strategy
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

• "lkj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

• "separation" simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "lkj" prior, it performs better when
the covariance matrix size is greater or equal to 10

• "auto" chooses "lkj" when the dimension of the matrix is less than 10
and "separation" when greater than equal to 10.

omegaXform When taking omega values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

• identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

• variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

• log This is when the params and thetaMat simulates log(sd)
• nlmixrSqrt This is when the params and thetaMat simulates the inverse

cholesky decomposed matrix with the x^2 modeled along the diagonal.
This only works with a diagonal matrix.

• nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x^2) along the diagonal. This
only works with a diagonal matrix.

• nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

nSub Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

thetaMat Named theta matrix.

122 rxSimThetaOmega

thetaLower Lower bounds for simulated population parameter variability (by default -Inf)

thetaUpper Upper bounds for simulated population unexplained variability (by default Inf)

thetaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

thetaIsChol Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

nStud Number virtual studies to characterize uncertainty in estimated parameters.

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

sigmaLower Lower bounds for simulated unexplained variability (by default -Inf)

sigmaUpper Upper bounds for simulated unexplained variability (by default Inf)

sigmaDf Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

sigmaIsChol Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

sigmaSeparation

separation strategy for sigma;
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

• "lkj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

• "separation" simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "lkj" prior, it performs better when
the covariance matrix size is greater or equal to 10

• "auto" chooses "lkj" when the dimension of the matrix is less than 10
and "separation" when greater than equal to 10.

sigmaXform When taking sigma values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

• identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

• variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

• log This is when the params and thetaMat simulates log(sd)
• nlmixrSqrt This is when the params and thetaMat simulates the inverse

cholesky decomposed matrix with the x^2 modeled along the diagonal.
This only works with a diagonal matrix.

rxSolve 123

• nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x^2) along the diagonal. This
only works with a diagonal matrix.

• nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

nCoresRV Number of cores used for the simulation of the sigma variables. By default this
is 1. To reproduce the results you need to run on the same platform with the
same number of cores. This is the reason this is set to be one, regardless of what
the number of cores are used in threaded ODE solving.

nObs Number of observations to simulate (with sigma matrix)

dfSub Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

simSubjects boolean indicated rxode2 should simulate subjects in studies (TRUE, default) or
studies (FALSE)

simVariability determines if the variability is simulated. When NA (default) this is determined
by the solver.

Value

a data frame with the simulated subjects

Author(s)

Matthew L.Fidler

rxSolve Solving & Simulation of a ODE/solved system (a options) equation

Description

This uses rxode2 family of objects, file, or model specification to solve a ODE system. There are
many options for a solved rxode2 model, the first are the required object, and events with the
some-times optional params and inits.

Usage

rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
scale = NULL,

124 rxSolve

method = c("liblsoda", "lsoda", "dop853", "indLin"),
sigdig = NULL,
atol = 1e-08,
rtol = 1e-06,
maxsteps = 70000L,
hmin = 0,
hmax = NA_real_,
hmaxSd = 0,
hini = 0,
maxordn = 12L,
maxords = 5L,
...,
cores,
covsInterpolation = c("locf", "linear", "nocb", "midpoint"),
addCov = TRUE,
sigma = NULL,
sigmaDf = NULL,
sigmaLower = -Inf,
sigmaUpper = Inf,
nCoresRV = 1L,
sigmaIsChol = FALSE,
sigmaSeparation = c("auto", "lkj", "separation"),
sigmaXform = c("identity", "variance", "log", "nlmixrSqrt", "nlmixrLog",
"nlmixrIdentity"),

nDisplayProgress = 10000L,
amountUnits = NA_character_,
timeUnits = "hours",
theta = NULL,
thetaLower = -Inf,
thetaUpper = Inf,
eta = NULL,
addDosing = FALSE,
stateTrim = Inf,
updateObject = FALSE,
omega = NULL,
omegaDf = NULL,
omegaIsChol = FALSE,
omegaSeparation = c("auto", "lkj", "separation"),
omegaXform = c("variance", "identity", "log", "nlmixrSqrt", "nlmixrLog",
"nlmixrIdentity"),

omegaLower = -Inf,
omegaUpper = Inf,
nSub = 1L,
thetaMat = NULL,
thetaDf = NULL,
thetaIsChol = FALSE,
nStud = 1L,
dfSub = 0,

rxSolve 125

dfObs = 0,
returnType = c("rxSolve", "matrix", "data.frame", "data.frame.TBS", "data.table",

"tbl", "tibble"),
seed = NULL,
nsim = NULL,
minSS = 10L,
maxSS = 1000L,
infSSstep = 12,
strictSS = TRUE,
istateReset = TRUE,
subsetNonmem = TRUE,
maxAtolRtolFactor = 0.1,
from = NULL,
to = NULL,
by = NULL,
length.out = NULL,
iCov = NULL,
keep = NULL,
indLinPhiTol = 1e-07,
indLinPhiM = 0L,
indLinMatExpType = c("expokit", "Al-Mohy", "arma"),
indLinMatExpOrder = 6L,
drop = NULL,
idFactor = TRUE,
mxhnil = 0,
hmxi = 0,
warnIdSort = TRUE,
warnDrop = TRUE,
ssAtol = 1e-08,
ssRtol = 1e-06,
safeZero = TRUE,
sumType = c("pairwise", "fsum", "kahan", "neumaier", "c"),
prodType = c("long double", "double", "logify"),
sensType = c("advan", "autodiff", "forward", "central"),
linDiff = c(tlag = 1.5e-05, f = 1.5e-05, rate = 1.5e-05, dur = 1.5e-05, tlag2 =

1.5e-05, f2 = 1.5e-05, rate2 = 1.5e-05, dur2 = 1.5e-05),
linDiffCentral = c(tlag = TRUE, f = TRUE, rate = TRUE, dur = TRUE, tlag2 = TRUE, f2 =

TRUE, rate2 = TRUE, dur2 = TRUE),
resample = NULL,
resampleID = TRUE,
maxwhile = 1e+05,
atolSens = 1e-08,
rtolSens = 1e-06,
ssAtolSens = 1e-08,
ssRtolSens = 1e-06,
simVariability = NA

)

126 rxSolve

S3 method for class '`function`'
rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
theta = NULL,
eta = NULL

)

S3 method for class 'rxUi'
rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
theta = NULL,
eta = NULL

)

S3 method for class 'nlmixr2FitData'
rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
theta = NULL,
eta = NULL

)

S3 method for class 'nlmixr2FitCore'
rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
...,
theta = NULL,
eta = NULL

)

Default S3 method:
rxSolve(
object,
params = NULL,

rxSolve 127

events = NULL,
inits = NULL,
...,
theta = NULL,
eta = NULL

)

S3 method for class 'rxSolve'
update(object, ...)

S3 method for class 'rxode2'
predict(object, ...)

S3 method for class 'rxSolve'
predict(object, ...)

S3 method for class 'rxEt'
predict(object, ...)

S3 method for class 'rxParams'
predict(object, ...)

S3 method for class 'rxode2'
simulate(object, nsim = 1L, seed = NULL, ...)

S3 method for class 'rxSolve'
simulate(object, nsim = 1L, seed = NULL, ...)

S3 method for class 'rxParams'
simulate(object, nsim = 1L, seed = NULL, ...)

S3 method for class 'rxSolve'
solve(a, b, ...)

S3 method for class 'rxUi'
solve(a, b, ...)

S3 method for class 'rxode2'
solve(a, b, ...)

S3 method for class 'rxParams'
solve(a, b, ...)

S3 method for class 'rxEt'
solve(a, b, ...)

rxControl(..., params = NULL, events = NULL, inits = NULL)

128 rxSolve

Arguments

object is a either a rxode2 family of objects, or a file-name with a rxode2 model speci-
fication, or a string with a rxode2 model specification.

params a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

events an eventTable object describing the input (e.g., doses) to the dynamic system
and observation sampling time points (see eventTable());

inits a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

scale a numeric named vector with scaling for ode parameters of the system. The
names must correspond to the parameter identifiers in the ODE specification.
Each of the ODE variables will be divided by the scaling factor. For example
scale=c(center=2) will divide the center ODE variable by 2.

method The method for solving ODEs. Currently this supports:

• "liblsoda" thread safe lsoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

• "lsoda" – LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

• "dop853" – DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

• "indLin" – Solving through inductive linearization. The rxode2 dll must
be setup specially to use this solving routine.

sigdig Specifies the "significant digits" that the ode solving requests. When specified
this controls the relative and absolute tolerances of the ODE solvers. By de-
fault the tolerance is 0.5*10^(-sigdig-2) for regular ODEs. For the sensitiv-
ity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda). By default this is unspecified
(NULL) and uses the standard atol/rtol.

atol a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

rtol a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

maxsteps maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

hmin The minimum absolute step size allowed. The default value is 0.

hmax The maximum absolute step size allowed. When hmax=NA (default), uses the
average difference + hmaxSd*sd in times and sampling events. The hmaxSd is a
user specified parameter and which defaults to zero. When hmax=NULL rxode2
uses the maximum difference in times in your sampling and events. The value 0
is equivalent to infinite maximum absolute step size.

rxSolve 129

hmaxSd The number of standard deviations of the time difference to add to hmax. The
default is 0

hini The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

maxordn The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

maxords The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

... Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

cores Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

covsInterpolation

specifies the interpolation method for time-varying covariates. When solving
ODEs it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

• "linear" interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.

• "constant" – Last observation carried forward (the default).
• "NOCB" – Next Observation Carried Backward. This is the same method

that NONMEM uses.
• "midpoint" Last observation carried forward to midpoint; Next observa-

tion carried backward to midpoint.

addCov A boolean indicating if covariates should be added to the output matrix or data
frame. By default this is disabled.

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

sigmaDf Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

sigmaLower Lower bounds for simulated unexplained variability (by default -Inf)

sigmaUpper Upper bounds for simulated unexplained variability (by default Inf)

nCoresRV Number of cores used for the simulation of the sigma variables. By default this
is 1. To reproduce the results you need to run on the same platform with the
same number of cores. This is the reason this is set to be one, regardless of what
the number of cores are used in threaded ODE solving.

sigmaIsChol Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

130 rxSolve

sigmaSeparation

separation strategy for sigma;
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

• "lkj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

• "separation" simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "lkj" prior, it performs better when
the covariance matrix size is greater or equal to 10

• "auto" chooses "lkj" when the dimension of the matrix is less than 10
and "separation" when greater than equal to 10.

sigmaXform When taking sigma values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

• identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

• variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

• log This is when the params and thetaMat simulates log(sd)
• nlmixrSqrt This is when the params and thetaMat simulates the inverse

cholesky decomposed matrix with the x^2 modeled along the diagonal.
This only works with a diagonal matrix.

• nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x^2) along the diagonal. This
only works with a diagonal matrix.

• nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

nDisplayProgress

An integer indicating the minimum number of c-based solves before a progress
bar is shown. By default this is 10,000.

amountUnits This supplies the dose units of a data frame supplied instead of an event table.
This is for importing the data as an rxode2 event table.

timeUnits This supplies the time units of a data frame supplied instead of an event table.
This is for importing the data as an rxode2 event table.

theta A vector of parameters that will be named THETA\[#\] and added to parameters

thetaLower Lower bounds for simulated population parameter variability (by default -Inf)

thetaUpper Upper bounds for simulated population unexplained variability (by default Inf)

eta A vector of parameters that will be named ETA\[#\] and added to parameters

addDosing Boolean indicating if the solve should add rxode2 EVID and related columns.
This will also include dosing information and estimates at the doses. Be de-
fault, rxode2 only includes estimates at the observations. (default FALSE). When

rxSolve 131

addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic rxode2 EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE rxode2 will also include extra event types (EVID) for
ending infusion and modeled times:

• EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)
• EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

• EVID=-10 When the specified rate infusions are turned off (matches rate>0)
• EVID=-20 When the specified dur infusions are turned off (matches dur>0)
• EVID=101,102,103,... Modeled time where 101 is the first model time,

102 is the second etc.
stateTrim When amounts/concentrations in one of the states are above this value, trim

them to be this value. By default Inf. Also trims to -stateTrim for large neg-
ative amounts/concentrations. If you want to trim between a range say c(0,
2000000) you may specify 2 values with a lower and upper range to make sure
all state values are in the reasonable range.

updateObject This is an internally used flag to update the rxode2 solved object (when supply-
ing an rxode2 solved object) as well as returning a new object. You probably
should not modify it’s FALSE default unless you are willing to have unexpected
results.

omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are
using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.

omegaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

omegaIsChol Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

omegaSeparation

Omega separation strategy
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

• "lkj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

• "separation" simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "lkj" prior, it performs better when
the covariance matrix size is greater or equal to 10

• "auto" chooses "lkj" when the dimension of the matrix is less than 10
and "separation" when greater than equal to 10.

omegaXform When taking omega values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

132 rxSolve

• identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

• variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

• log This is when the params and thetaMat simulates log(sd)
• nlmixrSqrt This is when the params and thetaMat simulates the inverse

cholesky decomposed matrix with the x^2 modeled along the diagonal.
This only works with a diagonal matrix.

• nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x^2) along the diagonal. This
only works with a diagonal matrix.

• nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

omegaLower Lower bounds for simulated ETAs (by default -Inf)

omegaUpper Upper bounds for simulated ETAs (by default Inf)

nSub Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

thetaMat Named theta matrix.

thetaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

thetaIsChol Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

nStud Number virtual studies to characterize uncertainty in estimated parameters.

dfSub Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

returnType This tells what type of object is returned. The currently supported types are:

• "rxSolve" (default) will return a reactive data frame that can change easily
change different pieces of the solve and update the data frame. This is the
currently standard solving method in rxode2, is used for rxSolve(object,
...), solve(object,...),

• "data.frame" – returns a plain, non-reactive data frame; Currently very
slightly faster than returnType="matrix"

• "matrix" – returns a plain matrix with column names attached to the solved
object. This is what is used object$run as well as object$solve

• "data.table" – returns a data.table; The data.table is created by ref-
erence (ie setDt()), which should be fast.

• "tbl" or "tibble" returns a tibble format.

seed an object specifying if and how the random number generator should be initial-
ized

rxSolve 133

nsim represents the number of simulations. For rxode2, if you supply single subject
event tables (created with [eventTable()])

minSS Minimum number of iterations for a steady-state dose

maxSS Maximum number of iterations for a steady-state dose

infSSstep Step size for determining if a constant infusion has reached steady state. By
default this is large value, 12.

strictSS Boolean indicating if a strict steady-state is required. If a strict steady-state is
(TRUE) required then at least minSS doses are administered and the total number
of steady states doses will continue until maxSS is reached, or atol and rtol
for every compartment have been reached. However, if ODE solving problems
occur after the minSS has been reached the whole subject is considered an invalid
solve. If strictSS is FALSE then as long as minSS has been reached the last good
solve before ODE solving problems occur is considered the steady state, even
though either atol, rtol or maxSS have not been achieved.

istateReset When TRUE, reset the ISTATE variable to 1 for lsoda and liblsoda with doses,
like deSolve; When FALSE, do not reset the ISTATE variable with doses.

subsetNonmem subset to NONMEM compatible EVIDs only. By default TRUE.
maxAtolRtolFactor

The maximum atol/rtol that FOCEi and other routines may adjust to. By
default 0.1

from When there is no observations in the event table, start observations at this value.
By default this is zero.

to When there is no observations in the event table, end observations at this value.
By default this is 24 + maximum dose time.

by When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

length.out The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

iCov A data frame of individual non-time varying covariates to combine with the
events dataset by merge.

keep Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

indLinPhiTol the requested accuracy tolerance on exponential matrix.

indLinPhiM the maximum size for the Krylov basis
indLinMatExpType

This is them matrix exponential type that is use for rxode2. Currently the fol-
lowing are supported:

• Al-Mohy Uses the exponential matrix method of Al-Mohy Higham (2009)
• arma Use the exponential matrix from RcppArmadillo
• expokit Use the exponential matrix from Roger B. Sidje (1998)

134 rxSolve

indLinMatExpOrder

an integer, the order of approximation to be used, for the Al-Mohy and expokit
values. The best value for this depends on machine precision (and slightly on
the matrix). We use 6 as a default.

drop Columns to drop from the output

idFactor This boolean indicates if original ID values should be maintained. This changes
the default sequentially ordered ID to a factor with the original ID values in the
original dataset. By default this is enabled.

mxhnil maximum number of messages printed (per problem) warning that T + H = T on
a step (H = step size). This must be positive to result in a non-default value. The
default value is 0 (or infinite).

hmxi inverse of the maximum absolute value of H to are used. hmxi = 0.0 is allowed
and corresponds to an infinite hmax1 (default). hminandhmximay be changed at any time, but will not take effect until the next change ofHis considered. This option is only considered withmethod="liblsoda"‘.

warnIdSort Warn if the ID is not present and rxode2 assumes the order of the parame-
ters/iCov are the same as the order of the parameters in the input dataset.

warnDrop Warn if column(s) were supposed to be dropped, but were not present.

ssAtol Steady state atol convergence factor. Can be a vector based on each state.

ssRtol Steady state rtol convergence factor. Can be a vector based on each state.

safeZero Use safe zero divide and log routines. By default this is turned on but you may
turn it off if you wish.

sumType Sum type to use for sum() in rxode2 code blocks.
pairwise uses the pairwise sum (fast, default)
fsum uses the PreciseSum package’s fsum function (most accurate)
kahan uses Kahan correction
neumaier uses Neumaier correction
c uses no correction: default/native summing

prodType Product to use for prod() in rxode2 blocks
long double converts to long double, performs the multiplication and then
converts back.
double uses the standard double scale for multiplication.

sensType Sensitivity type for linCmt() model:
advan Use the direct advan solutions
autodiff Use the autodiff advan solutions
forward Use forward difference solutions
central Use central differences

linDiff This gives the linear difference amount for all the types of linear compartment
model parameters where sensitivities are not calculated. The named components
of this numeric vector are:

• "lag" Central compartment lag
• "f" Central compartment bioavailability
• "rate" Central compartment modeled rate
• "dur" Central compartment modeled duration

rxSolve 135

• "lag2" Depot compartment lag
• "f2" Depot compartment bioavailability
• "rate2" Depot compartment modeled rate
• "dur2" Depot compartment modeled duration

linDiffCentral This gives the which parameters use central differences for the linear compart-
ment model parameters. The are the same components as linDiff

resample A character vector of model variables to resample from the input dataset; This
sampling is done with replacement. When NULL or FALSE no resampling is done.
When TRUE resampling is done on all covariates in the input dataset

resampleID boolean representing if the resampling should be done on an individual basis
TRUE (ie. a whole patient is selected) or each covariate is resampled independent
of the subject identifier FALSE. When resampleID=TRUE correlations of param-
eters are retained, where as when resampleID=FALSE ignores patient covariate
correaltions. Hence the default is resampleID=TRUE.

maxwhile represents the maximum times a while loop is evaluated before exiting. By
default this is 100000

atolSens Sensitivity atol, can be different than atol with liblsoda. This allows a less accu-
rate solve for gradients (if desired)

rtolSens Sensitivity rtol, can be different than rtol with liblsoda. This allows a less accu-
rate solve for gradients (if desired)

ssAtolSens Sensitivity absolute tolerance (atol) for calculating if steady state has been achieved
for sensitivity compartments.

ssRtolSens Sensitivity relative tolerance (rtol) for calculating if steady state has been achieved
for sensitivity compartments.

simVariability determines if the variability is simulated. When NA (default) this is determined
by the solver.

a when using solve(), this is equivalent to the object argument. If you specify
object later in the argument list it overwrites this parameter.

b when using solve(), this is equivalent to the params argument. If you specify
params as a named argument, this overwrites the output

Details

The rest of the document focus on the different ODE solving methods, followed by the core solving
method’s options, rxode2 event handling options, rxode2’s numerical stability options, rxode2’s
output options, and finally internal rxode2 options or compatibility options.

Value

An “rxSolve” solve object that stores the solved value in a special data.frame or other type as
determined by returnType. By default this has as many rows as there are sampled time points
and as many columns as system variables (as defined by the ODEs and additional assignments in
the rxode2 model code). It also stores information about the call to allow dynamic updating of the
solved object.

136 rxStack

The operations for the object are similar to a data-frame, but expand the $ and [[""]] access op-
erators and assignment operators to resolve based on different parameter values, initial conditions,
solver parameters, or events (by updating the time variable).

You can call the eventTable() methods on the solved object to update the event table and resolve
the system of equations.

Author(s)

Matthew Fidler, Melissa Hallow and Wenping Wang

References

"New Scaling and Squaring Algorithm for the Matrix Exponential", by Awad H. Al-Mohy and
Nicholas J. Higham, August 2009

Roger B. Sidje (1998). EXPOKIT: Software package for computing matrix exponentials. ACM -
Transactions on Mathematical Software 24(1), 130-156.

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

See Also

rxode2()

rxStack Stack a solved object for things like ggplot

Description

Stack a solved object for things like ggplot

Usage

rxStack(Data, vars = NULL)

Arguments

Data is a rxode2 object to be stacked.

vars Variables to include in stacked data; By default this is all the variables when vars
is NULL.

Value

Stacked data with value and trt, where value is the values and trt is the state and lhs variables.

rxState 137

Author(s)

Matthew Fidler

rxState State variables

Description

This returns the model’s compartments or states.

Usage

rxState(obj = NULL, state = NULL)

Arguments

obj rxode2 family of objects

state is a string indicating the state or compartment that you would like to lookup.

Value

If state is missing, return a character vector of all the states.

If state is a string, return the compartment number of the named state.

Author(s)

Matthew L.Fidler

See Also

rxode2()

Other Query model information: rxDfdy(), rxInits(), rxLhs(), rxModelVars(), rxParams()

138 rxSupportedFuns

rxSumProdModel Recast model in terms of sum/prod

Description

Recast model in terms of sum/prod

Usage

rxSumProdModel(model, expand = FALSE, sum = TRUE, prod = TRUE)

Arguments

model rxode2 model

expand Boolean indicating if the expression is expanded.

sum Use sum(...)

prod Use prod(...)

Value

model string with prod(.) and sum(.) for all these operations.

Author(s)

Matthew L. Fidler

rxSupportedFuns Get list of supported functions

Description

Get list of supported functions

Usage

rxSupportedFuns()

Value

list of supported functions in rxode2

Examples

rxSupportedFuns()

rxSuppressMsg 139

rxSuppressMsg Respect suppress messages

Description

This turns on the silent REprintf in C when suppressMessages() is turned on. This makes the
REprintf act like messages in R, they can be suppressed with suppressMessages()

Usage

rxSuppressMsg()

Value

Nothing

Author(s)

Matthew Fidler

Examples

rxSupressMsg() is called with rxode2()

Note the errors are output to the console

try(rxode2("d/dt(matt)=/3"), silent = TRUE)

When using suppressMessages, the output is suppressed

suppressMessages(try(rxode2("d/dt(matt)=/3"), silent = TRUE))

In rxode2, we use REprintf so that interrupted threads do not crash R
if there is a user interrupt. This isn't captured by R's messages, but
This interface allows the `suppressMessages()` to suppress the C printing
as well

If you want to suppress messages from rxode2 in other packages, you can use
this function

140 rxSymInvChol

rxSymInvChol Get Omega^-1 and derivatives

Description

Get Omega^-1 and derivatives

Usage

rxSymInvChol(
invObjOrMatrix,
theta = NULL,
type = "cholOmegaInv",
thetaNumber = 0L

)

Arguments

invObjOrMatrix Object for inverse-type calculations. If this is a matrix, setup the object for
inversion rxSymInvCholCreate() with the default arguments and return a re-
active s3 object. Otherwise, use the inversion object to calculate the requested
derivative/inverse.

theta Thetas to be used for calculation. If missing (NULL), a special s3 class is created
and returned to access Omega^1 objects as needed and cache them based on the
theta that is used.

type The type of object. Currently the following types are supported:

• cholOmegaInv gives the Cholesky decomposition of the Omega Inverse
matrix.

• omegaInv gives the Omega Inverse matrix.
• d(omegaInv) gives the d(Omega^-1) withe respect to the theta parameter

specified in thetaNumber.
• d(D) gives the d(diagonal(Omega^-1)) with respect to the theta parame-

ter specified in the thetaNumber parameter

thetaNumber For types d(omegaInv) and d(D), the theta number that the derivative is taken
against. This must be positive from 1 to the number of thetas defining the Omega
matrix.

Value

Matrix based on parameters or environment with all the matrixes calculated in variables omega,
omegaInv, dOmega, dOmegaInv.

Author(s)

Matthew L. Fidler

rxSyncOptions 141

rxSyncOptions Sync options with rxode2 variables

Description

Accessing rxode2 options via getOption slows down solving. This allows the options to be synced
with variables.

Usage

rxSyncOptions(setDefaults = c("none", "permissive", "strict"))

Arguments

setDefaults This will setup rxode2’s default solving options with the following options:
• "none" leave the options alone
• "permissive" This is a permissive option set similar to R language speci-

fications.
• "strict" This is a strict option set similar to the original rxode2(). It re-

quires semicolons at the end of lines and equals for assignment

Value

nothing; called for side effects

Author(s)

Matthew L. Fidler

rxSyntaxFunctions A list and description of Rode supported syntax functions

Description

A list and description of Rode supported syntax functions

Usage

rxSyntaxFunctions

Format

A data frame with 3 columns and 98 or more rows

Function Reserved function Name
Description Description of function
Aliases Function Aliases

142 rxt

rxt Simulate student t variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxt(df, n = 1L, ncores = 1L)

Arguments

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

t-distribution random numbers

Examples

Use threefry engine

rxt(df = 3, n = 10) # with rxt you have to explicitly state n
rxt(df = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxTempDir 143

rxt(4) ## The first argument is the df parameter

This example uses `rxt` directly in the model

rx <- rxode2({
a <- rxt(3)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxTempDir Get the rxode2 temporary directory

Description

Get the rxode2 temporary directory

Usage

rxTempDir()

Value

rxode2 temporary directory.

rxTheme rxTheme is the ggplot2 theme for rxode2 plots

Description

rxTheme is the ggplot2 theme for rxode2 plots

Usage

rxTheme(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22,
grid = TRUE

)

144 rxToSE

Arguments

base_size base font size, given in pts.
base_family base font family
base_line_size base size for line elements
base_rect_size base size for rect elements
grid a Boolean indicating if the grid is on (TRUE) or off (FALSE). This could also be a

character indicating x or y.

Value

ggplot2 theme used in rxode2

See Also

Other rxode2 plotting: plot.rxSolve()

rxToSE rxode2 to symengine environment

Description

rxode2 to symengine environment

Usage

rxToSE(x, envir = NULL, progress = FALSE, promoteLinSens = TRUE)

.rxToSE(x, envir = NULL, progress = FALSE)

rxFromSE(x, unknownDerivatives = c("forward", "central", "error"))

.rxFromSE(x)

Arguments

x expression
envir default is NULL; Environment to put symengine variables in.
progress shows progress bar if true.
promoteLinSens Promote solved linear compartment systems to sensitivity-based solutions.
unknownDerivatives

When handling derivatives from unknown functions, the translator will translate
into different types of numeric derivatives. The currently supported methods
are:

- `forward` for forward differences
- `central` for central differences
- `error` for throwing an error for unknown derivatives

rxTrans 145

Value

An rxode2 symengine environment

Author(s)

Matthew L. Fidler

rxTrans Translate the model to C code if needed

Description

This function translates the model to C code, if needed

Usage

rxTrans(
model,
modelPrefix = "",
md5 = "",
modName = NULL,
modVars = FALSE,
...

)

Default S3 method:
rxTrans(
model,
modelPrefix = "",
md5 = "",
modName = NULL,
modVars = FALSE,
...

)

S3 method for class 'character'
rxTrans(
model,
modelPrefix = "",
md5 = "",
modName = NULL,
modVars = FALSE,
...

)

146 rxUiGet.cmtLines

Arguments

model This is the ODE model specification. It can be:

• a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

• a file name where the ODE system equation is contained

An ODE expression enclosed in \{\}

(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

modelPrefix Prefix of the model functions that will be compiled to make sure that multiple
rxode2 objects can coexist in the same R session.

md5 Is the md5 of the model before parsing, and is used to embed the md5 into DLL,
and then provide for functions like rxModelVars().

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

modVars returns the model variables instead of the named vector of translated properties.

... Ignored parameters.

Value

a named vector of translated model properties including what type of jacobian is specified, the C
function prefixes, as well as the C functions names to be called through the compiled model.

Author(s)

Matthew L.Fidler

See Also

rxode2(), rxCompile().

rxUiGet.cmtLines S3 for getting information from UI model

Description

S3 for getting information from UI model

rxUiGet.cmtLines 147

Usage

S3 method for class 'cmtLines'
rxUiGet(x, ...)

S3 method for class 'dvidLine'
rxUiGet(x, ...)

S3 method for class 'paramsLine'
rxUiGet(x, ...)

S3 method for class 'simulationSigma'
rxUiGet(x, ...)

S3 method for class 'simulationModel'
rxUiGet(x, ...)

rxUiGet(x, ...)

S3 method for class 'theta'
rxUiGet(x, ...)

S3 method for class 'lstChr'
rxUiGet(x, ...)

S3 method for class 'omega'
rxUiGet(x, ...)

S3 method for class 'funTxt'
rxUiGet(x, ...)

S3 method for class 'allCovs'
rxUiGet(x, ...)

S3 method for class 'muRefTable'
rxUiGet(x, ...)

S3 method for class 'multipleEndpoint'
rxUiGet(x, ...)

S3 method for class 'funPrint'
rxUiGet(x, ...)

S3 method for class 'fun'
rxUiGet(x, ...)

S3 method for class 'md5'
rxUiGet(x, ...)

148 rxunif

S3 method for class 'ini'
rxUiGet(x, ...)

S3 method for class 'iniFun'
rxUiGet(x, ...)

S3 method for class 'modelFun'
rxUiGet(x, ...)

S3 method for class 'modelDesc'
rxUiGet(x, ...)

S3 method for class 'thetaLower'
rxUiGet(x, ...)

S3 method for class 'thetaUpper'
rxUiGet(x, ...)

Default S3 method:
rxUiGet(x, ...)

Arguments

x list of (UIenvironment, exact). UI environment is the parsed function for rxode2.
exact is a boolean that says if an exact match is required.

... Other arguments

Value

value that was requested from the UI object

Author(s)

Matthew Fidler

rxunif Simulate uniform variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxunif(min = 0, max = 1, n = 1L, ncores = 1L)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxunif 149

Arguments

min lower and upper limits of the distribution. Must be finite.

max lower and upper limits of the distribution. Must be finite.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

uniform random numbers

Examples

Use threefry engine

rxunif(min = 0, max = 4, n = 10) # with rxunif you have to explicitly state n
rxunif(min = 0, max = 4, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxunif()

This example uses `rxunif` directly in the model

rx <- rxode2({
a <- rxunif(0, 3)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

150 rxUse

rxUnloadAll Unloads all rxode2 compiled DLLs

Description

Unloads all rxode2 compiled DLLs

Usage

rxUnloadAll()

Value

List of rxode2 dlls still loaded

boolean of if all rxode2 dlls have been unloaded

Examples

print(rxUnloadAll())

rxUse Use model object in your package

Description

Use model object in your package

Usage

rxUse(obj, overwrite = TRUE, compress = "bzip2", internal = FALSE)

Arguments

obj model to save.

overwrite By default, use_data() will not overwrite existing files. If you really want to
do so, set this to TRUE.

compress Choose the type of compression used by save(). Should be one of "gzip",
"bzip2", or "xz".

internal If this is run internally. By default this is FALSE

Value

Nothing; This is used for its side effects and shouldn’t be called by a user

rxValidate 151

rxValidate Validate rxode2 This allows easy validation/qualification of nlmixr by
running the testing suite on your system.

Description

Validate rxode2 This allows easy validation/qualification of nlmixr by running the testing suite on
your system.

Usage

rxValidate(type = NULL, skipOnCran = TRUE)

rxTest(type = NULL, skipOnCran = TRUE)

Arguments

type Type of test or filter of test type, When this is an expression, evaluate the con-
tents, respecting skipOnCran

skipOnCran when TRUE skip the test on CRAN.

Value

nothing

Author(s)

Matthew L. Fidler

rxweibull Simulate Weibull variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxweibull(shape, scale = 1, n = 1L, ncores = 1L)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

152 rxweibull

Arguments

shape shape and scale parameters, the latter defaulting to 1.
scale shape and scale parameters, the latter defaulting to 1.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander-
corput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of
cores as you are running so they can reproduce your results.

Value

Weibull random deviates

Examples

Use threefry engine

with rxweibull you have to explicitly state n
rxweibull(shape = 1, scale = 4, n = 10)

You can parallelize the simulation using openMP
rxweibull(shape = 1, scale = 4, n = 10, ncores = 2)

rxweibull(3)

This example uses `rxweibull` directly in the model

rx <- rxode2({
a <- rxweibull(1, 3)

})

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxWinSetup 153

rxWinSetup Setup Windows components for rxode2

Description

Setup Windows components for rxode2

Usage

rxWinSetup(rm.rtools = TRUE)

Arguments

rm.rtools Remove the Rtools from the current path specs.

Value

nothing, used for its side effects

Author(s)

Matthew L. Fidler

rxWithSeed Preserved seed and possibly set the seed

Description

Preserved seed and possibly set the seed

Usage

rxWithSeed(
seed,
code,
rxseed = rxGetSeed(),
kind = "default",
normal.kind = "default",
sample.kind = "default"

)

rxWithPreserveSeed(code)

154 stat_amt

Arguments

seed R seed to use for the session

code Is the code to evaluate

rxseed is the rxode2 seed that is being preserved

kind character or NULL. If kind is a character string, set R’s RNG to the kind desired.
Use "default" to return to the R default. See ‘Details’ for the interpretation of
NULL.

normal.kind character string or NULL. If it is a character string, set the method of Normal
generation. Use "default" to return to the R default. NULL makes no change.

sample.kind character string or NULL. If it is a character string, set the method of discrete
uniform generation (used in sample, for instance). Use "default" to return to
the R default. NULL makes no change.

Value

returns whatever the code is returning

See Also

rxGetSeed, rxSetSeed

Examples

rxGetSeed()
rxWithSeed(1, {

print(rxGetSeed())
rxnorm()
print(rxGetSeed())
rxnorm()

}, rxseed=3)

stat_amt Dosing/Amt geom/stat

Description

This is a dosing geom that shows the vertical lines where a dose occurs

stat_amt 155

Usage

stat_amt(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_amt(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

156 stat_amt

Details

Requires the following aesthetics:

• x representing the x values, usually time

• amt representing the dosing values; They are missing or zero when no dose is given

Value

This returns a stat_amt in context of a ggplot2 plot

Examples

library(rxode2)
library(units)

Model from RxODE tutorial
mod1 <-rxode2({

KA=2.94E-01
CL=1.86E+01
V2=4.02E+01
Q=1.05E+01
V3=2.97E+02
Kin=1
Kout=1
EC50=200
C2 = centr/V2
C3 = peri/V3
d/dt(depot) =-KA*depot
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3
d/dt(peri) = Q*C2 - Q*C3
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff

})

These are making the more complex regimens of the rxode2 tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%

et(amt=20000,ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days

et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));

bidQd <- rxSolve(mod1, et, addDosing=TRUE)

by default dotted and under-stated

stat_cens 157

plot(bidQd, C2) + geom_amt(aes(amt=amt))

of course you can make it a bit more visible

plot(bidQd, C2) + geom_amt(aes(amt=amt), col="red", lty=1, size=1.2)

stat_cens Censoring geom/stat

Description

This is a censoring geom that shows the left or right censoring specified in the nlmixr input data-set
or fit

Usage

stat_cens(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
width = 0.01,
...

)

geom_cens(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
width = 0.01,
...

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

158 summary.rxode2

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

width represents the width (in \ censoring box

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Details

Requires the following aesthetics:

• x Represents the independent variable, often the time scale

• y represents the dependent variable

• CENS for the censoring information; (-1 right censored, 0 no censoring or 1 left censoring)

• LIMIT which represents the corresponding limit ()

Will add boxes representing the areas of the fit that were censored.

Value

This returns a ggplot2 stat

summary.rxode2 Print expanded information about the rxode2 object.

Description

This prints the expanded information about the rxode2 object.

Usage

S3 method for class 'rxode2'
summary(object, ...)

Arguments

object rxode2 object

... Ignored parameters

update.rxUi 159

Value

object is returned

Author(s)

Matthew L.Fidler

update.rxUi Update for rxUi

Description

Update for rxUi

Usage

S3 method for class 'rxUi'
update(object, ..., envir = parent.frame())

Arguments

object rxode2 UI object

... Lines to update

envir Environment for evaluating ini() style calls

Value

a new rxode2 updated UI object

uppergamma uppergamma: upper incomplete gamma function

Description

This is the tgamma from the boost library

Usage

uppergamma(a, z)

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

z The numeric ’z’ parameter in the upper incomplete gamma

160 uppergamma

Details

The uppergamma function is given by:

uppergamma(a, z) =
∫∞
z
ta−1 · e−tdt

Value

uppergamma results

Author(s)

Matthew L. Fidler

Examples

uppergamma(1, 3)

uppergamma(1:3, 3)

uppergamma(1, 1:3)

Index

∗ Internal
plot.rxSolve, 51

∗ Nonlinear regression
eventTable, 36
rxode2, 88

∗ ODE models
rxode2, 88

∗ Ordinary differential equations
rxode2, 88

∗ PK/PD
genShinyApp.template, 42

∗ Pharmacodynamics (PD)
eventTable, 36
rxode2, 88

∗ Pharmacokinetics (PK)
eventTable, 36
rxode2, 88

∗ Query model information
rxDfdy, 70
rxLhs, 85
rxParams, 98
rxState, 137

∗ datasets
rxReservedKeywords, 109
rxSyntaxFunctions, 141

∗ data
eventTable, 36

∗ models
eventTable, 36
rxode2, 88

∗ nonlinear
genShinyApp.template, 42
rxode2, 88

∗ ordinary differential equations
eventTable, 36

∗ pharmacometrics
genShinyApp.template, 42

∗ rxode2 plotting
plot.rxSolve, 51

rxTheme, 143
∗ simulation

genShinyApp.template, 42
.C(), 65
.Call(), 65
.copyUi, 5
.handleSingleErrTypeNormOrTFoceiBase,

6
.modelHandleModelLines, 6
.quoteCallInfoLines, 7
.rxFromSE (rxToSE), 144
.rxLinCmtGen, 8
.rxToSE (rxToSE), 144
.rxWithOptions, 9
.rxWithWd, 9
[.rxEvid (rxEvid), 71
[.rxRateDur (rxRateDur), 107
[[.rxEvid (rxEvid), 71
[[.rxRateDur (rxRateDur), 107

add.dosing, 10, 11, 13, 24, 28, 31, 34
add.dosing(), 36, 94
add.sampling, 11, 13, 13, 24, 28, 31, 34
add.sampling(), 36, 94
aes(), 155, 157
aes_(), 155, 157
as.character.rxEvid (rxEvid), 71
as.character.rxRateDur (rxRateDur), 107
as.et, 15
as.rxEvid (rxEvid), 71
as.rxRateDur (rxRateDur), 107
assertRxUi, 16
assertRxUiEstimatedResiduals

(assertRxUi), 16
assertRxUiMixedOnly (assertRxUi), 16
assertRxUiMuRefOnly (assertRxUi), 16
assertRxUiNormal (assertRxUi), 16
assertRxUiPopulationOnly (assertRxUi),

16
assertRxUiPrediction (assertRxUi), 16

161

162 INDEX

assertRxUiRandomOnIdOnly (assertRxUi),
16

assertRxUiSingleEndpoint (assertRxUi),
16

assertRxUiTransformNormal (assertRxUi),
16

borders(), 155, 158

c.rxEvid (rxEvid), 71
c.rxRateDur (rxEvid), 71
cvPost, 18

environment, 22
erf, 21
et, 11, 13, 21, 24, 28, 31, 34
et(), 11, 37, 90, 94
etExpand, 26
etRbind, 11, 13, 24, 27, 28, 31, 34
etRep, 11, 13, 24, 28, 30, 31, 34
etSeq, 33
eventTable, 11, 13, 24, 28, 31, 34, 36
eventTable(), 43, 90, 94, 128, 136
expit (logit), 46

format.rxEvid (rxEvid), 71
format.rxRateDur (rxEvid), 71
fortify(), 155, 157

gammap, 38
gammapDer, 39
gammapInv, 39
gammapInva (gammapInv), 39
gammaq, 40
gammaqInv, 41
gammaqInva (gammaqInv), 41
genShinyApp.template, 42
geom_amt (stat_amt), 154
geom_cens (stat_cens), 157
getRxThreads, 44
ggplot(), 155, 157

ini (ini.rxUi), 45
ini.rxUi, 45

layer(), 155, 158
logit, 46
logitNormInfo (logit), 46
lowergamma, 48

model (model.function), 49
model.function, 49

phi, 50
plot.rxSolve, 51, 144
plot.rxSolveConfint1 (plot.rxSolve), 51
plot.rxSolveConfint2 (plot.rxSolve), 51
predict.rxEt (rxSolve), 123
predict.rxode2 (rxSolve), 123
predict.rxParams (rxSolve), 123
predict.rxSolve (rxSolve), 123
print.rxEvid (rxEvid), 71
probit, 51
probitInv (probit), 51
probitNormInfo (logit), 46

rbind.rxEt (etRbind), 27
rename.function (rxRename), 108
rename.rxUi (rxRename), 108
rep.rxEt (etRep), 30
rinvchisq, 52
rLKJ1(), 18
rxAllowUnload, 53
rxAppendModel, 54
rxAssignControlValue, 55
rxAssignPtr, 56
rxbeta, 56
rxbinom, 57
rxcauchy, 59
rxCbindStudyIndividual, 60
rxchisq, 61
rxClean, 63
rxCompile, 63
rxCompile(), 146
rxControl (rxSolve), 123
rxControlUpdateSens, 65
rxCores (getRxThreads), 44
rxCreateCache, 66
rxD, 67
rxD(), 74
rxDelete, 68
rxDerived, 68
rxDfdy, 70, 85, 100, 137
rxEvid, 71
rxexp, 72
rxf, 73
rxFromSE (rxToSE), 144
rxFun, 74
rxgamma, 76

INDEX 163

rxgeom, 77
rxGetControl, 79
rxGetLin, 79
rxGetrxode2, 80
rxGetSeed, 81
rxHtml, 82
rxIndLin_, 83
rxIndLinState, 82
rxIndLinStrategy, 83
rxInits, 70, 85, 100, 137
rxInv, 84
rxIsCurrent, 85
rxLhs, 70, 85, 100, 137
rxLock, 86
rxModelVars, 70, 85, 100, 137
rxModelVars(), 146
rxNorm, 86
rxnorm, 87
rxnormV (rxnorm), 87
RxODE (rxode2), 88
rxode (rxode2), 88
rxode2, 11, 13, 24, 28, 31, 34, 85, 88
rxode2(), 37, 43, 65, 136, 137, 146
rxOptExpr, 96
rxord, 97
rxParam (rxParams), 98
rxParams, 70, 85, 98, 137
rxPkg, 100
rxpois, 101
rxPp, 102
rxPreferredDistributionName, 104
rxProgress, 105
rxProgressAbort (rxProgress), 105
rxProgressStop (rxProgress), 105
rxRandNV, 106
rxRateDur, 107
rxRemoveControl, 107
rxRename, 108
rxReservedKeywords, 109
rxRmFun (rxFun), 74
rxRmvn, 109
rxS, 112
rxSetControl, 113
rxSetCovariateNamesForPiping, 113
rxSetIni0, 115
rxSetProd, 115
rxSetProgressBar, 116
rxSetSeed, 116

rxSetSum, 118
rxShiny, 118
rxSimThetaOmega, 120
rxSolve, 123
rxSolve(), 42
rxStack, 136
rxState, 70, 85, 100, 137
rxSumProdModel, 138
rxSupportedFuns, 138
rxSuppressMsg, 139
rxSymInvChol, 140
rxSymInvCholCreate(), 140
rxSyncOptions, 141
rxSyntaxFunctions, 141
rxt, 142
rxTempDir, 143
rxTest (rxValidate), 151
rxTheme, 51, 143
rxTick (rxProgress), 105
rxToSE, 144
rxTrans, 145
rxTrans(), 65
rxUiGet (rxUiGet.cmtLines), 146
rxUiGet.cmtLines, 146
rxunif, 148
rxUnloadAll, 150
rxUnlock (rxLock), 86
rxUse, 150
rxValidate, 151
rxweibull, 151
rxWinSetup, 153
rxWithPreserveSeed (rxWithSeed), 153
rxWithSeed, 153

sample, 154
save(), 150
seq.rxEt (etSeq), 33
setRxThreads (getRxThreads), 44
setRxThreads(), 129
simulate.rxode2 (rxSolve), 123
simulate.rxParams (rxSolve), 123
simulate.rxSolve (rxSolve), 123
solve.rxEt (rxSolve), 123
solve.rxode2 (rxSolve), 123
solve.rxParams (rxSolve), 123
solve.rxSolve (rxSolve), 123
solve.rxUi (rxSolve), 123
stat_amt, 154
stat_cens, 157

164 INDEX

summary.rxode2, 158
sys.call, 22

update.rxSolve (rxSolve), 123
update.rxUi, 159
uppergamma, 159
use_description(), 101

vname, 16

write.template.server
(genShinyApp.template), 42

write.template.ui
(genShinyApp.template), 42

write.template.ui(), 43

	.copyUi
	.handleSingleErrTypeNormOrTFoceiBase
	.modelHandleModelLines
	.quoteCallInfoLines
	.rxLinCmtGen
	.rxWithOptions
	.rxWithWd
	add.dosing
	add.sampling
	as.et
	assertRxUi
	cvPost
	erf
	et
	etExpand
	etRbind
	etRep
	etSeq
	eventTable
	gammap
	gammapDer
	gammapInv
	gammaq
	gammaqInv
	genShinyApp.template
	getRxThreads
	ini.rxUi
	logit
	lowergamma
	model.function
	phi
	plot.rxSolve
	probit
	rinvchisq
	rxAllowUnload
	rxAppendModel
	rxAssignControlValue
	rxAssignPtr
	rxbeta
	rxbinom
	rxcauchy
	rxCbindStudyIndividual
	rxchisq
	rxClean
	rxCompile
	rxControlUpdateSens
	rxCreateCache
	rxD
	rxDelete
	rxDerived
	rxDfdy
	rxEvid
	rxexp
	rxf
	rxFun
	rxgamma
	rxgeom
	rxGetControl
	rxGetLin
	rxGetrxode2
	rxGetSeed
	rxHtml
	rxIndLinState
	rxIndLinStrategy
	rxIndLin_
	rxInv
	rxIsCurrent
	rxLhs
	rxLock
	rxNorm
	rxnorm
	rxode2
	rxOptExpr
	rxord
	rxParams
	rxPkg
	rxpois
	rxPp
	rxPreferredDistributionName
	rxProgress
	rxRandNV
	rxRateDur
	rxRemoveControl
	rxRename
	rxReservedKeywords
	rxRmvn
	rxS
	rxSetControl
	rxSetCovariateNamesForPiping
	rxSetIni0
	rxSetProd
	rxSetProgressBar
	rxSetSeed
	rxSetSum
	rxShiny
	rxSimThetaOmega
	rxSolve
	rxStack
	rxState
	rxSumProdModel
	rxSupportedFuns
	rxSuppressMsg
	rxSymInvChol
	rxSyncOptions
	rxSyntaxFunctions
	rxt
	rxTempDir
	rxTheme
	rxToSE
	rxTrans
	rxUiGet.cmtLines
	rxunif
	rxUnloadAll
	rxUse
	rxValidate
	rxweibull
	rxWinSetup
	rxWithSeed
	stat_amt
	stat_cens
	summary.rxode2
	update.rxUi
	uppergamma
	Index

