Package ‘santoku’

June 8§, 2022
Type Package
Title A Versatile Cutting Tool
Version 0.8.0
Maintainer David Hugh-Jones <davidhughjones@gmail.com>

Description A tool for cutting data into intervals. Allows singleton intervals.
Always includes the whole range of data by default. Flexible labelling.
Convenience functions for cutting by quantiles etc. Handles dates, times, units
and other vectors.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.0

Suggests bench, bit64, covr, haven, hms, knitr, lubridate, purrr,
rmarkdown, scales, stringi, testthat (>= 2.1.0), units, withr,
Xts, z0o

LinkingTo Rcpp

Imports Rcpp, assertthat, glue, lifecycle, rlang, vctrs

URL https://github.com/hughjonesd/santoku,
https://hughjonesd.github.io/santoku/

BugReports https://github.com/hughjonesd/santoku/issues
VignetteBuilder knitr

RdMacros lifecycle

NeedsCompilation yes

Author David Hugh-Jones [aut, cre],
Daniel Possenriede [ctb]

Repository CRAN
Date/Publication 2022-06-08 18:00:02 UTC

https://github.com/hughjonesd/santoku
https://hughjonesd.github.io/santoku/
https://github.com/hughjonesd/santoku/issues

2 santoku-package

R topics documented:
santoku-package L 2
breaks-class e 3
brk default e 4
brk manual L e 4
brk_width-for-datetime e 5
chop . . . e e 6
chop_equally 9
chop_evenly 10
chop_mean_sd 11
chop_n. e 12
chop_pretty 13
Chop_proportions e 14
chop_quantiles 15
chop_width e 16
exactly 17
fillet e 18
Ibl_dash 19
Ibldiscrete e e e 20
Ibl_endpoints e 21
Ibl_glue e 23
Iblintervals e e e 25
Ibl_manual e e 26
Ibl_midpoints e e e 27
Ibl_Seq . . . o o e e e 28
non-standard-types e e e e 29
PEICENt o . e e e e e e e e 30

Index 31

santoku-package A versatile cutting tool for R
Description

santoku is a tool for cutting data into intervals. It provides the function chop (), which is similar to
base R’s cut() or Hmisc::cut2(). chop(x, breaks) takes a vector x and returns a factor of the
same length, coding which interval each element of x falls into.

Details

Here are some advantages of santoku:

* By default, chop() always covers the whole range of the data, so you won’t get unexpected

NA values.

breaks-class 3

e Unlike cut() or cut2(), chop() can handle single values as well as intervals. For example,
chop(x, breaks =c(1, 2, 2, 3)) will create a separate factor level for values exactly equal
to 2.

* Flexible and easy labelling.

» Convenience functions for creating quantile intervals, evenly-spaced intervals or equal-sized
groups.

» Convenience functions to quickly tabulate chopped data.

* Can chop numbers, dates, date-times and other objects.

These advantages make santoku especially useful for exploratory analysis, where you may not know
the range of your data in advance.

To get started, read the vignette:
vignette(”santoku")

For more details, start with the documentation for chop ().

Author(s)

Maintainer: David Hugh-Jones <davidhughjones@gmail.com>

Other contributors:

¢ Daniel Possenriede <possenriede@gmail.com> [contributor]

See Also
Useful links:

* https://github.com/hughjonesd/santoku
* https://hughjonesd.github.io/santoku/
* Report bugs at https://github.com/hughjonesd/santoku/issues

breaks-class Class representing a set of intervals

Description

Class representing a set of intervals

Usage

S3 method for class 'breaks'
format(x, ...)

S3 method for class 'breaks'
print(x, ...)

is.breaks(x, ...)

https://github.com/hughjonesd/santoku
https://hughjonesd.github.io/santoku/
https://github.com/hughjonesd/santoku/issues

4 brk_manual

Arguments
X A breaks object
Unused
brk_default Create a standard set of breaks
Description

Create a standard set of breaks

Usage
brk_default(breaks)

Arguments

breaks A numeric vector.

Value

A (function which returns an) object of class breaks.

Examples

chop(1:10, c(2, 5, 8))
chop(1:10, brk_default(c(2, 5, 8)))

brk_manual Create a breaks object manually

Description

Create a breaks object manually

Usage

brk_manual(breaks, left_vec)

Arguments
breaks A vector, which must be sorted.
left_vec A logical vector, the same length as breaks. Specifies whether each break is

left-closed or right-closed.

brk_width-for-datetime 5

Details

All breaks must be closed on exactly one side, like . .., x) [x, ... (left-closed)or..., x) [x, ...
(right-closed).

For example, if breaks = 1:3 and left = c(TRUE, FALSE, TRUE), then the resulting intervals are

T F T
L1, 21(C2, 3)

Singleton breaks are created by repeating a number in breaks. Singletons must be closed on both
sides, so if there is a repeated number at indices i, i+1, left[i] must be TRUE and left[i+1] must
be FALSE.

Value

A (function which returns an) object of class breaks.

Examples

lbrks <- brk_manual(1:3, rep(TRUE, 3))
chop(1:3, lbrks, extend = FALSE)

rbrks <- brk_manual(1:3, rep(FALSE, 3))
chop(1:3, rbrks, extend = FALSE)

brks_singleton <- brk_manual(
C(1, 2, 2, 3):
c(TRUE, TRUE, FALSE, TRUE))

chop(1:3, brks_singleton, extend = FALSE)

brk_width-for-datetime
Equal-width intervals for dates or datetimes

Description

brk_width() can be used with time interval classes from base R or the lubridate package.

Usage
S3 method for class 'Duration’
brk_width(width, start)
Arguments

width A scalar difftime, Period or Duration object.

start A scalar of class Date or POSIXct. Can be omitted.

6 chop

Details

If width is a Period, lubridate: :add_with_rollback() is used to calculate the widths. This can
be useful for e.g. calendar months.

Examples

if (requireNamespace("lubridate”)) {
year2001 <- as.Date("2001-01-01") + 0:364
tab_width(year2001, months(1),
labels = 1lbl_discrete(” to ", fmt = "%e %b %y"))

chop Cut data into intervals

Description

chop() cuts x into intervals. It returns a factor of the same length as x, representing which
interval contains each element of x. kiru() is an alias for chop. tab() calls chop() and returns a
contingency table() from the result.

Usage

chop(
X,
breaks,
labels = 1bl_intervals(),
extend = NULL,

left = TRUE,
close_end = FALSE,
drop = TRUE

)

kiru(
X,
breaks,

labels = 1bl_intervals(),
extend = NULL,

left = TRUE,
close_end = FALSE,
drop = TRUE

)

tab(

X,

chop 7

breaks,
labels = 1lbl_intervals(),
extend = NULL,

left = TRUE,
close_end = FALSE,
drop = TRUE
)
Arguments
X A vector.
breaks A numeric vector of cut-points or a function to create cut-points from x.
labels A character vector of labels or a function to create labels.
extend Logical. Extend breaks to +/-Inf?
left Logical. Left-closed breaks?
close_end Logical. Close last break at right? (If 1left is FALSE, close first break at left?)
drop Logical. Drop unused levels from the result?
Details

x may be a numeric vector, or more generally, any vector which can be compared with < and ==
(see Ops). In particular Date and date-time objects are supported. Character vectors are supported
with a warning.

Breaks:
breaks may be a vector or a function.

If it is a vector, breaks gives the break endpoints. Repeated values create singleton intervals. For
example breaks = c(1, 3, 3, 5) creates 3 intervals: [1, 3), {3} and (3, 5].

If breaks is a function, it is called with the x, extend, 1eft and close_end arguments, and should
return an object of class breaks. Use brk_x functions to create a variety of data-dependent breaks.

Options for breaks:
By default, left-closed intervals are created. If 1left is FALSE, right- closed intervals are created.

If close_end is TRUE the end break will be closed at both ends, ensuring that all values x with
min(breaks) <= x <= max(breaks) are included in the default intervals.

Using mathematical set notation:
e If leftis TRUE and close_end is TRUE, breaks will look like [x1, x2), [x2, x3) ... [x_n-1,
x_n].
e If left is FALSE and close_end is TRUE, breaks will look like [x1, x2], (x2, x3] ...
(x_n-1, x_n].
e If left is TRUE and close_end is FALSE, all breaks will look like . ..[x1, x2)
e If left is FALSE and close_end is FALSE, all breaks will look like . .. (x1, x2]

Extending intervals:
If extend is TRUE, intervals will be extended to [-Inf,min(breaks)) and (max(breaks), Inf].

8 chop

If extend is NULL (the default), intervals will be extended to [min(x), min(breaks)) and (max (breaks),
max(x)], only if necessary —i.e. if min(x) <min(breaks) and max(x) > max(breaks) respec-

tively.

Extending intervals, either by extend = NULL or extend = TRUE, always leaves the central, non-
extended intervals unchanged. In particular, close_end applies to the central intervals, not to the
extended ones. For example, if breaks = c¢(1, 3, 5) and close_end = TRUE, the resulting breaks

will be

[1, 3), [3, 5]
and if extend = TRUE the result will be
[-Inf, 1), [1, 3), [3, 51, (5, Inf]

Labels:

labels may be a character vector. It should have the same length as the number of intervals.
Alternatively, use a 1b1_x function such as 1b1_seq().

If 1abels is NULL, then integer codes will be returned instead of a factor.

Miscellaneous:
NA values in x, and values which are outside the extended endpoints, return NA.
kiru() is a synonym for chop(). If you load {tidyr}, you can use it to avoid confusion with

tidyr::chop().
Note that chop(), like all of R, uses binary arithmetic. Thus, numbers may not be exactly equal
to what you think they should be. There is an example below.

Value

chop() returns a factor of the same length as x, representing the intervals containing the value of
X.

tab () returns a contingency table().

See Also

base::cut(), non-standard-types for chopping objects that aren’t numbers.

Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_n(), chop_proportions(),
chop_quantiles(), chop_width(), fillet()

Examples
chop(1:3, 2)
chop(1:10, c(2, 5, 8))
chop(1:10, c(2, 5, 8), extend = FALSE)
chop(1:10, c(2, 5, 5, 8))
chop(1:10, c(2, 5, 8), left = FALSE)

chop(1:10, c(2, 5, 8), close_end = TRUE)

chop_equally

chop(1:10, brk_quantiles(c(@.25, 0.75)))
chop(1:10, c(2, 5, 8), labels = 1lbl_dash())

floating point inaccuracy:
chop(0.3/3, c(0, 0.1, 0.1, 1), labels = c("< 0.1", "0.1", "> 0.1"))

tab(1:10, c(2, 5, 8))

chop_equally Chop equal-sized groups

Description

chop_equally() chops x into groups with an equal number of elements.

Usage

chop_equally(
X,
groups,

labels = 1bl_intervals(raw = TRUE),
left = is.numeric(x),
close_end = TRUE

)

brk_equally(groups)

tab_equally(x, groups, ..., left = is.numeric(x), close_end = TRUE)
Arguments

X A vector.

groups Number of groups.

Passed to chop().

labels A character vector of labels or a function to create labels.

left Logical. Left-closed breaks?

close_end Logical. Close last break at right? (If 1eft is FALSE, close first break at left?)
Value

chop_# functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_=* functions return a contingency table().

10

See Also

chop_evenly

Other chopping functions: chop_evenly(), chop_mean_sd(), chop_n(), chop_proportions(),

chop_quantiles(), chop_width(), chop(), fillet()

Examples

chop_equally(1:10, 5)

chop_evenly Chop into equal-width intervals

Description

chop_evenly() chops x into intervals intervals of equal width.

Usage

chop_evenly(x, intervals, ..., close_end = TRUE)

brk_evenly(intervals)

tab_evenly(x, intervals, ..., close_end = TRUE)
Arguments

X A vector.

intervals Integer: number of intervals to create.

Passed to chop().

close_end Logical. Close last break at right? (If L1eft is FALSE, close first break at left?)

Details

chop_evenly() sets close_end = TRUE by default.

Value

chop_* functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_x* functions return a contingency table().

See Also

Other chopping functions: chop_equally(), chop_mean_sd(), chop_n(), chop_proportions(),

chop_quantiles(), chop_width(), chop(), fillet()

chop_mean_sd 11

Examples

chop_evenly(0:10, 5)

chop_mean_sd Chop by standard deviations

Description

Intervals are measured in standard deviations on either side of the mean.

Usage

chop_mean_sd(x, sds = 1:3, ..., sd = deprecated())

brk_mean_sd(sds = 1:3, sd = deprecated())

tab_mean_sd(x, sds = 1:3, ...)
Arguments
X A vector.
sds Positive numeric vector of standard deviations.

Passed to chop ().
sd [Deprecated]

Details

In version 0.7.0, these functions changed to specifying sds as a vector. To chop 1, 2 and 3 standard
deviations around the mean, write chop_mean_sd(x, sds = 1:3) instead of chop_mean_sd(x, sd
=3).

Value

chop_* functions return a factor of the same length as x.
brk_x* functions return a function to create breaks.
tab_* functions return a contingency table().

See Also

Other chopping functions: chop_equally(), chop_evenly(), chop_n(), chop_proportions(),
chop_quantiles(), chop_width(), chop(), fillet()

12 chop_n
Examples

chop_mean_sd(1:10)

chop(1:10, brk_mean_sd())

tab_mean_sd(1:10)

chop_n Chop into fixed-sized groups

Description

chop_n() creates intervals containing a fixed number of elements. One interval may have fewer

elements.
Usage

chop_n(x, n, ..., close_end = TRUE)

brk_n(n)

tab_n(x, n, ..., close_end = TRUE)
Arguments

X A vector.

n Integer: number of elements in each interval.

Passed to chop().

close_end Logical. Close last break at right? (If 1lef't is FALSE, close first break at left?)

Details

Note that chop_n() sets close_end = TRUE by default.

Groups may be larger than n, if there are too many duplicated elements in x. If so, a warning is
given.

Value

chop_# functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_=* functions return a contingency table().

See Also

Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_proportions(),
chop_quantiles(), chop_width(), chop(), fillet()

chop_pretty 13

Examples
chop_n(1:10, 5)
too many duplicates
x <= rep(1:2, each = 3)
chop_n(x, 2)
tab_n(1:10, 5)

fewer elements in one group
tab_n(1:10, 4)

chop_pretty Chop using pretty breakpoints

Description

chop_pretty() uses base: :pretty() to calculate breakpoints which are 1, 2 or 5 times a power
of 10. These look nice in graphs.

Usage

chop_pretty(x, n =5, ...)

brk_pretty(n =5, ...)

tab_pretty(x, n =5, ...)

Arguments

X A vector.

n Positive integer passed to base: :pretty(). How many intervals to chop into?
Passed to chop () by chop_pretty() and tab_pretty(); passed to base: :pretty()
by brk_pretty().

Details

base: :pretty() tries to return n+1 breakpoints, i.e. n intervals, but note that this is not guaranteed.
There are methods for Date and POSIXct objects.

For fine-grained control over base: :pretty() parameters, use chop(x, brk_pretty(...)).

Value

chop_# functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_=* functions return a contingency table().

14 chop_proportions

Examples

chop_pretty(1:10)
chop(1:10, brk_pretty(n = 5, high.u.bias = 0))

tab_pretty(1:10)

chop_proportions Chop into proportions of the range of x

Description

chop_proportions() chops x into proportions of its range, excluding infinite values.

Usage

chop_proportions(x, proportions, ..., labels = lbl_intervals(raw = TRUE))

brk_proportions(proportions)

tab_proportions(x, proportions, ...)
Arguments
X A vector.
proportions Numeric vector between 0 and 1: proportions of x’s range

Passed to chop().

labels A character vector of labels or a function to create labels.

Details

By default, labels show the raw numeric endpoints. To label intervals by the proportions, use
labels =1bl_intervals(raw = FALSE).

Value

chop_* functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_* functions return a contingency table().

See Also

Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_n(), chop_quantiles(),
chop_width(), chop(), fillet()

chop_quantiles 15

Examples

chop_proportions(0:10, c(0.2, 0.8))

chop_quantiles Chop by quantiles

Description

chop_quantiles() chops data by quantiles. chop_deciles() is a convenience shortcut and chops
into deciles.

Usage
chop_quantiles(x, probs, ..., left = is.numeric(x), close_end = TRUE)
chop_deciles(x, ...)
brk_quantiles(probs, ...)
tab_quantiles(x, probs, ..., left = is.numeric(x), close_end = TRUE)
tab_deciles(x, ...)
Arguments
X A vector.
probs A vector of probabilities for the quantiles.
Passed to chop (), or for brk_quantiles() to stats::quantile().
left Logical. Left-closed breaks?
close_end Logical. Close last break at right? (If Lef't is FALSE, close first break at left?)
Details

Note that these functions set close_end = TRUE by default. This helps ensure thate.g. chop_quantiles(x, c(@, 1/3, 2/3,
will split the data into three equal-sized groups.

For non-numeric x, left is set to FALSE by default. This works better for calculating "type 1"
quantiles, since they round down. See stats::quantile().

Value
chop_# functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_=* functions return a contingency table().

16 chop_width

See Also

Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_n(), chop_proportions(),
chop_width(), chop(), fillet()

Examples

chop_quantiles(1:10, 1:3/4)
chop(1:10, brk_quantiles(1:3/4))
chop_deciles(1:10)

to label by the quantiles themselves:
chop_quantiles(1:10, 1:3/4, 1lbl_intervals(raw = TRUE))

set.seed(42)
tab_quantiles(rnorm(100), probs = 1:3/4, label = 1lbl_intervals(raw = TRUE))

chop_width Chop into fixed-width intervals

Description

chop_width() chops x into intervals of fixed width.

Usage
chop_width(x, width, start, ..., left = sign(width) > @)
brk_width(width, start)

Default S3 method:
brk_width(width, start)

tab_width(x, width, start, ..., left = sign(width) > @)
Arguments
X A vector.
width Width of intervals.
start Starting point for intervals. By default the smallest finite x (largest if width is
negative).

Passed to chop().
left Logical. Left-closed breaks?

exactly 17

Details

If width is negative, chop_width() sets left = FALSE and intervals will go downwards from
start.

Value

chop_x functions return a factor of the same length as x.
brk_x functions return a function to create breaks.
tab_x* functions return a contingency table().

See Also

brk_width-for-datetime

Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_n(), chop_proportions(),
chop_quantiles(), chop(), fillet()

Examples
chop_width(1:10, 2)
chop_width(1:10, 2, start = 0)
chop_width(1:9, -2)
chop(1:10, brk_width(2, @))

tab_width(1:10, 2, start = 0)

exactly Define singleton intervals explicitly

Description

exactly() duplicates its input. It lets you define singleton intervals like this: chop(x, c(1,
exactly(2), 3)). This is the same as chop(x, c(1, 2, 2, 3)) but conveys your intent more
clearly.

Usage

exactly(x)

Arguments

X A numeric vector.

Value

The same as rep(x, each = 2).

18 fillet

Examples

chop(1:10, c(2, exactly(5), 8))

same:
chop(1:10, c(2, 5, 5, 8))

fillet Chop data precisely (for programmers)

Description

Chop data precisely (for programmers)

Usage

fillet(x, breaks, labels = 1bl_intervals(), left = TRUE, close_end = FALSE)

Arguments
X A vector.
breaks A numeric vector of cut-points or a function to create cut-points from x.
labels A character vector of labels or a function to create labels.
left Logical. Left-closed breaks?
close_end Logical. Close last break at right? (If Lleft is FALSE, close first break at left?)
Details

fillet() calls chop() with extend = FALSE and drop = FALSE. This ensures that you get only the
breaks and labels you ask for. When programming, consider using fillet() instead of chop().
Value
fillet() returns a factor of the same length as x, representing the intervals containing the value
of x.
See Also
Other chopping functions: chop_equally(), chop_evenly(), chop_mean_sd(), chop_n(), chop_proportions(),
chop_quantiles(), chop_width(), chop()

Examples

fillet(1:10, c(2, 5, 8))

Ibl_dash

19

1bl_dash

Label chopped intervals like 1-4, 4-5, ...

Description

This label style is user-friendly, but doesn’t distinguish between left- and right-closed intervals. It’s
good for continuous data where you don’t expect points to be exactly on the breaks.

Usage

1b1_dash(

symbol = em_dash(),

fmt = NULL,

single = "{1}",

first
last = NULL,
raw = FALSE

Arguments
symbol
fmt
single
first

last

raw

Details

String: symbol to use for the dash.
String or function. A format for break endpoints.
Glue string: label for singleton intervals. See 1b1l_glue() for details.

Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1_glue() for details.

String: override label for the last category. Write e.g. last = ">{13}" to create a
label like ">65". See 1bl_glue() for details.

Logical. Always use raw breaks in labels, rather than e.g. quantiles or standard
deviations?

If you don’t want unicode output, use 1b1_dash("-").

Value

A function that creates a vector of labels.

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format (breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().

20 Ibl_discrete

See Also

Other labelling functions: 1bl_discrete(), 1bl_endpoints(), 1bl_glue(), lbl_intervals(),

1bl_manual(), 1bl_midpoints(), 1bl_seq()

Examples

chop(1:10, c(2, 5, 8), 1lbl_dash())
chop(1:10, c(2, 5, 8), lbl_dash("” to ", fmt = "%.1f"))
chop(1:10, c(2, 5, 8), lbl_dash(first = "<{r}"))

pretty <- function (x) prettyNum(x, big.mark = ",", digits = 1)
chop(runif(10) * 10000, c(3000, 7000), lbl_dash(” to ", fmt = pretty))

1bl_discrete Label discrete data

Description

1bl_discrete() creates labels for discrete data, such as integers. For example, breaks c(1, 3, 4,

6, 7) are labelled: "1-2", "3", "4-5", "6-7".

Usage

1bl_discrete(
symbol = em_dash(),

unit = 1,
fmt = NULL,
single = NULL,
first = NULL,
last = NULL
)
Arguments
symbol String: symbol to use for the dash.
unit Minimum difference between distinct values of data. For integers, 1.
fmt String or function. A format for break endpoints.
single Glue string: label for singleton intervals. See 1b1l_glue() for details.
first Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1_glue() for details.
last String: override label for the last category. Write e.g. last = ">{1}" to create a

label like ">65". See 1bl_glue() for details.

1bl_endpoints 21

Details

No check is done that the data are discrete-valued. If they are not, then these labels may be mis-
leading. Here, discrete-valued means that if x <y, then x <=y - unit.

Be aware that Date objects may have non-integer values. See Date.

Value

A function that creates a vector of labels.

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().
See Also
Other labelling functions: 1bl_dash(), 1b1_endpoints(), 1b1_glue(), 1bl_intervals(), 1bl_manual(),
1bl_midpoints(), 1bl_seq()

Examples
tab(1:7, c(1, 3, 5), 1lbl_discrete())
tab(1:7, c(3, 5), 1lbl_discrete(first = "<= {r}"))
tab(1:7 = 1000, c(1, 3, 5) * 1000, lbl_discrete(unit = 1000))

Misleading labels for non-integer data
chop(2.5, c(1, 3, 5), lbl_discrete())

1bl_endpoints Label chopped intervals by their left or right endpoints

Description

This is useful when the left endpoint unambiguously indicates the interval. In other cases it may
give errors due to duplicate labels.

22 Ibl_endpoints

Usage

1bl_endpoints(
left = TRUE,
fmt = NULL,
single = NULL,
first = NULL,
last = NULL,
raw = FALSE

)

1bl_endpoint(fmt = NULL, raw = FALSE, left = TRUE)

Arguments
left Flag. Use left endpoint or right endpoint?
fmt String or function. A format for break endpoints.
single Glue string: label for singleton intervals. See 1b1l_glue() for details.
first Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1_glue() for details.
last String: override label for the last category. Write e.g. last = ">{1}" to create a
label like ">65". See 1bl_glue() for details.
raw Logical. Always use raw breaks in labels, rather than e.g. quantiles or standard
deviations?
Details

1bl_endpoint() is deprecated. Do not use it.

Value

A function that creates a vector of labels.

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales::1label_comma().

See Also

Other labelling functions: 1bl_dash(), 1bl_discrete(), 1bl_glue(), lbl_intervals(), 1bl_manual(),
1bl_midpoints(), 1bl_seq()

Ibl_glue 23

Examples

chop(1:10, c(2, 5, 8), 1lbl_endpoints(left = TRUE))
chop(1:10, c(2, 5, 8), lbl_endpoints(left = FALSE))
if (requireNamespace("lubridate”)) {
tab_width(

as.Date("2000-01-01") + 0:365,

months(1),

labels = 1bl_endpoints(fmt = "%b")

)

1bl_glue Label chopped intervals using the glue package

Description

Use "{1}" and "{r}" to show the left and right endpoints of the intervals.

Usage
1bl_glue(
label,
fmt = NULL,
single = NULL,
first = NULL,
last = NULL,
raw = FALSE,
)
Arguments
label A glue string passed to glue: :glue().
fmt String or function. A format for break endpoints.
single Glue string: label for singleton intervals. See 1b1l_glue() for details.
first Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1_glue() for details.
last String: override label for the last category. Write e.g. last = ">{1}" to create a
label like ">65". See 1bl_glue() for details.
raw Logical. Always use raw breaks in labels, rather than e.g. quantiles or standard

deviations?

Further arguments passed to glue: :glue().

24 Ibl_glue

Details

The following variables are available in the glue string:

* 1 is a character vector of left endpoints of intervals.
* r is a character vector of right endpoints of intervals.
* 1_closed is a logical vector. Elements are TRUE when the left endpoint is closed.

* r_closed is a logical vector, TRUE when the right endpoint is closed.

Endpoints will be formatted by fmt before being passed to glue().

Value

A function that creates a vector of labels.

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().

See Also

Other labelling functions: 1bl_dash(), 1bl_discrete(), 1bl_endpoints(), 1bl_intervals(),
1bl_manual(), 1bl_midpoints(), 1lbl_seq()

Examples

tab(1:10, c(1, 3, 3, 7),
label = 1bl_glue("{1} to {r}", single = "Exactly {1}"))

tab(1:10 * 1000, c(1, 3, 5, 7) * 1000,
label = 1bl_glue("{1}-{r}", fmt = function(x) prettyNum(x, big.mark=',"')))

reproducing lbl_intervals():
interval_left <- "{ifelse(l_closed, '[', '"(')}"
interval_right <- "{ifelse(r_closed, 'J]', ')')}"

glue_string <- paste@(interval_left, "{13}", ", ", "{r}", interval_right)
tab(1:10, c(1, 3, 3, 7), label = 1bl_glue(glue_string, single = "{{{1}}}"))

Ibl_intervals

25

1bl_intervals Label chopped intervals using set notation

Description

These labels are the most exact, since they show you whether intervals are "closed" or "open", i.e.
whether they include their endpoints.

Usage
1bl_intervals(
fmt = NULL,
single = "{{{13}}",
first = NULL,
last = NULL,
raw = FALSE
)
Arguments
fmt String or function. A format for break endpoints.
single Glue string: label for singleton intervals. See 1b1l_glue() for details.
first Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1_glue () for details.
last String: override label for the last category. Write e.g. last = ">{1}" to create a
label like ">65". See 1bl_glue() for details.
raw Logical. Always use raw breaks in labels, rather than e.g. quantiles or standard
deviations?
Details

Mathematical set notation looks like this:

e [a, bl:
* (a, b):
e [a, b):
. (a, bl:

all numbers x where a <= x <= b;
all numbers where a < x < b;
all numbers where a <= x < b;

all numbers where a < x <= b;

e {a}: just the number a exactly.

Value

A function that creates a vector of labels.

26 Ibl_manual

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().
See Also
Other labelling functions: 1bl_dash(), 1bl_discrete(), 1bl_endpoints(), 1bl_glue(), 1bl_manual(),
1bl_midpoints(), 1bl_seq()
Examples
tab(-10:10, c(-3, o, 0, 3),
labels = 1bl_intervals())

tab_evenly(runif(20), 10,
labels = 1lbl_intervals(fmt = percent))

1bl_manual Label chopped intervals in a user-defined sequence

Description

1bl_manual() uses an arbitrary sequence to label intervals. If the sequence is too short, it will be
pasted with itself and repeated.

Usage

1bl_manual(sequence, fmt = "%s")
Arguments

sequence A character vector of labels.

fmt String or function. A format for break endpoints.
Value

A function that creates a vector of labels.

Ibl_midpoints 27

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().

See Also
Other labelling functions: 1bl_dash(), 1bl_discrete(), 1bl_endpoints(), 1bl_glue(), lbl_intervals(),
1bl_midpoints(), 1bl_seq()

Examples

chop(1:10, c(2, 5, 8), lbl_manual(c("w”, "x", "y", "z")))

if labels need repeating:
chop(1:10, 1:10, 1lbl_manual(c("x", "y", "z")))

1bl_midpoints Label chopped intervals by their midpoints

Description

This uses the midpoint of each interval for its label.

Usage
1bl_midpoints(
fmt = NULL,
single = NULL,
first = NULL,
last = NULL,
raw = FALSE
)
Arguments
fmt String or function. A format for break endpoints.
single Glue string: label for singleton intervals. See 1b1_glue() for details.
first Glue string: override label for the first category. Write e.g. first = "<{r}" to
create a label like "<18". See 1b1l_glue() for details.
last String: override label for the last category. Write e.g. last = ">{13}" to create a
label like ">65". See 1bl_glue() for details.
raw Logical. Always use raw breaks in labels, rather than e.g. quantiles or standard

deviations?

28 Ibl_seq

Value

A function that creates a vector of labels.

Formatting endpoints

If fmt is not NULL then it is used to format the endpoints. If fmt is a string then numeric endpoints
will be formatted by sprintf(fmt, breaks); other endpoints, e.g. Date objects, will be formatted
by format(breaks, fmt).

If fmt is a function, it should take a vector of numbers (or other objects that can be used as breaks)
and return a character vector. It may be helpful to use functions from the {scales} package, e.g.
scales: :label_comma().
See Also
Other labelling functions: 1bl_dash(), 1bl_discrete(), 1bl_endpoints(), 1bl_glue(), lbl_intervals(),
1bl_manual(), 1bl_seq()
Examples

chop(1:10, c(2, 5, 8), 1lbl_midpoints())

1bl_seq Label chopped intervals in sequence

Description

1bl_seq() labels intervals sequentially, using numbers or letters.

Usage

1bl_seq(start = "a")

Arguments

start String. A template for the sequence. See below.

Details

start shows the first element of the sequence. It must contain exactly one character out of the set
"a", "A", "i", "I" or "1". For later elements:

* "a" will be replaced by "a", "b", "c", ...

* "A" will be replaced by "A", "B", "C", ...

* "{" will be replaced by lower-case Roman numerals "i", "ii", "iii", ...

* "I" will be replaced by upper-case Roman numerals "I", "II", "TII", ...

* "1" will be replaced by numbers "1", "2", "3", ...

Other characters will be retained as-is.

non-standard-types 29

Value

A function that creates a vector of labels.

See Also

Other labelling functions: 1bl_dash(), 1b1_discrete(), 1bl_endpoints(), 1bl_glue(), 1bl_intervals(),
1bl_manual(), 1bl_midpoints()

Examples

chop(1:10, c(2, 5, 8), 1lbl_seq())
chop(1:10, c(2, 5, 8), lbl_seq("i."))

chop(1:10, c(2, 5, 8), 1lbl_seq("(A)"))

non-standard-types Tips for chopping non-standard types

Description

Santoku can handle many non-standard types.

Details

* If objects can be compared using <, == etc. then they should be choppable.
* Objects which can’t be converted to numeric are handled within R code, which may be slower.
* Character x and breaks are chopped with a warning.

* If x and breaks are not the same type, they should be able to be cast to the same type, usually
using vetrs: :vec_cast_common().

* Not all chopping operations make sense, for example, chop_mean_sd() on a character vector.
* For indexed objects such as stats: :ts() objects, indices will be dropped from the result.
* If you get errors, try setting extend = FALSE (but also file a bug report).

* To request support for a type, open an issue on Github.

See Also

brk-width-for-Datetime

30 percent

percent Simple percentage formatter

Description

percent () formats x as a percentage. For a wider range of formatters, consider the scales package.

Usage

percent(x)

Arguments

X Numeric values.

Value

x formatted as a percent.

Examples

percent(0.5)

https://cran.r-project.org/package=scales

Index

* chopping functions
chop, 6
chop_equally, 9
chop_evenly, 10
chop_mean_sd, 11
chop_n, 12
chop_proportions, 14
chop_quantiles, 15
chop_width, 16
fillet, 18

x labelling functions
1bl_dash, 19
1bl_discrete, 20
1bl_endpoints, 21
1bl_glue, 23
1bl_intervals, 25
1bl_manual, 26
1bl_midpoints, 27
1bl_seq, 28

base::cut(), 8

base: :pretty(), 13

breaks-class, 3

brk_default, 4

brk_equally (chop_equally), 9

brk_evenly (chop_evenly), 10

brk_manual, 4

brk_mean_sd (chop_mean_sd), 11

brk_n (chop_n), 12

brk_pretty (chop_pretty), 13

brk_proportions (chop_proportions), 14

brk_quantiles (chop_quantiles), 15

brk_width (chop_width), 16

brk_width-for-datetime, 5, 17

brk_width.Duration
(brk_width-for-datetime), 5

chop, 6, 10-12, 14, 16-18
chop(), 2, 3,9-16, 18
chop_deciles (chop_quantiles), 15

31

chop_equally, 8,9, 10-12, 14, 16—18
chop_evenly, 8, 10,10, 11, 12, 14, 16—18
chop_mean_sd, 8, 10, 11, 12, 14, 16-18
chop_mean_sd(), 29

chop_n, 8, 10, 11,12, 14, 1618
chop_pretty, 13
chop_proportions, 8, 10-12, 14, 16-18
chop_quantiles, 8, 10-12, 14,15, 17, 18
chop_width, 8, 10-12, 14, 16, 16, 18
cut(), 2

Date, 5,7, 21
date-time, 7
difftime, 5
Duration, 5

exactly, 17

factor, 6,8-15,17, 18

fillet, 8, 10-12, 14, 16, 17, 18
format.breaks (breaks-class), 3
function, 9-15, 17

glue::glue(), 23
is.breaks (breaks-class), 3
kiru (chop), 6

1bl_dash, 19, 21, 22, 24, 26-29
1bl_discrete, 20, 20, 22, 24, 26-29
1bl_endpoint (1bl_endpoints), 21
1bl_endpoints, 20, 21,21, 24, 26-29
1bl_glue, 20-22, 23, 26-29
1bl_glue(), 19, 20, 22, 23, 25, 27
1bl_intervals, 20-22, 24, 25, 27-29
1bl_manual, 20-22, 24, 26, 26, 28, 29
1bl_midpoints, 20-22, 24, 26, 27,27, 29
1bl_seq, 20-22, 24, 26-28, 28
1bl_seq(), 8

lubridate: :add_with_rollback(), 6

32 INDEX

mathematical set notation, 7
non-standard-types, 29
Ops, 7

percent, 30

Period, 5

POSIXct, 5

print.breaks (breaks-class), 3

santoku (santoku-package), 2

santoku-package, 2

scales: :label_comma(), 19, 21, 22, 24,
26-28

stats::quantile(), 15

stats::ts(), 29

tab (chop), 6

tab_deciles (chop_quantiles), 15
tab_equally (chop_equally), 9
tab_evenly (chop_evenly), 10
tab_mean_sd (chop_mean_sd), 11
tab_n (chop_n), 12

tab_pretty (chop_pretty), 13
tab_proportions (chop_proportions), 14
tab_quantiles (chop_quantiles), 15
tab_width (chop_width), 16
table(), 6, 8-15,17

vctrs: :vec_cast_common(), 29

	santoku-package
	breaks-class
	brk_default
	brk_manual
	brk_width-for-datetime
	chop
	chop_equally
	chop_evenly
	chop_mean_sd
	chop_n
	chop_pretty
	chop_proportions
	chop_quantiles
	chop_width
	exactly
	fillet
	lbl_dash
	lbl_discrete
	lbl_endpoints
	lbl_glue
	lbl_intervals
	lbl_manual
	lbl_midpoints
	lbl_seq
	non-standard-types
	percent
	Index

