The war
data set comes in the sbm
package:
library(sbm)
data("war")
This data set contains a list of two networks (belligerent
and alliance
) where the nodes are countries; an edge in the network belligerent
means that the two countries have been at war at least once between years 1816 to 2007; an edge in network alliance
means that the two countries have had a formal alliance between years 1816 and 2012. The network belligerent
have less nodes since countries which have not been at war at all are not considered.
These two networks were extracted from https://www.correlatesofwar.org/ (see Sarkees and Wayman (2010) for war data, and Gibler (2008) for formal alliance). Version 4.0 was used for war data and version 4.1 for formal alliance.
Since they don’t have the same size, we choose to only consider nodes (countries) which were at war with at least one other country. This corresponds to the first 83 nodes in the Alliance network.
library(igraph)
#>
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#>
#> decompose, spectrum
#> The following object is masked from 'package:base':
#>
#> union
= as.matrix(get.adjacency(war$alliance))
A = A[1:83,1:83]
A = as.matrix(get.adjacency(war$belligerent)) B
We can start with a plot of this multiplex network:
= defineSBM(A,model="bernoulli",dimLabels = "country")
netA = defineSBM(B,model="bernoulli",dimLabels = "country")
netB plotMyMultiplexMatrix(list(netA,netB))
We run the estimation of this multiplex model. By setting dependent=FALSE
, we declare that we consider the two layers to be independent conditionally on the latent block variables.
= estimateMultiplexSBM(list(netA,netB), dependent = FALSE, estimOptions = list(verbosity=0)) MultiplexFitIndep
We can retrieve the clustering
= MultiplexFitIndep$memberships[[1]]
clust_country_indep sort(clust_country_indep)
#> United States of America Canada
#> 1 1
#> Belize El Salvador
#> 2 2
#> Colombia Ecuador
#> 2 2
#> Bolivia Uruguay
#> 2 2
#> Bahamas Cuba
#> 3 3
#> Haiti Dominican Republic
#> 3 3
#> Jamaica Trinidad and Tobago
#> 3 3
#> Barbados Dominica
#> 3 3
#> Grenada St. Lucia
#> 3 3
#> St. Vincent and the Grenadines Antigua & Barbuda
#> 3 3
#> St. Kitts and Nevis Mexico
#> 3 3
#> Guatemala Honduras
#> 3 3
#> Nicaragua Costa Rica
#> 3 3
#> Panama Venezuela
#> 3 3
#> Guyana Suriname
#> 3 3
#> Peru Brazil
#> 3 3
#> Paraguay Chile
#> 3 3
#> Argentina United Kingdom
#> 3 4
#> Netherlands Belgium
#> 4 4
#> Luxembourg France
#> 4 4
#> Spain Portugal
#> 4 4
#> Germany German Federal Republic
#> 4 4
#> Poland Hungary
#> 4 4
#> Czech Republic Italy
#> 4 4
#> Greece Norway
#> 4 4
#> Denmark Iceland
#> 4 4
#> Bavaria German Democratic Republic
#> 5 5
#> Baden Wuerttemburg
#> 5 5
#> Austria-Hungary Austria
#> 5 5
#> Czechoslovakia Slovakia
#> 5 5
#> Malta Albania
#> 5 5
#> Croatia Yugoslavia
#> 5 5
#> Bosnia and Herzegovina Cyprus
#> 5 5
#> Bulgaria Moldova
#> 5 5
#> Romania Russia
#> 5 5
#> Estonia Latvia
#> 5 5
#> Lithuania Ukraine
#> 5 5
#> Belarus Armenia
#> 5 5
#> Georgia Azerbaijan
#> 5 5
#> Finland Sweden
#> 5 5
#> Cape Verde Sao Tome and Principe
#> 5 5
#> Guinea-Bissau
#> 5
And we can plot the reorganized adjacency matrices or the corresponding expectations:
plot(MultiplexFitIndep)
plot(MultiplexFitIndep,type="expected")
Now we assume that the two layers are dependent conditionally to the latent block variables. We then set dependent=TRUE
= estimateMultiplexSBM(list(netA,netB),dependent = TRUE,estimOptions = list(verbosity=0)) MultiplexFitdep
We can retrieve the clustering and compare it to the one obtained in the independent case.
= MultiplexFitdep$memberships[[1]]
clust_country_dep sort(clust_country_indep)
#> United States of America Canada
#> 1 1
#> Belize El Salvador
#> 2 2
#> Colombia Ecuador
#> 2 2
#> Bolivia Uruguay
#> 2 2
#> Bahamas Cuba
#> 3 3
#> Haiti Dominican Republic
#> 3 3
#> Jamaica Trinidad and Tobago
#> 3 3
#> Barbados Dominica
#> 3 3
#> Grenada St. Lucia
#> 3 3
#> St. Vincent and the Grenadines Antigua & Barbuda
#> 3 3
#> St. Kitts and Nevis Mexico
#> 3 3
#> Guatemala Honduras
#> 3 3
#> Nicaragua Costa Rica
#> 3 3
#> Panama Venezuela
#> 3 3
#> Guyana Suriname
#> 3 3
#> Peru Brazil
#> 3 3
#> Paraguay Chile
#> 3 3
#> Argentina United Kingdom
#> 3 4
#> Netherlands Belgium
#> 4 4
#> Luxembourg France
#> 4 4
#> Spain Portugal
#> 4 4
#> Germany German Federal Republic
#> 4 4
#> Poland Hungary
#> 4 4
#> Czech Republic Italy
#> 4 4
#> Greece Norway
#> 4 4
#> Denmark Iceland
#> 4 4
#> Bavaria German Democratic Republic
#> 5 5
#> Baden Wuerttemburg
#> 5 5
#> Austria-Hungary Austria
#> 5 5
#> Czechoslovakia Slovakia
#> 5 5
#> Malta Albania
#> 5 5
#> Croatia Yugoslavia
#> 5 5
#> Bosnia and Herzegovina Cyprus
#> 5 5
#> Bulgaria Moldova
#> 5 5
#> Romania Russia
#> 5 5
#> Estonia Latvia
#> 5 5
#> Lithuania Ukraine
#> 5 5
#> Belarus Armenia
#> 5 5
#> Georgia Azerbaijan
#> 5 5
#> Finland Sweden
#> 5 5
#> Cape Verde Sao Tome and Principe
#> 5 5
#> Guinea-Bissau
#> 5
::ARI(clust_country_indep,clust_country_dep)
aricode#> [1] 0.8886699
On top of the clustering comparison, we can compare the ICL criteria to see which of the dependent or independent models is a best fit:
$ICL
MultiplexFitdep#> [1] -1470.276
$ICL
MultiplexFitIndep#> [1] -1434.602
We can do the same plots for the reorganized matrices and the corresponding expectations. Note that the expectations correspond to the marginal expectation of each layer and it may be relevant to have a look to the conditional expectations.
plot(MultiplexFitdep)
plot(MultiplexFitdep,type="expected")
#> Warning in self$predict(): provided expectations are the marginal expectations
#> in the dependent case
For instance, we may want to compare the marginal distribution for two countries in their given blocks to have being at war while they are allied at some point (before or after):
= MultiplexFitdep$connectParam$prob11
p11 = MultiplexFitdep$connectParam$prob01
p01 = MultiplexFitdep$connectParam$prob10
p10 # conditional probabilities of being at war while having been or will be allied
round(p11/(p11+p10),2)
#> [,1] [,2] [,3] [,4]
#> [1,] 0.09 0.10 0.03 0.43
#> [2,] 0.10 0.11 0.09 0.14
#> [3,] 0.03 0.09 0.05 0.03
#> [4,] 0.43 0.14 0.03 0.01
# marginal probabilities of being at war
round(p11+p01,2)
#> [,1] [,2] [,3] [,4]
#> [1,] 0.07 0.04 0.03 0.14
#> [2,] 0.04 0.10 0.04 0.13
#> [3,] 0.03 0.04 0.05 0.03
#> [4,] 0.14 0.13 0.03 0.02