
Package ‘scTenifoldNet’
October 29, 2021

Type Package

Title Construct and Compare scGRN from Single-Cell Transcriptomic Data

Version 1.3

Description A workflow based on machine learning methods to construct and compare single-
cell gene regulatory networks (scGRN) using single-cell RNA-seq (scRNA-seq) data col-
lected from different conditions. Uses principal component regression, tensor decomposi-
tion, and manifold alignment, to accurately identify even subtly shifted gene expression pro-
grams. See <doi:10.1016/j.patter.2020.100139> for more details.

URL https://github.com/cailab-tamu/scTenifoldNet

BugReports https://github.com/cailab-tamu/scTenifoldNet/issues

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.2

biocViews

Imports pbapply, RSpectra, Matrix, methods, stats, utils, MASS,
RhpcBLASctl

Suggests testthat (>= 2.1.0)

NeedsCompilation no

Author Daniel Osorio [aut, cre] (<https://orcid.org/0000-0003-4424-8422>),
Yan Zhong [aut, ctb],
Guanxun Li [aut, ctb],
Jianhua Huang [aut, ctb],
James Cai [aut, ctb, ths] (<https://orcid.org/0000-0002-8081-6725>)

Maintainer Daniel Osorio <dcosorioh@utexas.edu>

Repository CRAN

Date/Publication 2021-10-29 06:40:02 UTC

1

https://doi.org/10.1016/j.patter.2020.100139
https://github.com/cailab-tamu/scTenifoldNet
https://github.com/cailab-tamu/scTenifoldNet/issues
https://orcid.org/0000-0003-4424-8422
https://orcid.org/0000-0002-8081-6725

2 cpDecomposition

R topics documented:

cpDecomposition . 2
cpmNormalization . 3
dRegulation . 4
makeNetworks . 6
manifoldAlignment . 9
pcNet . 11
scQC . 13
scTenifoldNet . 15
tensorDecomposition . 19

Index 22

cpDecomposition Canonical Polyadic Decomposition

Description

Canonical Polyadic (CP) decomposition of a tensor, aka CANDECOMP/PARAFRAC. Approxi-
mate a K-Tensor using a sum of num_components rank-1 K-Tensors. A rank-1 K-Tensor can be
written as an outer product of K vectors. There are a total of num_compoents *tnsr@num_modes
vectors in the output, stored in tnsr@num_modes matrices, each with num_components columns.
This is an iterative algorithm, with two possible stopping conditions: either relative error in Frobe-
nius norm has gotten below tol, or the max_iter number of iterations has been reached. For more
details on CP decomposition, consult Kolda and Bader (2009).

Usage

cpDecomposition(tnsr, num_components = NULL, max_iter = 25, tol = 1e-05)

Arguments

tnsr Tensor with K modes

num_components the number of rank-1 K-Tensors to use in approximation

max_iter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

Details

Uses the Alternating Least Squares (ALS) estimation procedure. A progress bar is included to help
monitor operations on large tensors.

cpmNormalization 3

Value

a list containing the following

lambdas a vector of normalizing constants, one for each component

U a list of matrices - one for each mode - each matrix with num_components columns

conv whether or not resid < tol by the last iteration

norm_percent the percent of Frobenius norm explained by the approximation

est estimate of tnsr after compression

fnorm_resid the Frobenius norm of the error fnorm(est-tnsr)

all_resids vector containing the Frobenius norm of error for all the iterations

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

cpmNormalization Performs counts per million (CPM) data normalization

Description

This function normalizes the count data present in a given matrix using counts per million nor-
malization (CPM). Each gene count for each cell is divided by the total counts for that cell and
multiplied by 1e6. No log-transformation is applied.

Usage

cpmNormalization(X)

Arguments

X Raw counts matrix with cells as columns and genes (symbols) as rows

Value

A dgCMatrix object with the count per million (CPM) normalized values.

References

Vallejos, Catalina A., et al. "Normalizing single-cell RNA sequencing data: challenges and oppor-
tunities." Nature methods 14.6 (2017): 565.

4 dRegulation

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)
Performing Counts per million Normalization (CPM)
normalizationOutput <- cpmNormalization(qcOutput)

Visualizing the differences
oldPar <- par(no.readonly = TRUE)

par(
mfrow = c(1, 2),
mar = c(3, 3, 1, 1),
mgp = c(1.5, 0.5, 0)

)
plot(

Matrix::colSums(qcOutput),
ylab = 'Library Size',
xlab = 'Cell',
main = 'Before CPM Normalization'

)
plot(

Matrix::colSums(normalizationOutput),
ylab = 'Library Size',
xlab = 'Cell',
main = 'After CPM Normalization'

)

par(oldPar)

dRegulation Evaluates gene differential regulation based on manifold alignment
distances.

dRegulation 5

Description

Using the output of the non-linear manifold alignment, this function computes the Euclidean dis-
tance between the coordinates for the same gene in both conditions. Calculated distances are then
transformed using Box-Cox power transformation, and standardized to ensure normality. P-values
are assigned following the chi-square distribution over the fold-change of the squared distance com-
puted with respect to the expectation.

Usage

dRegulation(manifoldOutput)

Arguments

manifoldOutput A matrix. The output of the non-linear manifold alignment, a labeled matrix
with two times the number of shared genes as rows (X_ genes followed by Y_
genes in the same order) and d number of columns.

Value

A data frame with 6 columns as follows:

• gene A character vector with the gene id identified from the manifoldAlignment output.

• distance A numeric vector of the Euclidean distance computed between the coordinates of
the same gene in both conditions.

• Z A numeric vector of the Z-scores computed after Box-Cox power transformation.

• FC A numeric vector of the FC computed with respect to the expectation.

• p.value A numeric vector of the p-values associated to the fold-changes, probabilities are
asigned as P [X > x] using the Chi-square distribution with one degree of freedom.

• p.adj A numeric vector of adjusted p-values using Benjamini & Hochberg (1995) FDR cor-
rection.

References

• Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics, 29, 1165-1188. doi: 10.1214/aos/1013699998.

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

6 makeNetworks

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Computing 3 single-cell gene regulatory networks each one from a subsample of 500 cells
xNetworks <- makeNetworks(X = qcOutput,

nNet = 3,
nCells = 500,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0.95
)

Computing a K = 3 CANDECOMP/PARAFAC (CP) Tensor Decomposition
tdOutput <- tensorDecomposition(xNetworks, K = 3, maxError = 1e5, maxIter = 1e3)

Not run:
Computing the alignment
For this example, we are using the same input, the match should be perfect.
maOutput <- manifoldAlignment(tdOutput$X, tdOutput$X)

Evaluating the difference in regulation
dcOutput <- dRegulation(maOutput, minFC = 0)
head(dcOutput)

Plotting
If FDR < 0.05, the gene will be colored in red.
geneColor <- ifelse(dcOutput$p.adj < 0.05, 'red', 'black')
qqnorm(dcOutput$Z, main = 'Standardized Distance', pch = 16, col = geneColor)
qqline(dcOutput$Z)

End(Not run)

makeNetworks Computes gene regulatory networks for subsamples of cells based on
principal component regression.

Description

This function computes nNet gene regulatory networks for a randomly selected subsample of
nCells cells based on principal component regression (PCR), a technique based on principal com-
ponent analysis. In PCR, the outcome variable is regressed over a nComp number of for principal
components computed from a set of covariates to estimate the unknown regression coefficients in
the model. pcNet function computes the PCR coefficients for each gene one at a time using all the
others as covariates, to construct an all by all gene regulatory network.

makeNetworks 7

Usage

makeNetworks(
X,
nNet = 10,
nCells = 500,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0.95,
nCores = parallel::detectCores()

)

Arguments

X A filtered and normlized gene expression matrix with cells as columns and genes
as rows.

nNet An integer value. The number of networks based on principal components re-
gression to generate.

nCells An integer value. The number of cells to subsample each time to generate a
network.

nComp An integer value. The number of principal components in PCA to generate the
networks. Should be greater than 2 and lower than the total number of genes.

scaleScores A boolean value (TRUE/FALSE), if TRUE, the weights will be normalized such
that the maximum absolute value is 1.

symmetric A boolean value (TRUE/FALSE), if TRUE, the weights matrix returned will be
symmetric.

q A decimal value between 0 and 1. Represent the cut-off threshold of top q%
relationships to be returned.

nCores An integer value. Defines the number of cores to be used.

Details

Principal component regression may be broadly divided into three major steps:

1. Perform PCA on the observed covariates data matrix to obtain nComp number of the principal
components.

2. Regress the observed vector of outcomes on the selected principal components as covariates,
using ordinary least squares regression to get a vector of estimated regression coefficients

3. Transform this vector back to the scale of the actual covariates, using the eigenvectors corre-
sponding to the selected principal components to get the final PCR estimator for estimating
the regression coefficients characterizing the original model.

Value

A list with nNet gene regulatory networks in dgCMatrix format. Each one computed from a ran-
domly selected subsample of nCells cells.

8 makeNetworks

References

• Gill, Ryan, Somnath Datta, and Susmita Datta. "dna: An R package for differential network
analysis." Bioinformation 10.4 (2014): 233.

• Jolliffe, Ian T. "A note on the use of principal components in regression." Journal of the Royal
Statistical Society: Series C (Applied Statistics) 31.3 (1982): 300-303.

• Massy, William F. "Principal components regression in exploratory statistical research." Jour-
nal of the American Statistical Association 60.309 (1965): 234-256.

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Computing 3 single-cell gene regulatory networks each one from a subsample of 500 cells
mnOutput <- makeNetworks(X = X,

nNet = 3,
nCells = 500,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0.95
)

Verifying the class
class(mnOutput)

Verifying the number of networks
length(mnOutput)

Veryfying the dimention of the networks
lapply(mnOutput,dim)

Single-cell gene regulatory networks
mnOutput[[1]][1:10,1:10]

manifoldAlignment 9

mnOutput[[2]][1:10,1:10]
mnOutput[[3]][1:10,1:10]

manifoldAlignment Performs non-linear manifold alignment of two gene regulatory net-
works.

Description

Build comparable low-dimensional features for two weight-averaged denoised single-cell gene reg-
ulatory networks. Using a non-linear network embedding method manifoldAlignment aligns two
gene regulatory networks and finds the structural similarities between them. This function is a wrap-
per of the Python code provided by Vu et al., (2012) at https://github.com/all-umass/ManifoldWarping.

Usage

manifoldAlignment(X, Y, d = 30, nCores = parallel::detectCores())

Arguments

X A gene regulatory network.

Y A gene regulatory network.

d The dimension of the low-dimensional feature space.

nCores An integer value. Defines the number of cores to be used.

Details

Manifold alignment builds connections between two or more disparate data sets by aligning their
underlying manifolds and provides knowledge transfer across the data sets. For further information
please see: Wang et al., (2009)

Value

A low-dimensional projection for two the two gene regulatory networks used as input. The output
is a labeled matrix with two times the number of shared genes as rows (X_ genes followed by Y_
genes in the same order) and d number of columns.

References

• Vu, Hoa Trong, Clifton Carey, and Sridhar Mahadevan. "Manifold warping: Manifold align-
ment over time." Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.

• Wang, Chang, and Sridhar Mahadevan. "A general framework for manifold alignment." 2009
AAAI Fall Symposium Series. 2009.

10 manifoldAlignment

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Computing 3 single-cell gene regulatory networks each one from a subsample of 500 cells
xNetworks <- makeNetworks(X = X,

nNet = 3,
nCells = 500,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0.95
)

Computing a K = 3 CANDECOMP/PARAFAC (CP) Tensor Decomposition
tdOutput <- tensorDecomposition(xNetworks, K = 3, maxError = 1e5, maxIter = 1e3)

Not run:
Computing the alignment
For this example, we are using the same input, the match should be perfect.
maOutput <- manifoldAlignment(tdOutput$X, tdOutput$X)

Separating the coordinates for each gene
X <- maOutput[grepl('X_', rownames(maOutput)),]
Y <- maOutput[grepl('Y_', rownames(maOutput)),]

Plotting
X Points
plot(X, pch = 16)

Y Points
points(Y, col = 'red')

Legend
legend('topright', legend = c('X', 'Y'),

pcNet 11

col = c('black', 'red'), bty = 'n',
pch = c(16,1), cex = 0.7)

End(Not run)

pcNet Computes a gene regulatory network based on principal component
regression

Description

This function computes a gene regulatory network based on principal component regression (PCR),
a technique based on principal component analysis. In PCR, the outcome variable is regressed over
a nComp number of for principal components computed from a set of covariates to estimate the
unknown regression coefficients in the model. pcNet function computes the PCR coefficients for
each gene one at a time using all the others as covariates, to construct an all by all gene regulatory
network.

Usage

pcNet(
X,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0,
verbose = TRUE,
nCores = parallel::detectCores()

)

Arguments

X A filtered and normalized gene expression matrix with cells as columns and
genes as rows.

nComp An integer value. The number of principal components in PCA to generate the
networks. Should be greater than 2 and lower than the total number of genes.

scaleScores A boolean value (TRUE/FALSE), if TRUE, the weights will be normalized such
that the maximum absolute value is 1.

symmetric A boolean value (TRUE/FALSE), if TRUE, the weights matrix returned will be
symmetric.

q A decimal value between 0 and 1. Defines the cut-off threshold of top q% rela-
tionships to be returned.

verbose A boolean value (TRUE/FALSE), if TRUE, a progress bar is shown.

nCores An integer value. Defines the number of cores to be used.

12 pcNet

Details

Principal component regression may be broadly divided into three major steps:

1. Perform PCA on the observed covariates data matrix to obtain nComp number of the principal
components.

2. Regress the observed vector of outcomes on the selected principal components as covariates,
using ordinary least squares regression to get a vector of estimated regression coefficients

3. Transform this vector back to the scale of the actual covariates, using the eigenvectors corre-
sponding to the selected principal components to get the final PCR estimator for estimating
the regression coefficients characterizing the original model.

Value

A gene regulatory network in dgCMatrix format.

References

• Gill, Ryan, Somnath Datta, and Susmita Datta. "dna: An R package for differential network
analysis." Bioinformation 10.4 (2014): 233.

• Jolliffe, Ian T. "A note on the use of principal components in regression." Journal of the Royal
Statistical Society: Series C (Applied Statistics) 31.3 (1982): 300-303.

• Massy, William F. "Principal components regression in exploratory statistical research." Jour-
nal of the American Statistical Association 60.309 (1965): 234-256.

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Computing a single-cell gene regulatory network using principal component regression
Non-symmetric
pcnetOutput <- pcNet(X = qcOutput, nComp = 3, scaleScores = TRUE, symmetric = FALSE, q = 0)
pcnetOutput[1:10,1:10]

scQC 13

Symmetric
pcnetOutput <- pcNet(X = qcOutput, nComp = 3, scaleScores = TRUE, symmetric = TRUE, q = 0)
pcnetOutput[1:5,1:5]

scQC Performs single-cell data quality control

Description

This function performs quality control filters over the provided input matrix, the function checks for
minimum cell library size, mitochondrial ratio, outlier cells, and the fraction of cells where a gene
is expressed.

Usage

scQC(
X,
minLibSize = 1000,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Arguments

X Raw counts matrix with cells as columns and genes (symbols) as rows.
minLibSize An integer value. Defines the minimum library size required for a cell to be

included in the analysis.
removeOutlierCells

A boolean value (TRUE/FALSE), if TRUE, the identified cells with library size
greater than 1.58 IQR/sqrt(n) computed from the sample, are removed. For
further details see: ?boxplot.stats

minPCT A decimal value between 0 and 1. Defines the minimum fraction of cells where
the gene needs to be expressed to be included in the analysis.

maxMTratio A decimal value between 0 and 1. Defines the maximum ratio of mitochondrial
reads (mithocondrial reads / library size) present in a cell to be included in the
analysis. It’s computed using the symbol genes starting with ’MT-’ non-case
sensitive.

Value

A dgCMatrix object with the cells and the genes that pass the quality control filters.

References

Ilicic, Tomislav, et al. "Classification of low quality cells from single-cell RNA-seq data." Genome
biology 17.1 (2016): 29.

14 scQC

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Visualizing the Differences
oldPar <- par(no.readonly = TRUE)

par(
mfrow = c(2, 2),
mar = c(3, 3, 1, 1),
mgp = c(1.5, 0.5, 0)

)
Library Size
plot(

Matrix::colSums(X),
ylim = c(20, 70),
ylab = 'Library Size',
xlab = 'Cell',
main = 'Library Size - Before QC'

)
abline(h = c(30, 58),

lty = 2,
col = 'red')

plot(
Matrix::colSums(qcOutput),
ylim = c(20, 70),
ylab = 'Library Size',
xlab = 'Cell',
main = 'Library Size - After QC'

)
abline(h = c(30, 58),

lty = 2,
col = 'red')

Mitochondrial ratio
mtGenes <- grepl('^mt-', rownames(X), ignore.case = TRUE)

scTenifoldNet 15

plot(
Matrix::colSums(X[mtGenes,]) / Matrix::colSums(X),
ylim = c(0, 0.3),
ylab = 'Mitochondrial Ratio',
xlab = 'Cell',
main = 'Mitochondrial Ratio - Before QC'

)
abline(h = c(0.1), lty = 2, col = 'red')
plot(

Matrix::colSums(qcOutput[mtGenes,]) / Matrix::colSums(qcOutput),
ylim = c(0, 0.3),
ylab = 'Mitochondrial Ratio',
xlab = 'Cell',
main = 'Mitochondrial Ratio - Before QC'

)
abline(h = c(0.1), lty = 2, col = 'red')

par(oldPar)

scTenifoldNet scTenifoldNet

Description

Construct and compare single-cell gene regulatory networks (scGRNs) using single-cell RNA-seq
(scRNA-seq) data sets collected from different conditions based on principal component regression,
tensor decomposition, and manifold alignment.

Usage

scTenifoldNet(
X,
Y,
qc = TRUE,
qc_minLibSize = 1000,
qc_removeOutlierCells = TRUE,
qc_minPCT = 0.05,
qc_maxMTratio = 0.1,
nc_nNet = 10,
nc_nCells = 500,
nc_nComp = 3,
nc_symmetric = FALSE,
nc_scaleScores = TRUE,
nc_q = 0.05,
td_K = 3,
td_nDecimal = 1,
td_maxIter = 1000,
td_maxError = 1e-05,

16 scTenifoldNet

ma_nDim = 30,
nCores = parallel::detectCores()

)

Arguments

X Raw counts matrix with cells as columns and genes (symbols) as rows.

Y Raw counts matrix with cells as columns and genes (symbols) as rows.

qc A boolean value (TRUE/FALSE), if TRUE, a quality control is applied over the
data.

qc_minLibSize An integer value. Defines the minimum library size required for a cell to be
included in the analysis.

qc_removeOutlierCells

A boolean value (TRUE/FALSE), if TRUE, the identified cells with library size
greater than 1.58 IQR/sqrt(n) computed from the sample, are removed. For
further details see: ?boxplot.stats

qc_minPCT A decimal value between 0 and 1. Defines the minimum fraction of cells where
the gene needs to be expressed to be included in the analysis.

qc_maxMTratio A decimal value between 0 and 1. Defines the maximum ratio of mitochondrial
reads (mithocondrial reads / library size) present in a cell to be included in the
analysis. It’s computed using the symbol genes starting with ’MT-’ non-case
sensitive.

nc_nNet An integer value. The number of networks based on principal components re-
gression to generate.

nc_nCells An integer value. The number of cells to subsample each time to generate a
network.

nc_nComp An integer value. The number of principal components in PCA to generate the
networks. Should be greater than 2 and lower than the total number of genes.

nc_symmetric A boolean value (TRUE/FALSE), if TRUE, the weights matrix returned will be
symmetric.

nc_scaleScores A boolean value (TRUE/FALSE), if TRUE, the weights will be normalized such
that the maximum absolute value is 1.

nc_q A decimal value between 0 and 1. Defines the cut-off threshold of top q% rela-
tionships to be returned.

td_K An integer value. Defines the number of rank-one tensors used to approximate
the data using CANDECOMP/PARAFAC (CP) Tensor Decomposition.

td_nDecimal An integer value indicating the number of decimal places to be used.

td_maxIter An integer value. Defines the maximum number of iterations if error stay above
td_maxError.

td_maxError A decimal value between 0 and 1. Defines the relative Frobenius norm error
tolerance.

ma_nDim An integer value. Defines the number of dimensions of the low-dimensional
feature space to be returned from the non-linear manifold alignment.

nCores An integer value. Defines the number of cores to be used.

scTenifoldNet 17

Value

A list with 3 slots as follows:

• tensorNetworks: The generated weight-averaged denoised gene regulatory networks using
CANDECOMP/PARAFAC (CP) Tensor Decomposition.

• manifoldAlignment: The generated low-dimensional features result of the non-linear manifold
alignment.

• diffRegulation The results of the differential regulation analysis.

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Generating a perturbed network modifying the expression of genes 10, 2 and 3
Y <- X
Y[10,] <- Y[50,]
Y[2,] <- Y[11,]
Y[3,] <- Y[5,]

Not run:
scTenifoldNet
Output <- scTenifoldNet(X = X, Y = Y,

nc_nNet = 10, nc_nCells = 500,
td_K = 3, qc_minLibSize = 30)

Structure of the output
str(Output)

Accessing the computed weight-averaged denoised gene regulatory networks

Network for sample X
igraph::graph_from_adjacency_matrix(adjmatrix = Output$tensorNetworks$X, weighted = TRUE)
IGRAPH 15cbeea DNW- 100 2836 --
+ attr: name (v/c), weight (e/n)
+ edges from 15cbeea (vertex names):
[1] ng6 ->ng1 ng12->ng1 ng14->ng1 ng24->ng1 ng28->ng1
[6] ng31->ng1 ng42->ng1 ng44->ng1 ng49->ng1 ng55->ng1
[11] ng56->ng1 ng59->ng1 ng62->ng1 ng63->ng1 ng72->ng1
[16] ng73->ng1 ng74->ng1 ng77->ng1 ng80->ng1 ng82->ng1
[21] ng83->ng1 ng87->ng1 ng89->ng1 mt-1->ng1 mt-5->ng1
[26] mt-7->ng1 ng27->ng3 ng28->ng3 ng31->ng3 ng32->ng3
[31] ng44->ng3 ng59->ng3 ng62->ng3 ng72->ng3 ng73->ng3

18 scTenifoldNet

[36] ng74->ng3 ng77->ng3 ng82->ng3 ng87->ng3 ng89->ng3
+ ... omitted several edges

Network for sample Y
igraph::graph_from_adjacency_matrix(adjmatrix = Output$tensorNetworks$Y, weighted = TRUE)
#IGRAPH 3ad1533 DNW- 100 725 --
+ attr: name (v/c), weight (e/n)
+ edges from 3ad1533 (vertex names):
[1] ng2 ->ng2 ng3 ->ng2 ng5 ->ng2 ng6 ->ng2
[5] ng7 ->ng2 ng8 ->ng2 ng9 ->ng2 ng10->ng2
[9] ng11->ng2 ng12->ng2 ng13->ng2 ng15->ng2
[13] ng16->ng2 ng17->ng2 ng18->ng2 ng20->ng2
[17] ng21->ng2 ng22->ng2 ng23->ng2 ng24->ng2
[21] ng25->ng2 ng26->ng2 ng28->ng2 ng29->ng2
[25] ng30->ng2 ng31->ng2 ng33->ng2 ng34->ng2
[29] ng35->ng2 ng36->ng2 ng38->ng2 ng39->ng2
+ ... omitted several edges

Accessing the manifold alignment result

head(Output$manifoldAlignment)
NLMA 1 NLMA 2 NLMA 3 NLMA 4 NLMA 5
X_ng1 0.0068499391 0.01096706 0.03077900 0.002655469 -0.0136455614
X_ng2 0.3356288575 -0.03551752 -0.18463680 -0.193353751 0.3398606363
X_ng3 -0.1285177133 -0.20064344 0.20926567 0.059542294 -0.0099528441
X_ng4 0.0029881645 -0.01267593 0.01195683 0.007331123 0.0003031888
X_ng5 -0.1192632208 -0.18475439 0.27616148 0.112944009 -0.0281827702
X_ng6 0.0005911568 0.02557475 0.07527792 -0.191180647 -0.1165095115
NLMA 6 NLMA 7 NLMA 8 NLMA 9 NLMA 10
X_ng1 -0.029852128 0.007539925 0.009299591 -0.009813157 -0.01360414
X_ng2 -0.313361443 0.146429589 0.006286777 0.162023788 -0.04307899
X_ng3 -0.008733285 0.172084611 0.508056218 0.199322512 -0.07935797
X_ng4 -0.004680652 0.005344541 0.002634755 -0.003376544 -0.01100757
X_ng5 -0.126328797 0.190769152 -0.468107666 0.170278281 -0.06744795
X_ng6 -0.051266264 0.063822269 0.011060924 -0.134880459 -0.02579998
NLMA 11 NLMA 12 NLMA 13 NLMA 14 NLMA 15
X_ng1 -0.0199528840 0.008035130 0.004631187 0.000807797 0.011960838
X_ng2 -0.0138200390 -0.002847701 -0.004404942 0.008024704 0.006040799
X_ng3 0.0232384468 -0.031398116 -0.007026934 0.028956700 -0.002112626
X_ng4 0.0012864539 -0.018915289 0.003835404 0.004054159 -0.002546324
X_ng5 0.0232899093 -0.040974531 -0.006759459 0.025415953 -0.007518957
X_ng6 -0.0001650355 0.023277338 0.006646904 -0.002683418 -0.112688129
NLMA 16 NLMA 17 NLMA 18 NLMA 19 NLMA 20
X_ng1 -0.016962988 -0.016649748 0.01140020 -0.006632691 -0.0005015655
X_ng2 0.007543775 -0.016188689 0.02517684 0.014814415 0.0162617154
X_ng3 -0.005598267 -0.006975026 0.05218029 0.006731063 0.0183436415
X_ng4 0.003207934 -0.001784120 0.01093237 -0.001192860 0.0028746990
X_ng5 -0.009555879 -0.007429166 0.05206441 0.006534604 0.0170071357
X_ng6 -0.065437425 0.110728870 -0.12746932 0.335610531 0.1341842827
NLMA 21 NLMA 22 NLMA 23 NLMA 24 NLMA 25
X_ng1 0.003113385 -0.023311350 -0.026415944 7.085995e-04 0.053898102
X_ng2 0.001390569 0.001191301 -0.015621435 2.359703e-03 -0.013418093
X_ng3 -0.007483171 0.011496519 0.004164546 2.764407e-02 -0.004527981

tensorDecomposition 19

X_ng4 0.020316634 -0.002796092 0.032119363 4.203867e-05 -0.002251366
X_ng5 -0.004963436 0.016525449 0.009683698 2.564700e-02 0.002286340
X_ng6 0.229199525 0.340639745 -0.041216345 3.599596e-03 0.008572652
NLMA 26 NLMA 27 NLMA 28 NLMA 29 NLMA 30
X_ng1 0.065832029 -0.0080248854 0.107300843 -0.02902323 -0.005337500
X_ng2 -0.007982259 -0.0026295392 -0.001765851 0.01491257 -0.003546343
X_ng3 0.009770602 0.0008819272 0.014564070 -0.01568192 -0.017450667
X_ng4 0.015802609 0.0012975576 -0.003406675 -0.01774975 -0.003300053
X_ng5 0.003401007 0.0001761177 0.013622016 -0.01224127 -0.013909178
X_ng6 -0.089450710 -0.0763838722 -0.107751916 -0.05841353 -0.059217012

Differential Regulation
head(Output$diffRegulation,n = 10)
gene distance Z FC p.value p.adj
2 ng2 0.023526702 2.762449 12.193413 0.0004795855 0.02414332
50 ng50 0.023514429 2.761550 12.180695 0.0004828665 0.02414332
11 ng11 0.022443941 2.681598 11.096894 0.0008647241 0.02882414
3 ng3 0.020263415 2.508478 9.045415 0.0026335445 0.06583861
10 ng10 0.019194561 2.417929 8.116328 0.0043868326 0.07711821
5 ng5 0.019079975 2.407977 8.019712 0.0046270923 0.07711821
31 ng31 0.013632541 1.865506 4.094085 0.0430335257 0.61476465
96 mt-6 0.011401177 1.589757 2.863536 0.0906081350 0.90977795
59 ng59 0.009835354 1.368238 2.130999 0.1443466682 0.90977795
62 ng62 0.007995812 1.067193 1.408408 0.2353209153 0.90977795

Plotting
Genes with FDR < 0.1 are labeled as red
set.seed(1)
qChisq <- rchisq(100,1)
geneColor <- rev(ifelse(Output$diffRegulation$p.adj < 0.1, 10,1))
qqplot(qChisq, Output$diffRegulation$FC, pch = 16, main = 'H0', col = geneColor,

xlab = expression(X^2~Quantiles), ylab = 'FC', xlim=c(0,8), ylim=c(0,13))
qqline(qChisq)
legend('bottomright', legend = c('FDR < 0.1'), pch = 16, col = 'red', bty='n', cex = 0.7)

End(Not run)

tensorDecomposition Performs CANDECOMP/PARAFAC (CP) Tensor Decomposition.

Description

Generate weight-averaged denoised gene regulatory networks using CANDECOMP/PARAFAC
(CP) Tensor Decomposition. The tensorDecomposition function takes one or two lists of gene
regulatory matrices, if two list are provided, the shared genes are selected and the CP tensor decom-
position is performed independently for each list (3d-tensor). The tensor decomposed matrices are
then averaged to generate weight-averaged denoised networks.

20 tensorDecomposition

Usage

tensorDecomposition(
xList,
yList = NULL,
nDecimal = 1,
K = 5,
maxError = 1e-05,
maxIter = 1000

)

Arguments

xList A list of gene regulatory networks.
yList Optional. A list of gene regulatory networks.
nDecimal An integer value indicating the number of decimal places to be used.
K The number of rank-one tensors used to approximate the data using CANDE-

COMP/PARAFAC (CP) Tensor Decomposition,
maxError A decimal value between 0 and 1. Defines the relative Frobenius norm error

tolerance
maxIter An integer value. Defines the maximum number of iterations if error stay above

maxError.

Details

CANDECOMP/PARAFRAC (CP) tensor decomposition approximate a K-Tensor using a sum of K
rank-1 K-Tensors. A rank-1 K-Tensor can be written as an outer product of K vectors. This is an
iterative algorithm, with two possible stopping conditions: either relative error in Frobenius norm
has gotten below maxError, or the maxIter number of iterations has been reached. For more details
on CP decomposition, consult Kolda and Bader (2009) and Morup (2011).

Value

A list of weight-averaged denoised gene regulatory networks.

Author(s)

This is an adaptation of the code provided by Li, J., Bien, J., & Wells, M. T. (2018)

References

• Li, J., Bien, J., & Wells, M. T. (2018). rTensor: An R Package for Multidimensional Ar-
ray (Tensor) Unfolding, Multiplication, and Decomposition. Journal of Statistical Software,
87(10), 1-31.

• Kolda, Tamara G., and Brett W. Bader. "Tensor decompositions and applications." SIAM
review 51.3 (2009): 455-500.

• Morup, Morten. "Applications of tensor (multiway array) factorizations and decompositions
in data mining." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1.1
(2011): 24-40.

tensorDecomposition 21

Examples

library(scTenifoldNet)

Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))

Performing Single cell quality control
qcOutput <- scQC(

X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1

)

Computing 3 single-cell gene regulatory networks each one from a subsample of 500 cells
mnOutput <- makeNetworks(X = X,

nNet = 3,
nCells = 500,
nComp = 3,
scaleScores = TRUE,
symmetric = FALSE,
q = 0.95
)

Computing a K = 3 CANDECOMP/PARAFAC (CP) Tensor Decomposition
tdOutput <- tensorDecomposition(mnOutput, K = 3, maxError = 1e5, maxIter = 1e3)

Verifying the number of networks
length(tdOutput)

Veryfying the dimention of the networks
lapply(tdOutput,dim)

Weight-averaged denoised single-cell gene regulatory networks
tdOutput[[1]][1:10,1:10]

Index

cpDecomposition, 2
cpmNormalization, 3

dRegulation, 4

makeNetworks, 6
manifoldAlignment, 9

pcNet, 11

scQC, 13
scTenifoldNet, 15

tensorDecomposition, 19

22

	cpDecomposition
	cpmNormalization
	dRegulation
	makeNetworks
	manifoldAlignment
	pcNet
	scQC
	scTenifoldNet
	tensorDecomposition
	Index

