Package 'scoringTools'

January 10, 2021

Type Package

Title Credit Scoring Tools

Version 0.1.2

Date 2020-12-16

Maintainer Adrien Ehrhardt <adrien.ehrhardt@centraliens-lille.org>

Description Grouping essential tools for credit scoring. These statistical tools may be useful for other use-cases as well but were primarily designed for it. First, there are Reject Inference methods (Ehrhardt et al. (2017) <arXiv:1903.10855>). Second, we build upon the already CRAN-available package 'discretization' to automate discretization of continuous features.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports discretization, sqldf, magrittr, dplyr, methods

Suggests MASS, rpart, Rmixmod, mvtnorm, ggplot2, speedglm, knitr, rmarkdown, plotly, pROC, shiny, testthat, covr

URL https://adimajo.github.io/scoringTools/

BugReports https://github.com/adimajo/scoringTools/issues

VignetteBuilder knitr

Collate 'allClasses.R' 'allMethods.R' 'augmentation.R'

'check_consistency.R' 'chi2.R' 'chiM.R' 'cut.dataset.R'
'data.R' 'discretize.cutp.R' 'echi2.R' 'fuzzyAugmentation.R'
'generate_data.R' 'get_cutp.R' 'mdlp.R' 'methodsDisc.R'
'modChi2.R' 'model_f.R' 'normalizedGini.R' 'parcelling.R'
'reclassification.R' 'runDemo.R' 'scoringTools.R' 'topdown.R'
'twins.R'

NeedsCompilation no

Author Adrien Ehrhardt [aut, cre]

Repository CRAN

Date/Publication 2021-01-10 17:20:02 UTC

R topics documented:

scoringTools-package	2
	2
augmentation	-
chi2_iter	4
chiM_iter	5
discretization	7
discretize	8
echi2_iter	8
fuzzy_augmentation	10
generate_data	11
lendingClub	12
mdlp_iter	13
-	14
normalizedGini	16
	17
plot	18
predict	19
1	19
	21
	21
Summary	21
topdown_iter	
twins	24
	26

scoringTools-package Credit Scoring Tools.

Description

Index

Refer to the package's vignette.

Author(s)

Maintainer: Adrien Ehrhardt <adrien.ehrhardt@centraliens-lille.org>

See Also

Useful links:

- https://adimajo.github.io/scoringTools/
- Report bugs at https://github.com/adimajo/scoringTools/issues

augmentation

Description

This function performs Reject Inference using the Augmentation technique. Note that this technique is theoretically better than using the financed clients scorecard in the MAR and misspecified model case.

Usage

augmentation(xf, xnf, yf)

Arguments

xf	The matrix of financed clients' characteristics to be used in the scorecard.
xnf	The matrix of not financed clients' characteristics to be used in the scorecard (must be the same features in the same order as xf!).
yf	The matrix of financed clients' labels

Details

This function performs the Augmentation method on the data. When provided with labeled observations (x^{ℓ}, y) , it first fits the logistic regression model p_{θ} of x^{ℓ} on y, then reweighs labeled observations according to their probability of being sampled, i.e. calculates the predicted probabilities of p_{θ} on all observations, defines score-bands and calculates, in each of these score-bands, the probability of having been accepted as the proportion of labeled samples in that score-band. It then refits a logistic regression model p_{η} on the labeled samples.

Value

List containing the model using financed clients only and the model produced using the Augmentation method.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

See Also

glm, speedglm

Examples

```
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
augmentation(xf, xnf, yf)
```

chi2_iter

Wrapper function for the chi2 function from the discretization package.

Description

This function discretizes a training set using the chi2 method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

```
chi2_iter(
  predictors,
  labels,
  test = FALSE,
  validation = FALSE,
  proportions = c(0.3, 0.3),
  criterion = "gini",
  param = list(list(alp = 0.001, del = 0.5))
)
```

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors $(0/1)$.
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).

4

chiM_iter

criterion	The criterion ('gini','aic','bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param	List providing the parameters to test (see ?discretization::chi2, default=list(list(alp=0.001, del=0.5))).

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Liu, H. and Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes, *Tools with Artificial Intelligence*, 388–391.

Examples

```
# Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
    sapply(
        seq_along(xd[row_id, ]),
        function(element) theta[xd[row_id, element], element]
    )
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))
chi2_iter(x, y)</pre>
```

chiM_iter

Wrapper function for the chiMerge function from the discretization package.

Description

This function discretizes a training set using the chiMerge method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

```
chiM_iter(
   predictors,
   labels,
   test = FALSE,
   validation = FALSE,
   proportions = c(0.3, 0.3),
   criterion = "gini",
   param = list(alpha = 0.05)
)
```

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors (0/1).
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion	The criterion ('gini','aic','bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param	List providing the parameters to test (see ?discretization::chiM, default=list(alpha = 0.05)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ChiMerge alorithm starts by putting each unique values of X in a separate value of the "discretized" categorical feature E. It then tests if two adjacent values of E are significantly different using the χ^2 -test. In the context of Credit Scoring, a logistic regression is fitted between the "discretized" features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

6

discretization

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Kerber, R. (1992). ChiMerge : Discretization of numeric attributes, *In Proceedings of the Tenth National Conference on Artificial Intelligence*, 123–128.

See Also

glm, speedglm, discretization

Examples

```
# Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
    sapply(
        seq_along(xd[row_id, ]),
        function(element) theta[xd[row_id, element], element]
    )
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))
chiM_iter(x, y)
```

discretization Class discretization

Description

An S4 class to represent a discretization scheme.

Slots

method.name The name of the used discretization method.

parameters The parameters associated with the used method.

best.disc The best discretization scheme found by the method given its parameters.

performance The performance obtained with the method given its parameters.

- disc.data The discretized data: test set if test is TRUE; if test is FALSE and validation is TRUE, then it provides the discretized validation set. Otherwise, it provides the discretized training set.
- disc.data The continuous data: test set if test is TRUE; if test is FALSE and validation is TRUE, then it provides the discretized validation set. Otherwise, it provides the discretized training set.

```
discretize
```

Description

This defines the generic method "discretize" which will discretize a new input dataset given a discretization scheme of S4 class discretization.

Usage

```
discretize(object, data)
```

S4 method for signature 'discretization'
discretize(object, data)

Arguments

object	the S4 discretization object
data	new data to discretize

Details

This function discretizes a new data set using a previously learnt discretization scheme.

echi2_iter	Wrapper function for the extended Chi2 function from the discretiza-
	tion package.

Description

This function discretizes a training set using the extended Chi2 method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

```
echi2_iter(
   predictors,
   labels,
   test = FALSE,
   validation = FALSE,
   proportions = c(0.3, 0.3),
   criterion = "gini",
   param = list(alp = 0.5)
)
```

echi2_iter

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors (0/1).
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion	The criterion ('gini', 'aic', 'bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param	List providing the parameters to test (see ?discretization::extendChi2, default=list(alp = 0.5)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ExtendedChi2 alorithm starts by putting each unique values of X in a separate value of the "discretized" categorical feature E. It then tests if two adjacent values of E are significantly different using the χ^2 -test. In the context of Credit Scoring, a logistic regression is fitted between the "discretized" features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Liu, H. and Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes, *Tools with Artificial Intelligence*, 388–391.

See Also

glm, speedglm, discretization

Examples

```
# Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
    sapply(
        seq_along(xd[row_id, ]),
        function(element) theta[xd[row_id, element], element]
    )
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))
echi2_iter(x, y)</pre>
```

fuzzy_augmentation Fuzzy Augmentation

Description

This function performs Reject Inference using the Fuzzy Augmentation technique. Note that this technique has no theoretical foundation and should produce (under the identifiability assumption) the same parameters' estimates than the financed clients scorecard.

Usage

```
fuzzy_augmentation(xf, xnf, yf)
```

Arguments

xf	The matrix of financed clients' characteristics to be used in the scorecard.
xnf	The matrix of not financed clients' characteristics to be used in the scorecard (must be the same in the same order as xf!).
yf	The matrix of financed clients' labels

Details

This function performs the Fuzzy Augmentation method on the data. When provided with labeled observations (x^{ℓ}, y) , it first fits the logistic regression model p_{θ} of x^{ℓ} on y, then labels the unlabelled samples x^{u} with the predicted probabilities of p_{θ} , i.e. $\hat{y}^{u} = p_{\theta}(y|x^{u})$ then refits a logistic regression model p_{η} on the whole sample.

10

generate_data

Value

List containing the model using financed clients only and the model produced using the Fuzzy Augmentation method.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

See Also

glm, speedglm

Examples

```
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
fuzzy_augmentation(xf, xnf, yf)
```

generate_data

Generate data following different missingness mechanisms

Description

This function performs generates

Usage

generate_data(n = 100, d = 3, type = "MAR well specified")

Arguments

n	The number of samples to return.
d	The dimension of samples to return.
type	The matrix of financed clients' labels

Details

This function generates data from a uniform(0,1) distribution, and generates labels y according to a logistic regression on this data with random -1/1 parameter for each coordinate (MAR well-specified), the square of this data (MAR misspecified), or this data and some additional feature (from U(0,1) as well - MNAR).

Value

Dataframe containing features as x.1..d, labels as y.

Author(s)

Adrien Ehrhardt

References

Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

Examples

```
# We simulate data from financed clients
generate_data(n = 100, d = 3, type = "MAR well specified")
```

lendingClub Lending Club mortgages.

Description

A dataset containing the information about Lending Club loans available online.

Usage

lendingClub

Format

A data frame with 2167 rows and 16 variables.

Source

https://www.lendingclub.com/

mdlp_iter

Wrapper function for the mdlp function from the discretization pack-age.

Description

This function discretizes a training set using the Minimum Description Length Principle method and the user-provided parameters.

Usage

```
mdlp_iter(
   predictors,
   labels,
   test = FALSE,
   validation = FALSE,
   proportions = c(0.3, 0.3),
   criterion = "gini"
)
```

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors (0/1).
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion	The criterion ('gini','aic','bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the

discretization of X. To do so, the MDLP alorithm dichotomizes X and puts the subsequent two values in the "discretized" categorical feature E. It chooses the cut-off point so as to minimize the resulting entropy and goes on in the subsequent two sub-spaces it just created. In the context of Credit Scoring, a logistic regression is fitted between the "discretized" features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Fayyad, U. M. and Irani, K. B.(1993). Multi-interval discretization of continuous-valued attributes for classification learning, *Artificial intelligence*, **13**, 1022–1027.

See Also

glm, speedglm, discretization

Examples

```
# Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
    sapply(
        seq_along(xd[row_id, ]),
        function(element) theta[xd[row_id, element], element]
    )
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))
mdlp_iter(x, y)</pre>
```

modChi2_iter

Wrapper function for the modified Chi2 function from the discretization package.

modChi2_iter

Description

This function discretizes a training set using the modified Chi2 method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

```
modChi2_iter(
   predictors,
   labels,
   test = FALSE,
   validation = FALSE,
   proportions = c(0.3, 0.3),
   criterion = "gini",
   param = list(alp = 0.5)
)
```

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors (0/1).
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion	The criterion ('gini','aic','bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param	List providing the parameters to test (see ?discretization::modChi2, default=list(alp = 0.5)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ModifiedChi2 alorithm starts by putting each unique values of X in a separate value of the "discretized" categorical feature E. It then tests if two adjacent values

of E are significantly different using the χ^2 -test. In the context of Credit Scoring, a logistic regression is fitted between the "discretized" features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Tay, F. E. H. and Shen, L. (2002). Modified Chi2 Algorithm for Discretization, *IEEE Transactions* on knowledge and data engineering, **14**, 666–670. #' @examples # Simulation of a discretized logit model x = matrix(runif(300), nrow = 100, ncol = 3) cuts = seq(0,1,length.out= 4) xd = apply(x,2, function(col) as.numeric(cut(col,cuts))) theta = t(matrix(c(0,0,0,2,2,2,-2,-2,-2),ncol=3,nrow=3)) log_odd = rowSums(t(sapply(seq_along(xd[,1]), function(row_id) sapply(seq_along(xd[row_id,]), function(element) theta[xd[row_id,element],element])))) y = stats::rbinom(100,1,1/(1+exp(-log_odd)))

modchi2_iter(x,y)

See Also

glm, speedglm, discretization

normalizedGini Calculating the normalized Gini index

Description

This function calculates the Gini index of a classification rule outputting probabilities. It is a classical metric in the context of Credit Scoring. It is equal to 2 times the AUC (Area Under ROC Curve) minus 1.

Usage

```
normalizedGini(actual, predicted)
```

Arguments

actual	The numeric binary vector of the actual labels observed.
predicted	The vector of the probabilities predicted by the classification rule.

Examples

normalizedGini(c(1, 1, 1, 0, 0), c(0.7, 0.9, 0.5, 0.6, 0.3))

parcelling

Description

This function performs Reject Inference using the Parcelling technique. Note that this technique is theoretically good in the MNAR framework although coefficients must be chosen a priori.

Usage

```
parcelling(
    xf,
    xnf,
    yf,
    probs = seq(0, 1, 0.25),
    alpha = rep(1, length(probs) - 1)
)
```

Arguments

xf	The matrix of financed clients' characteristics to be used in the scorecard.
xnf	The matrix of not financed clients' characteristics to be used in the scorecard (must be the same in the same order as xf!).
yf	The matrix of financed clients' labels
probs	The sequence of quantiles to use to make scorebands (see the vignette).
alpha	The user-defined coefficients to use with Parcelling (see the vignette).

Details

This function performs the Parcelling method on the data. When provided with labeled observations (x^{ℓ}, y) , it first fits the logistic regression model p_{θ} of x^{ℓ} on y, then labels the unlabelled samples x^{u} with the observed bad rate in user-defined classes of predicted probabilities of p_{θ} reweighted using user-supplied weights, i.e. $\hat{y}^{u} = \alpha_{k}T(k)$ where k denotes the group (which depends on p_{θ}) and T(k) the observed bad rate of labeled observations in this group. It then refits a logistic regression model p_{η} on the whole sample.

Value

List containing the model using financed clients only and the model produced using the Parcelling method.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

See Also

glm, speedglm

Examples

```
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
parcelling(xf, xnf, yf)
```

plot	Different kinds of plots using either plotly (if available) or the standard
	plot (graphics package).

Description

This function aims at producing useful graphs in the context of credit scoring in order to simplify the validation process of the produced credit score.

Usage

```
plot(x, y, ...)
```

plot.discretization(x, type)

S4 method for signature 'discretization'
plot(x, type)

Arguments

х	S4 discretization object.
У	(For standard plots only)
	(For standard plots only)
type	Type of plot. For now only "ROC" is supported.

predict

Prediction on a raw test set of the best logistic regression model on discretized data.

Description

This function discretizes a user-provided test dataset given a discretization scheme provided by an S4 "discretization" object. It then applies the learnt logistic regression model and outputs its prediction (see predict.glm).

Usage

```
predict(object, ...)
predict.discretization(object, newdata)
predict.reject_infered(object, newdata, ...)
## S4 method for signature 'discretization'
predict(object, newdata)
## S4 method for signature 'reject_infered'
predict(object, newdata, ...)
```

Arguments

object	The S4 reject_infered object.
	Additional parameters to pass on to base predict.
newdata	The test dataframe to discretize and for which we wish to have predictions.

reclassification Reclassification

Description

This function performs Reject Inference using the Reclassification technique. Note that this technique has no theoretical foundation as it performs a one-step CEM algorithm.

Usage

```
reclassification(xf, xnf, yf, thresh = 0.5)
```

Arguments

xf	The matrix of financed clients' characteristics to be used in the scorecard.
xnf	The matrix of not financed clients' characteristics to be used in the scorecard (must be the same in the same order as xf!).
yf	The matrix of financed clients' labels
thresh	The threshold to use in the Classification step, i.e. the probability above which a not financed client is considered to have a label equal to 1.

Details

This function performs the Reclassification method on the data. When provided with labeled observations (x^{ℓ}, y) , it first fits the logistic regression model p_{θ} of x^{ℓ} on y, then considers that unlabeled observations are of the expected class given by the model p_{θ} (this is equivalent to a CEM algorithm). It then refits a logistic regression model p_{η} on the whole sample.

Value

List containing the model using financed clients only and the model produced using the Reclassification method.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

See Also

glm, speedglm

Examples

```
# We simulate data from financed clients
xf <- matrix(runif(100 * 2), nrow = 100, ncol = 2)
theta <- c(2, -2)
log_odd <- apply(xf, 1, function(row) theta %*% row)
yf <- rbinom(100, 1, 1 / (1 + exp(-log_odd)))
# We simulate data from not financed clients (MCAR mechanism)
xnf <- matrix(runif(100 * 2), nrow = 100, ncol = 2)
reclassification(xf, xnf, yf)
```

reject_infered-class Class reject_infered

Description

An S4 class to represent a reject inference technique.

Slots

method_name The name of the used reject inference method.
financed_model The logistic regression model on financed clients.
acceptance_model The acceptance model (if estimated by the given method).
infered_model The logistic regression model resulting from the reject inference method.

runDemo

Launch the Shiny demo app.

Description

Launch the Shiny demo app.

Usage

runDemo()

summary

Summary

Description

Summary generic.

Usage

```
summary(object, ...)
```

summary.discretization(object)

S4 method for signature 'discretization'
summary(object)

Arguments

object	S4 discretization object.
	Other parameters to summary

topdown_iter

Wrapper function for the 3 topdown functions from the discretization package.

Description

This function discretizes a training set using the user provided method(s) among the three topdown methods from the discretization package. Depending on the user providing a test and/or a validation set, the function returns the best discretization for logistic regression.

Usage

```
topdown_iter(
  predictors,
  labels,
  test = F,
  validation = F,
  proportions = c(0.3, 0.3),
  criterion = "gini",
  param = list(1, 2, 3)
)
```

Arguments

predictors	The matrix array containing the numeric attributes to discretize.
labels	The actual labels of the provided predictors (0/1).
test	Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation	Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions	The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion	The criterion ('gini', 'aic', 'bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param	List providing the methods to test (from 1, 2 and 3, default: list(1,2,3)).

topdown_iter

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the Topdown alorithms ... In the context of Credit Scoring, a logistic regression is fitted between the "discretized" features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm

HyunJi Kim (2012). discretization: Data preprocessing, discretization for classification. R package version 1.0-1. https://CRAN.R-project.org/package=discretization

Gonzalez-Abril, L., Cuberos, F. J., Velasco, F. and Ortega, J. A. (2009) Ameva: An autonomous discretization algorithm, *Expert Systems with Applications*, **36**, 5327–5332.

Kurgan, L. A. and Cios, K. J. (2004). CAIM Discretization Algorithm, *IEEE Transactions on knowledge and data engineering*, **16**, 145–153.

Tsai, C. J., Lee, C. I. and Yang, W. P. (2008). A discretization algorithm based on Class-Attribute Contingency Coefficient, *Information Sciences*, **178**, 714–731.

See Also

glm, speedglm, discretization

Examples

```
# Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
    sapply(
        seq_along(xd[row_id, ]),
        function(element) theta[xd[row_id, element], element]
    )
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))
topdown_iter(x, y)
```

twins

Description

This function performs Reject Inference using the Twins technique. Note that this technique has no theoretical foundation.

Usage

twins(xf, xnf, yf)

Arguments

xf	The matrix of financed clients' characteristics to be used in the scorecard.
xnf	The matrix of not financed clients' characteristics to be used in the scorecard (must be the same in the same order as xf!).
yf	The matrix of financed clients' labels

Details

This function performs the Twins method on the data. When provided with labeled observations (x^{ℓ}, y) , it first fits the logistic regression model p_{θ} of x^{ℓ} on y, then fits the logistic regression model p_{ω} of X on the binomial random variable denoting the observation of the data Z. We use predictions of both models on the labeled observations to construct a "meta"-score based on logistic regression which predicted probabilities are used to reweight samples and construct the final score p_{η} .

Value

List containing the model using financed clients only, the model of acceptance and the model produced using the Twins method.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, https://CRAN.R-project.org/package=speedglm Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P. and Beben, S. (2018), Reject Inference Methods in Credit Scoring: a rational review,

See Also

glm, speedglm

twins

Examples

```
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
twins(xf, xnf, yf)</pre>
```

Index

* Chi2 echi2_iter, 8 modChi2_iter, 14 * chi2 chi2_iter,4 * chiMerge chiM_iter, 5 * credit augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * datasets lendingClub, 12 * discretization chi2_iter,4 chiM_iter, 5 echi2_iter,8 mdlp_iter, 13 modChi2_iter, 14 topdown_iter, 22 * extended echi2_iter,8 * gini index normalizedGini, 16 * inference augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * mdlp mdlp_iter, 13 * modified modChi2_iter, 14 * réintégration

augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * reject augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * scorecard augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * scoring augmentation, 3fuzzy_augmentation, 10 generate_data, 11 parcelling, 17 reclassification, 19 twins, 24 * topdown $topdown_iter, 22$ augmentation, 3chi2_iter,4 chiM_iter, 5 discretization, 7 discretize, 8 discretize, discretization-method (discretize), 8

echi2_iter,8

INDEX

twins, 24

fuzzy_augmentation, 10 generate_data, 11 lendingClub, 12 mdlp_iter, 13 modChi2_iter, 14 normalizedGini, 16 parcelling, 17 plot, 18 plot,discretization-method(plot), 18 plot.discretization(plot), 18 predict, 19 predict,discretization-method (predict), 19 predict,reject_infered-method (predict), 19 predict.discretization (predict), 19 predict.reject_infered(predict), 19 reclassification, 19 reject_infered-class, 21 runDemo, 21 scoringTools(scoringTools-package), 2 scoringTools-package, 2 summary, 21 summary,discretization-method (summary), 21 summary.discretization (summary), 21 topdown_iter, 22

27