scpi: Prediction Intervals for Synthetic Control Methods

Implementation of estimation and inference procedures for Synthetic Control methods using least square, lasso, ridge, or simplex-type constraints. Uncertainty is quantified with prediction intervals as developed in Cattaneo, Feng, and Titiunik (2021) <https://cattaneo.princeton.edu/papers/Cattaneo-Feng-Titiunik_2021_JASA.pdf>.

Version: 0.2.1
Depends: R (≥ 4.1.0)
Imports: abind (≥ 1.4.5), CVXR (≥ 1.0.10), doRNG (≥ 1.8.2), doSNOW (≥ 1.0.19), dplyr (≥ 1.0.7), ECOSolveR (≥ 0.5.4), fastDummies (≥ 1.6.3), foreach (≥ 1.5.1), ggplot2 (≥ 3.3.3), magrittr (≥ 2.0.1), Matrix (≥ 1.3.3), methods (≥ 4.1.0), nloptr (≥ 1.2.2.2), parallel (≥ 4.1.0), purrr (≥ 0.3.4), Qtools (≥ 1.5.4), rlang (≥ 0.4.11), stats (≥ 4.1.0), stringr (≥ 1.4.0), tibble (≥ 3.1.2), tidyr (≥ 1.1.3), utils (≥ 4.1.1)
Suggests: testthat (≥ 3.0.0)
Published: 2022-03-23
Author: Matias Cattaneo [aut], Yingjie Feng [aut], Filippo Palomba [aut, cre], Rocio Titiunik [aut]
Maintainer: Filippo Palomba <fpalomba at princeton.edu>
License: GPL-2
NeedsCompilation: no
CRAN checks: scpi results

Documentation:

Reference manual: scpi.pdf

Downloads:

Package source: scpi_0.2.1.tar.gz
Windows binaries: r-devel: scpi_0.2.1.zip, r-release: scpi_0.2.1.zip, r-oldrel: scpi_0.2.1.zip
macOS binaries: r-release (arm64): scpi_0.2.1.tgz, r-oldrel (arm64): scpi_0.2.1.tgz, r-release (x86_64): scpi_0.2.1.tgz, r-oldrel (x86_64): scpi_0.2.1.tgz
Old sources: scpi archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=scpi to link to this page.