Package 'sdef'

May 18, 2018

Type Package

Title Synthesizing List of Differentially Expressed Features

Version 1.7

Date 2018-05-17

Author Alberto Cassese, Marta Blangiardo

Maintainer Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>

Description Performs two tests to evaluate if the experiments are associated and returns a list of interesting features common to all the experiments.

License GPL-2

Imports graphics,grDevices,stats,utils

NeedsCompilation no

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2018-05-17 23:10:06 UTC

R topics documented:

sdef-package	
baymod	3
createTable	4
designCount	5
designMatrix	6
Example3Lists	7
extractFeatures.R	8
extractFeatures.T	9
Liver.Muscle	10
ratio	11
simulation	
simulation.indep	
Tmc	

18

Index

sdef-package

Description

Performs two tests to evaluate if the experiments are associated and returns a list of interesting features common to all the experiments.

Details

The DESCRIPTION file:

Package:	sdef
Type:	Package
Title:	Synthesizing List of Differentially Expressed Features
Version:	1.7
Date:	2018-05-17
Author:	Alberto Cassese, Marta Blangiardo
Maintainer:	Alberto Cassese <alberto.cassese@maastrichtuniversity.nl></alberto.cassese@maastrichtuniversity.nl>
Description:	Performs two tests to evaluate if the experiments are associated and returns a list of interesting features commo
License:	GPL-2
Imports:	graphics,grDevices,stats,utils

Index of help topics:

Example3Lists	Molecular Differences between Mammalian Sexes.
Liver.Muscle	Diabetes susceptibility in liver and skeletal muscle of mice
Tmc	Empirical null distribution of max T(h)
baymod	Bayesian model for the ratio of observed to
-	expected probability of features to be in common
createTable	Function to create an output table
designCount	Internal function
designMatrix	Internal function
extractFeatures.R	Extracting the lists of features of interest
extractFeatures.T	Extracting the lists of features of interest
ratio	Ratio Th between the observed features in
	Common and the expected ones
sdet-package	Features
simulation	Simulate p-values for two related experiments
simulation.indep	Simulate p-values for two indipendent experiments

baymod

Author(s)

Alberto Cassese, Marta Blangiardo

Maintainer: Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>

ba	vmod

Bayesian model for the ratio of observed to expected probability of features to be in common

Description

The function specifies a Bayesian model for the ratio of observed to expected probability of features to be in common. A multinomial distribution is specified on the probabilities of being significant in any combination of the experiments (e.g. if two experiments are considered, the probability of being significant in none, one and two experiments is specified) and a prior distribution is put on their parameters. The quantity of interest is the ratio of the probability that a feature is in common, to the probability that a feature is in common by chance, called R(h).

Usage

baymod(output.ratio, iter = 1000, dir = getwd(), conf = 95)

Arguments

output.ratio	The output object from the ratio function
iter	Number of iterations to be performed
dir	Directory for storing the plots
conf	Size of Confidence Interval

Details

It returns an object of class list with the ratio R(h) for each threshold and its quantiles specified by conf. R(h) is significant if its CI does not include 1. We consider two rules for selecting the list of genes of interest: 1) hmax is the maximum of Median(R(h)) only for the subset of credibility intervals which do not include 1; 2) h2 is the largest threshold where the number of features called in common at least doubles the number of features in common under independence (where R(h) larger than 2).

The function returns also a plot of the credibility interval for each threshold. The same plot is also saved in the directory specified by the user.

Value

A matrix and a plot with the quantiles of R(h) identified by conf for each p-value threshold.

Author(s)

Alberto Cassese, Marta Blangiardo

References

M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54.

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8,DEfirst=300,
DEsecond=200,DEcommon=100)
Th<- ratio(data=data$Pval)
Rh<- baymod(iter=100,output.ratio=Th)</pre>
```

createTable Function to create an output table

Description

This function reports the results from the Frequentist and Bayesian model for hmax and for h2. It also creates an output table with the results for all the thresholds in a csv format, so the user can select additional thresholds of interest.

Usage

```
createTable(output.ratio, output.bay, dir = getwd(),h=NULL)
```

Arguments

output.ratio	The output object from the Frequentist model (ratio function)
output.bay	The output object from the Bayesian model (baymod function)
dir	Directory for storing the table
h	Additional thresholds in the form of a vector

Details

To select a list of interesting features from the Bayesian model we suggest two decision rules in the paper: 1) the maximum of Median(R(h)) only for the subset of credibility intervals which do not include 1; 2) the largest threshold h for which the ratio R(h) il bigger than 2.

The first one is pointing out the strongest deviation from independence, whilst the second is the largest threshold where the number of features called in common at least doubles the number of features in common under independence.

Value

max	The results of the R(hmax) statistic
rule2	The results using the rule R(h) larger than 2 (see details)
ruleh	The results using additional thresholds

designCount

Author(s)

Alberto Cassese, Marta Blangiardo

References

1. M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8,
DEfirst=300,DEsecond=200,DEcommon=100)
Th<- ratio(data=data$Pval)
Rh<- baymod(iter=100,output.ratio=Th)
output.table <- createTable(output.ratio=Th,output.bay=Rh)</pre>
```

designCount

Internal function

Description

This is an internal function. The user should not use the function directly.

Usage

designCount(array, design)

Arguments

array	Data matrix
design	Design matrix

Author(s)

Alberto Cassese, Marta Blangiardo

```
## The function is currently defined as
function(array,design) {
  sum1intersects <- function(c1,c2) return(all(c1 == c2))
  res <- vector(mode="numeric",length=(nrow(design)-1))
  for(i in 2:nrow(design)){
  res[i-1] <- sum(apply(array,1,sum1intersects,design[i,]))</pre>
```

```
}
return(res)
}
```

designMatrix

Internal function

Description

This is an internal function. The user should not use the function directly.

Usage

designMatrix(lists)

Arguments

lists The number of lists to be compared

Author(s)

Alberto Cassese, Marta Blangiardo

```
## The function is currently defined as
function(lists){
rows = 2^(lists)
ncycles = rows
x = matrix(0,rows,lists)
for (k in 1:lists){
settings = c(0,1)
ncycles = ncycles/2
nreps = rows/(2*ncycles)
settings = matrix(rep(settings,nreps),nreps,
length(settings),byrow=TRUE)
settings = as.vector(settings)
#impila in un vettore settings, una colonna sotto l'altra
settings = matrix(rep(settings,ncycles),
length(settings),ncycles)
x[,lists-k+1] = as.vector(settings)
  }
return(x)
  }
```

Example3Lists

Description

This dataset contains three lists of p-values obtained from a publicly available experiment to evaluate differential expression between mammalian sexes in three tissues (hypothalamus, kidney and liver).

Usage

```
data(Example3Lists)
```

Format

The format is: a matrix with 6477 rows and 3 columns. For each gene (row) it reports the p-values of being differentially expressed between male and female mice for the three tissues.

Source

http://www.ncbi.nlm.nih.gov/geo, accession number GSE1147-GSE1148

References

Rinn J, Rozowsky J, Laurenzi I, Petersen P, Zou ZW K, Gerstein M, Snyder1 M: Major Molecular Differences between Mammalian Sexes Are Involved in Drug Metabolism and Renal Function. Developmental Cell 2004, 6:791-800

Examples

```
#data(Example3Lists)
#Th<- ratio(data=Example3Lists)</pre>
```

#Rh<- baymod(iter=100,output.ratio=Th)</pre>

```
#MC<- Tmc(iter=100,output.ratio=Th)</pre>
```

```
#The gene names can be obtained using the command dimnames:
#feat.names = dimnames(Example3Lists)[[1]]
#feat.lists <- extractFeatures.R(output.ratio=Th,output.bay=Rh,feat.names=feat.names,h=NULL)
#feat.lists.T <- extractFeatures.T(output.ratio=Th,feat.names=feat.names)</pre>
```

#output.table <- createTable(output.ratio=Th,output.bay=Rh)</pre>

extractFeatures.R Extracting the lists of features of interest

Description

The function returns the list of features in common using the two suggested rules hmax and h2 (Bayesian model) and additional ones defined by the user.

Usage

```
extractFeatures.R(output.ratio, output.bay, feat.names, h = NULL)
```

Arguments

output.ratio	The output object from the Frequentist model (ratio function)
output.bay	The output object from the Bayesian model (baymod function)
feat.names	Names of the features (e.g Affy ID for genes)
h	Additional thresholds in the form of a vector to select a list of features in common. I

Details

To select a list of interesting features from the Bayesian model we suggest two decision rules in the paper: 1) the maximum of Median(R(h)) only for the subset of credibility intervals which do not include 1; 2) the largest threshold h for which the ratio R(h) is bigger than 2.

The first one is pointing out the strongest deviation from independence, whilst the second is the largest threshold where the number of features called in common at least doubles the number of features in common under independence. The user can define additional thresholds of interest and obtain the list of associated features.

Value

The function returns an object of the class list. Each element is a matrix where the first column contains the name of the features while the other columns contain the p-values* from the experiments. It also saves a .csv file with the same information.

* instead of the p-values any other measure used to rank the features in the experiments can be used

max	The list of features of interest selected on the basis of the threshold associated to $R(\mbox{\rm hmax})$
rule2	The list of features of interest selected on the basis of the threshold associated to $R(\mathrm{h2})$
User	The list of features of interest selected on the basis of the additional thresholds selected by the user

Author(s)

Alberto Cassese, Marta Blangiardo

extractFeatures.T

References

1. M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8,
DEfirst=300,DEsecond=200,DEcommon=100)
Th<- ratio(data=data$Pval)
Rh<- baymod(iter=100,output.ratio=Th)
feat.names = data$names
feat.lists <- extractFeatures.R(output.ratio=Th,output.bay=Rh,
feat.names=feat.names,h=NULL)
```

extractFeatures.T Extracting the lists of features of interest

Description

The function returns the list of features in common using the hmax rule (Frequentist model).

Usage

extractFeatures.T(output.ratio, feat.names)

Arguments

output.ratio	The output object from the Frequentist model (ratio function)
feat.names	names of the features (e.g Affy ID for genes)

Details

To select a list of interesting features from the frequentist model we suggest a decision rules in the paper: the maximum of T(h)=nb genes in common/nb genes in common under the hypothesis of independence. It is pointing out the strongest deviation from independence.

Value

The function returns an object of the class list. Each element is a matrix where the first column contains the name of the features while the other columns contain the p-values* from the experiments. It also saves a .csv file with the same information.

*instead of the p-values any other measure used to rank the features in the experiments can be used.

max The list of features in common selected on the basis of the threshold associated to T(hmax)

Author(s)

Alberto Cassese, Marta Blangiardo

References

1. M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8,
DEfirst=300,DEsecond=200,DEcommon=100)
Th<- ratio(data=data$Pval)
feat.names = data$names
feat.lists.T <- extractFeatures.T(output.ratio=Th,
feat.names=feat.names)
```

Liver.Muscle

Diabetes susceptibility in liver and skeletal muscle of mice.

Description

This dataset contains two lists of p-values obtained from a publicly available experiment to evaluate differential expression between diabetes susceptibility in liver and skeletal muscle of obese and normal mice.

Usage

```
data(Liver.Muscle)
```

Format

The format is: a matrix with 2912 rows and two columns. For each gene (row) it reports the p-values of being differentially expressed between obese and normal mice for the two tissues (columns).

Source

http://www.ncbi.nlm.nih.gov/geo, accession number GDS1443

References

Lan H, Rabaglia ME, Stoehr JP, Nadler ST et al. Gene expression profiles of non diabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 2003 Mar;52(3):688-700.

ratio

Examples

```
#data(Liver.Muscle)
#Th<- ratio(data=Liver.Muscle)
#Rh<- baymod(iter=100,output.ratio=Th)
#MC<- Tmc(iter=100,output.ratio=Th)
#The gene names can be obtained using the command dimnames:
#feat.names = dimnames(Liver.Muscle)[[1]]
#feat.lists <- extractFeatures.R(output.ratio=Th,output.bay=Rh,feat.names=feat.names,h=NULL)
#feat.lists.T <- extractFeatures.T(output.ratio=Th,feat.names=feat.names)
#output.table <- createTable(output.ratio=Th,output.bay=Rh)</pre>
```

ratio

Ratio Th between the observed features in common and the expected ones

Description

The function for each experiment calculates the ratio T(h) for each threshold h, using the list of p-values or the other measure used in the experiment to rank the features, (e.g. posterior probability, correlation).

Usage

ratio(data, pvalue = TRUE, interval = 0.01, name ="Distribution of T(h)",dir = getwd(), dataname = "dataratio")

Arguments

data	Lists of pvalues to be compared
pvalue	Indicate if the data are pvalues (TRUE) or posterior probability (FALSE). If they are μ
interval	The interval between two threshold
name	The name to be used in the plots
dir	Directory for storing the plots
dataname	The name of the file containing the data (Pvalue)

Details

This function calculates the ratio T(h) of observed number of features in common between the lists vs the expected number under the hypothesis of independence for each threshold h. The expected numbers are calculated as the product among the marginals divided by (*numbersof features*)^(numberoflists-1). T(hmax) identifies the maximum of the statistic T(h) and it is shown on the plot.

Value

Returns a plot with the distribution of T(h) showing where T(hmax) and hmax are located. The same plot is also saved in the directory specified by the user. It returns also an object of class list with the ratio, the thresholds and other attributes. In particular:

h	Threshold corresponding to T(h) values
DE	Differentially expressed features in each experiment
ratios	Vector or T(h) values for each threshold
Common	Features in common corresponding to the T(h) values
interval	Interval on the p-value scale defined by the user (default is 0.01)
name	Names to be used in the plots (defined by the user)
pvalue	Logical: TRUE if the measures used for the analysis are p-value, FALSE if they are posterior probabilities
dataname	The name of the file where the data has been saved

Author(s)

Alberto Cassese, Marta Blangiardo

References

Stone et al.(1988), Investigations of excess environmental risks around putative sources: statistical problems and a proposed test, Statistics in Medicine, 7, 649-660.

M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54.

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8,
DEfirst=300,DEsecond=200,DEcommon=100)
Th<- ratio(data=data$Pval)</pre>
```

simulation

```
Simulate p-values for two related experiments
```

Description

The function simulates two vectors of p-values using the procedure described in Hwang et al.

Usage

```
simulation(n, GammaA, GammaB, epsilonM = 0,
epsilonSD = 1, r1, r2, DEfirst, DEsecond, DEcommon)
```

simulation

Arguments

n	Number of features to simulate
GammaA	Parameter of the Gamma distribution
GammaB	Parameter of the Gamma distribution
epsilonM	Parameter of the Gaussian noise specific to the genes and experiment
epsilonSD	Parameter of the Gaussian noise specific to the genes and experiment
r1	Additional experiment-specific noise
r2	Additional experiment-specific noise
DEfirst	Number of DE features in each experiment
DEsecond	Number of DE features in each experiment
DEcommon	Number of DE features in common between the two experiments

Details

Considering two experiments (k=1,2), each of them with two classes, and n genes, for each gene we simulate a true difference between the classes delta(g), drawn from a Gamma distribution with random sign. The true difference delta(g) is 0 if the gene is not differentially expressed. We then add two normal random noise components, r(k) that act as experiment specific components and epsilon(gk), that are the gene-experiment components. The former is assigned deterministically, whilst the latter is drawn from a standard Gaussian distribution. The log fold change (FC(gk)) is the sum of all these components for each gene and experiment. We assign the n genes to four groups: genes differentially expressed (DE) in both experiments, genes differentially expressed only in the first experiment, genes differentially expressed only in the second experiment and genes differentially expressed in neither experiment. When the genes are differentially expressed in both experiments, they share the same delta(g) and the only difference between them is given by the random components: FC(g1) = delta(g) + r(1) times epsilon(g1) FC(g2) = delta(g) + r(2) times epsilon(g2) This group represents the true positive genes (i.e. truly DE in both experiments) that we are interested in finding using our method. The two groups of genes differentially expressed only in one of the two experiments act like additional noise and make the simulation more realistic.

Then, as described in Hwang et al., a two tails T-test is performed for each FC(gk) and a p-value is generated as: P(gk) = 2 Normal cdf(-absolute value (FC(gk)/r(k))).

Value

names	Which group each simulated gene expression value belongs to
FC1	T statistic for the first experiment
FC2	T statistic for the second experiment
Pval	p-value for the experiments to be compared

Author(s)

Alberto Cassese, Marta Blangiardo

References

Hwang D, Rust A, Ramsey S, Smith J, Leslie D, Weston A, de Atauri P, Aitchison J, Hood L, Siegel A, Bolouri H (2005): A data integration methodology for system biology. PNAS 2005.

M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54.

Examples

```
data = simulation(n=500,GammaA=1,GammaB=1,
r1=0.5,r2=0.8,DEfirst=300,DEsecond=200,
DEcommon=100)
```

simulation indep	Simulate n-v	alues for two	indinenden	t experiments
Simulation. Indep	Similare p vi	<i>uucs joi ino</i>	maipenaen	caperimentis

Description

The function simulate two vectors of p-values using the procedure described in Hwang et al. for independent experiments

Usage

```
simulation.indep(n, GammaA = 2, GammaB = 2, epsilonM = 0,
epsilonSD = 1, r1, r2, DEfirst, DEsecond)
```

Arguments

n	Number of features to be simulated				
GammaA	Parameter of the Gamma distribution				
GammaB	Parameter of the Gamma distribution				
epsilonM	Parameter of the Gaussian noise				
epsilonSD	Parameter of the Gaussian noise				
r1	Additional experiment-specific noise				
r2	Additional experiment-specific noise				
DEfirst	Number of DE features in the first experiment				
DEsecond	Number of DE features in in the second experiment				

Details

Considering two experiments (k=1,2), each of them with two classes, and n genes, for each gene we simulate a true difference between the classes delta(g), drawn from a Gamma distribution with random sign. The true difference delta(g) is 0 if the gene is not differentially expressed. We then add two normal random noise components, r[k] that act as experiment specific components and epsilon(gk), that is the gene-experiment components. The former is assigned deterministically, whilst the latter is drawn from a standard Gaussian distribution. So the log fold change (FC(gk)) is the sum of all these components for each gene and experiment. We divide the n genes in three groups: genes differentially expressed only in the first experiment, genes differentially expressed only in the second experiment and genes differentially expressed in neither experiment. There are not true positive genes (i.e. truly DE in both experiments), so we should find no genes in common using our method.

Then, as described in Hwang et al., a two tails T-test is performed for each FC(gk) and a p-value is generated as: P(gk) = 2 Normal cdf(-absolute value (FC(gk)/r(k))) where FC(gk) is the t statistic that evaluates the differential expression between the two classes for the g gene and k experiment.

Value

names	Which group each simulated gene expression value belongs to
FC1	T statistic for the first experiment
FC2	T statistic for the second experiment
Pval	p-values for the experiment to be compared

Author(s)

Alberto Cassese, Marta Blangiardo

References

Hwang D, Rust A, Ramsey S, Smith J, Leslie D, Weston A, de Atauri P, Aitchison J, Hood L, Siegel A, Bolouri H (2005): A data integration methodology for system biology. PNAS 2005.

M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54.

```
data.indep = simulation.indep(n=500,GammaA=1,
GammaB=1,r1=0.5,r2=0.8,DEfirst=300,DEsecond=200)
```

Description

The function uses Monte Carlo permutations to calculate the empirical distribution of max T(h)=T(hmax) under the null hypothesis of independence among the experiments. An empirical p-value is calculated to evaluate where T(hmax) is located under the null distribution.

Usage

Tmc(iter = 1000, output.ratio)

Arguments

iter	Number	of i	iteratic	on to	be	perform	ned
output.ratio	The out	put	object	from	the	ratio	function

Details

This function uses Monte Carlo permutations to calculate the empirical distribution of the maximum of T(h) (i.e. T(hmax)) under the null hypothesis of independence among the experiments. While the p-values* for the first list are fixed, the ones for the other lists are independently permutate B times. In this way, any relationship among the lists is destroyed. At each permutation b (b varies from 1 to B) a Tb(h) is calculated for each h and a maximum statistic Tb(hmax) is returned; its distribution represents the null distribution of T(hmax) under the condition of independence. The relative frequency of Tb(hmax) larger than T(hmax) identifies the p-value: it returns the proportion of Tb(hmax) from permuted dataset greater than the observed one (so indicates where the observed T(hmax) is located under the null distribution).

* instead of the p-values any other measure used to rank the features in the experiments can be used

Value

Returns the empirical pvalue from testing T(hmax) and a plot of the Tb(hmax) distribution. The same plot is also saved in the directory specified by the user.

Author(s)

Alberto Cassese, Marta Blangiardo

References

Stone et al.(1988), Investigations of excess environmental risks around putative sources: statistical problems and a proposed test, Statistics in Medicine, 7, 649-660.

M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments, Genome Biology, 8, R54.

Tmc

Tmc

```
data = simulation(n=500,GammaA=1,GammaB=1,
r1=0.5,r2=0.8,DEfirst=300,DEsecond=200,
DEcommon=100)
Th<- ratio(data=data$Pval)
MC<- Tmc(iter=50,output.ratio=Th)</pre>
```

Index

baymod, 3 createTable, 4 designCount, 5 designMatrix, 6 Example3Lists, 7 extractFeatures.R, 8 extractFeatures.T, 9 Liver.Muscle, 10 ratio, 11 sdef (sdef-package), 2 sdef-package, 2 simulation, 12 simulation.indep, 14

Tmc, 16