Package ‘sfdep’

April 20, 2022
Title Spatial Dependence for Simple Features
Version 0.1.0

Description An interface to 'spdep' to integrate with 'sf' objects and the 'tidyverse'.
License GPL-3

URL https://sfdep.josiahparry.com,
https://github.com/josiahparry/sfdep

Suggests broom, dbscan, dplyr, ggplot2, knitr, patchwork, purrr,
rmarkdown, sfnetworks, stringr, testthat (>= 3.0.0), tibble,
tidyr, vetrs, yaml

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.2

Imports sf, cli, spdep, magrittr, stats, rlang

Depends R (>=3.5.0)

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Josiah Parry [aut, cre] (<https://orcid.org/0000-0001-9910-865X>)
Maintainer Josiah Parry <josiah.parry@gmail.com>
Repository CRAN

Date/Publication 2022-04-20 08:10:02 UTC

R topics documented:

cond_permute_nb . . . . ...
critical_threshold . . . . . . . . . . L
find_Xj . . . . . e e e
global_c . . . . . L e e
global_c_perm . . . . . ..


https://sfdep.josiahparry.com
https://github.com/josiahparry/sfdep
https://orcid.org/0000-0001-9910-865X

2 cond_permute_nb
global_c_test . . . . . . .. e e e 6
global_g test . . . . . . .. e 7
global_je_perm . . . . . .. e e 8
global_moran . . . . . ... e 9
global_moran_bv . . . . . ... 10
global_moran_perm . . . . . . . ... L e e 11
global_moran_test. . . . . . . . . ... e e 12
GUETTY . v o v v e e e e e e e e e e e e e e e e e e e e 13
include_self . . . . . . . e 13
local_C . . . . . . e e e e e 14
local_g . . . . o o 16
local_gstar . . . . . . . . . e 17
local_jc_bv . . . . e 18
local_je_uni . . . . . . oL e e 19
local_ moran . . . . . . . .. L e e 20
local_moran_bv . . . . . . . e 21
losh . . . . e e e 22
nb_match_test . . . . . . . . e e e e 23
stLas_edges . . ... e e e e 24
st_as_graph . . ... e e e e e e e e 25
St_as_NOdES . . . . .. e e e 26
st_cardinalties . . . . . . . .. e e e 27
St_CONtiguity . . . . . ... e 28
stdist. band . . . . .. L e e e 29
st_inverse_distance . . . . . . . . L L. e e e e e e 29
st_kernel_weights . . . . . . ..o 30
SLKNN . . L e e e e e e 31
st lag ..o 32
st_nb_apply . . .. e e 33
st nb _diStS . . .. e, 34
st_nb_lag . . .. e e 35
st.nb_lag cumul . . .. ... 36
SL_WEIGhS . . . . e e e e 36

Index 38

cond_permute_nb Conditional permutation of neighbors

Description

Creates a conditional permutation of neighbors list holding i fixed and shuffling it’s neighbors.

Usage

cond_permute_nb(nb, seed = NULL)



critical _threshold 3

Arguments

nb a neighbor list.

seed default null. A value to pass to set.seed() for reproducibility.
Value

A list of class nb where each element contains a random sample of neighbors excluding the observed
regioin.

Examples

nb <- st_contiguity(guerry)
nb[1:5]

# conditionally permute neighbors
perm_nb <- cond_permute_nb(nb)
perm_nb[1:5]

critical_threshold Identify critical threshold

Description

Identifies the minimum distance in which each observation will have at least one neighbor.

Usage

critical_threshold(geometry)

Arguments

geometry an sf geometry column

Value

a numeric scalar value.

Examples

critical_threshold(sf::st_geometry(guerry))



4 global_c

find_xj Identify xj values

Description

Find xj values given a numeric vector, x, and neighbors list, nb.

Usage
find_xj(x, nb)

Arguments

X a vector of any class

nb a nb object e.g. created by st_contiguity() or st_knn()
Value

A list of length x where each element is a numeric vector with the same length as the corresponding
element in nb.

Examples

nb <- st_contiguity(sf::st_geometry(guerry))
xj <- find_xj(guerry$crime_prop, nb)
xj[1:3]

global_c Compute Geary’s C

Description

Compute Geary’s C

Usage

global_c(x, nb, wt, allow_zero = NULL)

Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().

allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.



global_c_perm 5

Value
a list with two names elements C and K returning the value of Geary’s C and sample kurtosis respec-
tively.

See Also

Other global_c: global_c_perm(), global_c_test()

Examples

nb <- guerry_nb$nb
wt <- guerry_nb$wt
x <- guerry_nb$crime_pers
global_c(x, nb, wt)

global_c_perm Global C Permutation Test

Description

Global C Permutation Test

Usage
global_c_perm(
X)
nb,
wt,
nsim = 499,
alternative = "greater”,

allow_zero = NULL,

)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
nsim number of simulations to run.
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided"”
to specify the alternative hypothesis.
allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.

additional arguments passed to spdep: :geary.mc().



6 global_c_test

Value

an object of classes htest and mc.sim

See Also

Other global_c: global_c_test(), global_c()

Examples

geo <- sf::st_geometry(guerry)
nb <- st_contiguity(geo)

wt <- st_weights(nb)

x <- guerry$crime_pers
global_c_perm(x, nb, wt)

global_c_test Global C Test

Description

Global C Test
Usage

global_c_test(x, nb, wt, randomization = TRUE, allow_zero = NULL, ...)
Arguments

X A numeric vector.

nb a neighbor list object for example as created by st_contiguity().

wt a weights list as created by st_weights().

randomization default TRUE. Calculate variance based on randomization. If FALSE, under the
assumption of normality.

allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.

additional arguments passed to spdep: :moran.mc()

Value

an htest object

See Also

Other global_c: global_c_perm(), global_c()



global_g_test 7

Examples

geo <- sf::st_geometry(guerry)
nb <- st_contiguity(geo)

wt <- st_weights(nb)

x <- guerry$crime_pers
global_c_test(x, nb, wt)

global_g_test Getis-Ord Global G

Description

Getis-Ord Global G

Usage
global_g_test(x, nb, wt, alternative = "greater"”, allow_zero = NULL, ...)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided”
to specify the alternative hypothesis.
allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.
additional methods passed to spdep: :globalG. test().
Value

an htest object

Examples

geo <- sf::st_geometry(guerry)

nb <- st_contiguity(geo)

wt <- st_weights(nb, style = "B")
X <- guerry$crime_pers
global_g_test(x, nb, wt)



8 global_jc_perm

global_jc_perm Global Join Count Permutation Test

Description

Global Join Count Permutation Test

Global Join Count Test
Usage

global_jc_perm(
fx,
nb,
wt,
alternative = "greater”,
nsim = 499,

allow_zero = FALSE,

)
global_jc_test(fx, nb, wt, alternative = "greater”, allow_zero = NULL, ...)
Arguments
fx a factor or character vector of the same length as nb.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided"
to specify the alternative hypothesis.
nsim number of simulations to run.
allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.
additional arguments passed to spdep: : joincount.test()
Value

an object of class jclist which is a list where each element is of class htest and mc.sim.

an object of class jclist which is a list where each element is of class htest and mc.sim.

Examples

geo <- sf::st_geometry(guerry)

nb <- st_contiguity(geo)

wt <- st_weights(nb, style = "B")
fx <- guerry$region
global_jc_perm(fx, nb, wt)



global_moran 9

geo <- sf::st_geometry(guerry)

nb <- st_contiguity(geo)

wt <- st_weights(nb, style = "B")
fx <- guerry$region
global_jc_test(fx, nb, wt)
global_jc_perm(fx, nb, wt)

global_moran Calculate Global Moran’s [

Description

Calculate Global Moran’s I

Usage
global_moran(x, nb, wt, na_ok = FALSE, ...)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
na_ok default FALSE. If FALSE presence or NA or Inf results in an error.
additional arguments passed to spdep: :moran().
Value

an htest object

See Also

Other global_moran: global_moran_bv (), global_moran_perm(), global_moran_test(), local_moran_bv()

Examples

nb <- guerry_nb$nb

wt <- guerry_nb$wt

x <- guerry_nb$crime_pers

moran <- global_moran(x, nb, wt)



10 global_moran_bv

global_moran_bv Compute the Global Bivariate Moran’s 1

Description

Given two continuous numeric variables, calculate the bivariate Moran’s 1.

Usage

global_moran_bv(x, y, nb, wt, nsim = 99)

Arguments
X a numeric vector of same length as nb.
y a numeric vector of same length as nb.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
nsim the number of simulations to run.
Details

Ip = i (B wijyj X i)

>,
K2

Value

a named list with two elements Ib and p_sim containing the bivariate Moran’sl and simulated p-
value respectively.

See Also

Other global_moran: global_moran_perm(), global_moran_test(), global_moran(), local_moran_bv()

Examples

X <- guerry_nb$crime_pers

y <- guerry_nb$wealth

nb <- guerry_nb$nb

wt <- guerry_nb$wt
global_moran_bv(x, y, nb, wt)



global_moran_perm 11

global_moran_perm Global Moran Permutation Test

Description

Global Moran Permutation Test

Usage
global_moran_perm(x, nb, wt, alternative = "two.sided”, nsim = 499, ...)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided"
to specify the alternative hypothesis.
nsim number of simulations to run.
additional arguments passed to spdep: :moran.mc()
Value

an object of classes htest, and mc.sim.

See Also

Other global_moran: global_moran_bv(), global_moran_test(), global_moran(), local_moran_bv()

Examples

nb <- guerry_nb$nb

wt <- guerry_nb$wt

X <- guerry_nb$crime_pers

moran <- global_moran_perm(x, nb, wt)
broom: : tidy(moran)



12 global_moran_test

global_moran_test Global Moran Test

Description

Global Moran Test

Usage

global_moran_test(
X,
nb,
wt,
alternative = "greater”,
randomization = TRUE,

)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided"

to specify the alternative hypothesis.

randomization default TRUE. Calculate variance based on randomization. If FALSE, under the
assumption of normality.

additional arguments passed to spdep: :moran.mc()

Value

an object of class htest

See Also

Other global_moran: global_moran_bv(), global_moran_perm(), global_moran(), local_moran_bv()

Examples

nb <- guerry_nb$nb

wt <- guerry_nb$wt

x <- guerry_nb$crime_pers
global_moran_test(x, nb, wt)



guerry 13

guerry "Essay on the Moral Statistics of France" data set.

Description

This dataset has been widely used to demonstrate geospatial methods and techniques. As such it is
useful for inclusion to this R package for the purposes of example. The dataset in this package is
modified from Guerry by Michael Friendly.

Usage

guerry

guerry_nb

Format

An object of class sf (inherits from tbl_df, tbl, data. frame) with 85 rows and 27 columns.

guerry an sf object with 85 observations and 27 variables. guerry_nb has 2 additional variables
created by sfdep.

Details
guerry and guerry_nb objects are sf class objects. These are polygons of the boundaries of France
(excluding Corsica) as they were in 1830.

Source

Guerry: :gfrance85

include_self Includes self in neighbor list

Description

Includes observed region in list of own neighbors. For some neighbor lists, it is important to include
the ith observation (or self) in the neighbors list, particulalry for kernel weights.

Usage
include_self(nb)

remove_self(nb)


https://www.datavis.ca/

14 local ¢

Arguments

nb an object of class nb e.g. made by st_contiguity()

Value

An object of class nb.

Examples

nb <- st_contiguity(guerry)
self_included <- include_self(nb)
self_included

remove_self (self_included)

local_c Compute Local Geary statistic

Description

The Local Geary is a local adaptation of Geary’s C statistic of spatial autocorrelation. The Local
Geary uses squared differences to measure dissimilarity unlike the Local Moran. Low values of
the Local Geary indicate positive spatial autocorrelation and large refers to negative spatial auto-
correlation. Inference for the Local Geary is based on a permutation approach which compares the
observed value to the reference distribution under spatial randomness. The Local Geary creates a
pseudo p-value. This is not an analytical p-value and is based on the number of permutations and
as such should be used with care.

Usage
local_c(x, nb, wt, ...)
local_c_perm(x, nb, wt, nsim = 499, alternative = "two.sided", ...)
Arguments
X a numeric vector, or list of numeric vectors of equal length.
nb a neighbor list
wt a weights list
other arguments passed to spdep: :localC_perm(), e.g. zero.policy = TRUE
to allow for zones without neighbors.
nsim The number of simulations used to generate reference distribution.
alternative A character defining the alternative hypothesis. Must be one of "two.sided",

"less" or "greater".



local ¢ 15

Details

Overview:

The Local Geary can be extended to a multivariate context. When x is a numeric vector, the
univariate Local Geary will be calculated. To calculate the multivariate Local Moran provide
either a list or a matrix. When x is a list, each element must be a numeric vector of the same
length and of the same length as the neighbours in listw. In the case that x is a matrix the
number of rows must be the same as the length of the neighbours in 1istw.

While not required in the univariate context, the standardized Local Geary is calculated. The
multivariate Local Geary is always standardized.

The univariate Local Geary is calculated as ¢; = ) j wij(:ci — xj)2 and the multivariate Local

Geary is calculated as ¢, ; = Zi:l Cy,i as described in Anselin (2019).

Implementation:

These functions are based on the implementations of the local Geary statistic in the development
version of spdep. They are based on spdep::localC and spdep::localC_perm.

spdep::localC_perm and thus local_c_perm utilize a conditional permutation approach to approxi-
mate a reference distribution where each observation i is held fixed, randomly samples neighbors,
and calculated the local C statistic for that tuple (ci). This is repeated nsim times. From the sim-
ulations 3 different types of p-values are calculated—all of which have their potential flaws. So
be extra judicious with using p-values to make conclusions.

e p_ci: utilizes the sample mean and standard deviation. The p-value is then calculated using
pnorm()—assuming a normal distribution which isn’t always true.

e p_ci_sim: uses the rank of the observed statistic.

* p_folded_sim: follows the pysal implementation where p-values are in the range of [0, 0.5].
This excludes 1/2 of all p-values and should be used with caution.

Value

a data. frame with columns

* ci: Local Geary statistic

* e_ci: expected value of the Local Geary based on permutations

* z_ci: standard deviation based on permutations

* var_ci: variance based on permutations

* p_ci: p-value based on permutation sample standard deviation and means
* p_ci_sim: p-value based on rank of observed statistic

* p_folded_sim: p-value based on the implementation of Pysal which always assumes a two-
sided test taking the minimum possible p-value

* skewness: sample skewness

* kurtosis: sample kurtosis

Author(s)

Josiah Parry, <josiah.parry@gmail.com>



16 local_g

References

Anselin, L. (1995), Local Indicators of Spatial Association—LISA. Geographical Analysis, 27:
93-115. doi: 10.1111/j.15384632.1995.tb00338.x

Anselin, L. (2019), A Local Indicator of Multivariate Spatial Association: Extending Geary’s c.
Geogr Anal, 51: 133-150. doi: 10.1111/gean.12164

Examples

guerry %>%
dplyr::transmute(nb = st_contiguity(geometry),
wt = st_weights(nb),
geary = local_c_perm(
x = list(crime_pers, literacy),
nb, wt
)) %>%
tidyr::unnest(geary)

local_g Local G

Description

Local G
Usage

local_g(x, nb, wt, alternative = "two.sided”, ...)

local_g_perm(x, nb, wt, nsim = 499, alternative = "two.sided", ...)
Arguments

X A numeric vector.

nb a neighbor list object for example as created by st_contiguity().

wt a weights list as created by st_weights().

alternative default "two.sided”. Should be one of "greater”, "less"”, or "two.sided”

to specify the alternative hypothesis.
methods passed to spdep: :localG() or spdep: :localG_perm()

nsim The number of simulations to run.


https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/gean.12164

local_gstar 17

Value
a data. frame with columns:

* gi: the observed statistic

* e_gi: the permutation sample mean

* var_gi: the permutation sample variance

* p_value: the p-value using sample mean and standard deviation

e p_folded_sim: p-value based on the implementation of Pysal which always assumes a two-
sided test taking the minimum possible p-value

* skewness: sample skewness

* kurtosis: sample kurtosis

Examples

x <- guerry$crime_pers
nb <- st_contiguity(guerry)
wt <- st_weights(nb)

res <- local_g_perm(x, nb, wt)

head(res)
local_gstar Local G*
Description
Local G*
Usage
local_gstar(x, nb, wt, alternative = "two.sided”, ...)
local_gstar_perm(x, nb, wt, nsim = 499, alternative = "two.sided", ...)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less”, or "two.sided”

to specify the alternative hypothesis.
methods passed to spdep: : localG() or spdep: :localG_perm()

nsim The number of simulations to run.



18 local_jc_bv

Value

a data. frame with columns:

e gi: the observed statistic

* e_gi: the permutation sample mean

* var_gi: the permutation sample variance

* p_value: the p-value using sample mean and standard deviation

* p_folded_sim: p-value based on the implementation of Pysal which always assumes a two-
sided test taking the minimum possible p-value

* skewness: sample skewness

* kurtosis: sample kurtosis

Examples

nb <- st_contiguity(guerry)
wt <- st_weights(nb)
x <- guerry$crime_pers

res <- local_gstar_perm(x, nb, wt)
head(res)

res <- local_gstar(x, nb, wt)
head(res)

local_jc_bv Bivariate local join count

Description

Bivariate local join count

Usage

local_jc_bv(x, z, nb, wt, nsim = 499)

Arguments
X a binary variable either numeric or logical
z a binary variable either numeric or logical
nb a neighbors list object.
wt default st_weights(nb,style="B"). A binary weights list as created by

st_weights(nb,style="B").

nsim the number of conditional permutation simulations



local_jc_uni 19

Value

a data.frame with two columns join_count and p_sim and number of rows equal to the length of
arguments X, z, nb, and wt.

Examples

x <- as.integer(guerry$infants > 23574)
z <- as.integer(guerry$donations > 10973)
nb <- st_contiguity(guerry)

wt <- st_weights(nb, style = "B")
local_jc_bv(x, z, nb, wt)

local_jc_uni Compute local univariate join count

Description

The univariate local join count statistic is used to identify clusters of rarely occurring binary vari-
ables. The binary variable of interest should occur less than half of the time.

Usage
local_jc_uni(
X,
nb,
wt = st_weights(nb, style = "B"),
nsim = 499,
alternative = "two.sided”
)
Arguments
X a binary variable either numeric or logical
nb a neighbors list object.
wt default st_weights(nb,style="B"). A binary weights list as created by
st_weights(nb,style ="B").
nsim the number of conditional permutation simulations
alternative default "greater”. One of "less” or "greater”.
Details

The local join count statistic requires a binary weights list which can be generated with st_weights(nb,style
= "B"). Additionally, ensure that the binary variable of interest is rarely occurring in no more than
half of observations.

P-values are estimated using a conditional permutation approach. This creates a reference distribu-
tion from which the observed statistic is compared. For more see Geoda Glossary.


https://geodacenter.github.io/glossary.html#ppvalue

20 local _moran

Value

a data.frame with two columns join_count and p_sim and number of rows equal to the length of
arguments x, nb, and wt.

Examples

guerry %>%
dplyr::transmute(top_crime = crime_prop > 9000,
nb = st_contiguity(geometry),
wt = st_weights(nb, style = "B"),
jc = local_jc_uni(top_crime, nb, wt)) %>%
tidyr: :unnest(jc)

local_moran Calculate the Local Moran’s I Statistic

Description

Moran’s I is calculated for each polygon based on the neighbor and weight lists.

Usage
local_moran(x, nb, wt, alternative = "two.sided”, nsim = 499, ...)
Arguments
X A numeric vector.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
alternative default "two.sided”. Should be one of "greater”, "less", or "two.sided"
to specify the alternative hypothesis.
nsim The number of simulations to run.
See ?spdep: : localmoran_perm() for more options.
Details

local_moran() calls spdep: :localmoran_perm() and calculates the Moran I for each polygon.
As well as provide simulated p-values.

Value
adata. frame containing the columns ii, eii, var_ii, z_ii, p_ii, p_ii_sim, and p_folded_sim.
For more details please see spdep: : localmoran_perm().

See Also

Other stats: st_lag()



local moran_bv 21

Examples

lisa <- guerry %>%
dplyr::mutate(nb = st_contiguity(geometry),
wt = st_weights(nb),
moran = local_moran(crime_pers, nb, wt))

# unnest the dataframe column
tidyr: :unnest(lisa, moran)

local_moran_bv Compute the Local Bivariate Moran’s I Statistic

Description

Given two continuous numeric variables, calculate the bivariate Local Moran’s 1.

Usage

local_moran_bv(x, y, nb, wt, nsim = 499)

Arguments
X a numeric vector of same length as nb.
y a numeric vector of same length as nb.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
nsim the number of simulations to run.
Details

B _ S any.ag
17 = cx; X w5y,

Value

a data. frame containing two columns Ib and p_sim containing the local bivariate Moran’s I and
simulated p-values respectively.

See Also

Other global_moran: global_moran_bv(), global_moran_perm(), global_moran_test(), global_moran()

Examples

x <- guerry_nb$crime_pers

y <- guerry_nb$wealth

nb <- guerry_nb$nb

wt <- guerry_nb$wt
local_moran_bv(x, y, nb, wt)



22 losh

losh Local spatial heteroscedacity

Description

Local spatial heteroscedacity

Usage
losh(x, nb, wt, a =2, ...)
losh_perm(x, nb, wt, a = 2, nsim = 499, ...)
Arguments
X a numeric vector.
nb a neighbor list for example created by st_contiguity()
wt a weights list for example created by st_weights()
a the exponent applied to the local residuals
methods passed to spdep::LOSH
nsim number of simulations to run
Value

a data. frame with columns

* hi: the observed statistic

* e_hi: the sample average

* var_hi: the sample variance

* z_hi the approximately Chi-square distributed test statistic
* x_bar_i: the local spatially weight mean for observation i

e ei: residuals

Examples

nb <- st_contiguity(guerry)

wt <- st_weights(nb)

X <- guerry$crime_pers

losh(x, nb, wt)

losh(x, nb, wt, var_hi = FALSE)
losh_perm(x, nb, wt, nsim = 49)



nb_match_test 23

nb_match_test Local Neighbor Match Test

Description

Implements the Local Neighbor Match Test as described in Tobler’s Law in a Multivariate World
(Anselin and Li, 2020).

Usage
nb_match_test(
X ’
nb,
wt = st_weights(nb),
k =10,
nsim = 499,
scale = TRUE,
.method = "euclidian",
p=2
)
Arguments
X a numeric vector or a list of numeric vectors of equal length.
nb a neighbor list object for example as created by st_contiguity().
wt a weights list as created by st_weights().
k the number of neighbors to identify in attribute space. Should be the same as
number of neighbors provided in st_knn.
nsim the number of simulations to run for calculating the simulated p-value.
scale default TRUE. Whether x should be scaled or not. Note that measures should be
standardized.
.method default "euclidian”. The distance measure passed to stats: :dist().
.p default 2. The power of Minkowski distance passed to the p argument in stats: :dist().
Value

a data. frame with columns

* n_shared (integer): the number of shared neighbors between geographic and attribute space

* nb_matches (list): matched neighbor indexes. Each element is an iteger vector of same length
as the ith observation of n_shared

knn_nb (list): the neighbors in attribute space
* probability (numeric): the geometric probability of observing the number of matches

* p_sim (numeric): a folded simulated p-value



24 st_as_edges
Examples

guerry %>%

dplyr::transmute(nb = st_knn(geometry, k = 10),
nmt = nb_match_test(list(crime_pers, literacy, suicides),
nb, nsim = 999)) %>%
tidyr::unnest(nmt)
st_as_edges Convert to an edge lines object

Description

Given geometry and neighbor and weights lists, create an edge list sf object.
Usage

st_as_edges(x, nb, wt)

## S3 method for class 'sf'

st_as_edges(x, nb, wt)

## S3 method for class 'sfc'

st_as_edges(x, nb, wt)
Arguments

X object of class sf or sfc.

nb a neighbor list. If x is class sf, the unquote named of the column. If x is class

sfc, an object of class nb as created from st_contiguity().
wt optional. A weights list as generated by st_weights(). . If x is class sf, the
unquote named of the column. If x is class sfc, the weights list itself.

Details

Creating an edge list creates a column for each i position and j between an observation and their

neighbors. You can recreate these values by expanding the nb and wt list columns.

guerry_nb %>%
tibble::as_tibble() %>%
dplyr::select(nb, wt) %>%
dplyr::mutate(i = dplyr::row_number(), .before = 1) %>%
tidyr: :unnest(c(nb, wt))

## # A tibble: 420 x 3
## i nb wt
## <int> <int> <dbl>
# 1 1 36 0.25



st_as_graph

# 2 1 37 0.25
## 3 1 67 0.25
#H 4 1 69 0.25
# 5 2 7 0.167
## 6 2 49 0.167
# 7 2 57 0.167
## 8 2 58 0.167
# 9 2 73 0.167
## 10 2 76 0.167
## # ... with 410 more rows
Value

Returns an sf object with edges represented as a LINESTRING.

* from: node index. This is the row position of x.

* to: node index. This is the neighbor value stored in nb.
* i: node index. This is the row position of x.

* j: node index. This is the neighbor value stored in nb.

e wt: the weight value of j stored in wt.

Examples

guerry %>%
dplyr::mutate(nb = st_contiguity(geometry),
wt = st_weights(nb)) %>%
st_as_edges(nb, wt)

st_as_graph Create an sfnetwork

Description

Given an sf or sfc object and neighbor and weights lists, create an sfnetwork object.

Usage

st_as_graph(x, nb, wt)

## S3 method for class 'sf'
st_as_graph(x, nb, wt)

## S3 method for class 'sfc'
st_as_graph(x, nb, wt)



26 st_as_nodes

Arguments
X object of class sf or sfc.
nb a neighbor list. If x is class sf, the unquote named of the column. If x is class
sfc, an object of class nb as created from st_contiguity().
wt optional. A weights list as generated by st_weights(). . If x is class sf, the
unquote named of the column. If x is class sfc, the weights list itself.
See Also

st_as_nodes() and st_as_edges()

Examples

guerry_nb %>%
st_as_graph(nb, wt)

st_as_nodes Convert to a node point object

Description

Given geometry and a neighbor list, creates an sf object to be used as nodes in an sfnetworks: : sfnetwork().
If the provided geometry is a polygon, sf::st_point_on_surface() will be used to create the
node point.

Usage
st_as_nodes(x, nb)

## S3 method for class 'sf'
st_as_nodes(x, nb)

## S3 method for class 'sfc'
st_as_nodes(x, nb)

Arguments
X object of class sf or sfc.
nb a neighbor list. If x is class sf, the unquote named of the column. If x is class
sfc, an object of class nb as created from st_contiguity().
Details

st_as_node() adds a row i based on the attribute "region.id"” in the nb object. If the nb object
is created with sfdep, then the values will always be row indexes.



st_cardinalties 27

Value

An object of class sf with POINT geometry.

Examples

guerry %>%
dplyr::transmute(nb = st_contiguity(geometry)) %>%
st_as_nodes(nb)

st_cardinalties Calculate neighbor cardinalities

Description

Identify the cardinality of a neighbor object. Utilizes spdep: :card() for objects with class nb,
otherwise returns lengths(nb).

Usage

st_cardinalties(nb)

Arguments

nb A neighbor list object as created by st_neighbors().

Value

an integer vector with the same length as nb.

See Also

Other other: st_nb_lag_cumul (), st_nb_lag()

Examples

nb <- st_contiguity(sf::st_geometry(guerry))
st_cardinalties(nb)



28 st_contiguity

st_contiguity Identify polygon neighbors

Description

Given an sf geometry of type POLYGON or MULTIPOLYGON identify contiguity based neighbors.

Usage
st_contiguity(x, queen = TRUE, ...)
Arguments
X an sf or sfc object.
queen default TRUE. For more see ?spdep: :poly2nb
additional arguments passed to spdep: :poly2nb()
Details

Utilizes spdep: :poly2nb()

Value

a list of class nb

See Also

Other neighbors: st_dist_band(), st_knn()

Examples

# on basic polygons
geo <- sf::st_geometry(guerry)
st_contiguity(geo)

# in a pipe
guerry %>%
dplyr::mutate(nb = st_contiguity(geometry), .before = 1)



st_dist_band 29

st_dist_band Neighbors from a distance band

Description

Creates neighbors based on a distance band. By default, creates a distance band with the maximum
distance of k-nearest neighbors where k = 1 (the critical threshold) to ensure that there are no regions
that are missing neighbors.

Usage
st_dist_band(geometry, lower = @, upper = critical_threshold(geometry), ...)
Arguments
geometry An sf or sfc object.
lower The lower threshold of the distance band. It is recommended to keep this as 0.
upper The upper threshold of the distance band. By default is set to a critical threshold
using critical_threshold() ensuring that each region has a minimum of one
neighbor.
Passed to spdep: :dnearneigh().
Value

a list of class nb

See Also

Other neighbors: st_contiguity(), st_knn()

Examples

geo <- sf::st_geometry(guerry)
st_dist_band(geo, upper = critical_threshold(geo))

st_inverse_distance Calculate inverse distance weights

Description

From a neighbor list and sf geometry column, calculate inverse distance weight.

Usage

st_inverse_distance(nb, geometry, scale = 100, alpha = 1)



30 st_kernel_weights

Arguments
nb a neighbors list object e.g. created by st_knn() or st_contiguity()
geometry sf geometry
scale default 100.a value to scale distances by before exponentiating by alpha
alpha default 1. Set to 2 for gravity weights.

Details

The inverse distance formula is w;; = 1/d;

Value

a list where each element is a numeric vector

See Also

Other weights: st_kernel_weights(), st_nb_dists(), st_weights()

Examples

geo <- sf::st_geometry(guerry)

nb <- st_contiguity(geo)

wts <- st_inverse_distance(nb, geo)

head(wts, 3)

wts <- st_inverse_distance(nb, geo, scale = 10000)
head(wts, 3)

st_kernel_weights Calculate Kernel Weights

Description

Create a weights list using a kernel function.

Usage
st_kernel_weights(
nb,
geometry,
kernel = "uniform”,

threshold = critical_threshold(geometry),
adaptive = FALSE,
self_kernel = FALSE



st_knn

Arguments

nb
geometry

kernel

threshold

adaptive

self_kernel

Details

31

an object of class nb e.g. created by st_contiguity() or st_knn().
the geometry an sf object.

"non non non

One of "uniform", "gaussian", "triangular”, "epanechnikov", or "quartic". See
kernels for more.

a scaling threshold to be used in calculating

default FALSE. If TRUE uses the maximum neighbor distance for each region as
the threshold. Suppresses the threshold argument.

default FALSE. If TRUE applies the kernel function to the observed region.

By default st_kernel_weight() utilizes a critical threshold of the maximum neighbor distance
using critical_threshold(). If desired, the critical threshold can be specified manually. The
threshold will be passed to the underlying kernel.

Value

a list where each element is a numeric vector.

See Also

Other weights: st_inverse_distance(), st_nb_dists(), st_weights()

Examples

geometry <- sf::st_geometry(guerry)

nb <- st_contiguity(geometry)

nb <- include_self(nb)

res <- st_kernel_weights(nb, geometry)

head(res, 3)

st_knn

Calculate K-Nearest Neighbors

Description

Identifies the k nearest neighbors for given point geometry. If polygon geometry is provided, the
centroids of the polygon will be used and a warning will be emitted.

Usage

st_knn(x, k =

1, symmetric = FALSE, ...)



32
Arguments
X an sf or sfc object.
k number of nearest neighbours to be returned
symmetric default FALSE. Whether to force output of neighbours to be symmetric.
additional arguments to be passed to knearneigh().
Details

This function utilizes spdep: : knearneigh() and spdep: :knn2nb ().

Value

a list of class nb

See Also

Other neighbors: st_contiguity(), st_dist_band()

Examples

st_knn(sf::st_geometry(guerry), k = 8)

st_lag

st_lag Calculate spatial lag

Description

Calculates the spatial lag of a numeric variable given a neighbor and weights list.

Usage
st_lag(x, nb, wt, na_ok = FALSE, allow_zero = NULL, ...)
Arguments
X A numeric vector
nb A neighbor list object as created by st_neighbors().
wt A weights list as created by st_weights().
na_ok Default FALSE. If, TRUE missing values return a lagged NA.
allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.
See ?spdep: :lag.listw for more.
Value

a numeric vector with same length as x



st_nb_apply 33

See Also

Other stats: 1local_moran()

Examples

geo <- sf::st_geometry(guerry)
nb <- st_contiguity(geo)
wt <- st_weights(nb)

st_lag(guerry$crime_pers, nb, wt)

st_nb_apply Apply a function to neighbors

Description

Sometimes one may want to create custom lag variables or create some other neighborhood level
metric that may not be defined yet. This st_nb_apply() enables you to apply a function to each
observation’s (xi) neighbors (xij).

Usage
st_nb_apply(x, nb, wt, .f, suffix = "dbl", ...)
Arguments
X A vector that will be used for neighbor xij values.
nb A neighbor list object as created by st_neighbors().
wt A weights list as created by st_weights().
f A function definition. There are three default objects that can be used inside of
the function definition:
* .xij: neighbor values of x for the ith observation. This is simply the subset
of x based on the corresponding nb list values for each element.
* .nb: neighbor positions.
* .wt: neighbor weights value.
If any of these three function arguments are omitted from . f, dots (...) must
be supplied.
suffix The map variant to use. Options are "dbl", "int", "1gl", "chr", "list".
arguments to pass to . f
Details

The below example calculates the spatial lag using st_nb_apply() and st_lag() to illustrate how
we can apply functions to neighbors.

Currently questioning the use case. find_xj() is now exported and may negate the need for this
function.



34 st_nb_dists

Value

a vector or list of with same length as x.

Examples

guerry %>%
dplyr::transmute(
nb = st_contiguity(geometry),
wt = st_weights(nb),
lag_apply = st_nb_apply(
crime_pers, nb, wt,

.f = function(.xij, .wt, ...) sum(.xij *.wt)
),
lag = st_lag(crime_pers, nb, wt)
)
st_nb_dists Calculate neighbor distances
Description

From an nb list and point geometry, return a list of distances for each observation’s neighbors list.

Usage

st_nb_dists(x, nb, longlat = NULL)

Arguments
X an object of class sfc.
nb a neighbor list for example created by st_contiguity()
longlat TRUE if point coordinates are longitude-latitude decimal degrees, in which case
distances are measured in kilometers. See ?spdep: :nbdists() for more.
Details

Utilizes spdep: :nbdists() for distance calculation.

Value

a list where each element is a numeric vector.

See Also

Other weights: st_inverse_distance(), st_kernel_weights(), st_weights()



st_nb_lag 35

Examples

geo <- sf::st_geometry(guerry)
nb <- st_contiguity(geo)
dists <- st_nb_dists(geo, nb)

head(dists)

st_nb_lag Pure Higher Order Neighbors

Description

Identify higher order neighbors from a neighbor list. order must be greater than 1. When order
equals 2 then the neighbors of the neighbors list is returned and so forth. See Anselin’s slides for an
example.

Usage

st_nb_lag(nb, order)

Arguments
nb A neighbor list object as created by st_contiguity().
order The order of neighbors.

Details

Utilizes spdep: :nblag()

Value

a list of class nb

See Also

Other other: st_cardinalties(), st_nb_lag_cumul()

Examples

nb <- st_contiguity(sf::st_geometry(guerry))
st_nb_lag(nb, 3)


https://spatial.uchicago.edu/sites/spatial.uchicago.edu/files/1_introandreview_reducedsize.pdf

36 st_weights

st_nb_lag_cumul Encompassing Higher Order Neighbors

Description
Creates an encompassing neighbor list of the order specified. For example, if the order is 2 the
result contains both 1st and 2nd order neighbors.

Usage

st_nb_lag_cumul(nb, order)

Arguments
nb A neighbor list object as created by st_contiguity().
order The order of neighbors.

Details

Utilizes spdep: :nblag_cumul ()

Value

a list of class nb

See Also

Other other: st_cardinalties(), st_nb_lag()

Examples

nb <- st_contiguity(sf::st_geometry(guerry))
st_nb_lag_cumul(nb, 3)

st_weights Calculate spatial weights

Description

Calculate polygon spatial weights from a nb list. See spdep: :nb21listw() for further details.

Usage

st_weights(nb, style = "W", allow_zero = NULL, ...)



st_weights 37

Arguments
nb A neighbor list object as created by st_neighbors().
style Default "W" for row standardized weights. This value can also be "B", "C", "U",
"minmax", and "S". See spdep: :nb2listw() for details.
allow_zero If TRUE, assigns zero as lagged value to zone without neighbors.
additional arguments passed to spdep: :nb2listw().
Details

Under the hood, st_weights() creates a listw object and then extracts the weights elements
from it as the neighbours element is already—presumably—already existent in the neighbors list
you’ve already created. listw objects are recreated using recreate_listw() when calculating
other statistics.

Value

a list where each element is a numeric vector

See Also

Other weights: st_inverse_distance(), st_kernel_weights(), st_nb_dists()

Examples

guerry %>%

dplyr::mutate(nb = st_contiguity(geometry),
wt = st_weights(nb),
.before = 1)

# using geometry column directly

nb <- st_contiguity(guerry$geometry)
wt <- st_weights(nb)

wt[1:3]



Index

* datasets global_jc_perm, 8
guerry, 13 global_jc_test (global_jc_perm), 8
x global_c global_moran, 9, 10-12, 21
global_c, 4 global_moran_bv, 9, 10, 11, 12, 21
global_c_perm, 5 global_moran_perm, 9, 10, 11, 12, 21
global_c_test, 6 global_moran_test, 9-11, 12, 21
* global_moran guerry, 13
global_moran, 9 guerry_nb (guerry), 13
global_moran_bv, 10
global_moran_perm, 11 include_self, 13

global_moran_test, 12
local_moran_bv, 21

* neighbors o local_c, 14
st_cgnt1gu1ty, 28 local_c_perm, 15
st_dist_band, 29 local_c_perm(local_c), 14
st_knn, 31 local_g, 16

kernels, 31

+ other . . local_g_perm(local_g), 16
st_cardinalties, 27 local_gstar, 17
st_nb_lag, 35 local_gstar_perm(local_gstar), 17
st_nb_lag_cumul, 36 local_jc_bv, 18
* stats local_jc_uni, 19
local_moran, 20 local_moran, 20, 33
st_lag, 32 local_moran(), 20
* welght§ . local_moran_bv, 9-12, 21
st_inverse_distance, 29 losh. 22
st_kernel_weights, 30 losh_perm (losh), 22
st_nb_dists, 34
st_weights, 36 nb_match_test, 23
cond_permute_nb, 2 recreate_listw(), 37
critical_threshold, 3 remove_self (include_self), 13

critical_threshold(), 29
sf::st_point_on_surface(), 26

find_xj, 4 sfnetworks: :sfnetwork(), 26
find_xj(), 33 spdep::geary.mc(), 5

spdep: :globalG.test(), 7
global_c, 4,6 spdep: :joincount.test(), 8
global_c_perm, 5,5, 6 spdep: :knearneigh(), 32
global_c_test, 5, 6,6 spdep: :knn2nb (), 32
global_g_test, 7 spdep: :localC, 15

38



INDEX

spdep: :localC_perm, 15
spdep: :localC_perm(), 14
spdep: :localG(), 16, 17
spdep: :localG_perm(), 16, 17
spdep: :localmoran_perm(), 20
spdep: :LOSH, 22

spdep: :moran(), 9

spdep: :moran.mc(), 6, 11, 12
spdep: :nb2listw(), 36, 37
spdep: :nblag(), 35

spdep: :nblag_cumul(), 36
spdep: :poly2nb(), 28
st_as_edges, 24
st_as_edges(), 26
st_as_graph, 25
st_as_nodes, 26
st_as_nodes(), 26
st_cardinalties, 27, 35, 36
st_contiguity, 28, 29, 32
st_contiguity(), 4, 14, 22, 30, 31, 34
st_dist_band, 28, 29, 32
st_inverse_distance, 29, 31, 34, 37
st_kernel_weights, 30, 30, 34, 37
st_knn, 23, 28, 29, 31
st_knn(), 4, 30, 31
st_lag, 20, 32

st_lag(), 33

st_nb_apply, 33
st_nb_apply(), 33
st_nb_dists, 30, 31, 34, 37
st_nb_lag, 27, 35, 36
st_nb_lag_cumul, 27, 35, 36
st_weights, 30, 31, 34, 36
st_weights(), 22, 37
stats::dist(), 23

39



	cond_permute_nb
	critical_threshold
	find_xj
	global_c
	global_c_perm
	global_c_test
	global_g_test
	global_jc_perm
	global_moran
	global_moran_bv
	global_moran_perm
	global_moran_test
	guerry
	include_self
	local_c
	local_g
	local_gstar
	local_jc_bv
	local_jc_uni
	local_moran
	local_moran_bv
	losh
	nb_match_test
	st_as_edges
	st_as_graph
	st_as_nodes
	st_cardinalties
	st_contiguity
	st_dist_band
	st_inverse_distance
	st_kernel_weights
	st_knn
	st_lag
	st_nb_apply
	st_nb_dists
	st_nb_lag
	st_nb_lag_cumul
	st_weights
	Index

