
Package ‘sfnetworks’
February 16, 2022

Title Tidy Geospatial Networks

Version 0.5.5

Maintainer Lucas van der Meer <luukvandermeer@live.nl>

Description Provides a tidy approach to spatial network
analysis, in the form of classes and functions that enable a seamless
interaction between the network analysis package 'tidygraph' and the
spatial analysis package 'sf'.

License Apache License (>= 2)

URL https://luukvdmeer.github.io/sfnetworks/,

https://github.com/luukvdmeer/sfnetworks

BugReports https://github.com/luukvdmeer/sfnetworks/issues/

Depends R (>= 3.6)

Imports crayon, dplyr, graphics, igraph, lwgeom, rlang, sf, sfheaders,
tibble, tidygraph, units, utils

Suggests dbscan, fansi, ggplot2 (>= 3.0.0), knitr, rmarkdown,
spatstat.geom, spatstat.linnet, spatstat (>= 2.0.0), testthat,
tidyverse, TSP, s2 (>= 1.0.1)

VignetteBuilder knitr

ByteCompile true

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation no

Author Lucas van der Meer [aut, cre] (<https://orcid.org/0000-0001-6336-8628>),
Lorena Abad [aut] (<https://orcid.org/0000-0003-0554-734X>),
Andrea Gilardi [aut] (<https://orcid.org/0000-0002-9424-7439>),
Robin Lovelace [aut] (<https://orcid.org/0000-0001-5679-6536>)

Repository CRAN

Date/Publication 2022-02-16 18:50:02 UTC

1

https://luukvdmeer.github.io/sfnetworks/
https://github.com/luukvdmeer/sfnetworks
https://github.com/luukvdmeer/sfnetworks/issues/
https://orcid.org/0000-0001-6336-8628
https://orcid.org/0000-0003-0554-734X
https://orcid.org/0000-0002-9424-7439
https://orcid.org/0000-0001-5679-6536

2 as.linnet

R topics documented:
as.linnet . 2
as_sfnetwork . 3
as_tibble . 5
autoplot . 6
is.sfnetwork . 6
node_coordinates . 7
plot.sfnetwork . 8
roxel . 9
s2 . 10
sf . 10
sfnetwork . 13
sf_attr . 16
spatial_edge_measures . 17
spatial_edge_predicates . 18
spatial_morphers . 20
spatial_node_predicates . 24
st_network_bbox . 26
st_network_blend . 27
st_network_cost . 29
st_network_join . 31
st_network_paths . 33

Index 36

as.linnet Convert a sfnetwork into a linnet

Description

A method to convert an object of class sfnetwork into linnet format and enhance the interoper-
ability between sfnetworks and spatstat. Use this method without the .sfnetwork suffix and after
loading the spatstat package.

Usage

as.linnet.sfnetwork(X, ...)

Arguments

X An object of class sfnetwork with a projected CRS.

... Arguments passed to linnet.

Value

An object of class linnet.

as_sfnetwork 3

See Also

as_sfnetwork to convert objects of class linnet into objects of class sfnetwork.

as_sfnetwork Convert a foreign object to a sfnetwork

Description

Convert a given object into an object of class sfnetwork. If an object can be read by as_tbl_graph
and the nodes can be read by st_as_sf, it is automatically supported.

Usage

as_sfnetwork(x, ...)

Default S3 method:
as_sfnetwork(x, ...)

S3 method for class 'sf'
as_sfnetwork(x, ...)

S3 method for class 'linnet'
as_sfnetwork(x, ...)

S3 method for class 'psp'
as_sfnetwork(x, ...)

S3 method for class 'sfc'
as_sfnetwork(x, ...)

S3 method for class 'sfNetwork'
as_sfnetwork(x, ...)

S3 method for class 'sfnetwork'
as_sfnetwork(x, ...)

S3 method for class 'tbl_graph'
as_sfnetwork(x, ...)

Arguments

x Object to be converted into an sfnetwork.

... Arguments passed on to the sfnetwork construction function.

Value

An object of class sfnetwork.

4 as_sfnetwork

Methods (by class)

• sf: Only sf objects with either exclusively geometries of type LINESTRING or exclusively ge-
ometries of type POINT are supported. For lines, is assumed that the given features form the
edges. Nodes are created at the endpoints of the lines. Endpoints which are shared between
multiple edges become a single node. For points, it is assumed that the given features geome-
tries form the nodes. They will be connected by edges sequentially. Hence, point 1 to point 2,
point 2 to point 3, etc.

Examples

From an sf object.
library(sf, quietly = TRUE)

With LINESTRING geometries.
as_sfnetwork(roxel)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(st_geometry(roxel))
plot(as_sfnetwork(roxel))
par(oldpar)

With POINT geometries.
p1 = st_point(c(7, 51))
p2 = st_point(c(7, 52))
p3 = st_point(c(8, 52))
points = st_as_sf(st_sfc(p1, p2, p3))
as_sfnetwork(points)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(st_geometry(points))
plot(as_sfnetwork(points))
par(oldpar)

From a linnet object.
if (require(spatstat, quietly = TRUE)) {

as_sfnetwork(simplenet)
}

From a psp object.
if (require(spatstat.geom, quietly = TRUE)) {

set.seed(42)
test_psp = psp(runif(10), runif(10), runif(10), runif(10), window=owin())
as_sfnetwork(test_psp)

}

as_tibble 5

as_tibble Extract the active element of a sfnetwork as spatial tibble

Description

The sfnetwork method for as_tibble is conceptually different. Whenever a geometry list column is
present, it will by default return what we call a ’spatial tibble’. With that we mean an object of class
c('sf','tbl_df') instead of an object of class 'tbl_df'. This little conceptual trick is essential
for how tidyverse functions handle sfnetwork objects, i.e. always using the corresponding sf
method if present. When using as_tibble on sfnetwork objects directly as a user, you can disable
this behaviour by setting spatial = FALSE.

Usage

S3 method for class 'sfnetwork'
as_tibble(x, active = NULL, spatial = TRUE, ...)

Arguments

x An object of class sfnetwork.

active Which network element (i.e. nodes or edges) to activate before extracting. If
NULL, it will be set to the current active element of the given network. Defaults
to NULL.

spatial Should the extracted tibble be a ’spatial tibble’, i.e. an object of class c('sf','tbl_df'),
if it contains a geometry list column. Defaults to TRUE.

... Arguments passed on to as_tibble.

Value

The active element of the network as an object of class tibble.

Examples

library(tibble, quietly = TRUE)

net = as_sfnetwork(roxel)

Extract the active network element as a spatial tibble.
as_tibble(net)

Extract any network element as a spatial tibble.
as_tibble(net, "edges")

Extract the active network element as a regular tibble.
as_tibble(net, spatial = FALSE)

6 is.sfnetwork

autoplot Plot sfnetwork geometries with ggplot2

Description

Plot the geometries of an object of class sfnetwork automatically as a ggplot object. Use this
method without the .sfnetwork suffix and after loading the ggplot2 package.

Usage

autoplot.sfnetwork(object, ...)

Arguments

object An object of class sfnetwork.

... Ignored.

Details

See autoplot.

Value

An object of class ggplot.

is.sfnetwork Check if an object is a sfnetwork

Description

Check if an object is a sfnetwork

Usage

is.sfnetwork(x)

Arguments

x Object to be checked.

Value

TRUE if the given object is an object of class sfnetwork, FALSE otherwise.

node_coordinates 7

Examples

library(tidygraph, quietly = TRUE, warn.conflicts = FALSE)

net = as_sfnetwork(roxel)
is.sfnetwork(net)
is.sfnetwork(as_tbl_graph(net))

node_coordinates Query node coordinates

Description

These functions allow to query specific coordinate values from the geometries of the nodes.

Usage

node_X()

node_Y()

node_Z()

node_M()

Details

Just as with all query functions in tidygraph, these functions are meant to be called inside tidygraph
verbs such as mutate or filter, where the network that is currently being worked on is known
and thus not needed as an argument to the function. If you want to use an algorithm outside of the
tidygraph framework you can use with_graph to set the context temporarily while the algorithm is
being evaluated.

Value

A numeric vector of the same length as the number of nodes in the network.

Note

If a requested coordinate value is not available for a node, NA will be returned.

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network.
net = as_sfnetwork(roxel)

8 plot.sfnetwork

Use query function in a filter call.
filtered = net %>%

activate("nodes") %>%
filter(node_X() > 7.54)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(filtered, col = "red", add = TRUE)
par(oldpar)

Use query function in a mutate call.
net %>%

activate("nodes") %>%
mutate(X = node_X(), Y = node_Y())

plot.sfnetwork Plot sfnetwork geometries

Description

Plot the geometries of an object of class sfnetwork.

Usage

S3 method for class 'sfnetwork'
plot(x, draw_lines = TRUE, ...)

Arguments

x Object of class sfnetwork.

draw_lines If the edges of the network are spatially implicit, should straight lines be drawn
between connected nodes? Defaults to TRUE. Ignored when the edges of the
network are spatially explicit.

... Arguments passed on to plot.sf

Details

This is a basic plotting functionality. For more advanced plotting, it is recommended to extract the
nodes and edges from the network, and plot them separately with one of the many available spatial
plotting functions as can be found in sf, tmap, ggplot2, ggspatial, and others.

roxel 9

Examples

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,1))
net = as_sfnetwork(roxel)
plot(net)

When lines are spatially implicit.
par(mar = c(1,1,1,1), mfrow = c(1,2))
net = as_sfnetwork(roxel, edges_as_lines = FALSE)
plot(net)
plot(net, draw_lines = FALSE)

Changing default settings.
par(mar = c(1,1,1,1), mfrow = c(1,1))
plot(net, col = 'blue', pch = 18, lwd = 1, cex = 2)

Add grid and axis
par(mar = c(2.5,2.5,1,1))
plot(net, graticule = TRUE, axes = TRUE)

par(oldpar)

roxel Road network of Münster Roxel

Description

A dataset containing the road network (roads, bikelanes, footpaths, etc.) of Roxel, a neighborhood
in the city of Münster, Germany. The data are taken from OpenStreetMap, querying by key =
’highway’. The topology is cleaned with the v.clean tool in GRASS GIS.

Usage

roxel

Format

An object of class sf with LINESTRING geometries, containing 851 features and three columns:

name the name of the road, if it exists

type the type of the road, e.g. cycleway

geometry the geometry list column

Source

https://www.openstreetmap.org

https://www.openstreetmap.org

10 sf

s2 s2 methods for sfnetworks

Description

s2 methods for sfnetworks

Usage

as_s2_geography.sfnetwork(x, ...)

Arguments

x An object of class sfnetwork.

... Arguments passed on the corresponding s2 function.

sf sf methods for sfnetworks

Description

sf methods for sfnetwork objects.

Usage

S3 method for class 'sfnetwork'
st_as_sf(x, active = NULL, ...)

S3 method for class 'sfnetwork'
st_geometry(x, active = NULL, ...)

S3 replacement method for class 'sfnetwork'
st_geometry(x) <- value

S3 method for class 'sfnetwork'
st_bbox(x, ...)

S3 method for class 'sfnetwork'
st_coordinates(x, ...)

S3 method for class 'sfnetwork'
st_is(x, ...)

S3 method for class 'sfnetwork'
st_crs(x, ...)

sf 11

S3 replacement method for class 'sfnetwork'
st_crs(x) <- value

S3 method for class 'sfnetwork'
st_shift_longitude(x, ...)

S3 method for class 'sfnetwork'
st_transform(x, ...)

S3 method for class 'sfnetwork'
st_wrap_dateline(x, ...)

S3 method for class 'sfnetwork'
st_zm(x, ...)

S3 method for class 'sfnetwork'
st_m_range(x, ...)

S3 method for class 'sfnetwork'
st_z_range(x, ...)

S3 method for class 'sfnetwork'
st_agr(x, active = NULL, ...)

S3 replacement method for class 'sfnetwork'
st_agr(x) <- value

S3 method for class 'sfnetwork'
st_intersects(x, y = x, ...)

S3 method for class 'sfnetwork'
st_reverse(x, ...)

S3 method for class 'sfnetwork'
st_simplify(x, ...)

S3 method for class 'sfnetwork'
st_join(x, y, ...)

S3 method for class 'morphed_sfnetwork'
st_join(x, y, ...)

S3 method for class 'sfnetwork'
st_crop(x, y, ...)

S3 method for class 'morphed_sfnetwork'
st_crop(x, y, ...)

12 sf

S3 method for class 'sfnetwork'
st_filter(x, y, ...)

S3 method for class 'morphed_sfnetwork'
st_filter(x, y, ...)

Arguments

x An object of class sfnetwork.

active Which network element (i.e. nodes or edges) to activate before extracting. If
NULL, it will be set to the current active element of the given network. Defaults
to NULL.

... Arguments passed on the corresponding sf function.

value The value to be assigned. See the documentation of the corresponding sf func-
tion for details.

y An object of class sf, or directly convertible to it using st_as_sf. In some
cases, it can also be an object of sfg or bbox. Always look at the documentation
of the corresponding sf function for details.

Details

See the sf documentation.

Value

The sfnetwork method for st_as_sf returns the active element of the network as object of class sf.
The sfnetwork and morphed_sfnetwork methods for st_join, st_filter and st_crop return an
object of class sfnetwork and morphed_sfnetwork respectively. All other methods return the same
type of objects as their corresponding sf function. See the sf documentation for details.

Examples

library(sf, quietly = TRUE)

net = as_sfnetwork(roxel)

Extract the active network element.
st_as_sf(net)

Extract any network element.
st_as_sf(net, "edges")

Get geometry of the active network element.
st_geometry(net)

Get geometry of any network element.
st_geometry(net, "edges")

Get bbox of the active network element.

sfnetwork 13

st_bbox(net)

Get CRS of the network.
st_crs(net)

Get agr factor of the active network element.
st_agr(net)

Get agr factor of any network element.
st_agr(net, "edges")

Spatial join applied to the active network element.
net = st_transform(net, 3035)
codes = st_as_sf(st_make_grid(net, n = c(2, 2)))
codes$post_code = as.character(seq(1000, 1000 + nrow(codes) * 10 - 10, 10))

joined = st_join(net, codes, join = st_intersects)
joined

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net, col = "grey")
plot(codes, col = NA, border = "red", lty = 4, lwd = 4, add = TRUE)
text(st_coordinates(st_centroid(st_geometry(codes))), codes$post_code)
plot(st_geometry(joined, "edges"))
plot(st_as_sf(joined, "nodes"), pch = 20, add = TRUE)
par(oldpar)
Spatial filter applied to the active network element.
p1 = st_point(c(4151358, 3208045))
p2 = st_point(c(4151340, 3207520))
p3 = st_point(c(4151756, 3207506))
p4 = st_point(c(4151774, 3208031))

poly = st_multipoint(c(p1, p2, p3, p4)) %>%
st_cast('POLYGON') %>%
st_sfc(crs = 3035) %>%
st_as_sf()

filtered = st_filter(net, poly, .pred = st_intersects)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net, col = "grey")
plot(poly, border = "red", lty = 4, lwd = 4, add = TRUE)
plot(filtered)
par(oldpar)

sfnetwork Create a sfnetwork

14 sfnetwork

Description

sfnetwork is a tidy data structure for geospatial networks. It extends the tbl_graph data structure
for relational data into the domain of geospatial networks, with nodes and edges embedded in
geographical space, and offers smooth integration with sf for spatial data analysis.

Usage

sfnetwork(
nodes,
edges = NULL,
directed = TRUE,
node_key = "name",
edges_as_lines = NULL,
length_as_weight = FALSE,
force = FALSE,
...

)

Arguments

nodes The nodes of the network. Should be an object of class sf, or directly convertible
to it using st_as_sf. All features should have an associated geometry of type
POINT.

edges The edges of the network. May be an object of class sf, with all features
having an associated geometry of type LINESTRING. It may also be a regular
data.frame or tbl_df object. In any case, the nodes at the ends of each edge
must either be encoded in a to and from column, as integers or characters. In-
tegers should refer to the position of a node in the nodes table, while characters
should refer to the name of a node encoded in the column referred to in the
node_key argument. Setting edges to NULL will create a network without edges.

directed Should the constructed network be directed? Defaults to TRUE.

node_key The name of the column in the nodes table that character represented to and
from columns should be matched against. If NA, the first column is always cho-
sen. This setting has no effect if to and from are given as integers. Defaults to
'name'.

edges_as_lines Should the edges be spatially explicit, i.e. have LINESTRING geometries stored
in a geometry list column? If NULL, this will be automatically defined, by setting
the argument to TRUE when the edges are given as an object of class sf, and
FALSE otherwise. Defaults to NULL.

length_as_weight

Should the length of the edges be stored in a column named weight? If set
to TRUE, this will calculate the length of the linestring geometry of the edge in
the case of spatially explicit edges, and the straight-line distance between the
source and target node in the case of spatially implicit edges. If there is already
a column named weight, it will be overwritten. Defaults to FALSE.

force Should network validity checks be skipped? Defaults to FALSE, meaning that
network validity checks are executed when constructing the network. These

sfnetwork 15

checks guarantee a valid spatial network structure. For the nodes, this means
that they all should have POINT geometries. In the case of spatially explicit
edges, it is also checked that all edges have LINESTRING geometries, nodes and
edges have the same CRS and boundary points of edges match their correspond-
ing node coordinates. These checks are important, but also time consuming.
If you are already sure your input data meet the requirements, the checks are
unnecessary and can be turned off to improve performance.

... Arguments passed on to st_as_sf, if nodes need to be converted into an sf
object during construction.

Value

An object of class sfnetwork.

Examples

library(sf, quietly = TRUE)

Create sfnetwork from sf objects
p1 = st_point(c(7, 51))
p2 = st_point(c(7, 52))
p3 = st_point(c(8, 52))
nodes = st_as_sf(st_sfc(p1, p2, p3, crs = 4326))

e1 = st_cast(st_union(p1, p2), "LINESTRING")
e2 = st_cast(st_union(p1, p3), "LINESTRING")
e3 = st_cast(st_union(p3, p2), "LINESTRING")
edges = st_as_sf(st_sfc(e1, e2, e3, crs = 4326))
edges$from = c(1, 1, 3)
edges$to = c(2, 3, 2)

Default.
sfnetwork(nodes, edges)

Undirected network.
sfnetwork(nodes, edges, directed = FALSE)

Using character encoded from and to columns.
nodes$name = c("city", "village", "farm")
edges$from = c("city", "city", "farm")
edges$to = c("village", "farm", "village")
sfnetwork(nodes, edges, node_key = "name")

Spatially implicit edges.
sfnetwork(nodes, edges, edges_as_lines = FALSE)

Store edge lenghts in a weight column.
sfnetwork(nodes, edges, length_as_weight = TRUE)

Adjust the number of features printed by active and inactive components
oldoptions = options(sfn_max_print_active = 1, sfn_max_print_inactive = 2)
sfnetwork(nodes, edges)

16 sf_attr

options(oldoptions)

sf_attr Query sf attributes from the active element of a sfnetwork

Description

Query sf attributes from the active element of a sfnetwork

Usage

sf_attr(x, name, active = NULL)

Arguments

x An object of class sfnetwork.

name Name of the attribute to query. Either 'sf_column' or 'agr'.

active Which network element (i.e. nodes or edges) to activate before extracting. If
NULL, it will be set to the current active element of the given network. Defaults
to NULL.

Details

sf attributes include sf_column (the name of the sf column) and agr (the attribute-geometry-
relationships).

Value

The value of the attribute matched, or NULL if no exact match is found.

Examples

net = as_sfnetwork(roxel)
sf_attr(net, "agr", active = "edges")
sf_attr(net, "sf_column", active = "nodes")

spatial_edge_measures 17

spatial_edge_measures Query spatial edge measures

Description

These functions are a collection of specific spatial edge measures, that form a spatial extension to
edge measures in tidygraph.

Usage

edge_azimuth()

edge_circuity(Inf_as_NaN = FALSE)

edge_length()

edge_displacement()

Arguments

Inf_as_NaN Should the circuity values of loop edges be stored as NaN instead of Inf? De-
faults to FALSE.

Details

Just as with all query functions in tidygraph, spatial edge measures are meant to be called inside
tidygraph verbs such as mutate or filter, where the network that is currently being worked on
is known and thus not needed as an argument to the function. If you want to use an algorithm
outside of the tidygraph framework you can use with_graph to set the context temporarily while
the algorithm is being evaluated.

Value

A numeric vector of the same length as the number of edges in the graph.

Functions

• edge_azimuth: The angle in radians between a straight line from the edge startpoint pointing
north, and the straight line from the edge startpoint and the edge endpoint. Calculated with
st_geod_azimuth. Requires a geographic CRS.

• edge_circuity: The ratio of the length of an edge linestring geometry versus the straight-
line distance between its boundary nodes, as described in Giacomin & Levinson, 2015. DOI:
10.1068/b130131p.

• edge_length: The length of an edge linestring geometry as calculated by st_length.

• edge_displacement: The straight-line distance between the two boundary nodes of an edge,
as calculated by st_distance.

18 spatial_edge_predicates

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

net = as_sfnetwork(roxel)

net %>%
activate("edges") %>%
mutate(azimuth = edge_azimuth())

net %>%
activate("edges") %>%
mutate(circuity = edge_circuity())

net %>%
activate("edges") %>%
mutate(length = edge_length())

net %>%
activate("edges") %>%
mutate(displacement = edge_displacement())

spatial_edge_predicates

Query edges with spatial predicates

Description

These functions allow to interpret spatial relations between edges and other geospatial features di-
rectly inside filter and mutate calls. All functions return a logical vector of the same length as the
number of edges in the network. Element i in that vector is TRUE whenever any(predicate(x[i],y[j]))
is TRUE. Hence, in the case of using edge_intersects, element i in the returned vector is TRUE
when edge i intersects with any of the features given in y.

Usage

edge_intersects(y, ...)

edge_is_disjoint(y, ...)

edge_touches(y, ...)

edge_crosses(y, ...)

edge_is_within(y, ...)

edge_contains(y, ...)

spatial_edge_predicates 19

edge_contains_properly(y, ...)

edge_overlaps(y, ...)

edge_equals(y, ...)

edge_covers(y, ...)

edge_is_covered_by(y, ...)

edge_is_within_distance(y, ...)

Arguments

y The geospatial features to test the edges against, either as an object of class sf
or sfc.

... Arguments passed on to the corresponding spatial predicate function of sf. See
geos_binary_pred.

Details

See geos_binary_pred for details on each spatial predicate. Just as with all query functions in
tidygraph, these functions are meant to be called inside tidygraph verbs such as mutate or filter,
where the network that is currently being worked on is known and thus not needed as an argument
to the function. If you want to use an algorithm outside of the tidygraph framework you can use
with_graph to set the context temporarily while the algorithm is being evaluated.

Value

A logical vector of the same length as the number of edges in the network.

Note

Note that edge_is_within_distance is a wrapper around the st_is_within_distance predicate
from sf. Hence, it is based on ’as-the-crow-flies’ distance, and not on distances over the network.

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network.
net = as_sfnetwork(roxel) %>%

st_transform(3035)

Create a geometry to test against.
p1 = st_point(c(4151358, 3208045))
p2 = st_point(c(4151340, 3207520))
p3 = st_point(c(4151756, 3207506))

20 spatial_morphers

p4 = st_point(c(4151774, 3208031))

poly = st_multipoint(c(p1, p2, p3, p4)) %>%
st_cast('POLYGON') %>%
st_sfc(crs = 3035)

Use predicate query function in a filter call.
intersects = net %>%

activate(edges) %>%
filter(edge_intersects(poly))

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(st_geometry(net, "edges"))
plot(st_geometry(intersects, "edges"), col = "red", lwd = 2, add = TRUE)
par(oldpar)

Use predicate query function in a mutate call.
net %>%

activate(edges) %>%
mutate(disjoint = edge_is_disjoint(poly)) %>%
select(disjoint)

spatial_morphers Spatial morphers for sfnetworks

Description

Spatial morphers form spatial add-ons to the set of morphers provided by tidygraph. These func-
tions are not meant to be called directly. They should either be passed into morph to create a
temporary alternative representation of the input network. Such an alternative representation is a
list of one or more network objects. Single elements of that list can be extracted directly as a new
network by passing the morpher to convert instead, to make the changes lasting rather than tem-
porary. Alternatively, if the morphed state contains multiple elements, all of them can be extracted
together inside a tbl_df by passing the morpher to crystallise.

Usage

to_spatial_contracted(
x,
...,
simplify = FALSE,
summarise_attributes = "ignore",
store_original_data = FALSE

)

to_spatial_directed(x)

spatial_morphers 21

to_spatial_explicit(x, ...)

to_spatial_neighborhood(x, node, threshold, weights = NULL, from = TRUE, ...)

to_spatial_shortest_paths(x, ...)

to_spatial_simple(
x,
remove_multiple = TRUE,
remove_loops = TRUE,
summarise_attributes = "first",
store_original_data = FALSE

)

to_spatial_smooth(x, store_original_data = FALSE)

to_spatial_subdivision(x)

to_spatial_subset(x, ..., subset_by = NULL)

to_spatial_transformed(x, ...)

Arguments

x An object of class sfnetwork.

... Arguments to be passed on to other functions. See the description of each mor-
pher for details.

simplify Should the network be simplified after contraction? This means that multiple
edges and loop edges will be removed. Multiple edges are introduced by con-
traction when there are several connections between the same groups of nodes.
Loop edges are introduced by contraction when there are connections within a
group. Note however that setting this to TRUE also removes multiple edges and
loop edges that already existed before contraction. Defaults to FALSE.

summarise_attributes

Whenever multiple features (i.e. nodes and/or edges) are merged into a sin-
gle feature during morphing, how should their attributes be combined? Several
options are possible, see igraph-attribute-combination for details.

store_original_data

Whenever multiple features (i.e. nodes and/or edges) are merged into a single
feature during morphing, should the data of the original features be stored as an
attribute of the new feature, in a column named .orig_data. This is in line with
the design principles of tidygraph. Defaults to FALSE.

node The geospatial point for which the neighborhood will be calculated. Can be an
integer, referring to the index of the node for which the neighborhood will be
calculated. Can also be an object of class sf or sfc, containing a single feature.
In that case, this point will be snapped to its nearest node before calculating the
neighborhood. When multiple indices or features are given, only the first one is
taken.

22 spatial_morphers

threshold The threshold distance to be used. Only nodes within the threshold distance from
the reference node will be included in the neighborhood. Should be a numeric
value in the same units as the weight values used for distance calculation.

weights The edge weights used to calculate distances on the network. Can be a numeric
vector giving edge weights, or a column name referring to an attribute column in
the edges table containing those weights. If set to NULL, the values of a column
named weight in the edges table will be used automatically, as long as this col-
umn is present. If not, the geographic edge lengths will be calculated internally
and used as weights.

from Should distances be calculated from the reference node towards the other nodes?
Defaults to TRUE. If set to FALSE, distances will be calculated from the other
nodes towards the reference node instead.

remove_multiple

Should multiple edges be merged into one. Defaults to TRUE.
remove_loops Should loop edges be removed. Defaults to TRUE.
subset_by Whether to create subgraphs based on nodes or edges.

Details

It also possible to create your own morphers. See the documentation of morph for the requirements
for custom morphers.

Value

Either a morphed_sfnetwork, which is a list of one or more sfnetwork objects, or a morphed_tbl_graph,
which is a list of one or more tbl_graph objects. See the description of each morpher for details.

Functions

• to_spatial_contracted: Combine groups of nodes into a single node per group. ... is
forwarded to group_by to create the groups. The centroid of the group of nodes will be
used as geometry of the contracted node. If edge are spatially explicit, edge geometries
are updated accordingly such that the valid spatial network structure is preserved. Returns
a morphed_sfnetwork containing a single element of class sfnetwork.

• to_spatial_directed: Make a network directed in the direction given by the linestring ge-
ometries of the edges. Differs from to_directed, which makes a network directed based on
the node indices given in the from and to columns. In undirected networks these indices may
not correspond with the endpoints of the linestring geometries. Returns a morphed_sfnetwork
containing a single element of class sfnetwork. This morpher requires edges to be spatially
explicit. If not, use to_directed.

• to_spatial_explicit: Create linestring geometries between source and target nodes of
edges. If the edges data can be directly converted to an object of class sf using st_as_sf,
extra arguments can be provided as ... and will be forwarded to st_as_sf internally. Other-
wise, straight lines will be drawn between the source and target node of each edge. Returns a
morphed_sfnetwork containing a single element of class sfnetwork.

• to_spatial_neighborhood: Limit a network to the spatial neighborhood of a specific node.
... is forwarded to node_distance_from (if from is TRUE) or node_distance_to (if from
is FALSE). Returns a morphed_sfnetwork containing a single element of class sfnetwork.

spatial_morphers 23

• to_spatial_shortest_paths: Limit a network to those nodes and edges that are part of the
shortest path between two nodes. ... is evaluated in the same manner as st_network_paths
with type = 'shortest'. Returns a morphed_sfnetwork that may contain multiple elements
of class sfnetwork, depending on the number of requested paths. When unmorphing only the
first instance of both the node and edge data will be used, as the the same node and/or edge
can be present in multiple paths.

• to_spatial_simple: Remove loop edges and/or merges multiple edges into a single edge.
Multiple edges are edges that have the same source and target nodes (in directed networks)
or edges that are incident to the same nodes (in undirected networks). When merging them
into a single edge, the geometry of the first edge is preserved. The order of the edges can be
influenced by calling arrange before simplifying. Returns a morphed_sfnetwork containing
a single element of class sfnetwork.

• to_spatial_smooth: Construct a smoothed version of the network by iteratively removing
pseudo nodes, while preserving the connectivity of the network. In the case of directed net-
works, pseudo nodes are those nodes that have only one incoming and one outgoing edge. In
undirected networks, pseudo nodes are those nodes that have two incident edges. Connectivity
of the network is preserved by concatenating the incident edges of each removed pseudo node.
Returns a morphed_sfnetwork containing a single element of class sfnetwork.

• to_spatial_subdivision: Construct a subdivision of the network by subdividing edges at
each interior point that is equal to any other interior or boundary point in the edges table.
Interior points in this sense are those points that are included in their linestring geometry
feature but are not endpoints of it, while boundary points are the endpoints of the linestrings.
The network is reconstructed after subdivision such that edges are connected at the points of
subdivision. Returns a morphed_sfnetwork containing a single element of class sfnetwork.
This morpher requires edges to be spatially explicit.

• to_spatial_subset: Subset the network by applying a spatial filter, i.e. a filter on the geom-
etry column based on a spatial predicate. ... is evaluated in the same manner as st_filter.
Returns a morphed_sfnetwork containing a single element of class sfnetwork. For filters on
an attribute column, use to_subgraph.

• to_spatial_transformed: Transform the geospatial coordinates of the network into a dif-
ferent coordinate reference system. ... is evaluated in the same manner as st_transform.
Returns a morphed_sfnetwork containing a single element of class sfnetwork.

See Also

The vignette on spatial morphers.

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

net = as_sfnetwork(roxel, directed = FALSE) %>%
st_transform(3035)

Temporary changes with morph and unmorph.
net %>%
activate("edges") %>%

https://luukvdmeer.github.io/sfnetworks/articles/sfn05_morphers.html

24 spatial_node_predicates

mutate(weight = edge_length()) %>%
morph(to_spatial_shortest_paths, from = 1, to = 10) %>%
mutate(in_paths = TRUE) %>%
unmorph()

Lasting changes with convert.
net %>%
activate("edges") %>%
mutate(weight = edge_length()) %>%
convert(to_spatial_shortest_paths, from = 1, to = 10)

spatial_node_predicates

Query nodes with spatial predicates

Description

These functions allow to interpret spatial relations between nodes and other geospatial features di-
rectly inside filter and mutate calls. All functions return a logical vector of the same length as the
number of nodes in the network. Element i in that vector is TRUE whenever any(predicate(x[i],y[j]))
is TRUE. Hence, in the case of using node_intersects, element i in the returned vector is TRUE
when node i intersects with any of the features given in y.

Usage

node_intersects(y, ...)

node_is_disjoint(y, ...)

node_touches(y, ...)

node_is_within(y, ...)

node_equals(y, ...)

node_is_covered_by(y, ...)

node_is_within_distance(y, ...)

Arguments

y The geospatial features to test the nodes against, either as an object of class sf
or sfc.

... Arguments passed on to the corresponding spatial predicate function of sf. See
geos_binary_pred.

spatial_node_predicates 25

Details

See geos_binary_pred for details on each spatial predicate. Just as with all query functions in
tidygraph, these functions are meant to be called inside tidygraph verbs such as mutate or filter,
where the network that is currently being worked on is known and thus not needed as an argument
to the function. If you want to use an algorithm outside of the tidygraph framework you can use
with_graph to set the context temporarily while the algorithm is being evaluated.

Value

A logical vector of the same length as the number of nodes in the network.

Note

Note that node_is_within_distance is a wrapper around the st_is_within_distance predicate
from sf. Hence, it is based on ’as-the-crow-flies’ distance, and not on distances over the network.
For distances over the network, use node_distance_to with edge lengths as weights argument.

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network.
net = as_sfnetwork(roxel) %>%

st_transform(3035)

Create a geometry to test against.
p1 = st_point(c(4151358, 3208045))
p2 = st_point(c(4151340, 3207520))
p3 = st_point(c(4151756, 3207506))
p4 = st_point(c(4151774, 3208031))

poly = st_multipoint(c(p1, p2, p3, p4)) %>%
st_cast('POLYGON') %>%
st_sfc(crs = 3035)

Use predicate query function in a filter call.
within = net %>%

activate("nodes") %>%
filter(node_is_within(poly))

disjoint = net %>%
activate("nodes") %>%
filter(node_is_disjoint(poly))

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net)
plot(within, col = "red", add = TRUE)
plot(disjoint, col = "blue", add = TRUE)
par(oldpar)

26 st_network_bbox

Use predicate query function in a mutate call.
net %>%

activate("nodes") %>%
mutate(within = node_is_within(poly)) %>%
select(within)

st_network_bbox Get the bounding box of a spatial network

Description

A spatial network specific bounding box extractor, returning the combined bounding box of the
nodes and edges in the network.

Usage

st_network_bbox(x, ...)

Arguments

x An object of class sfnetwork.

... Arguments passed on to st_bbox.

Details

See st_bbox for details.

Value

The bounding box of the network as an object of class bbox.

Examples

library(sf)

Create a network.
node1 = st_point(c(8, 51))
node2 = st_point(c(7, 51.5))
node3 = st_point(c(8, 52))
node4 = st_point(c(9, 51))
edge1 = st_sfc(st_linestring(c(node1, node2, node3)))

nodes = st_as_sf(c(st_sfc(node1), st_sfc(node3), st_sfc(node4)))
edges = st_as_sf(edge1)
edges$from = 1
edges$to = 2

net = sfnetwork(nodes, edges)

st_network_blend 27

Create bounding boxes for nodes, edges and the whole network.
node_bbox = st_bbox(activate(net, "nodes"))
node_bbox
edge_bbox = st_bbox(activate(net, "edges"))
edge_bbox
net_bbox = st_network_bbox(net)
net_bbox

Plot.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net, lwd = 2, cex = 4, main = "Element bounding boxes")
plot(st_as_sfc(node_bbox), border = "red", lty = 2, lwd = 4, add = TRUE)
plot(st_as_sfc(edge_bbox), border = "blue", lty = 2, lwd = 4, add = TRUE)
plot(net, lwd = 2, cex = 4, main = "Network bounding box")
plot(st_as_sfc(net_bbox), border = "red", lty = 2, lwd = 4, add = TRUE)
par(oldpar)

st_network_blend Blend geospatial points into a spatial network

Description

Blending a point into a network is the combined process of first snapping the given point to its
nearest point on its nearest edge in the network, subsequently splitting that edge at the location of
the snapped point, and finally adding the snapped point as node to the network. If the location of
the snapped point is already a node in the network, the attributes of the point (if any) will be joined
to that node.

Usage

st_network_blend(x, y, tolerance = Inf)

Arguments

x An object of class sfnetwork.

y The spatial features to be blended, either as object of class sf or sfc, with POINT
geometries.

tolerance The tolerance distance to be used. Only features that are at least as close to the
network as the tolerance distance will be blended. Should be a non-negative
number preferably given as an object of class units. Otherwise, it will be as-
sumed that the unit is meters. If set to Inf all features will be blended. Defaults
to Inf.

28 st_network_blend

Details

There are two important details to be aware of. Firstly: when the snap locations of multiple points
are equal, only the first of these points is blended into the network. By arranging y before blending
you can influence which (type of) point is given priority in such cases. Secondly: when the snap
location of a point intersects with multiple edges, it is only blended into the first of these edges. You
might want to run the to_spatial_subdivision morpher after blending, such that intersecting but
unconnected edges get connected.

Value

The blended network as an object of class sfnetwork.

Note

Due to internal rounding of rational numbers, it may occur that the intersection point between a line
and a point is not evaluated as actually intersecting that line by the designated algorithm. Instead,
the intersection point lies a tiny-bit away from the edge. Therefore, it is recommended to set the
tolerance to a very small number (for example 1e-5) even if you only want to blend points that
intersect the line.

Examples

library(sf, quietly = TRUE)

Create a network and a set of points to blend.
n11 = st_point(c(0,0))
n12 = st_point(c(1,1))
e1 = st_sfc(st_linestring(c(n11, n12)), crs = 3857)

n21 = n12
n22 = st_point(c(0,2))
e2 = st_sfc(st_linestring(c(n21, n22)), crs = 3857)

n31 = n22
n32 = st_point(c(-1,1))
e3 = st_sfc(st_linestring(c(n31, n32)), crs = 3857)

net = as_sfnetwork(c(e1,e2,e3))

pts = net %>%
st_bbox() %>%
st_as_sfc() %>%
st_sample(10, type = "random") %>%
st_set_crs(3857) %>%
st_cast('POINT')

Blend points into the network.
--> By default tolerance is set to Inf
--> Meaning that all points get blended
b1 = st_network_blend(net, pts)
b1

st_network_cost 29

Blend points with a tolerance.
tol = units::set_units(0.2, "m")
b2 = st_network_blend(net, pts, tolerance = tol)
b2

Plot results.
Initial network and points.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,3))
plot(net, cex = 2, main = "Network + set of points")
plot(pts, cex = 2, col = "red", pch = 20, add = TRUE)

Blend with no tolerance
plot(b1, cex = 2, main = "Blend with tolerance = Inf")
plot(pts, cex = 2, col = "red", pch = 20, add = TRUE)

Blend with tolerance.
within = st_is_within_distance(pts, st_geometry(net, "edges"), tol)
pts_within = pts[lengths(within) > 0]
plot(b2, cex = 2, main = "Blend with tolerance = 0.2 m")
plot(pts, cex = 2, col = "grey", pch = 20, add = TRUE)
plot(pts_within, cex = 2, col = "red", pch = 20, add = TRUE)
par(oldpar)

st_network_cost Compute a cost matrix of a spatial network

Description

Wrapper around distances to calculate costs of pairwise shortest paths between points in a spatial
network. It allows to provide any set of geospatial point as from and to arguments. If such a
geospatial point is not equal to a node in the network, it will be snapped to its nearest node before
calculating costs.

Usage

st_network_cost(
x,
from = igraph::V(x),
to = igraph::V(x),
weights = NULL,
Inf_as_NaN = FALSE,
...

)

30 st_network_cost

Arguments

x An object of class sfnetwork.

from The (set of) geospatial point(s) from which the shortest paths will be calculated.
Can be an object of class sf or sfc. Alternatively it can be a numeric vector con-
taining the indices of the nodes from which the shortest paths will be calculated,
or a character vector containing the names of the nodes from which the shortest
paths will be calculated. By default, all nodes in the network are included.

to The (set of) geospatial point(s) to which the shortest paths will be calculated.
Can be an object of class sf or sfc. Features with duplicated nearest node
indices will be removed before calculating the cost matrix. Alternatively it can
be a numeric vector containing the indices of the nodes to which the shortest
paths will be calculated, or a character vector containing the names of the nodes
to which the shortest paths will be calculated. Duplicated values will be removed
before calculating the cost matrix. By default, all nodes in the network are
included.

weights The edge weights to be used in the shortest path calculation. Can be a numeric
vector giving edge weights, or a column name referring to an attribute column in
the edges table containing those weights. If set to NULL, the values of a column
named weight in the edges table will be used automatically, as long as this col-
umn is present. If not, the geographic edge lengths will be calculated internally
and used as weights. If set to NA, no weights are used, even if the edges have a
weight column.

Inf_as_NaN Should the cost values of unconnected nodes be stored as NaN instead of Inf?
Defaults to FALSE.

... Arguments passed on to distances.

Details

Spatial features provided to the from and/or to argument don’t necessarily have to be points. In-
ternally, the nearest node to each feature is found by calling st_nearest_feature, so any feature
with a geometry type that is accepted by that function can be provided as from and/or to argument.

When directly providing integer node indices or character node names to the from and/or to argu-
ment, keep the following in mind. A node index should correspond to a row-number of the nodes
table of the network. A node name should correspond to a value of a column in the nodes table
named name. This column should contain character values without duplicates.

For more details on the wrapped function from igraph see the distances documentation page.

Value

An n times m numeric matrix where n is the length of the from argument, and m is the length of
unique values in the to argument. When the to argument contains spatial features that have the
same nearest node, these features are considered duplicates.

Note

By default, distances calculates costs by by allowing to travel each edge in both directions, hence
by assuming an undirected network. This is the default even when the input network is directed! For

st_network_join 31

directed networks, the behaviour can be changed by setting mode = "out" to consider only outbound
edges, or mode = "in" to consider only inbound edges.

Furthermore, distances does not allow duplicated values in the to argument. This also means that
when providing spatial features, sets of multiple features that happen to have the same nearest node
will be reduced to one by selecting only the first of these features.

See Also

st_network_paths

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network with edge lenghts as weights.
These weights will be used automatically in shortest paths calculation.
net = as_sfnetwork(roxel, directed = FALSE) %>%

st_transform(3035) %>%
activate("edges") %>%
mutate(weight = edge_length())

Providing node indices.
st_network_cost(net, from = c(495, 121), to = c(495, 121))

Providing nodes as spatial points.
Points that don't equal a node will be snapped to their nearest node.
p1 = st_geometry(net, "nodes")[495] + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes")[121] + st_sfc(st_point(c(-10, 100)))
st_crs(p2) = st_crs(net)

st_network_cost(net, from = c(p1, p2), to = c(p1, p2))

Using another column for weights.
net %>%

activate("edges") %>%
mutate(foo = runif(n(), min = 0, max = 1)) %>%
st_network_cost(c(p1, p2), c(p1, p2), weights = "foo")

Not providing any from or to points includes all nodes by default.
with_graph(net, graph_order()) # Our network has 701 nodes.
cost_matrix = st_network_cost(net)
dim(cost_matrix)

st_network_join Join two spatial networks based on equality of node geometries

32 st_network_join

Description

A spatial network specific join function which makes a spatial full join on the geometries of the
nodes data, based on the st_equals spatial predicate. Edge data are combined using a bind_rows
semantic, meaning that data are matched by column name and values are filled with NA if missing in
either of the networks. The from and to columns in the edge data are updated such that they match
the new node indices of the resulting network.

Usage

st_network_join(x, y, ...)

Arguments

x An object of class sfnetwork.

y An object of class sfnetwork, or directly convertible to it using as_sfnetwork.

... Arguments passed on to graph_join.

Value

The joined networks as an object of class sfnetwork.

Examples

library(sf, quietly = TRUE)

node1 = st_point(c(0, 0))
node2 = st_point(c(1, 0))
node3 = st_point(c(1,1))
node4 = st_point(c(0,1))
edge1 = st_sfc(st_linestring(c(node1, node2)))
edge2 = st_sfc(st_linestring(c(node2, node3)))
edge3 = st_sfc(st_linestring(c(node3, node4)))

net1 = as_sfnetwork(c(edge1, edge2))
net2 = as_sfnetwork(c(edge2, edge3))

joined = st_network_join(net1, net2)
joined

Plot results.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net1, pch = 15, cex = 2, lwd = 4)
plot(net2, col = "red", pch = 18, cex = 2, lty = 3, lwd = 4, add = TRUE)
plot(joined, cex = 2, lwd = 4)
par(oldpar)

st_network_paths 33

st_network_paths Paths between points in geographical space

Description

Combined wrapper around shortest_paths, all_shortest_paths and all_simple_paths from
igraph, allowing to provide any geospatial point as from argument and any set of geospatial points
as to argument. If such a geospatial point is not equal to a node in the network, it will be snapped
to its nearest node before calculating the shortest or simple paths.

Usage

st_network_paths(
x,
from,
to = igraph::V(x),
weights = NULL,
type = "shortest",
...

)

Arguments

x An object of class sfnetwork.
from The geospatial point from which the paths will be calculated. Can be an object

an object of class sf or sfc, containing a single feature. When multiple features
are given, only the first one is used. Alternatively, it can be an integer, referring
to the index of the node from which the paths will be calculated, or a character,
referring to the name of the node from which the paths will be calculated.

to The (set of) geospatial point(s) to which the paths will be calculated. Can be an
object of class sf or sfc. Alternatively it can be a numeric vector containing the
indices of the nodes to which the paths will be calculated, or a character vector
containing the names of the nodes to which the paths will be calculated. By
default, all nodes in the network are included.

weights The edge weights to be used in the shortest path calculation. Can be a numeric
vector giving edge weights, or a column name referring to an attribute column in
the edges table containing those weights. If set to NULL, the values of a column
named weight in the edges table will be used automatically, as long as this col-
umn is present. If not, the geographic edge lengths will be calculated internally
and used as weights. If set to NA, no weights are used, even if the edges have a
weight column. Ignored when type = 'all_simple'.

type Character defining which type of path calculation should be performed. If set to
'shortest' paths are calculated using shortest_paths, if set to 'all_shortest'
paths are calculated using all_shortest_paths, if set to 'all_simple' paths
are calculated using all_simple_paths. Defaults to 'shortest'.

... Arguments passed on to the corresponding igraph or igraph function. Argu-
ments predecessors and inbound.edges are ignored.

34 st_network_paths

Details

Spatial features provided to the from and/or to argument don’t necessarily have to be points. In-
ternally, the nearest node to each feature is found by calling st_nearest_feature, so any feature
with a geometry type that is accepted by that function can be provided as from and/or to argument.

When directly providing integer node indices or character node names to the from and/or to argu-
ment, keep the following in mind. A node index should correspond to a row-number of the nodes
table of the network. A node name should correspond to a value of a column in the nodes table
named name. This column should contain character values without duplicates.

For more details on the wrapped functions from igraph see the shortest_paths or all_simple_paths
documentation pages.

Value

An object of class tbl_df with one row per returned path. Depending on the setting of the type
argument, columns can be node_paths (a list column with for each path the ordered indices of
nodes present in that path) and edge_paths (a list column with for each path the ordered indices
of edges present in that path). 'all_shortest' and 'all_simple' return only node_paths, while
'shortest' returns both.

See Also

st_network_cost

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network with edge lengths as weights.
These weights will be used automatically in shortest paths calculation.
net = as_sfnetwork(roxel, directed = FALSE) %>%

st_transform(3035) %>%
activate("edges") %>%
mutate(weight = edge_length())

Providing node indices.
paths = st_network_paths(net, from = 495, to = 121)
paths

node_path = paths %>%
slice(1) %>%
pull(node_paths) %>%
unlist()

node_path

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)

st_network_paths 35

Providing nodes as spatial points.
Points that don't equal a node will be snapped to their nearest node.
p1 = st_geometry(net, "nodes")[495] + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes")[121] + st_sfc(st_point(c(-10, 100)))
st_crs(p2) = st_crs(net)

paths = st_network_paths(net, from = p1, to = p2)
paths

node_path = paths %>%
slice(1) %>%
pull(node_paths) %>%
unlist()

node_path

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(c(p1, p2), col = "black", pch = 8, add = TRUE)
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)

Using another column for weights.
net %>%

activate("edges") %>%
mutate(foo = runif(n(), min = 0, max = 1)) %>%
st_network_paths(p1, p2, weights = "foo")

Obtaining all simple paths between two nodes.
Beware, this function can take long when:
--> Providing a lot of 'to' nodes.
--> The network is large and dense.
net = as_sfnetwork(roxel, directed = TRUE)
st_network_paths(net, from = 1, to = 12, type = "all_simple")

Obtaining all shortest paths between two nodes.
Not using edge weights.
Hence, a shortest path is the paths with the least number of edges.
st_network_paths(net, from = 5, to = 1, weights = NA, type = "all_shortest")

Index

∗ datasets
roxel, 9

all_shortest_paths, 33
all_simple_paths, 33, 34
arrange, 23
as.linnet, 2
as_s2_geography.sfnetwork (s2), 10
as_sfnetwork, 3, 3, 32
as_tbl_graph, 3
as_tibble, 5, 5
autoplot, 6, 6

bbox, 12, 26
bind_rows, 32

convert, 20
crystallise, 20

data.frame, 14
distances, 29–31

edge_azimuth (spatial_edge_measures), 17
edge_circuity (spatial_edge_measures),

17
edge_contains

(spatial_edge_predicates), 18
edge_contains_properly

(spatial_edge_predicates), 18
edge_covers (spatial_edge_predicates),

18
edge_crosses (spatial_edge_predicates),

18
edge_displacement

(spatial_edge_measures), 17
edge_equals (spatial_edge_predicates),

18
edge_intersects

(spatial_edge_predicates), 18
edge_is_covered_by

(spatial_edge_predicates), 18

edge_is_disjoint
(spatial_edge_predicates), 18

edge_is_within
(spatial_edge_predicates), 18

edge_is_within_distance
(spatial_edge_predicates), 18

edge_length (spatial_edge_measures), 17
edge_overlaps

(spatial_edge_predicates), 18
edge_touches (spatial_edge_predicates),

18

filter, 7, 17–19, 24, 25

geos_binary_pred, 19, 24, 25
ggplot, 6
graph_join, 32
group_by, 22

igraph, 30, 33, 34
is.sfnetwork, 6

linnet, 2, 3

morph, 20, 22
morphers, 20
mutate, 7, 17–19, 24, 25

node_coordinates, 7
node_distance_from, 22
node_distance_to, 22, 25
node_equals (spatial_node_predicates),

24
node_intersects

(spatial_node_predicates), 24
node_is_covered_by

(spatial_node_predicates), 24
node_is_disjoint

(spatial_node_predicates), 24
node_is_within

(spatial_node_predicates), 24

36

INDEX 37

node_is_within_distance
(spatial_node_predicates), 24

node_M (node_coordinates), 7
node_touches (spatial_node_predicates),

24
node_X (node_coordinates), 7
node_Y (node_coordinates), 7
node_Z (node_coordinates), 7

plot.sf, 8
plot.sfnetwork, 8

roxel, 9

s2, 10
sf, 5, 9, 10, 10, 12, 14, 15, 19, 21, 22, 24, 27,

30, 33
sf_attr, 16
sfc, 19, 21, 24, 27, 30, 33
sfg, 12
sfnetwork, 2, 3, 5, 6, 8, 10, 12, 13, 16, 21–23,

26–28, 30, 32, 33
shortest_paths, 33, 34
spatial_edge_measures, 17
spatial_edge_predicates, 18
spatial_morphers, 20
spatial_node_predicates, 24
st_agr.sfnetwork (sf), 10
st_agr<-.sfnetwork (sf), 10
st_as_sf, 3, 12, 14, 15, 22
st_as_sf.sfnetwork (sf), 10
st_bbox, 26
st_bbox.sfnetwork (sf), 10
st_coordinates.sfnetwork (sf), 10
st_crop, 12
st_crop.morphed_sfnetwork (sf), 10
st_crop.sfnetwork (sf), 10
st_crs.sfnetwork (sf), 10
st_crs<-.sfnetwork (sf), 10
st_distance, 17
st_equals, 32
st_filter, 12, 23
st_filter.morphed_sfnetwork (sf), 10
st_filter.sfnetwork (sf), 10
st_geod_azimuth, 17
st_geometry.sfnetwork (sf), 10
st_geometry<-.sfnetwork (sf), 10
st_intersects.sfnetwork (sf), 10
st_is.sfnetwork (sf), 10

st_join, 12
st_join.morphed_sfnetwork (sf), 10
st_join.sfnetwork (sf), 10
st_length, 17
st_m_range.sfnetwork (sf), 10
st_nearest_feature, 30, 34
st_network_bbox, 26
st_network_blend, 27
st_network_cost, 29, 34
st_network_join, 31
st_network_paths, 23, 31, 33
st_reverse.sfnetwork (sf), 10
st_shift_longitude.sfnetwork (sf), 10
st_simplify.sfnetwork (sf), 10
st_transform, 23
st_transform.sfnetwork (sf), 10
st_wrap_dateline.sfnetwork (sf), 10
st_z_range.sfnetwork (sf), 10
st_zm.sfnetwork (sf), 10

tbl_df, 14, 20, 34
tbl_graph, 14, 22
tibble, 5
tidygraph, 17
to_directed, 22
to_spatial_contracted

(spatial_morphers), 20
to_spatial_directed (spatial_morphers),

20
to_spatial_explicit (spatial_morphers),

20
to_spatial_neighborhood

(spatial_morphers), 20
to_spatial_shortest_paths

(spatial_morphers), 20
to_spatial_simple (spatial_morphers), 20
to_spatial_smooth (spatial_morphers), 20
to_spatial_subdivision, 28
to_spatial_subdivision

(spatial_morphers), 20
to_spatial_subset (spatial_morphers), 20
to_spatial_transformed

(spatial_morphers), 20
to_subgraph, 23

units, 27

with_graph, 7, 17, 19, 25

	as.linnet
	as_sfnetwork
	as_tibble
	autoplot
	is.sfnetwork
	node_coordinates
	plot.sfnetwork
	roxel
	s2
	sf
	sfnetwork
	sf_attr
	spatial_edge_measures
	spatial_edge_predicates
	spatial_morphers
	spatial_node_predicates
	st_network_bbox
	st_network_blend
	st_network_cost
	st_network_join
	st_network_paths
	Index

