
Package ‘sgmcmc’
October 24, 2019

Type Package

Title Stochastic Gradient Markov Chain Monte Carlo

Version 0.2.5

Description Provides functions that performs popular stochastic gradi-
ent Markov chain Monte Carlo (SGMCMC) methods on user specified models. The required gra-
dients are automatically calculated using 'TensorFlow' <https://www.tensorflow.org/>, an effi-
cient library for numerical computation. This means only the log likelihood and log prior func-
tions need to be specified. The methods implemented include stochastic gradient Langevin dy-
namics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC), stochastic gradi-
ent Nose-Hoover thermostat (SGNHT) and their respective control vari-
ate versions for increased efficiency. References: M. Welling, Y. W. Teh (2011) <http://www.icml-
2011.org/papers/398_icmlpaper.pdf>; T. Chen, E. B. Fox, C. E. Guestrin (2014) <arXiv:1402.4102>; N. Ding, Y. Fang, R. Bab-
bush, C. Chen, R. D. Skeel, H. Neven (2014) <https://papers.nips.cc/paper/5592-bayesian-
sampling-using-stochastic-gradient-thermostats>; J. Baker, P. Fearn-
head, E. B. Fox, C. Nemeth (2017) <arXiv:1706.05439>. For more de-
tails see <doi:10.18637/jss.v091.i03>.

License GPL-3

Encoding UTF-8

Depends R (>= 3.0), tensorflow

Imports utils, reticulate

SystemRequirements TensorFlow (https://www.tensorflow.org/),
TensorFlow Probability
(https://www.tensorflow.org/probability/)

Suggests testthat, MASS, knitr, ggplot2, rmarkdown

LazyData true

VignetteBuilder knitr

RoxygenNote 6.0.1

URL https://github.com/STOR-i/sgmcmc

BugReports https://github.com/STOR-i/sgmcmc/issues

NeedsCompilation no

1

https://github.com/STOR-i/sgmcmc
https://github.com/STOR-i/sgmcmc/issues

2 getDataset

Author Jack Baker [aut, cre, cph],
Christopher Nemeth [aut, cph],
Paul Fearnhead [aut, cph],
Emily B. Fox [aut, cph],
STOR-i [cph]

Maintainer Jack Baker <jackbaker92@mail.com>

Repository CRAN

Date/Publication 2019-10-24 18:10:02 UTC

R topics documented:
getDataset . 2
getParams . 4
initSess . 5
installTF . 6
sghmc . 6
sghmccv . 7
sghmccvSetup . 9
sghmcSetup . 12
sgld . 14
sgldcv . 15
sgldcvSetup . 17
sgldSetup . 19
sgmcmc . 21
sgmcmcStep . 21
sgnht . 22
sgnhtcv . 24
sgnhtcvSetup . 26
sgnhtSetup . 28

Index 31

getDataset Load example datasets

Description

Download and load one of the example datasets for the package: covertype or mnist. These
datasets are required for the vignettes in the package. The code generating these datasets is available
at https://github.com/jbaker92/sgmcmc-data.

Usage

getDataset(dataset)

https://github.com/jbaker92/sgmcmc-data

getDataset 3

Arguments

dataset string which determines the dataset to load: either "covertype" or "mnist".

Value

Returns the desired dataset. The next two sections give more details about each dataset.

covertype

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the
task of predicting each patch’s cover type, i.e. the dominant species of tree. We use the LIBSVM
dataset, which transforms the data to a binary problem rather than multiclass.

format: A matrix with 581012 rows and 55 variables. The first column is the classification labels,
the other columns are the 54 explanatory variables.

source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

mnist

The MNIST dataset is a dataset of handwritten digits from 0-9. Each image is 28x28 pixels. We
can interpret this as a large matrix of numbers, representing the value at each pixel. These 28x28
matrices are then flattened to be vectors of length 784. For each image, there is an associated label,
which determines which digit the image is of. This image is encoded as a vector of length 10, where
element i is 1 if the digit is i-1 and 0 otherwise. The dataset is split into two parts: 55,000 data points
of training data and 10,000 points of test data.

format: A list with two elements train and test.

• The training set mnist$train is a list with two entries: images and labels, located at mnist$train$images,
mnist$train$labels respectively.

• The dataset mnist$train$images is a matrix of size 55000x784, the labels mnist$train$labels
is a matrix of size 55000x10.

• The test set mnist$test is a list with two entries: images and labels, located at mnist$test$images,
mnist$test$labels respectively.

• The dataset mnist$test$images is a matrix of size 10000x784, the labels mnist$test$labels is a
matrix of size 10000x10.

source: http://yann.lecun.com/exdb/mnist/

Examples

Not run:
Download the covertype dataset
covertype = get_dataset("covertype")
Download the mnist dataset
mnist = get_dataset("mnist")

End(Not run)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://yann.lecun.com/exdb/mnist/

4 getParams

getParams Get current parameter values

Description

Return the current parameter values as a list of R arrays (converted from TensorFlow tensors).

Usage

getParams(sgmcmc, sess)

Arguments

sgmcmc a stochastic gradient MCMC object returned by *Setup such as sgldSetup,
sgldcvSetup etc.

sess a TensorFlow session created using initSess

Value

Returns a list with the same names as params, with R arrays of the current parameter values

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sgld = sgldSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgld)
for (i in 1:nIters) {

sgmcmcStep(sgld, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgld, sess)$theta

}
For more examples see vignettes

End(Not run)

initSess 5

initSess Initialise TensorFlow session and sgmcmc algorithm

Description

Initialise the TensorFlow session and the sgmcmc algorithm. For algorithms with control variates
this will find the MAP estimates of the log posterior and calculate the full log posterior gradient at
this point. For algorithms without control variates this will simply initialise a TensorFlow session.

Usage

initSess(sgmcmc, verbose = TRUE)

Arguments

sgmcmc an sgmcmc object created using *Setup e.g. sgldSetup, sgldcvSetup

verbose optional. Default TRUE. Boolean specifying whether to print progress.

Value

sess a TensorFlow session, see the TensorFlow for R website for more details.

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sgld = sgldSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgld)
for (i in 1:nIters) {

sgmcmcStep(sgld, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgld, sess)$theta

}
For more examples see vignettes

End(Not run)

https://tensorflow.rstudio.com/

6 sghmc

installTF Install TensorFlow and TensorFlow Probability

Description

Install the python packages required by sgmcmc, including TensorFlow and TensorFlow probability.
Uses the tensorflow::install_tensorflow function.

Usage

installTF()

sghmc Stochastic Gradient Hamiltonian Monte Carlo

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradient
Hamiltonian Monte Carlo. The function uses TensorFlow, so needs TensorFlow for python installed.
Currently we use the approximation β̂ = 0, as used in the simulations by the original reference. This
will be changed in future implementations.

Usage

sghmc(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, alpha = 0.01, L = 5L, nIters = 10^4L,
verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

sghmccv 7

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

alpha optional. Default 0.01. List of numeric values corresponding to the SGHMC
momentum tuning constants (α in the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

L optional. Default 5L. Integer specifying the trajectory parameter of the simula-
tion, as defined in the main reference.

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.
verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress
seed optional. Default NULL. Numeric seed for random number generation. The

default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...)

References

• Chen, T., Fox, E. B., and Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo.
In ICML (pp. 1683-1691).

Examples

Not run:
Simulate from a Normal Distribution with uninformative, improper prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-5)
output = sghmc(logLik, dataset, params, stepsize)
For more examples see vignettes

End(Not run)

sghmccv Stochastic Gradient Hamiltonian Monte Carlo with Control Variates

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradi-
ent Hamiltonian Monte Carlo with an improved gradient estimate that is calculated using control
variates. Currently we use the approximation β̂ = 0, as used in the simulations by the original
reference. This will be changed in future implementations.

https://arxiv.org/pdf/1402.4102v2.pdf
https://arxiv.org/pdf/1402.4102v2.pdf

8 sghmccv

Usage

sghmccv(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, alpha = 0.01, L = 5L, nIters = 10^4L,
nItersOpt = 10^4L, verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

alpha optional. Default 0.01. List of numeric values corresponding to the SGHMC
momentum tuning constants (α in the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

L optional. Default 5L. Integer specifying the trajectory parameter of the simula-
tion, as defined in the main reference.

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...)

sghmccvSetup 9

References

• Baker, J., Fearnhead, P., Fox, E. B., and Nemeth, C. (2017). Control variates for stochastic
gradient MCMC. ArXiv preprint arXiv:1706.05439.

• Chen, T., Fox, E. B., and Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo.
In ICML (pp. 1683-1691).

Examples

Not run:
Simulate from a Normal Distribution with uninformative prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-5)
optStepsize = 1e-1
output = sghmccv(logLik, dataset, params, stepsize, optStepsize)

End(Not run)

sghmccvSetup Create an sghmccv object

Description

Creates an sghmccv (stochastic gradient Hamiltonian Monte Carlo with Control Variates) object
which can be passed to sgmcmcStep to simulate from 1 step of sghmc, using a gradient estimate
with control variates for the posterior defined by logLik and logPrior. This allows the user to code
the loop themselves, as in many standard TensorFlow procedures (such as optimization). Which
means they do not need to store the chain at each iteration. This is useful when the full chain needs
a lot of memory.

Usage

sghmccvSetup(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, alpha = 0.01, L = 5L, nItersOpt = 10^4L,
verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

https://arxiv.org/pdf/1706.05439.pdf
https://arxiv.org/pdf/1706.05439.pdf
https://arxiv.org/pdf/1402.4102v2.pdf
https://arxiv.org/pdf/1402.4102v2.pdf

10 sghmccvSetup

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

alpha optional. Default 0.01. List of numeric values corresponding to the SGHMC
momentum tuning constants (α in the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

L optional. Default 5L. Integer specifying the trajectory parameter of the simula-
tion, as defined in the main reference.

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

The function returns an ’sghmccv’ object, a type of sgmcmc object. Which is used to pass the re-
quired information about the current model to the sgmcmcStep function. The function sgmcmcStep
runs one step of sghmc with a gradient estimate that uses control variates. Attributes of the sghmccv
object you’ll probably find most useful are:

params list of tf$Variables with the same names as the params list passed to sghmccvSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

paramsOpt list of tf$Variables with the same names as the params list passed to sghmccvSetup.
These variables are used to initially find MAP estimates and then store these optimal parameter
estimates.

estLogPost a tensor that estimates the log posterior given the current placeholders and params.

logPostOptGrad list of tf$Variables with same names as params, this stores the full log poste-
rior gradient at each MAP estimate after the initial optimization step.

Other attributes of the object are as follows:

N dataset size.

sghmccvSetup 11

data dataset as passed to sghmccvSetup.

n minibatchSize as passed to sghmccvSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. These are also the objects that gets fed to the dataset argument of the
logLik and logPrior functions you declared.

stepsize list of stepsizes as passed to sghmccvSetup

alpha list of alpha tuning parameters as passed to sghmcSetup.

L integer trajectory parameter as passed to sghmcSetup.

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

estLogPostOpt a TensorFlow tensor relying on paramsOpt and placeholders which estimates
the log posterior at the optimal parameters. Used in the initial optimization step.

fullLogPostOpt a TensorFlow tensor used in the calculation of the full log posterior gradient at the
MAP estimates.

optimizer a TensorFlow optimizer object used to find the initial MAP estimates.

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
optStepsize = 1e-1
sghmccv = sghmccvSetup(logLik, dataset, params, stepsize, optStepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sghmccv)
for (i in 1:nIters) {

sgmcmcStep(sghmccv, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sghmccv, sess)$theta

}
For more examples see vignettes

End(Not run)

12 sghmcSetup

sghmcSetup Create an sghmc object

Description

Creates an sghmc (stochastic gradient Hamiltonian Monte Carlo) object which can be passed to
sgmcmcStep to simulate from 1 step of SGLD for the posterior defined by logLik and logPrior. This
allows the user to code the loop themselves, as in many standard TensorFlow procedures (such as
optimization). Which means they do not need to store the chain at each iteration. This is useful
when the full chain needs a lot of memory.

Usage

sghmcSetup(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, alpha = 0.01, L = 5L, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

alpha optional. Default 0.01. List of numeric values corresponding to the SGHMC
momentum tuning constants (α in the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

L optional. Default 5L. Integer specifying the trajectory parameter of the simula-
tion, as defined in the main reference.

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

sghmcSetup 13

Value

The function returns an ’sghmc’ object, which is used to pass the required information about the
current model to the sgmcmcStep function. The function sgmcmcStep runs one step of sghmc. The
sghmc object has the following attributes:

params list of tf$Variables with the same names as the params list passed to sghmcSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

estLogPost a tensor that estimates the log posterior given the current placeholders and params.

N dataset size.

data dataset as passed to sghmcSetup.

n minibatchSize as passed to sghmcSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. These objects get fed to the dataset argument of the logLik and log-
Prior functions you declared.

stepsize list of stepsizes as passed to sghmcSetup.

alpha list of alpha tuning parameters as passed to sghmcSetup.

L integer trajectory parameter as passed to sghmcSetup.

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sghmc = sghmcSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sghmc)
for (i in 1:nIters) {

sgmcmcStep(sghmc, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sghmc, sess)$theta

}
For more examples see vignettes

End(Not run)

14 sgld

sgld Stochastic Gradient Langevin Dynamics

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradient
Langevin Dynamics. The function uses TensorFlow, so needs TensorFlow for python installed.

Usage

sgld(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, nIters = 10^4L, verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...)

sgldcv 15

References

• Welling, M., and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dy-
namics. ICML (pp. 681-688).

Examples

Not run:
Simulate from a Normal Distribution with uninformative prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
output = sgld(logLik, dataset, params, stepsize)
For more examples see vignettes

End(Not run)

sgldcv Stochastic Gradient Langevin Dynamics with Control Variates

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradient
Langevin Dynamics with an improved gradient estimate using Control Variates. The function uses
TensorFlow, so needs TensorFlow for python installed.

Usage

sgldcv(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, nIters = 10^4L, nItersOpt = 10^4L,
verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

http://people.ee.duke.edu/~lcarin/398_icmlpaper.pdf
http://people.ee.duke.edu/~lcarin/398_icmlpaper.pdf

16 sgldcv

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...)

References

• Baker, J., Fearnhead, P., Fox, E. B., and Nemeth, C. (2017). Control variates for stochastic
gradient MCMC. ArXiv preprint arXiv:1706.05439.

• Welling, M., and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dy-
namics. ICML (pp. 681-688).

Examples

Not run:
Simulate from a Normal Distribution with uninformative prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
optStepsize = 1e-1
output = sgldcv(logLik, dataset, params, stepsize, optStepsize)

End(Not run)

https://arxiv.org/pdf/1706.05439.pdf
https://arxiv.org/pdf/1706.05439.pdf
http://people.ee.duke.edu/~lcarin/398_icmlpaper.pdf
http://people.ee.duke.edu/~lcarin/398_icmlpaper.pdf

sgldcvSetup 17

sgldcvSetup Create an sgldcv object

Description

Creates an sgldcv (stochastic gradient Langevin Dynamics with Control Variates) object which can
be passed to sgmcmcStep to simulate from 1 step of sgld, using a gradient estimate with control
variates for the posterior defined by logLik and logPrior. This allows the user to code the loop
themselves, as in many standard TensorFlow procedures (such as optimization). Which means they
do not need to store the chain at each iteration. This is useful when the full chain needs a lot of
memory.

Usage

sgldcvSetup(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, nItersOpt = 10^4L, verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

18 sgldcvSetup

Value

The function returns an ’sgldcv’ object, a type of sgmcmc object. Which is used to pass the required
information about the current model to the sgmcmcStep function. The function sgmcmcStep runs
one step of sgld with a gradient estimate that uses control variates. Attributes of the sgldcv object
you’ll probably find most useful are:

params list of tf$Variables with the same names as the params list passed to sgldcvSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

paramsOpt list of tf$Variables with the same names as the params list passed to sgldcvSetup.
These variables are used to initially find MAP estimates and then store these optimal parameter
estimates.

estLogPost a tensor that estimates the log posterior given the current placeholders and params.

logPostOptGrad list of tf$Variables with same names as params, this stores the full log poste-
rior gradient at each MAP estimate after the initial optimization step.

Other attributes of the object are as follows:

N dataset size.

data dataset as passed to sgldcvSetup.

n minibatchSize as passed to sgldcvSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. These are also the objects that gets fed to the dataset argument of the
logLik and logPrior functions you declared.

stepsize list of stepsizes as passed to sgldcvSetup

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

estLogPostOpt a TensorFlow tensor relying on paramsOpt and placeholders which estimates
the log posterior at the optimal parameters. Used in the initial optimization step.

fullLogPostOpt a TensorFlow tensor used in the calculation of the full log posterior gradient at the
MAP estimates.

optimizer a TensorFlow optimizer object used to find the initial MAP estimates.

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
optStepsize = 1e-1
sgldcv = sgldcvSetup(logLik, dataset, params, stepsize, optStepsize)
nIters = 10^4L

sgldSetup 19

Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgldcv)
for (i in 1:nIters) {

sgmcmcStep(sgldcv, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgldcv, sess)$theta

}
For more examples see vignettes

End(Not run)

sgldSetup Create an sgld object

Description

Creates an sgld (stochastic gradient Langevin dynamics) object which can be passed to sgmcmcStep
to simulate from 1 step of SGLD for the posterior defined by logLik and logPrior. This allows the
user to code the loop themselves, as in many standard TensorFlow procedures (such as optimiza-
tion). Which means they do not need to store the chain at each iteration. This is useful when the
full chain needs a lot of memory.

Usage

sgldSetup(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

20 sgldSetup

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

The function returns an ’sgld’ object, which is used to pass the required information about the
current model to the sgmcmcStep function. The function sgmcmcStep runs one step of sgld. The
sgld object has the following attributes:

params list of tf$Variables with the same names as the params list passed to sgldSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

estLogPost a tensor that estimates the log posterior given the current placeholders and params (the
placeholders holds the minibatches of data).

N dataset size.

data dataset as passed to sgldSetup.

n minibatchSize as passed to sgldSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. These are the objects that get fed to the dataset argument of the logLik
and logPrior functions you declared.

stepsize list of stepsizes as passed to sgldSetup.

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sgld = sgldSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgld)
for (i in 1:nIters) {

sgmcmcStep(sgld, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgld, sess)$theta

}
For more examples see vignettes

sgmcmc 21

End(Not run)

sgmcmc sgmcmc: A package for stochastic gradient MCMC

Description

The sgmcmc package implements some of the most popular stochastic gradient MCMC methods
including SGLD, SGHMC, SGNHT. It also implements control variates as a way to increase the
efficiency of these methods. The algorithms are implemented using TensorFlow which means no
gradients need to be specified by the user as these are calculated automatically. It also means the
algorithms are efficient.

sgmcmc functions

The main functions of the package are sgld, sghmc and sgnht which implement the methods stochas-
tic gradient Langevin dynamics, stochastic gradient Hamiltonian Monte Carlo and stochastic gra-
dient Nose-Hoover Thermostat respectively. Also included are control variate versions of these
algorithms, which uses control variates to increase their efficiency. These are the functions sgldcv,
sghmccv and sgnhtcv.

References

Baker, J., Fearnhead, P., Fox, E. B., & Nemeth, C. (2017) control variates for stochastic gradient
Langevin dynamics. Preprint.

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics.
ICML (pp. 681-688).

Chen, T., Fox, E. B., & Guestrin, C. (2014). stochastic gradient Hamiltonian Monte Carlo. In ICML
(pp. 1683-1691).

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling
using stochastic gradient thermostats. NIPS (pp. 3203-3211).

sgmcmcStep Single step of sgmcmc

Description

Update parameters by performing a single sgmcmc step with dynamics as defined in the sgmcmc
object. This can be used to perform sgmcmc steps inside a loop as in standard TensorFlow opti-
mization procedures. This is useful when high dimensional chains cannot fit into memory.

Usage

sgmcmcStep(sgmcmc, sess)

22 sgnht

Arguments

sgmcmc a stochastic gradient MCMC object returned by *Setup such as sgldSetup,
sgldcvSetup etc.

sess a TensorFlow session created using initSess

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sgld = sgldSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgld)
for (i in 1:nIters) {

sgmcmcStep(sgld, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgld, sess)$theta

}
For more examples see vignettes

End(Not run)

sgnht Stochastic Gradient Nose Hoover Thermostat

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradient
Nose Hoover Thermostat. The thermostat step needs a dot product to be calculated between two
vectors. So when the algorithm uses parameters that are higher order than vectors (e.g. matrices
and tensors), the thermostat step uses a tensor contraction. Tensor contraction is otherwise known
as the inner product between two tensors.

Usage

sgnht(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, a = 0.01, nIters = 10^4L, verbose = TRUE,
seed = NULL)

sgnht 23

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

a optional. Default 0.01. List of numeric values corresponding to SGNHT diffu-
sion factors (see Algorithm 2 of the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...)

References

• Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. (2014). Bayesian
sampling using stochastic gradient thermostats. NIPS (pp. 3203-3211).

Examples

Not run:
Simulate from a Normal Distribution with uninformative, improper prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)

http://people.ee.duke.edu/~lcarin/sgnht-4.pdf
http://people.ee.duke.edu/~lcarin/sgnht-4.pdf

24 sgnhtcv

return(tf$reduce_sum(distn$log_prob(dataset$x)))
}
stepsize = list("theta" = 5e-6)
output = sgnht(logLik, dataset, params, stepsize)
For more examples see vignettes

End(Not run)

sgnhtcv Stochastic Gradient Nose Hoover Thermostat with Control Variates

Description

Simulates from the posterior defined by the functions logLik and logPrior using stochastic gradient
Nose Hoover Thermostat with an improved gradient estimate that is calculated using control vari-
ates. The thermostat step needs a dot product to be calculated between two vectors. So when the
algorithm uses parameters that are higher order than vectors (e.g. matrices and tensors), the ther-
mostat step uses a tensor contraction. Tensor contraction is otherwise known as the inner product
between two tensors.

Usage

sgnhtcv(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, a = 0.01, nIters = 10^4L, nItersOpt = 10^4L,
verbose = TRUE, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

sgnhtcv 25

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

a optional. Default 0.01. List of numeric values corresponding to SGNHT diffu-
sion factors (see Algorithm 2 of the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

nIters optional. Default 10^4L. Integer specifying number of iterations to perform.

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

Returns list of arrays for each parameter containing the MCMC chain. Dimension of the form
(nIters,paramDim1,paramDim2,...). Names are the same as the params list.

References

• Baker, J., Fearnhead, P., Fox, E. B., and Nemeth, C. (2017). Control variates for stochastic
gradient MCMC. ArXiv preprint arXiv:1706.05439.

• Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. (2014). Bayesian
sampling using stochastic gradient thermostats. NIPS (pp. 3203-3211).

Examples

Not run:
Simulate from a Normal Distribution with uninformative prior
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
optStepsize = 1e-1
output = sgnhtcv(logLik, dataset, params, stepsize, optStepsize)

End(Not run)

https://arxiv.org/pdf/1706.05439.pdf
https://arxiv.org/pdf/1706.05439.pdf
http://people.ee.duke.edu/~lcarin/sgnht-4.pdf
http://people.ee.duke.edu/~lcarin/sgnht-4.pdf

26 sgnhtcvSetup

sgnhtcvSetup Create an sgnhtcv object

Description

Creates an sgnhtcv (stochastic gradient Nose Hoover thermostat with Control Variates) object which
can be passed to sgmcmcStep to simulate from 1 step of sgnht, using a gradient estimate with control
variates for the posterior defined by logLik and logPrior. This allows the user to code the loop
themselves, as in many standard TensorFlow procedures (such as optimization). Which means they
do not need to store the chain at each iteration. This is useful when the full chain needs a lot of
memory.

Usage

sgnhtcvSetup(logLik, dataset, params, stepsize, optStepsize, logPrior = NULL,
minibatchSize = 0.01, a = 0.01, nItersOpt = 10^4L, verbose = TRUE,
seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

optStepsize numeric value specifying the stepsize for the optimization to find MAP estimates
of parameters. The TensorFlow GradientDescentOptimizer is used.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

a optional. Default 0.01. List of numeric values corresponding to SGNHT diffu-
sion factors (see Algorithm 2 of the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

sgnhtcvSetup 27

nItersOpt optional. Default 10^4L. Integer specifying number of iterations of initial opti-
mization to perform.

verbose optional. Default TRUE. Boolean specifying whether to print algorithm progress

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

The function returns an ’sgnhtcv’ object, a type of sgmcmc object. Which is used to pass the re-
quired information about the current model to the sgmcmcStep function. The function sgmcmcStep
runs one step of sgnht with a gradient estimate that uses control variates. Attributes of the sgnhtcv
object you’ll probably find most useful are:

params list of tf$Variables with the same names as the params list passed to sgnhtcvSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

paramsOpt list of tf$Variables with the same names as the params list passed to sgnhtcvSetup.
These variables are used to initially find MAP estimates and then store these optimal parameter
estimates.

estLogPost a tensor relying on params and placeholders. This tensor estimates the log posterior
given the current placeholders and params.

logPostOptGrad list of tf$Variables with same names as params, this stores the full log poste-
rior gradient at each MAP estimate after the initial optimization step.

Other attributes of the object are as follows:

N dataset size.

data dataset as passed to sgnhtcvSetup.

n minibatchSize as passed to sgnhtcvSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. These are also the objects that gets fed to the dataset argument of the
logLik and logPrior functions you declared.

stepsize list of stepsizes as passed to sgnhtcvSetup

alpha list of alpha tuning parameters as passed to sgnhtSetup.

L integer trajectory parameter as passed to sgnhtSetup.

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

estLogPostOpt a TensorFlow tensor relying on paramsOpt and placeholders which estimates
the log posterior at the optimal parameters. Used in the initial optimization step.

fullLogPostOpt a TensorFlow tensor used in the calculation of the full log posterior gradient at the
MAP estimates.

optimizer a TensorFlow optimizer object used to find the initial MAP estimates.

28 sgnhtSetup

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
optStepsize = 1e-1
sgnhtcv = sgnhtcvSetup(logLik, dataset, params, stepsize, optStepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgnhtcv)
for (i in 1:nIters) {

sgmcmcStep(sgnhtcv, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgnhtcv, sess)$theta

}
For more examples see vignettes

End(Not run)

sgnhtSetup Create an sgnht object

Description

Creates an sgnht (stochastic gradient Nose Hoover Thermostat) object which can be passed to
sgmcmcStep to simulate from 1 step of SGNHT for the posterior defined by logLik and logPrior.
This allows the user to code the loop themselves, as in many standard TensorFlow procedures (such
as optimization). Which means they do not need to store the chain at each iteration. This is useful
when the full chain needs a lot of memory.

Usage

sgnhtSetup(logLik, dataset, params, stepsize, logPrior = NULL,
minibatchSize = 0.01, a = 0.01, seed = NULL)

Arguments

logLik function which takes parameters and dataset (list of TensorFlow variables and
placeholders respectively) as input. It should return a TensorFlow expression
which defines the log likelihood of the model.

sgnhtSetup 29

dataset list of numeric R arrays which defines the datasets for the problem. The names
in the list should correspond to those referred to in the logLik and logPrior func-
tions

params list of numeric R arrays which define the starting point of each parameter. The
names in the list should correspond to those referred to in the logLik and logPrior
functions

stepsize list of numeric values corresponding to the SGLD stepsizes for each parameter
The names in the list should correspond to those in params. Alternatively specify
a single numeric value to use that stepsize for all parameters.

logPrior optional. Default uninformative improper prior. Function which takes parame-
ters (list of TensorFlow variables) as input. The function should return a Tensor-
Flow tensor which defines the log prior of the model.

minibatchSize optional. Default 0.01. Numeric or integer value that specifies amount of dataset
to use at each iteration either as proportion of dataset size (if between 0 and 1)
or actual magnitude (if an integer).

a optional. Default 0.01. List of numeric values corresponding to SGNHT diffu-
sion factors (see Algorithm 2 of the original paper). One value should be given
for each parameter in params, the names should correspond to those in params.
Alternatively specify a single float to specify that value for all parameters.

seed optional. Default NULL. Numeric seed for random number generation. The
default does not declare a seed for the TensorFlow session.

Value

The function returns an ’sgnht’ object, which is used to pass the required information about the
current model to the sgmcmcStep function. The function sgmcmcStep runs one step of sgnht. The
sgnht object has the following attributes:

params list of tf$Variables with the same names as the params list passed to sgnhtSetup. This
is the object passed to the logLik and logPrior functions you declared to calculate the log
posterior gradient estimate.

estLogPost a tensor that estimates the log posterior given the current placeholders and params.

N dataset size.

data dataset as passed to sgnhtSetup.

n minibatchSize as passed to sgnhtSetup.

placeholders list of tf$placeholder objects with the same names as dataset used to feed minibatches
of data to sgmcmcStep. This object gets fed to the dataset argument of the logLik and logPrior
functions you declared.

stepsize list of stepsizes as passed to sgnhtSetup.

a list of a tuning parameters as passed to sgnhtSetup.

dynamics a list of TensorFlow steps that are evaluated by sgmcmcStep.

30 sgnhtSetup

Examples

Not run:
Simulate from a Normal Distribution, unknown location and known scale with uninformative prior
Run sgmcmc step by step and calculate estimate of location on the fly to reduce storage
dataset = list("x" = rnorm(1000))
params = list("theta" = 0)
logLik = function(params, dataset) {

distn = tf$distributions$Normal(params$theta, 1)
return(tf$reduce_sum(distn$log_prob(dataset$x)))

}
stepsize = list("theta" = 1e-4)
sgnht = sgnhtSetup(logLik, dataset, params, stepsize)
nIters = 10^4L
Initialize location estimate
locEstimate = 0
Initialise TensorFlow session
sess = initSess(sgnht)
for (i in 1:nIters) {

sgmcmcStep(sgnht, sess)
locEstimate = locEstimate + 1 / nIters * getParams(sgnht, sess)$theta

}
For more examples see vignettes

End(Not run)

Index

getDataset, 2
getParams, 4

initSess, 4, 5, 22
installTF, 6

sghmc, 6
sghmccv, 7
sghmccvSetup, 9, 10, 11
sghmcSetup, 11, 12, 13
sgld, 14
sgldcv, 15
sgldcvSetup, 4, 5, 17, 18, 22
sgldSetup, 4, 5, 19, 20, 22
sgmcmc, 21
sgmcmc-package (sgmcmc), 21
sgmcmcStep, 9–13, 17–20, 21, 26–29
sgnht, 22
sgnhtcv, 24
sgnhtcvSetup, 26, 27
sgnhtSetup, 27, 28, 29

31

	getDataset
	getParams
	initSess
	installTF
	sghmc
	sghmccv
	sghmccvSetup
	sghmcSetup
	sgld
	sgldcv
	sgldcvSetup
	sgldSetup
	sgmcmc
	sgmcmcStep
	sgnht
	sgnhtcv
	sgnhtcvSetup
	sgnhtSetup
	Index

