Package 'shapeNA'

March 15, 2021

Title M-Estimation of Shape for Data with Missing Values
Version 0.0.2
Description M-estimators of location and shape following the power family (Frahm, Nordhausen, Oja (2020) <doi:10.1016 j.jmva.2019.104569="">) are provided in the case of complete data and also when observations have missing values together with functions aiding their visualization.</doi:10.1016>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.6)
Imports graphics, stats
Suggests knitr, rmarkdown, mvtnorm, mice
NeedsCompilation no
Author Katharina Riemer [cre, aut], Gabriel Frahm [aut] (https://orcid.org/0000-0001-7507-730X), Klaus Nordhausen [aut] (https://orcid.org/0000-0002-3758-8501), Una Radojicic [aut] (https://orcid.org/0000-0003-0329-0595)
Maintainer Katharina Riemer <kathariemer.maintainer@gmail.com></kathariemer.maintainer@gmail.com>
Repository CRAN
Date/Publication 2021-03-15 09:10:02 UTC
R topics documented:
hamlet shaneNIA
barplot.shapeNA naBlocks plot.naBlocks plot.shapeNA powerShape powerShape powerShapeNA

2 barplot.shapeNA

Indov																			12
	summary.shapeNA													•	•				12
	shape2scatter																		
	print.summary.shapeNA																		
	print.shapeNA																		

barplot.shapeNA

Barplot Showcasing Missingness Proportion of the Original Data

Description

Visualize the proportion of missingness per variable in a barplot.

Usage

```
## S3 method for class 'shapeNA'
barplot(height, sortNA = FALSE, ...)
```

Arguments

height A shapeNA object.

SortNA A logical. If FALSE, the original variable order is kept. Otherwise the variables are ordered from least to most missingness.

Additional graphical arguments passed to barplot.

Value

Invisibly returns a named vector holding the proportion of missingness per variable.

See Also

barplot

Examples

```
S <- toeplitz(seq(1, 0.1, length.out = 3))
x <- mvtnorm::rmvt(100, S, df = 5)
y <- mice::ampute(x, mech='MCAR')$amp
res <- classicShapeNA(y)
barplot(res)</pre>
```

naBlocks 3

naBlocks	Reorder Data with Missing Values	

Description

Reorder a data set with NA entries to form blocks of missing values. The resulting data will have increasing missingness along the rows and along the columns. The rows are ordered such that the first block consists of complete observations, and the following blocks are ordered from most frequent missingness pattern to least frequent missingness pattern.

Usage

```
naBlocks(x, cleanup = TRUE, plot = FALSE)
```

Arguments

x A matrix with missing values.

cleanup A logical flag. If TRUE, observations with less than 2 responses are discarded.

plot A logical flag. If TRUE, a plot of the missingness pattern is produced.

Details

In case of ties, that is if two patterns occur with the same frequency, the block whose pattern occurs first will be ordered in front of the other block.

This method may fail if the missingness is too strong or if the number of observations is too low (the number of observations has to exceed the number of variables), as it has been designed as a preprocessing step for shape estimations.

Value

Х

A list of class naBlocks with components:

permutation	The permutation of	f the columns that was appli	ed to reorder the columns accord-

ing to the number of NAs.

The reordered data matrix.

 $\label{permutation} \mbox{The permutation of the rows that generates the blocks.}$

N A vector of all row indices. Each row number points to the beginning of a new

missingness pattern.

D A vector specifying the missingness pattern for each block.

P A vector specifying the number of observed variables per block.

kn A vector specifying the percentage of observed responses per variable.

4 plot.shapeNA

plot.naBlocks

Plot Missingness Pattern of Data

Description

Function to visualize the missingness patterns for objects of class naBlocks.

Usage

```
## S3 method for class 'naBlocks' plot(x, ...)
```

Arguments

x A naBlocks object.

... Additional parameters passed on to rect.

Value

No return value.

Examples

```
x <- mvtnorm::rmvt(100, toeplitz(seq(1, 0.1, length.out = 3)), df = 5)
y <- mice::ampute(x, mech='MCAR')$amp
res <- classicShapeNA(y)
plot(res$naBlocks)</pre>
```

plot.shapeNA

Visualization of Shape Estimate

Description

Function to visualize the shape matrix from objects of class shapeNA by plotting a heatmap where light colored cells indicate small values and dark colored cells indicate high values.

Usage

```
## S3 method for class 'shapeNA'
plot(x, message = TRUE, ...)
```

Arguments

A shapeNA oopbject

message A logical, If TRUE, the percentage of observed values per variable is printed in

the console.

. . . Additional parameters passed to image.

powerShape 5

Value

A matrix with the proportion of observed values for each variable.

Examples

```
x <- mvtnorm::rmvt(100, toeplitz(seq(1, 0.1, length.out = 3)), df = 5)
y <- mice::ampute(x, mech='MCAR')$amp
res <- tylerShapeNA(y)
## default plot
plot(res)
## plot result in gray scale - reverse order to get a palette starting
## with the lightest instead of the darkest color
plot(res, col = gray.colors(9, rev = TRUE))</pre>
```

powerShape

M-estimators of Shape from the Power Family.

Description

Power M-estimators of shape and location were recently suggested in Frahm et al. (2020). They have a tuning parameter alpha taking values in [0,1]. The extreme case alpha = 1 corresponds to Tyler's shape matrix and alpha = 0 to the classical covariance matrix. These special cases have their own, more efficient functions tylerShape and classicShape, respectively. If the true location is known, it should be supplied as center, otherwise it is estimated simultaneously with the shape.

Usage

```
powerShape(x, alpha, center = NULL,
    normalization = c("det", "trace", "one"), maxiter = 1e4, eps = 1e-6)

tylerShape(x, center = NULL,
    normalization = c("det", "trace", "one"), maxiter = 1e4, eps = 1e-6)

classicShape(x, center = NULL,
    normalization = c("det", "trace", "one"), maxiter = 1e4, eps = 1e-6)
```

Arguments

X	A numeric data matrix or data.frame without missing data.
alpha	Tail index, a numeric value in the interval $[0,1]$. Determines the power function. For more information see 'Details'.
center	An optional vector of the data's center. If NULL the center will be estimated simultaneously with the shape.
normalization	A string determining how the shape matrix is standardized. The possible values are

• 'det' such that the returned shape estimate has determinant 1.

6 powerShape

• 'trace' such that the returned shape estimate has trace ncol(x).

• 'one' such that the returned shape estimate's top left entry (S[1,1]) is 1.

maxiter A positive integer, restricting the maximum number of iterations.

eps A numeric, specifying the tolerance level of when the iteration stops.

Details

These functions assume that the data were generated from an elliptical distribution, for Tyler's estimate this can be relaxed to generalized elliptical distributions.

For multivariate normally distributed data, classicShape is the maximum likelihood estimator of location and scale. It is a special case of the power M-estimator with tail index alpha = 0, which returns the empirical covariance matrix and the empirical mean vector.

The function tylerShape maximizes the likelihood function after projecting the observed data of each individual onto the unit hypersphere, in which case we obtain an angular central Gaussian distribution. It is a special case of the power M-estimator with tail index alpha = 1, which returns Tyler's M-estimator of scatter and an affine equivariant multivariate median according to Hettmansperger and Randles (2002).

The function powerShape requires an additional parameter, the so-called tail index alpha. For heavy tailed data, the index should be chosen closer to 1, whereas for light tailed data the index should be chosen closer to 0.

Value

A list with class 'shapeNA' containing the following components:

S The estimated shape matrix.

scale The scale with which the shape matrix may be scaled to obtain a scatter estimate.

If alpha = 1, then this value is NA, as Tyler's shape matrix has no natural scale.

mu The location parameter, either provided by the user or estimated.

alpha The tail index with which the Power M-estimator has been called.

naBlocks NULL, since powerShape operates only on complete data. iterations Number of computed iterations before convergence.

call The matched call.

References

Tyler, D.E. (1987). A Distribution-Free M-Estimator of Multivariate Scatter. The Annals of Statistics, 15, 234.251. doi: 10.1214/aos/1176350263.

Frahm, G., Nordhausen, K., & Oja, H. (2020). M-estimation with incomplete and dependent multivariate data. Journal of Multivariate Analysis, 176, 104569. doi: 10.1016/j.jmva.2019.104569.

Hettmansperger, T. P., & Randles, R. H. (2002). A practical affine equivariant multivariate median. Biometrika, 89(4), 851-860. doi: 10.1093/biomet/89.4.851

See Also

powerShapeNA, tylerShapeNA and classicShapeNA for the corresponding functions for data with missing values.

powerShapeNA 7

Examples

```
## Generate example data
S \leftarrow toeplitz(c(1, 0.1))
x \leftarrow mvtnorm::rmvt(100, S)
## Compute some M-estimators
res0 <- classicShape(x, center = c(0, 0))
res1 <- powerShape(x, alpha = 0.67, normalization = 'one')
res2 <- tylerShape(x, normalization = 'trace')</pre>
## Get location estimates
res1$mu
res2$mu
## Get shape estimates
res0$S
res1$S
res2$S
## Print summary
summary(res0)
```

powerShapeNA

M-estimators of the Shape from the Power Family when Data is Missing

Description

Power M-estimators of shape and location were recently suggested in Frahm et al. (2020). They have a tuning parameter alpha taking values in [0,1]. The extreme case alpha = 1 corresponds to Tyler's shape matrix and alpha = 0 to the classical covariance matrix. These special cases have their own, more efficient functions tylerShapeNA and classicShapeNA, respectively. If the true location is known, it should be supplied as center, otherwise it is estimated simultaneously with the shape.

Usage

Arguments

A data matrix or data.frame with missing data and p > 2 columns.

alpha Tail index, a numeric value in the interval [0,1]. Determines the power function. For more information see 'Details'.

8 powerShapeNA

center An optional vector of the data's center, if NULL the center will be estimated simultaneously with the shape.

A selection of the sele

A string determining how the shape matrix is standardized. The possible values are

• 'det' such that the returned shape estimate has determinant 1.

• 'trace' such that the returned shape estimate has trace ncol(x).

• 'one' such that the returned shape estimate's top left entry (S[1,1]) is 1.

maxiter A positive integer, restricting the maximum number of iterations.

eps A numeric, specifying tolerance level of when the iteration stops.

Details

normalization

These functions assume that the data were generated from an elliptical distribution, for Tyler's estimate this can be relaxed to generalized elliptical distributions. The missingness mechanism should be MCAR or, under stricter distributional assumptions, MAR. See the references for details.

For multivariate normally distributed data, classicShapeNA is the maximum likelihood estimator of the location and scale. It is a special case of the power M-estimator with tail index alpha = 0, which returns the empirical covariance matrix and the empirical mean vector.

The function tylerShapeNA maximizes the likelihood function after projecting the observed data of each individual onto the unit hypersphere, in which case we obtain an angular central Gaussian distribution. It is a special case of the power M-estimator with tail index alpha = 1, which returns Tyler's M-estimator of scatter and an affine equivariant multivariate median according to Hettmansperger and Randles (2002).

The function powerShapeNA requires an additional parameter, the so-called tail index alpha. For heavy tailed data, the index should be chosen closer to 1, whereas for light tailed data the index should be chosen closer to 0.

Value

A list with class 'shapeNA' containing the following components:

S The estimated shape matrix.

scale The scale with which the shape matrix may be scaled to obtain a scatter estimate. If alpha = 1, then this value will be NA, as Tyler's shape matrix has no natural scale.

mu The location parameter, either provided by the user or estimated.

alpha The tail index with which the Power M-estimator has been called.

naBlocks An naBlocks object, with information about the missingness of the data.

iterations Number of computed iterations before convergence.

call The matched call.

References

Frahm, G., & Jaekel, U. (2010). A generalization of Tyler's M-estimators to the case of incomplete data. Computational Statistics & Data Analysis, 54, 374-393. doi: 10.1016/j.csda.2009.08.019.

print.naBlocks 9

Frahm, G., Nordhausen, K., & Oja, H. (2020). M-estimation with incomplete and dependent multivariate data. Journal of Multivariate Analysis, 176, 104569. doi: 10.1016/j.jmva.2019.104569.

Hettmansperger, T. P., & Randles, R. H. (2002). A practical affine equivariant multivariate median. Biometrika, 89(4), 851-860. doi: 10.1093/biomet/89.4.851

See Also

powerShape, tylerShape and classicShape for the corresponding functions for data without missing values.

Examples

```
## Generate a data set with missing values
x \leftarrow mvtnorm::rmvt(100, toeplitz(seq(1, 0.1, length.out = 3)), df = 5)
y <- mice::ampute(x, mech = 'MCAR')$amp</pre>
## Compute some M-estimators
res0 <- classicShapeNA(y, center = c(0, 0, 0))
res1 <- powerShapeNA(y, alpha = 0.67, normalization = 'one')
res2 <- tylerShapeNA(y, normalization = 'trace')</pre>
## Get location estimates
res1$mu
res2$mu
## Get shape estimates
res0$S
res1$S
res2$S
## Print summary
summary(res0)
## Inspect missingness pattern
plot(res0$naBlocks)
barplot(res0)
```

print.naBlocks

Print Missingness Pattern

Description

Print the pattern of missingness in the supplied data, as a block matrix. Observed data are represented by 1, missing values by 0.

Usage

```
## S3 method for class 'naBlocks'
print(x, ...)
```

10 print.shapeNA

Arguments

x An naBlocks object.... Additional parameters passed to print.

Details

The first row shows the column names. The leftmost column, without column name, shows the number of rows per block and the rightmost column with name # shows the number of observed variables in the block.

Value

A named matrix representing the missingness pattern of the data.

Examples

```
x <- mvtnorm::rmvt(100, toeplitz(seq(1, 0.1, length.out = 3)), df = 5)
y <- mice::ampute(x, mech='MCAR')$amp
res <- classicShapeNA(y)
print(res$naBlocks)</pre>
```

print.shapeNA

Print Method for Objects of Class shapeNA

Description

Prints the chosen value of alpha as well as the estimated shape and location for objects of class shapeNA.

Usage

```
## S3 method for class 'shapeNA'
print(x, ...)
```

Arguments

x A shapeNA object

... Additional parameters passed to lower level print.

Value

No return value.

Examples

```
x <- mvtnorm::rmvt(100, toeplitz(seq(1, 0.1, length.out = 3)), df = 5)
res <- tylerShape(x)
res ## equivalent to call print(res)</pre>
```

print.summary.shapeNA Print Method for Class summary.shapeNA

Description

Print Method for Class summary.shapeNA

Usage

```
## S3 method for class 'summary.shapeNA' print(x, ...)
```

Arguments

x Object returned from summary. shapeNA.

... Further arguments to be passed to or from methods.

Value

No return value.

Examples

```
obj <- tylerShape(mvtnorm::rmvt(100, diag(3)))
print(summary(obj))</pre>
```

shape2scatter

Scatter Estimates from shapeNA Objects

Description

For Power M-estimates with tail index alpha < 1, the resulting estimate has a scale. For these shape estimates, scatter matrices can be computed. Results from tylerShape and tylerShapeNA give no scatter estimates. In these cases the function returns NA.

Usage

```
shape2scatter(obj)
```

Arguments

obj

shapeNA object, resulting from a call to powerShape and other functions from the same family.

Value

Scatter matrix estimate, or only NA if alpha = 1.

12 summary.shapeNA

Examples

```
S <- toeplitz(c(1, 0.3, 0.7))
set.seed(123)
x <- mvtnorm::rmvt(100, S, df = 3)
obj_det <- powerShape(x, alpha = 0.85, normalization = 'det')
shape2scatter(obj_det)
obj_tr <- powerShape(x, alpha = 0.85, normalization = 'trace')
shape2scatter(obj_tr)
obj_one <- powerShape(x, alpha = 0.85, normalization = 'one')
shape2scatter(obj_one)</pre>
```

summary.shapeNA

Summary Method for Class shapeNA

Description

Summary methods for objects from class shapeNA.

Usage

```
## S3 method for class 'shapeNA'
summary(object, ...)
```

Arguments

object

An object of class shapeNA, usually from a call to powerShape or similar func-

tions.

... Further arguments to be passed to or from methods.

Value

A summary.shapeNA object. For objects of this class, the print method tries to format the location and shape estimate in a readable format and also shows the number of iterations, before the algorithm converged.

Examples

```
obj <- tylerShape(mvtnorm::rmvt(100, diag(3)))
summary(obj)</pre>
```

Index

```
barplot, 2
barplot.shapeNA, 2
classicShape, 5, 6, 9
classicShape(powerShape), 5
classicShapeNA, 6-8
classicShapeNA (powerShapeNA), 7
image, 4
naBlocks, 3
plot.naBlocks, 4
plot.shapeNA, 4
powerShape, 5, 6, 9, 11, 12
powerShapeNA, 6, 7, 8
print, 10
print.naBlocks,9
print.shapeNA, 10
print.summary.shapeNA, 11
rect, 4
shape2scatter, 11
summary.shapeNA, 11, 12
tylerShape, 5, 6, 9, 11
tylerShape (powerShape), 5
tylerShapeNA, 6-8, 11
tylerShapeNA (powerShapeNA), 7
```