
Package ‘sharp’
June 17, 2022

Type Package

Title Stability-enHanced Approaches using Resampling Procedures

Version 1.1.0

Author Barbara Bodinier [aut, cre]

Maintainer Barbara Bodinier <b.bodinier@imperial.ac.uk>

URL https://github.com/barbarabodinier/sharp

BugReports https://github.com/barbarabodinier/sharp/issues

Description Implementation of stability selection for graphical modelling and variable selection in re-
gression and dimensionality reduction. These models use on resampling approaches to esti-
mate selection probabilities (N Meinshausen, P Bühlmann (2010) <doi:10.1111/j.1467-
9868.2010.00740.x>). Calibration of the hyper-parameters is done via maximisation of a stabil-
ity score measuring the likelihood of informative (non-uniform) selection (B Bodinier, S Fil-
ippi, TH Nost, J Chiquet, M Chadeau-Hyam (2021) <arXiv:2106.02521>). This package also in-
cludes tools to simulate multivariate Normal data with different (partial) correlation structures.

License GPL (>= 3)

Language en-GB

Encoding UTF-8

RoxygenNote 7.1.2

Imports glassoFast (>= 1.0.0), glmnet, grDevices, huge, igraph, MASS,
mclust, parallel, Rdpack, withr (>= 2.4.0)

Suggests cluster, corpcor, dbscan, elasticnet, gglasso, mixOmics,
nnet, plotrix, RCy3, rmarkdown, sgPLS, survival (>= 3.2.13),
testthat (>= 3.0.0), visNetwork

Config/testthat/edition 3

RdMacros Rdpack

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-17 10:40:11 UTC

1

https://github.com/barbarabodinier/sharp
https://github.com/barbarabodinier/sharp/issues
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://arxiv.org/abs/2106.02521

2 R topics documented:

R topics documented:
sharp-package . 3
Adjacency . 5
AggregatedEffects . 6
Argmax . 7
ArgmaxId . 8
BiSelection . 9
BlockDiagonal . 17
BlockLambdaGrid . 18
BlockMatrix . 19
BlockStructure . 20
CalibrationPlot . 20
Combine . 24
Contrast . 25
ExplanatoryPerformance . 25
FDP . 31
Folds . 31
Graph . 32
GraphComparison . 35
GraphicalAlgo . 36
GraphicalModel . 38
GroupPLS . 44
Heatmap . 47
Incremental . 48
LambdaGridGraphical . 53
LambdaGridRegression . 56
LambdaSequence . 58
MakePositiveDefinite . 59
MatchingArguments . 61
PenalisedGraphical . 62
PenalisedRegression . 63
PFER . 65
PlotIncremental . 66
PlotROC . 69
PLS . 71
PredictPLS . 74
Recalibrate . 75
Resample . 79
ROC . 81
SelectedVariables . 83
SelectionAlgo . 84
SelectionPerformance . 85
SelectionPerformanceGraph . 88
SelectionProportions . 90
SimulateAdjacency . 92
SimulateComponents . 93
SimulateGraphical . 96

sharp-package 3

SimulatePrecision . 100
SimulateRegression . 102
SparseGroupPLS . 107
SparsePCA . 109
SparsePLS . 111
Split . 113
Square . 114
StabilityMetrics . 114
StabilityScore . 118
VariableSelection . 119

Index 128

sharp-package sharp: Stability-enHanced Approaches using Resampling Procedures

Description

Implementation of stability selection for graphical modelling and variable selection in regression
and dimensionality reduction. These models use on resampling approaches to estimate selection
probabilities. Calibration of the hyper-parameters is done via maximisation of a stability score
measuring the likelihood of informative (non-uniform) selection. This package also includes tools
to simulate multivariate Normal data with different (partial) correlation structures.

Details

Package: sharp
Type: Package
Version: 0.1
Date: 2021-04-30
License: GPL (>= 3)
Maintainer: Barbara Bodinier <b.bodinier@imperial.ac.uk>

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x

4 sharp-package

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))

Regression models
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50)

Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)

Graphical models
Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")

Stability selection
stab <- GraphicalModel(xdata = simul$data)
CalibrationPlot(stab)
summary(stab)
plot(stab)

PCA models
Data simulation
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))
plot(simul)

Stability selection
stab <- BiSelection(

xdata = simul$data,
ncomp = 3,
implementation = SparsePCA

)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)

PLS models
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(10, 20, 30), family = "gaussian")

Stability selection

Adjacency 5

stab <- BiSelection(
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
implementation = SparsePLS

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

par(oldpar)

Adjacency Calibrated adjacency matrix

Description

Extracts the adjacency matrix of the (calibrated) stability selection graphical model.

Usage

Adjacency(stability, argmax_id = NULL)

Arguments

stability output of GraphicalModel.

argmax_id optional matrix of parameter IDs. If argmax_id=NULL, the calibrated model is
used.

Value

A binary and symmetric adjacency matrix encoding an undirected graph with no self-loops.

See Also

GraphicalModel

Other calibration functions: ArgmaxId(), Argmax(), CalibrationPlot(), SelectedVariables(),
SelectionProportions()

Examples

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20)

Stability selection
stab <- GraphicalModel(xdata = simul$data)

Calibrated adjacency matrix

6 AggregatedEffects

A <- Adjacency(stab)

User-defined parameters
myids <- matrix(c(20, 10), nrow = 1)
stab$Lambda[myids[1], 1] # corresponding penalty
stab$params$pi_list[myids[2]] # corresponding threshold
A <- Adjacency(stab, argmax_id = myids)

AggregatedEffects Summarised coefficients conditionally on selection

Description

Computes descriptive statistics (defined by FUN) for coefficients of the (calibrated) models condi-
tionally on selection across resampling iterations.

Usage

AggregatedEffects(
stability,
lambda_id = NULL,
side = "X",
comp = 1,
FUN = stats::median,
...

)

Arguments

stability output of VariableSelection or BiSelection.

lambda_id parameter ID with respect to the grid Lambda. If NULL, aggregated coefficients
across the models run with the calibrated parameter are returned.

side character string indicating if coefficients of predictors (side="X") or outcomes
(side="Y") should be returned. Only applicable to PLS models.

comp component ID. Only applicable to PLS models.

FUN function to use to aggregate coefficients of visited models over resampling iter-
ations. Recommended functions include median or mean.

... additional arguments to be passed to FUN.

Value

A matrix of summarised coefficients conditionally on selection across resampling iterations. Miss-
ing values (NA) are returned for variables that are never selected.

See Also

VariableSelection, BiSelection, Recalibrate

Argmax 7

Examples

Example with univariate outcome
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
median_betas <- AggregatedEffects(stab)

Comparison with recalibrated model
recalibrated <- Recalibrate(xdata = simul$xdata, ydata = simul$ydata, stability = stab)
recalib_betas <- recalibrated$coefficients[-1]
plot(median_betas[names(recalib_betas),], recalib_betas,

panel.first = abline(0, 1, lty = 2)
)

Extracting mean betas conditionally on selection
mean_betas <- AggregatedEffects(stab, FUN = mean)
plot(median_betas, mean_betas)

Regression with multivariate outcomes
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(20, 30), family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "mgaussian")
median_betas <- AggregatedEffects(stab)
dim(median_betas)

Sparse PLS with multivariate outcome
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
implementation = SparsePLS

)
median_betas <- AggregatedEffects(stab)
dim(median_betas)
median_betas <- AggregatedEffects(stab, side = "Y")
dim(median_betas)

Argmax Calibrated parameters

Description

Extracts calibrated parameter values in stability selection.

8 ArgmaxId

Usage

Argmax(stability)

Arguments

stability output of VariableSelection, BiSelection or GraphicalModel.

Value

A matrix of parameter values. If applied to the output of VariableSelection or GraphicalModel,
the first column (lambda) denotes the calibrated hyper-parameter of the underlying algorithm.
The second column (pi) is the calibrated threshold in selection/co-membership proportions. For
multi-block graphical models, rows correspond to different blocks. If applied to the output of
BiSelection, all columns are named as in object summary.

See Also

VariableSelection, GraphicalModel, BiSelection

Other calibration functions: Adjacency(), ArgmaxId(), CalibrationPlot(), SelectedVariables(),
SelectionProportions()

Examples

Graphical modelling

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20)

Stability selection
stab <- GraphicalModel(xdata = simul$data)

Extracting calibrated parameters
Argmax(stab)

ArgmaxId Calibrated parameter indices

Description

Extracts the indices of calibrated parameters with respect to the grids provided in Lambda and
pi_list in stability.

Usage

ArgmaxId(stability = NULL, S = NULL)

BiSelection 9

Arguments

stability output of VariableSelection or GraphicalModel. If stability=NULL, S
must be provided.

S matrix of stability scores obtained with different combinations of parameters
where rows correspond to different values of the parameter controlling the level
of sparsity in the underlying feature selection algorithm and columns correspond
to different values of the threshold in selection proportions. If S=NULL, argument
stability must be provided.

Value

A matrix of parameter indices. For multi-block graphical models, rows correspond to different
blocks.

See Also

VariableSelection, GraphicalModel

Other calibration functions: Adjacency(), Argmax(), CalibrationPlot(), SelectedVariables(),
SelectionProportions()

Examples

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20)

Stability selection
stab <- GraphicalModel(xdata = simul$data)

Extracting IDs of calibrated parameters
ids <- ArgmaxId(stab)
stab$Lambda[ids[1], 1]
stab$params$pi_list[ids[2]]

Alternative formulation
ids2 <- ArgmaxId(S = stab$S_2d)

Link with Argmax() function
args <- Argmax(stab)

BiSelection Stability selection of predictors and/or outcomes

Description

Performs stability selection for dimensionality reduction. The underlying variable selection algo-
rithm (e.g. sparse PLS) is run with different combinations of parameters controlling the sparsity
(e.g. number of selected variables per component) and thresholds in selection proportions. These
hyper-parameters are jointly calibrated by maximisation of the stability score.

10 BiSelection

Usage

BiSelection(
xdata,
ydata = NULL,
group_x = NULL,
group_y = NULL,
LambdaX = NULL,
LambdaY = NULL,
AlphaX = NULL,
AlphaY = NULL,
ncomp = 1,
scale = TRUE,
pi_list = seq(0.6, 0.9, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = 3,
family = "gaussian",
implementation = SparsePLS,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group. Only used if implementation=GroupPLS
or implementation=SparseGroupPLS.

LambdaX matrix of parameters controlling the number of selected variables (for sparse
PCA/PLS) or groups (for group and sparse group PLS) in X.

LambdaY matrix of parameters controlling the number of selected variables (for sparse
PLS) or groups (for group or sparse group PLS) in Y. Only used if family="gaussian".

BiSelection 11

AlphaX matrix of parameters controlling the level of sparsity within groups in X. Only
used if implementation=SparseGroupPLS.

AlphaY matrix of parameters controlling the level of sparsity within groups in X. Only
used if implementation=SparseGroupPLS and family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).

pi_list vector of thresholds in selection proportions. If n_cat=3, these values must be
>0.5 and <1. If n_cat=2, these values must be >0 and <1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

n_cat number of categories used to compute the stability score. Possible values are 2
or 3.

family type of PLS model. This parameter must be set to family="gaussian" for con-
tinuous outcomes, or to family="binomial" for categorical outcomes. Only
used if ydata is provided.

implementation function to use for feature selection. Possible functions are: SparsePCA, SparsePLS,
GroupPLS, SparseGroupPLS.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

n_cores number of cores to use for parallel computing (see mclapply). Only available
on Unix systems.

12 BiSelection

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (LambdaX, LambdaY, AlphaX, and/or
AlphaY). For a given (set of) sparsity parameter(s), the proportion out of the K models in which
each feature is selected is calculated. Features with selection proportions above a threshold pi are
considered stably selected. The stability selection model is controlled by the sparsity parameter(s)
(denoted by λ) for the underlying algorithm, and the threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}
For sparse and sparse group dimensionality reduction, "feature" refers to variable (variable selection
model). For group PLS, "feature" refers to group (group selection model). For (sparse) group PLS,
groups need to be defined a priori and specified in arguments group_x and/or group_y.

These parameters can be calibrated by maximisation of a stability score (see StabilityScore)
derived from the likelihood under the assumption of uniform (uninformative) selection:

Sλ,π = −log(Lλ,π)
It is strongly recommended to examine the calibration plot carefully to check that the grids of
parameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration plot.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

For categorical outcomes (argument family is "binomial" or "multinomial"), the proportions of
observations from each category in all subsamples or bootstrap samples are the same as in the full
sample.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
This relies on forking with mclapply (specific to Unix systems).

Value

An object of class bi_selection. A list with:

BiSelection 13

summary a matrix of the best stability scores and corresponding parameters controlling
the level of sparsity in the underlying algorithm for different numbers of com-
ponents. Possible columns include: comp (component index), nx (number of
predictors to include, parameter of the underlying algorithm), alphax (sparsity
within the predictor groups, parameter of the underlying algorithm), pix (thresh-
old in selection proportion for predictors), ny (number of outcomes to include,
parameter of the underlying algorithm), alphay (sparsity within the outcome
groups, parameter of the underlying algorithm), piy (threshold in selection pro-
portion for outcomes), S (stability score). Columns that are not relevant to the
model are not reported (e.g. alpha_x and alpha_y are not returned for sparse
PLS models).

summary_full a matrix of the best stability scores for different combinations of parameters
controlling the sparsity and components.

selectedX a binary matrix encoding stably selected predictors.

selpropX a matrix of calibrated selection proportions for predictors.

selectedY a binary matrix encoding stably selected outcomes. Only returned for PLS mod-
els.

selpropY a matrix of calibrated selection proportions for outcomes. Only returned for PLS
models.

selected a binary matrix encoding stable relationships between predictor and outcome
variables. Only returned for PLS models.

selectedX_full a binary matrix encoding stably selected predictors.

selpropX_full a matrix of selection proportions for predictors.

selectedY_full a binary matrix encoding stably selected outcomes. Only returned for PLS mod-
els.

selpropY_full a matrix of selection proportions for outcomes. Only returned for PLS models.

coefX an array of estimated loadings coefficients for the different components (rows),
for the predictors (columns), as obtained across the K visited models (along the
third dimension).

coefY an array of estimated loadings coefficients for the different components (rows),
for the outcomes (columns), as obtained across the K visited models (along the
third dimension). Only returned for PLS models.

method a list with type="bi_selection" and values used for arguments implementation,
family, scale, resampling, cpss and PFER_method.

params a list with values used for arguments K, group_x, group_y, LambdaX, LambdaY,
AlphaX, AlphaY, pi_list, tau, n_cat, pk, n (number of observations), PFER_thr,
FDP_thr and seed. The datasets xdata and ydata are also included if output_data=TRUE.

The rows of summary and columns of selectedX, selectedY, selpropX, selpropY, selected,
coefX and coefY are ordered in the same way and correspond to components and parameter values
stored in summary. The rows of summary_full and columns of selectedX_full, selectedY_full,
selpropX_full and selpropY_full are ordered in the same way and correspond to components
and parameter values stored in summary_full.

14 BiSelection

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi: 10.1093/bioinformatics/btv535.

KA LC, Rossouw D, Robert-Granié C, Besse P (2008). “A sparse PLS for variable selection when
integrating omics data.” Stat Appl Genet Mol Biol, 7(1), Article 35. ISSN 1544-6115, doi: 10.2202/
15446115.1390.

Zou H, Hastie T, Tibshirani R (2006). “Sparse Principal Component Analysis.” Journal of Compu-
tational and Graphical Statistics, 15(2), 265-286. doi: 10.1198/106186006X113430.

Shen H, Huang JZ (2008). “Sparse principal component analysis via regularized low rank matrix ap-
proximation.” Journal of Multivariate Analysis, 99(6), 1015-1034. ISSN 0047-259X, doi: 10.1016/
j.jmva.2007.06.007.

See Also

SparsePCA, SparsePLS, GroupPLS, SparseGroupPLS, VariableSelection, Resample, StabilityScore

Other stability selection functions: GraphicalModel(), VariableSelection()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(12, 5, 1, 1))

Sparse Principal Component Analysis

Data simulation
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))

sPCA: sparsity on X (unsupervised)
stab <- BiSelection(

xdata = simul$data,
ncomp = 3,
LambdaX = 1:(ncol(simul$data) - 1),
implementation = SparsePCA

)
print(stab)

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1093/bioinformatics/btv535
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007

BiSelection 15

Calibration plot
CalibrationPlot(stab)

Visualisation of the results
summary(stab)
plot(stab)
SelectedVariables(stab)

Sparse/Group Partial Least Squares

Data simulation (continuous outcomes)
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

sPLS: sparsity on X
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
implementation = SparsePLS

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

sPLS: sparsity on both X and Y
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
LambdaY = 1:(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

sgPLS: sparsity on X
stab <- BiSelection(

xdata = x, ydata = y, K = 10,
group_x = c(2, 8, 5),
family = "gaussian", ncomp = 3,
LambdaX = 1:2, AlphaX = seq(0.1, 0.9, by = 0.1),
implementation = SparseGroupPLS

)
CalibrationPlot(stab)
summary(stab)

sgPLS: sparsity on both X and Y

16 BiSelection

stab <- BiSelection(
xdata = x, ydata = y, K = 10,
group_x = c(2, 8, 5), group_y = c(1, 2),
family = "gaussian", ncomp = 3,
LambdaX = 1:2, AlphaX = seq(0.1, 0.9, by = 0.2),
LambdaY = 1:2, AlphaY = seq(0.1, 0.9, by = 0.2),
implementation = SparseGroupPLS,
n_cat = 2

)
CalibrationPlot(stab)
CalibrationPlot(stab,

params = c("nx", "alphax", "ny", "alphay")
)
summary(stab)

gPLS: sparsity on X
stab <- BiSelection(

xdata = x, ydata = y,
group_x = c(2, 8, 5),
family = "gaussian", ncomp = 3,
LambdaX = 1:2,
implementation = GroupPLS

)
CalibrationPlot(stab)
summary(stab)

gPLS: sparsity on both X and Y
stab <- BiSelection(

xdata = x, ydata = y,
group_x = c(2, 8, 5), group_y = c(1, 2),
family = "gaussian", ncomp = 3,
LambdaX = 1:2, LambdaY = 1:2,
implementation = GroupPLS

)
CalibrationPlot(stab)
summary(stab)

Sparse/Group PLS-DA (Discriminant Analysis)

Data simulation (categorical outcomes)
set.seed(1)
simul <- SimulateRegression(n = 200, pk = c(5, 5, 5), family = "binomial")
x <- simul$xdata
y <- simul$ydata

sPLS-DA: sparsity on X
stab <- BiSelection(

xdata = x, ydata = cbind(y),
family = "binomial", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
implementation = SparsePLS

)

BlockDiagonal 17

CalibrationPlot(stab)
summary(stab)

sgPLS-DA: sparsity on X
stab <- BiSelection(

xdata = x, ydata = cbind(y), K = 10,
group_x = c(2, 8, 5),
family = "binomial", ncomp = 3,
LambdaX = 1:2, AlphaX = seq(0.1, 0.9, by = 0.1),
implementation = SparseGroupPLS

)
CalibrationPlot(stab)
summary(stab)

gPLS-DA: sparsity on X
stab <- BiSelection(

xdata = x, ydata = cbind(y),
group_x = c(2, 8, 5),
family = "binomial", ncomp = 3,
LambdaX = 1:2,
implementation = GroupPLS

)
CalibrationPlot(stab)
summary(stab)

par(oldpar)

BlockDiagonal Block diagonal matrix

Description

Generates a binary block diagonal matrix.

Usage

BlockDiagonal(pk)

Arguments

pk vector encoding the grouping structure.

Value

A binary block diagonal matrix.

Examples

Small example
mat <- BlockDiagonal(pk = c(2, 3))

18 BlockLambdaGrid

BlockLambdaGrid Multi-block grid

Description

Generates a matrix of parameters controlling the sparsity of the underlying selection algorithm for
multi-block calibration.

Usage

BlockLambdaGrid(Lambda, lambda_other_blocks = NULL)

Arguments

Lambda vector or matrix of penalty parameters.
lambda_other_blocks

optional vector of penalty parameters to use for other blocks in the iterative
multi-block procedure.

Value

A list with:

Lambda a matrix of (block-specific) penalty parameters. In multi-block stability selec-
tion, rows correspond to sets of penalty parameters and columns correspond to
different blocks.

Sequential_template

logical matrix encoding the type of procedure for data with multiple blocks in
stability selection graphical modelling. For multi-block estimation, each block
is calibrated separately while others blocks are weakly penalised (TRUE only
for the block currently being calibrated and FALSE for other blocks). Other ap-
proaches with joint calibration of the blocks are allowed (all entries are set to
TRUE).

See Also

GraphicalModel

Other multi-block functions: BlockMatrix(), BlockStructure()

Examples

Multi-block grid
Lambda <- matrix(c(

0.8, 0.6, 0.3,
0.5, 0.4, 0.2,
0.7, 0.5, 0.1

),
ncol = 3, byrow = TRUE

BlockMatrix 19

)
mygrid <- BlockLambdaGrid(Lambda, lambda_other_blocks = 0.1)

Multi-parameter grid (not recommended)
Lambda <- matrix(c(

0.8, 0.6, 0.3,
0.5, 0.4, 0.2,
0.7, 0.5, 0.1

),
ncol = 3, byrow = TRUE
)
mygrid <- BlockLambdaGrid(Lambda, lambda_other_blocks = NULL)

BlockMatrix Block matrix

Description

Generates a symmetric matrix of the size of the adjacency matrix encoding the block structure from
the numbers of variables in each group.

Usage

BlockMatrix(pk)

Arguments

pk vector encoding the grouping structure.

Value

A symmetric block matrix.

See Also

GraphicalModel

Other multi-block functions: BlockLambdaGrid(), BlockStructure()

Examples

Small example
mat <- BlockMatrix(pk = c(2, 3))

20 CalibrationPlot

BlockStructure Block structure

Description

Generates a symmetric matrix encoding the block structure from the numbers of variables in each
group. This function can be used to visualise block IDs.

Usage

BlockStructure(pk)

Arguments

pk vector encoding the grouping structure.

Value

A symmetric matrix of size length(pk)).

See Also

GraphicalModel

Other multi-block functions: BlockLambdaGrid(), BlockMatrix()

Examples

Example with 2 groups
mat <- BlockStructure(pk = rep(10, 2))

Example with 5 groups
mat <- BlockStructure(pk = rep(10, 5))

CalibrationPlot Calibration plot

Description

Creates a plot showing the stability score as a function of the parameter(s) controlling the level of
sparsity in the underlying feature selection algorithm and/or the threshold in selection proportions.

CalibrationPlot 21

Usage

CalibrationPlot(
stability,
block_id = NULL,
col = NULL,
pch = 19,
cex = 0.7,
xlim = NULL,
ylim = NULL,
bty = "o",
lines = TRUE,
lty = 3,
lwd = 2,
show_argmax = TRUE,
show_pix = FALSE,
show_piy = FALSE,
offset = 0.3,
legend = TRUE,
legend_length = NULL,
legend_range = NULL,
xlab = NULL,
ylab = NULL,
zlab = expression(italic(q)),
xlas = 2,
ylas = NULL,
zlas = 2,
cex.lab = 1.5,
cex.axis = 1,
xgrid = FALSE,
ygrid = FALSE,
params = c("ny", "alphay", "nx", "alphax")

)

Arguments

stability output of VariableSelection, GraphicalModel or BiSelection.
block_id ID of the block to visualise. Only used for multi-block stability selection graph-

ical models. If block_id=NULL, all blocks are represented in separate panels.
col vector of colours.
pch type of point, as in points.
cex size of point.
xlim displayed range along the x-axis. Only used if stability is the output of

BiSelection.
ylim displayed range along the y-axis. Only used if stability is the output of

BiSelection.
bty character string indicating if the box around the plot should be drawn. Possible

values include: "o" (default, the box is drawn), or "n" (no box).

22 CalibrationPlot

lines logical indicating if the points should be linked by lines. Only used if stability
is the output of BiSelection.

lty line type, as in par. Only used if stability is the output of BiSelection.

lwd line width, as in par. Only used if stability is the output of BiSelection.

show_argmax logical indicating if the calibrated parameter(s) should be indicated by lines.

show_pix logical indicating if the calibrated threshold in selection proportion in X should
be written for each point. Only used if stability is the output of BiSelection.

show_piy logical indicating if the calibrated threshold in selection proportion in Y should
be written for each point. Only used if stability is the output of BiSelection
with penalisation of the outcomes.

offset distance between the point and the text, as in text. Only used if show_pix=TRUE
or show_piy=TRUE.

legend logical indicating if the legend should be included.

legend_length length of the colour bar. Only used if stability is the output of VariableSelection
or GraphicalModel.

legend_range range of the colour bar. Only used if stability is the output of VariableSelection
or GraphicalModel.

xlab label of the x-axis.

ylab label of the y-axis.

zlab label of the z-axis. Only used if stability is the output of VariableSelection
or GraphicalModel.

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

zlas orientation of labels on the z-axis, as las in par.

cex.lab font size for labels.

cex.axis font size for axes.

xgrid logical indicating if a vertical grid should be drawn. Only used if stability is
the output of BiSelection.

ygrid logical indicating if a horizontal grid should be drawn. Only used if stability
is the output of BiSelection.

params vector of possible parameters if stability is of class bi_selection. The order
of these parameters defines the order in which they are represented. Only used
if stability is the output of BiSelection.

Value

a calibration plot.

See Also

VariableSelection, GraphicalModel, BiSelection

Other calibration functions: Adjacency(), ArgmaxId(), Argmax(), SelectedVariables(), SelectionProportions()

CalibrationPlot 23

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(7, 5, 7, 6))

Regression model

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20, nu_within = 0.1)

Stability selection
stab <- GraphicalModel(xdata = simul$data)

Calibration heatmap
CalibrationPlot(stab)

User-defined colours
CalibrationPlot(stab,

col = c("ivory", "blue", "black"),
legend_length = 31,
legend_range = c(0, 2500)

)

Dimensionality reduction

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

sPLS: sparsity on both X and Y
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
LambdaY = 1:(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)

Calibration plot
CalibrationPlot(stab)

Other ordering of parameters
CalibrationPlot(stab, params = c("nx", "ny"))

par(oldpar)

24 Combine

Combine Merging stability selection outputs

Description

Merges the outputs from VariableSelection or GraphicalModel. The two runs must have been
done using the same methods and the same params but with different seeds. The combined output
will contain results based on iterations from both stability1 and stability2. This function can
be used for parallelisation.

Usage

Combine(stability1, stability2, include_beta = TRUE)

Arguments

stability1 output from a first run of VariableSelection or GraphicalModel.

stability2 output from a second run of VariableSelection or GraphicalModel.

include_beta logical indicating if the beta coefficients of visited models should be concate-
nated. Only applicable to variable selection.

Value

A single output of the same format.

See Also

VariableSelection, GraphicalModel

Examples

Variable selection

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")

Two runs
stab1 <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, seed = 1, K = 10)
stab2 <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, seed = 2, K = 10)

Merging the outputs
stab <- Combine(stability1 = stab1, stability2 = stab2, include_beta = FALSE)
print(stab)

Graphical modelling

Contrast 25

Data simulation
simul <- SimulateGraphical(pk = 20)

Two runs
stab1 <- GraphicalModel(xdata = simul$data, seed = 1, K = 10)
stab2 <- GraphicalModel(xdata = simul$data, seed = 2, K = 10)

Merging the outputs
stab <- Combine(stability1 = stab1, stability2 = stab2)
print(stab)

Contrast Matrix contrast

Description

Computes the matrix contrast, defined as the number of unique truncated entries with a specified
number of digits.

Usage

Contrast(mat, digits = 3)

Arguments

mat input matrix.

digits number of digits to use.

Value

A single number, the contrast of the input matrix.

ExplanatoryPerformance

Prediction performance in regression

Description

Calculates model performance for linear (measured by Q-squared), logistic (AUC) or Cox (C-
statistic) regression. This is done by (i) recalibrating the model on a training set including a pro-
portion tau of the observations, and (ii) evaluating the performance on the remaining observations
(test set). For more reliable results, the procedure can be repeated K times (default K=1).

26 ExplanatoryPerformance

Usage

ExplanatoryPerformance(
xdata,
ydata,
stability = NULL,
family = NULL,
implementation = NULL,
prediction = NULL,
K = 1,
tau = 0.8,
seed = 1,
n_thr = NULL,
ij_method = FALSE,
time = 1000

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

stability output of VariableSelection. If stability=NULL (the default), a model in-
cluding all variables in xdata as predictors is fitted. Argument family must be
provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), "multinomial" (multinomial regres-
sion), and "cox" (survival analysis). If provided, this argument must be consis-
tent with input stability.

implementation optional function to recalibrate the model. If implementation=NULL and stability
is the output of VariableSelection, lm (linear regression), coxph (Cox regres-
sion), glm (logistic regression), or multinom (multinomial regression) is used.

prediction optional function to compute predicted values from the model recalibrated with
implementation.

K number of training-test splits.

tau proportion of observations used in the training set.

seed value of the seed to ensure reproducibility of the results.

n_thr number of thresholds to use to construct the ROC curve. If n_thr=NULL, all
predicted probability values are iteratively used as thresholds. For faster com-
putations on large data, less thresholds can be used. Only applicable to logistic
regression.

ij_method logical indicating if the analysis should be done for only one recalibration/test
split with variance of the concordance index should be computed using the in-
finitesimal jackknife method as implemented in concordance. If ij_method=FALSE
(the default), the concordance indices computed for different recalibration/test

ExplanatoryPerformance 27

splits are reported. If ij_method=TRUE, the concordance index and estimated
confidence interval at level 0.05 are reported. Only applicable to Cox regres-
sion.

time numeric indicating the time for which the survival probabilities are computed.
Only applicable to Cox regression.

Details

For a fair evaluation of the prediction performance, the data is split into a training set (including a
proportion tau of the observations) and test set (remaining observations). The regression model is
fitted on the training set and applied on the test set. Performance metrics are computed in the test
set by comparing predicted and observed outcomes.

For logistic regression, a Receiver Operating Characteristic (ROC) analysis is performed: the True
and False Positive Rates (TPR and FPR), and Area Under the Curve (AUC) are computed for dif-
ferent thresholds in predicted probabilities.

For Cox regression, the Concordance Index (as implemented in concordance) looking at survival
probabilities up to a specific time is computed.

For linear regression, the squared correlation between predicted and observed outcome in the test
set (Q-squared) is reported.

Value

A list with:

TPR True Positive Rate (for logistic regression only).

FPR False Positive Rate (for logistic regression only).

AUC Area Under the Curve (for logistic regression only).

concordance Concordance index (for Cox regression only).

lower lower bound of the confidence interval at level 0.05 for the concordance in-
dex calculated using the infinitesimal jackknife (for Cox regression and with
ij_method=TRUE).

upper upper bound of the confidence interval at level 0.05 for the concordance in-
dex calculated using the infinitesimal jackknife (for Cox regression and with
ij_method=TRUE).

Beta matrix of estimated beta coefficients across the K iterations. Coefficients are
extracted using the coef function.

See Also

VariableSelection, Recalibrate

Other prediction performance functions: Incremental(), PlotIncremental(), PlotROC(), ROC()

28 ExplanatoryPerformance

Examples

Logistic regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 10, family = "binomial")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

Evaluation of the performances on recalibrated models (K=1)
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab, n_thr = NULL

)
PlotROC(roc)

Using more recalibration/test splits
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab, K = 100

)
boxplot(roc$AUC, ylab = "AUC")
PlotROC(roc)

Comparison with saturated model
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
family = "binomial", K = 100

)
PlotROC(roc, col = "blue", col_band = "blue", add = TRUE)

Partial Least Squares (single component)

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
implementation = SparsePLS,
family = "binomial"

)

ExplanatoryPerformance 29

print(SelectedVariables(stab))

Defining wrapping functions for PLS-DA
PLSDA <- function(xdata, ydata, family = "binomial") {

model <- mixOmics::plsda(X = xdata, Y = as.factor(ydata), ncomp = 1)
return(model)

}
PredictPLSDA <- function(xdata, model) {

xdata <- xdata[, rownames(model$loadings$X), drop = FALSE]
predicted <- predict(object = model, newdata = xdata)$predict[, 2, 1]
return(predicted)

}

Evaluation of the performances on recalibrated models (K=1)
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab,
implementation = PLSDA, prediction = PredictPLSDA

)
PlotROC(roc)

Cox regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 50, family = "binomial")
ydata <- cbind(

time = runif(nrow(simul$ydata), min = 100, max = 2000),
case = simul$ydata[, 1]

) # including dummy time to event

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "cox")

Evaluation of the performances on recalibrated models (K=1)
perf <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab, ij_method = TRUE

)
print(perf)

Using more recalibration/test splits

30 ExplanatoryPerformance

perf <- ExplanatoryPerformance(
xdata = xtest, ydata = ytest,
stability = stab, K = 10, time = 1000

)
boxplot(perf$concordance)

Linear regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 10, family = "gaussian")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "gaussian")

Evaluation of the performances on recalibrated models (K=1)
perf <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab

)
print(perf)

Partial Least Squares (single component)

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
implementation = SparsePLS,
family = "gaussian"

)
print(SelectedVariables(stab))

Evaluation of the performances on recalibrated models (K=1)
perf <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab,
implementation = PLS, prediction = PredictPLS

)
print(perf)

FDP 31

FDP False Discovery Proportion

Description

Computes the False Discovery Proportion (upper-bound) as a ratio of the PFER (upper-bound) over
the number of stably selected features. In stability selection, the FDP corresponds to the expected
proportion of stably selected features that are not relevant to the outcome (i.e. proportion of False
Positives among stably selected features).

Usage

FDP(selprop, PFER, pi)

Arguments

selprop matrix or vector of selection proportions.

PFER Per Family Error Rate.

pi threshold in selection proportions.

Value

The estimated upper-bound in FDP.

See Also

Other stability metric functions: PFER(), StabilityMetrics(), StabilityScore()

Examples

Simulating set of selection proportions
selprop <- round(runif(n = 20), digits = 2)

Computing the FDP with a threshold of 0.8
fdp <- FDP(PFER = 3, selprop = selprop, pi = 0.8)

Folds Splitting observations into folds

Description

Generates a list of n_folds non-overlapping sets of observation IDs (folds).

Usage

Folds(data, family = NULL, n_folds = 5)

32 Graph

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

n_folds number of folds.

Details

For categorical outcomes (i.e. family argument is set to "binomial", "multinomial" or "cox"),
the split is done such that the proportion of observations from each of the categories in each of the
folds is representative of that of the full sample.

Value

A list of length n_folds with sets of non-overlapping observation IDs.

Examples

Splitting into 5 folds
simul <- SimulateRegression()
ids <- Folds(data = simul$ydata)
lapply(ids, length)

Balanced folds with respect to a binary variable
simul <- SimulateRegression(family = "binomial")
ids <- Folds(data = simul$ydata, family = "binomial")
lapply(ids, FUN = function(x) {

table(simul$ydata[x,])
})

Graph Graph visualisation

Description

Produces an igraph object from an adjacency matrix.

Usage

Graph(
adjacency,
node_label = NULL,
node_colour = NULL,
node_shape = NULL,
edge_colour = "grey60",
label_colour = "grey20",

Graph 33

mode = "undirected",
weighted = FALSE,
satellites = FALSE

)

Arguments

adjacency adjacency matrix or output of GraphicalModel.

node_label optional vector of node labels. This vector must contain as many entries as there
are rows/columns in the adjacency matrix and must be in the same order (the
order is used to assign labels to nodes).

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

node_shape optional vector of node shapes. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign shapes to nodes). Possible values are "circle",
"square", "triangle" or "star".

edge_colour optional character string for edge colour. Integers, named colours or RGB values
can be used.

label_colour optional character string for label colour. Integers, named colours or RGB values
can be used.

mode character string indicating how the adjacency matrix should be interpreted. Pos-
sible values include "undirected" or "directed" (see graph_from_adjacency_matrix).

weighted indicating if entries of the adjacency matrix should define edge width. If weighted=FALSE,
an unweighted igraph object is created, all edges have the same width. If weighted=TRUE,
edge width is defined by the corresponding value in the adjacency matrix. If
weighted=NULL, nodes are linked by as many edges as indicated in the adja-
cency matrix (integer values are needed).

satellites logical indicating if unconnected nodes (satellites) should be included in the
igraph object.

Details

All functionalities implemented in igraph can be used on the output. These include cosmetic
changes for the visualisation, but also various tools for network analysis (including topological
properties and community detection).

The R package visNetwork offers interactive network visualisation tools. An igraph object can
easily be converted to a visNetwork object (see example below).

For Cytoscape users, the RCy3 package can be used to open the network in Cytoscape.

Value

An igraph object.

34 Graph

See Also

Adjacency, GraphicalModel, igraph manual, visNetwork manual, Cytoscape

Examples

From adjacency matrix

Un-weighted
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
plot(Graph(adjacency))

Weighted
adjacency <- adjacency * runif(prod(dim(adjacency)))
adjacency <- adjacency + t(adjacency)
plot(Graph(adjacency, weighted = TRUE))

Node colours and shapes
plot(Graph(adjacency, weighted = TRUE, node_shape = "star", node_colour = "red"))

From stability selection outputs

Graphical model
set.seed(1)
simul <- SimulateGraphical(pk = 20)
stab <- GraphicalModel(xdata = simul$data)
plot(Graph(stab))

Sparse PLS
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
implementation = SparsePLS

)
plot(Graph(stab))

Tools from other packages

Applying some igraph functionalities
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
mygraph <- Graph(adjacency)
igraph::degree(mygraph)
igraph::betweenness(mygraph)
igraph::shortest_paths(mygraph, from = 1, to = 2)
igraph::walktrap.community(mygraph)

https://igraph.org/r/
http://datastorm-open.github.io/visNetwork/
https://cytoscape.org

GraphComparison 35

Interactive view using visNetwork
if (requireNamespace("visNetwork", quietly = TRUE)) {

vgraph <- mygraph
igraph::V(vgraph)$shape <- rep("dot", length(igraph::V(vgraph)))
v <- visNetwork::visIgraph(vgraph)
mylayout <- as.matrix(vxnodes[, c("x", "y")])
mylayout[, 2] <- -mylayout[, 2]
plot(mygraph, layout = mylayout)

}

Opening in Cytoscape using RCy3
if (requireNamespace("RCy3", quietly = TRUE)) {

Make sure that Cytoscape is open before running the following line
RCy3::createNetworkFromIgraph(mygraph)

}

GraphComparison Edge-wise comparison of two graphs

Description

Generates an igraph object representing the common and graph-specific edges.

Usage

GraphComparison(
graph1,
graph2,
col = c("tomato", "forestgreen", "navy"),
lty = c(2, 3, 1),
node_colour = NULL,
show_labels = TRUE,
...

)

Arguments

graph1 first graph. Possible inputs are: adjacency matrix, or igraph object, or output of
GraphicalModel, VariableSelection, BiSelection, or output of SimulateGraphical,
SimulateRegression.

graph2 second graph.

col vector of edge colours. The first entry of the vector defines the colour of edges
in graph1 only, second entry is for edges in graph2 only and third entry is for
common edges.

lty vector of line types for edges. The order is defined as for argument col.

36 GraphicalAlgo

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

show_labels logical indicating if the node labels should be displayed.
... additional arguments to be passed to Graph.

Value

An igraph object.

See Also

SelectionPerformanceGraph

Examples

Data simulation
set.seed(1)
simul1 <- SimulateGraphical(pk = 30)
set.seed(2)
simul2 <- SimulateGraphical(pk = 30)

Edge-wise comparison of the two graphs
mygraph <- GraphComparison(

graph1 = simul1,
graph2 = simul2

)
plot(mygraph, layout = igraph::layout_with_kk(mygraph))

GraphicalAlgo Graphical model algorithm

Description

Runs the algorithm specified in the argument implementation and returns the estimated adjacency
matrix. This function is not using stability.

Usage

GraphicalAlgo(
xdata,
pk = NULL,
Lambda,
Sequential_template = NULL,
scale = TRUE,
implementation = PenalisedGraphical,
start = "cold",
...

)

GraphicalAlgo 37

Arguments

xdata matrix with observations as rows and variables as columns.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedGraphical, LambdaGridGraphical is used to de-
fine a relevant grid. Lambda can be provided as a vector or a matrix with
length(pk) columns.

Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

... additional parameters passed to the function provided in implementation.

Details

The use of the procedure from Equation (4) or (5) is controlled by the argument "Sequential_template".

Value

An array with binary and symmetric adjacency matrices along the third dimension.

See Also

GraphicalModel, PenalisedGraphical

Other wrapping functions: SelectionAlgo()

38 GraphicalModel

Examples

Data simulation
set.seed(1)
simul <- SimulateGraphical()

Running graphical LASSO
myglasso <- GraphicalAlgo(

xdata = simul$data,
Lambda = cbind(c(0.1, 0.2))

)

GraphicalModel Stability selection graphical model

Description

Performs stability selection for graphical models. The underlying graphical model (e.g. graphical
LASSO) is run with different combinations of parameters controlling the sparsity (e.g. penalty pa-
rameter) and thresholds in selection proportions. These two hyper-parameters are jointly calibrated
by maximisation of the stability score.

Usage

GraphicalModel(
xdata,
pk = NULL,
Lambda = NULL,
lambda_other_blocks = 0.1,
pi_list = seq(0.6, 0.9, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = 3,
implementation = PenalisedGraphical,
start = "warm",
scale = TRUE,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 50,
lambda_max = NULL,
lambda_path_factor = 0.001,
max_density = 0.5,
n_cores = 1,
output_data = FALSE,

GraphicalModel 39

verbose = TRUE,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns. For multi-block
stability selection, the variables in data have to be ordered by group.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedGraphical, LambdaGridGraphical is used to de-
fine a relevant grid. Lambda can be provided as a vector or a matrix with
length(pk) columns.

lambda_other_blocks

optional vector of parameters controlling the level of sparsity in neighbour blocks
for the multi-block procedure. To use jointly a specific set of parameters for each
block, lambda_other_blocks must be set to NULL (not recommended). Only
used for multi-block stability selection, i.e. if length(pk)>1.

pi_list vector of thresholds in selection proportions. If n_cat=3, these values must be
>0.5 and <1. If n_cat=2, these values must be >0 and <1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

n_cat number of categories used to compute the stability score. Possible values are 2
or 3.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to

40 GraphicalModel

use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm. Only used if Lambda=NULL.

lambda_max optional maximum value for the grid in penalty parameters. If lambda_max=NULL,
the maximum value is set to the maximum covariance in absolute value. Only
used if implementation=PenalisedGraphical and Lambda=NULL.

lambda_path_factor

multiplicative factor used to define the minimum value in the grid.

max_density threshold on the density. The grid is defined such that the density of the esti-
mated graph does not exceed max_density.

n_cores number of cores to use for parallel computing (see mclapply). Only available
on Unix systems.

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (Lambda). For a given (set of) sparsity
parameter(s), the proportion out of the K models in which each feature is selected is calculated.
Features with selection proportions above a threshold pi are considered stably selected. The stability
selection model is controlled by the sparsity parameter(s) for the underlying algorithm, and the
threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}

GraphicalModel 41

These parameters can be calibrated by maximisation of a stability score (see StabilityScore)
derived from the likelihood under the assumption of uniform (uninformative) selection:

Sλ,π = −log(Lλ,π)
It is strongly recommended to examine the calibration plot carefully to check that the grids of
parameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
This relies on forking with mclapply (specific to Unix systems). Alternatively, the function can be
run manually with different seeds and all other parameters equal. The results can then be combined
using Combine.

The generated network can be converted into igraph object using Graph. The R package visNetwork
can be used for interactive network visualisation (see examples in Graph).

Value

An object of class graphical_model. A list with:

S a matrix of the best stability scores for different (sets of) parameters controlling
the level of sparsity in the underlying algorithm.

Lambda a matrix of parameters controlling the level of sparsity in the underlying algo-
rithm.

Q a matrix of the average number of selected features by the underlying algorithm
with different parameters controlling the level of sparsity.

Q_s a matrix of the calibrated number of stably selected features with different pa-
rameters controlling the level of sparsity.

P a matrix of calibrated thresholds in selection proportions for different parameters
controlling the level of sparsity in the underlying algorithm.

PFER a matrix of upper-bounds in PFER of calibrated stability selection models with
different parameters controlling the level of sparsity.

FDP a matrix of upper-bounds in FDP of calibrated stability selection models with
different parameters controlling the level of sparsity.

S_2d a matrix of stability scores obtained with different combinations of parameters.
Columns correspond to different thresholds in selection proportions.

42 GraphicalModel

PFER_2d a matrix of upper-bounds in FDP obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.
Only returned if length(pk)=1.

FDP_2d a matrix of upper-bounds in PFER obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.
Only returned if length(pk)=1.

selprop an array of selection proportions. Rows and columns correspond to nodes in
the graph. Indices along the third dimension correspond to different parameters
controlling the level of sparsity in the underlying algorithm.

sign a matrix of signs of Pearson’s correlations estimated from xdata.

method a list with type="graphical_model" and values used for arguments implementation,
start, resampling, cpss and PFER_method.

params a list with values used for arguments K, pi_list, tau, n_cat, pk, n (number
of observations in xdata), PFER_thr, FDP_thr, seed, lambda_other_blocks,
and Sequential_template.

The rows of S, Lambda, Q, Q_s, P, PFER, FDP, S_2d, PFER_2d and FDP_2d, and indices along the third
dimension of selprop are ordered in the same way and correspond to parameter values stored in
Lambda. For multi-block inference, the columns of S, Lambda, Q, Q_s, P, PFER and FDP, and indices
along the third dimension of S_2d correspond to the different blocks.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

See Also

PenalisedGraphical, GraphicalAlgo, LambdaGridGraphical, Resample, StabilityScore Graph,
Adjacency,

Other stability selection functions: BiSelection(), VariableSelection()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

Single-block stability selection

Data simulation

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x

GraphicalModel 43

set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, nu_within = 0.1)

Stability selection
stab <- GraphicalModel(xdata = simul$data)
print(stab)

Calibration heatmap
CalibrationPlot(stab)

Visualisation of the results
summary(stab)
plot(stab)

Extraction of adjacency matrix or igraph object
Adjacency(stab)
Graph(stab)

Multi-block stability selection

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = c(10, 10))

Stability selection
stab <- GraphicalModel(xdata = simul$data, pk = c(10, 10), Lambda_cardinal = 10)
print(stab)

Calibration heatmap
par(mfrow = c(1, 3))
CalibrationPlot(stab) # Producing three plots

Visualisation of the results
summary(stab)
plot(stab)

Multi-parameter stability selection (not recommended)
Lambda <- matrix(c(0.8, 0.6, 0.3, 0.5, 0.4, 0.3, 0.7, 0.5, 0.1), ncol = 3)
stab <- GraphicalModel(

xdata = simul$data, pk = c(10, 10),
Lambda = Lambda, lambda_other_blocks = NULL

)
stab$Lambda

Example with user-defined function: shrinkage estimation and selection

Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, nu_within = 0.1)

if (requireNamespace("corpcor", quietly = TRUE)) {

44 GroupPLS

Writing user-defined algorithm in a portable function
ShrinkageSelection <- function(xdata, Lambda, ...) {

mypcor <- corpcor::pcor.shrink(xdata, verbose = FALSE)
adjacency <- array(NA, dim = c(nrow(mypcor), ncol(mypcor), nrow(Lambda)))
for (k in 1:nrow(Lambda)) {

A <- ifelse(abs(mypcor) >= Lambda[k, 1], yes = 1, no = 0)
diag(A) <- 0
adjacency[, , k] <- A

}
return(list(adjacency = adjacency))

}

Running the algorithm without stability
myglasso <- GraphicalAlgo(

xdata = simul$data,
Lambda = matrix(c(0.05, 0.1), ncol = 1), implementation = ShrinkageSelection

)

Stability selection using shrinkage estimation and selection
stab <- GraphicalModel(

xdata = simul$data, Lambda = matrix(c(0.01, 0.05, 0.1), ncol = 1),
implementation = ShrinkageSelection

)
stable_adjacency <- Adjacency(stab)

}

Example for the detection of block structure

Data simulation
set.seed(1)
pk <- sample(1:5, size = 5, replace = TRUE)
simul <- SimulateComponents(

n = 100, pk = pk,
v_within = c(0.7, 0.8), v_sign = -1

)

Data visualisation
Heatmap(

mat = cor(simul$data),
col = c("navy", "white", "red"),
legend_range = c(-1, 1)

)

par(oldpar)

GroupPLS Group Partial Least Squares

GroupPLS 45

Description

Runs a group Partial Least Squares model using implementation from sgPLS-package. This func-
tion is not using stability.

Usage

GroupPLS(
xdata,
ydata,
family = "gaussian",
group_x,
group_y = NULL,
Lambda,
keepX_previous = NULL,
keepY = NULL,
ncomp = 1,
scale = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

family type of PLS model. If family="gaussian", a group PLS model as defined
in gPLS is run (for continuous outcomes). If family="binomial", a PLS-DA
model as defined in gPLSda is run (for categorical outcomes).

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group.

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group.

Lambda matrix of parameters controlling the number of selected groups at current com-
ponent, as defined by ncomp.

keepX_previous number of selected groups in previous components. Only used if ncomp > 1.
The argument keepX in sgPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected groups of outcome variables. This argument is defined as in
sgPLS. Only used if family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

... additional arguments to be passed to gPLS or gPLSda.

46 GroupPLS

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi: 10.1093/bioinformatics/btv535.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: SparseGroupPLS(), SparsePCA(), SparsePLS()

Examples

Group PLS
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(10, 20, 20), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

Running gPLS with 1 group and sparsity of 0.5
mypls <- GroupPLS(

xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 25),

)

Running gPLS with groups on outcomes
mypls <- GroupPLS(

xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 25),
group_y = c(2, 1), keepY = 1

)

Group PLS-DA
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "binomial")

Running sgPLS-DA with 1 group and sparsity of 0.9
mypls <- GroupPLS(

xdata = simul$xdata, ydata = simul$ydata, Lambda = 1, family = "binomial",
group_x = c(10, 15, 25), test = 0

https://doi.org/10.1093/bioinformatics/btv535

Heatmap 47

)

Heatmap Heatmap visualisation

Description

Produces a heatmap for visualisation of matrix entries.

Usage

Heatmap(
mat,
col = c("ivory", "navajowhite", "tomato", "darkred"),
resolution = 10000,
bty = "o",
axes = TRUE,
cex.axis = 1,
xlas = 2,
ylas = 2,
text = FALSE,
cex = 1,
digits = 2,
legend = TRUE,
legend_length = NULL,
legend_range = NULL

)

Arguments

mat data matrix.
col vector of colours.
resolution number of different colours to use.
bty character string indicating if the box around the plot should be drawn. Possible

values include: "o" (default, the box is drawn), or "n" (no box).
axes logical indicating if the row and column names of mat should be displayed.
cex.axis font size for axes.
xlas orientation of labels on the x-axis, as las in par.
ylas orientation of labels on the y-axis, as las in par.
text logical indicating if numbers should be displayed.
cex font size for numbers. Only used if text=TRUE.
digits number of digits to show. Only used if text=TRUE.
legend logical indicating if the colour bar should be included.
legend_length length of the colour bar.
legend_range range of the colour bar.

48 Incremental

Value

A heatmap.

See Also

CalibrationPlot

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(3, 3, 1, 5))

Data simulation
set.seed(1)
mat <- matrix(rnorm(200), ncol = 20)
rownames(mat) <- paste0("r", 1:nrow(mat))
colnames(mat) <- paste0("c", 1:ncol(mat))

Generating heatmaps
Heatmap(mat = mat)
Heatmap(

mat = mat,
col = c("lightgrey", "blue", "black"),
legend = FALSE

)

par(oldpar)

Incremental Incremental prediction performance in regression

Description

Computes the prediction performance of regression models where predictors are sequentially added
by order of decreasing selection proportion. This function can be used to evaluate the marginal
contribution of each of the selected predictors over and above more stable predictors. Performances
are evaluated as in ExplanatoryPerformance.

Usage

Incremental(
xdata,
ydata,
stability = NULL,
family = NULL,
implementation = NULL,
prediction = NULL,
n_predictors = NULL,

Incremental 49

K = 100,
tau = 0.8,
seed = 1,
n_thr = NULL,
ij_method = FALSE,
time = 1000

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

stability output of VariableSelection. If stability=NULL (the default), a model in-
cluding all variables in xdata as predictors is fitted. Argument family must be
provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), "multinomial" (multinomial regres-
sion), and "cox" (survival analysis). If provided, this argument must be consis-
tent with input stability.

implementation optional function to recalibrate the model. If implementation=NULL and stability
is the output of VariableSelection, lm (linear regression), coxph (Cox regres-
sion), glm (logistic regression), or multinom (multinomial regression) is used.

prediction optional function to compute predicted values from the model recalibrated with
implementation.

n_predictors number of predictors to consider.

K number of training-test splits.

tau proportion of observations used in the training set.

seed value of the seed to ensure reproducibility of the results.

n_thr number of thresholds to use to construct the ROC curve. If n_thr=NULL, all
predicted probability values are iteratively used as thresholds. For faster com-
putations on large data, less thresholds can be used. Only applicable to logistic
regression.

ij_method logical indicating if the analysis should be done for only one recalibration/test
split with variance of the concordance index should be computed using the in-
finitesimal jackknife method as implemented in concordance. If ij_method=FALSE
(the default), the concordance indices computed for different recalibration/test
splits are reported. If ij_method=TRUE, the concordance index and estimated
confidence interval at level 0.05 are reported. Only applicable to Cox regres-
sion.

time numeric indicating the time for which the survival probabilities are computed.
Only applicable to Cox regression.

50 Incremental

Value

An object of class incremental.

For logistic regression, a list with:

FPR A list with, for each of the models (sequentially added predictors), the False
Positive Rates for different thresholds (columns) and different data splits (rows).

TPR A list with, for each of the models (sequentially added predictors), the True
Positive Rates for different thresholds (columns) and different data splits (rows).

AUC A list with, for each of the models (sequentially added predictors), a vector of
Area Under the Curve (AUC) values obtained with different data splits.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

For Cox regression, a list with:

concordance If ij_method=FALSE, a list with, for each of the models (sequentially added
predictors), a vector of concordance indices obtained with different data splits.
If ij_method=TRUE, a vector of concordance indices for each of the models
(sequentially added predictors).

lower A vector of the lower bound of the confidence interval at level 0.05 for con-
cordance indices for each of the models (sequentially added predictors). Only
returned if ij_method=TRUE.

upper A vector of the upper bound of the confidence interval at level 0.05 for con-
cordance indices for each of the models (sequentially added predictors). Only
returned if ij_method=TRUE.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

For linear regression, a list with:

Q_squared A list with, for each of the models (sequentially added predictors), a vector of
Q-squared obtained with different data splits.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

See Also

VariableSelection, Recalibrate

Other prediction performance functions: ExplanatoryPerformance(), PlotIncremental(), PlotROC(),
ROC()

Incremental 51

Examples

Logistic regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "binomial")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

Evaluating marginal contribution of the predictors
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)
summary(perf)

Visualisation
PlotIncremental(perf)
plot(perf) # alternative formulation

Partial Least Squares (single component)

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
implementation = SparsePLS,
family = "binomial"

)
print(SelectedVariables(stab))

Defining wrapping functions for PLS-DA
PLSDA <- function(xdata, ydata, family = "binomial") {

model <- mixOmics::plsda(X = xdata, Y = as.factor(ydata), ncomp = 1)
return(model)

}
PredictPLSDA <- function(xdata, model) {

xdata <- xdata[, rownames(model$loadings$X), drop = FALSE]
predicted <- predict(object = model, newdata = xdata)$predict[, 2, 1]
return(predicted)

}

Evaluation of the performances on recalibrated models (K=1)

52 Incremental

incremental <- Incremental(
xdata = xtest, ydata = ytest,
stability = stab,
implementation = PLSDA, prediction = PredictPLSDA,
K = 10

)
PlotIncremental(incremental)

Cox regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "binomial")
ydata <- cbind(

time = runif(nrow(simul$ydata), min = 100, max = 2000),
case = simul$ydata[, 1]

) # including dummy time to event

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "cox")

Marginal contribution
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)
PlotIncremental(perf)

Faster computations on a single data split
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, ij_method = TRUE)
PlotIncremental(perf)

Linear regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "gaussian")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train,]

LambdaGridGraphical 53

ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "gaussian")

Evaluating marginal contribution of the predictors
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)
PlotIncremental(perf)

Partial Least Squares (single component)

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
implementation = SparsePLS,
family = "gaussian"

)
print(SelectedVariables(stab))

Evaluation of the performances on recalibrated models (K=1)
incremental <- Incremental(

xdata = xtest, ydata = ytest,
stability = stab,
implementation = PLS, prediction = PredictPLS,
K = 10

)
PlotIncremental(incremental)

LambdaGridGraphical Grid of penalty parameters (graphical model)

Description

Generates a relevant grid of penalty parameter values for penalised graphical models.

Usage

LambdaGridGraphical(
xdata,
pk = NULL,
lambda_other_blocks = 0.1,
K = 100,
tau = 0.5,
n_cat = 3,
implementation = PenalisedGraphical,

54 LambdaGridGraphical

start = "cold",
scale = TRUE,
resampling = "subsampling",
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 50,
lambda_max = NULL,
lambda_path_factor = 0.001,
max_density = 0.5,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns. For multi-block
stability selection, the variables in data have to be ordered by group.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

lambda_other_blocks

optional vector of parameters controlling the level of sparsity in neighbour blocks
for the multi-block procedure. To use jointly a specific set of parameters for each
block, lambda_other_blocks must be set to NULL (not recommended). Only
used for multi-block stability selection, i.e. if length(pk)>1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

n_cat number of categories used to compute the stability score. Possible values are 2
or 3.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to

LambdaGridGraphical 55

use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm.

lambda_max optional maximum value for the grid in penalty parameters. If lambda_max=NULL,
the maximum value is set to the maximum covariance in absolute value. Only
used if implementation=PenalisedGraphical.

lambda_path_factor

multiplicative factor used to define the minimum value in the grid.

max_density threshold on the density. The grid is defined such that the density of the esti-
mated graph does not exceed max_density.

... additional parameters passed to the functions provided in implementation or
resampling.

Value

A matrix of lambda values with length(pk) columns and Lambda_cardinal rows.

See Also

Other lambda grid functions: LambdaGridRegression(), LambdaSequence()

Examples

Single-block simulation
set.seed(1)
simul <- SimulateGraphical()

Generating grid of 10 values
Lambda <- LambdaGridGraphical(xdata = simul$data, Lambda_cardinal = 10)

Ensuring PFER < 5
Lambda <- LambdaGridGraphical(xdata = simul$data, Lambda_cardinal = 10, PFER_thr = 5)

Multi-block simulation
set.seed(1)

56 LambdaGridRegression

simul <- SimulateGraphical(pk = c(10, 10))

Multi-block grid
Lambda <- LambdaGridGraphical(xdata = simul$data, pk = c(10, 10), Lambda_cardinal = 10)

Denser neighbouring blocks
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, lambda_other_blocks = 0

)

Using different neighbour penalties
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, lambda_other_blocks = c(0.1, 0, 0.1)

)
stab <- GraphicalModel(

xdata = simul$data, pk = c(10, 10),
Lambda = Lambda, lambda_other_blocks = c(0.1, 0, 0.1)

)
stab$Lambda

Visiting from empty to full graphs with max_density=1
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, max_density = 1

)
bigblocks <- BlockMatrix(pk = c(10, 10))
bigblocks_vect <- bigblocks[upper.tri(bigblocks)]
N_blocks <- unname(table(bigblocks_vect))
N_blocks # max number of edges per block
stab <- GraphicalModel(xdata = simul$data, pk = c(10, 10), Lambda = Lambda)
apply(stab$Q, 2, max, na.rm = TRUE) # max average number of edges from underlying algo

LambdaGridRegression Grid of penalty parameters (regression model)

Description

Generates a relevant grid of penalty parameter values for penalised regression using the implemen-
tation in glmnet.

Usage

LambdaGridRegression(
xdata,
ydata,
tau = 0.5,
seed = 1,

LambdaGridRegression 57

family = "gaussian",
resampling = "subsampling",
Lambda_cardinal = 100,
check_input = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm.

check_input logical indicating if input values should be checked (recommended).

... additional parameters passed to the functions provided in implementation or
resampling.

Value

A matrix of lambda values with one column and as many rows as indicated in Lambda_cardinal.

See Also

Other lambda grid functions: LambdaGridGraphical(), LambdaSequence()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian") # simulated data

Lambda grid for linear regression

58 LambdaSequence

Lambda <- LambdaGridRegression(
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", Lambda_cardinal = 20

)

Grid can be used in VariableSelection()
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", Lambda = Lambda

)
print(SelectedVariables(stab))

LambdaSequence Sequence of penalty parameters

Description

Generates a sequence of penalty parameters from extreme values and the required number of ele-
ments. The sequence is defined on the log-scale.

Usage

LambdaSequence(lmax, lmin, cardinal = 100)

Arguments

lmax maximum value in the grid.

lmin minimum value in the grid.

cardinal number of values in the grid.

Value

A vector with values between "lmin" and "lmax" and as many values as indicated by "cardinal".

See Also

Other lambda grid functions: LambdaGridGraphical(), LambdaGridRegression()

Examples

Grid from extreme values
mygrid <- LambdaSequence(lmax = 0.7, lmin = 0.001, cardinal = 10)

MakePositiveDefinite 59

MakePositiveDefinite Making positive definite

Description

Determines the diagonal entries of a symmetric matrix to ensure it is positive definite. For this, di-
agonal entries of the matrix are defined to be higher than (i) the sum of entries on the corresponding
row, which ensure it is diagonally dominant, or (ii) the absolute value of the smallest eigenvalue
of the same matrix with a diagonal of zeros. The magnitude of (standardised) values in the inverse
matrix is tuned by adding a constant u to the diagonal entries. Considering the matrix to make
positive definite is a precision matrix, the constant u is chosen to (i) maximise the Contrast of
the corresponding correlation matrix, or (ii) tune the proportion of explained variance by the first
Principal Component ev_xx (i.e. largest eigenvalue of the covariance/correlation matrix divided by
the sum of eigenvalues).

Usage

MakePositiveDefinite(
omega,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

omega input matrix.

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale=TRUE) or covariance (if scale=FALSE) matrix divided
by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u is chosen
by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

60 MakePositiveDefinite

Value

A list with:

omega positive definite matrix.

u value of the constant u.

Examples

Simulation of a symmetric matrix
p <- 5
set.seed(1)
omega <- matrix(rnorm(p * p), ncol = p)
omega <- omega + t(omega)
diag(omega) <- 0

Diagonal dominance maximising contrast
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant"
)
eigen(omega_pd$omega)$values # positive eigenvalues

Diagonal dominance with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Version not scaled (using eigenvalues from the covariance)
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Non-negative eigenvalues maximising contrast
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue"
)
eigen(omega_pd$omega)$values # positive eigenvalues

Non-negative eigenvalues with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue",
ev_xx = 0.7

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv)

Version not scaled (using eigenvalues from the covariance)

MatchingArguments 61

omega_pd <- MakePositiveDefinite(omega,
pd_strategy = "min_eigenvalue",
ev_xx = 0.7, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv)

MatchingArguments Matching arguments

Description

Returns a vector of overlapping character strings between extra_args and arguments from function
FUN. If FUN is taking ... as input, this function returns extra_args.

Usage

MatchingArguments(extra_args, FUN)

Arguments

extra_args vector of character strings.

FUN function.

Value

A vector of overlapping arguments.

Examples

if (requireNamespace("sgPLS", quietly = TRUE)) {
MatchingArguments(

extra_args = list(scale = TRUE, lambda = 1),
FUN = sgPLS::sPLS

)
}

62 PenalisedGraphical

PenalisedGraphical Graphical LASSO

Description

Runs the graphical LASSO algorithm for estimation of a Gaussian Graphical Model (GGM). This
function is not using stability.

Usage

PenalisedGraphical(
xdata,
pk = NULL,
Lambda,
Sequential_template = NULL,
scale = TRUE,
start = "cold",
output_omega = FALSE,
...

)

Arguments

xdata matrix with observations as rows and variables as columns.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity.
Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

output_omega logical indicating if the estimated precision matrices should be stored and re-
turned.

PenalisedRegression 63

... additional parameters passed to the function provided in implementation.

Details

The use of the procedure from Equation (4) or (5) is controlled by the argument "Sequential_template".

Value

An array with binary and symmetric adjacency matrices along the third dimension.

See Also

GraphicalModel

Other underlying algorithm functions: PenalisedRegression()

Examples

Data simulation
set.seed(1)
simul <- SimulateGraphical()

Running graphical LASSO
myglasso <- PenalisedGraphical(

xdata = simul$data,
Lambda = matrix(c(0.1, 0.2), ncol = 1)

)

Returning estimated precision matrix
myglasso <- PenalisedGraphical(

xdata = simul$data,
Lambda = matrix(c(0.1, 0.2), ncol = 1),
output_omega = TRUE

)

PenalisedRegression Penalised regression

Description

Runs penalised regression using implementation from glmnet. This function is not using stability.

Usage

PenalisedRegression(xdata, ydata, Lambda = NULL, family, ...)

64 PenalisedRegression

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

... additional parameters passed to glmnet.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

See Also

SelectionAlgo, VariableSelection

Other underlying algorithm functions: PenalisedGraphical()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(pk = 50)

Running the LASSO
mylasso <- PenalisedRegression(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "gaussian"

)

Using glmnet arguments
mylasso <- PenalisedRegression(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1), family = "gaussian",
penalty.factor = c(rep(0, 10), rep(1, 40))

)
mylasso$beta_full

PFER 65

PFER Per Family Error Rate

Description

Computes the Per Family Error Rate upper-bound of a stability selection model using the methods
proposed by Meinshausen and Bühlmann (2010) or Shah and Samworth (2013). In stability selec-
tion, the PFER corresponds to the expected number of stably selected features that are not relevant
to the outcome (i.e. False Positives).

Usage

PFER(q, pi, N, K, PFER_method = "MB")

Arguments

q average number of features selected by the underlying algorithm.
pi threshold in selection proportions.
N total number of features.
K number of resampling iterations.
PFER_method method used to compute the upper-bound of the expected number of False Posi-

tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

Value

The estimated upper-bound in PFER.

References

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

See Also

Other stability metric functions: FDP(), StabilityMetrics(), StabilityScore()

Examples

Computing PFER for 10/50 selected features and threshold of 0.8
pfer_mb <- PFER(q = 10, pi = 0.8, N = 50, K = 100, PFER_method = "MB")
pfer_ss <- PFER(q = 10, pi = 0.8, N = 50, K = 100, PFER_method = "SS")

https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x

66 PlotIncremental

PlotIncremental Visualisation of incremental performance

Description

Represents prediction performances upon sequential inclusion of the predictors in a logistic or Cox
regression model as produced by Incremental. The median and quantiles of the performance
metric are reported.

Usage

PlotIncremental(
perf,
quantiles = c(0.05, 0.95),
ylab = "Performance",
pch = 18,
col = "black",
col.axis = NULL,
cex = 1,
cex.lab = 1.5,
xcex.axis = 1,
ycex.axis = 1,
xlas = 2,
ylas = 1,
sfrac = 0.005,
ylim = NULL,
bty = "o",
xgrid = FALSE,
ygrid = FALSE,
output_data = FALSE

)

Arguments

perf output of Incremental.

quantiles quantiles defining the lower and upper bounds.

ylab label of the y-axis.

pch type of point, as in points.

col vector of point colours.

col.axis optional vector of label colours. If col.axis=NULL, the colours provided in
argument col are used.

cex size of point.

cex.lab font size for labels.

xcex.axis size of labels along the x-axis.

PlotIncremental 67

ycex.axis size of labels along the y-axis.

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

sfrac size of the end bars, as in plotCI.

ylim displayed range along the y-axis. Only used if stability is the output of
BiSelection.

bty character string indicating if the box around the plot should be drawn. Possible
values include: "o" (default, the box is drawn), or "n" (no box).

xgrid logical indicating if a vertical grid should be drawn. Only used if stability is
the output of BiSelection.

ygrid logical indicating if a horizontal grid should be drawn. Only used if stability
is the output of BiSelection.

output_data logical indicating if the median and quantiles should be returned in a matrix.

Value

A plot.

See Also

VariableSelection, Recalibrate

Other prediction performance functions: ExplanatoryPerformance(), Incremental(), PlotROC(),
ROC()

Examples

Logistic regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "binomial")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

Evaluating marginal contribution of the predictors
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)

68 PlotIncremental

Basic visualisation
PlotIncremental(perf)

Adding grids
PlotIncremental(perf, xgrid = TRUE, ygrid = TRUE)

Changing colours
PlotIncremental(perf,

bty = "n",
col = colorRampPalette(c("blue", "red"))(length(perf$names))

)

Cox regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "binomial")
ydata <- cbind(

time = runif(nrow(simul$ydata), min = 100, max = 2000),
case = simul$ydata[, 1]

) # including dummy time to event

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "cox")

Marginal contribution
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)
PlotIncremental(perf)

Faster computations on a single data split
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, ij_method = TRUE)
PlotIncremental(perf)

Linear regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "gaussian")

Balanced split: 50% variable selection set and 50% for evaluation of performances

PlotROC 69

ids_train <- Resample(
data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "gaussian")

Evaluating marginal contribution of the predictors
perf <- Incremental(xdata = xtest, ydata = ytest, stability = stab, K = 10)
PlotIncremental(perf)

Evaluating marginal contribution of the predictors beyond stably selected
perf <- Incremental(

xdata = xtest, ydata = ytest, stability = stab,
K = 10, n_predictors = 20

)
N <- sum(SelectedVariables(stab))
PlotIncremental(perf, col = c(rep("red", N), rep("grey", 20 - N)))

PlotROC Receiver Operating Characteristic (ROC) curve

Description

Plots the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) for different thresh-
olds in predicted probabilities. If the results from multiple ROC analyses are provided (e.g. output
of ExplanatoryPerformance with large K), the point-wise median is represented and flanked by a
transparent band defined by point-wise quantiles.

Usage

PlotROC(
roc,
xlab = "False Positive Rate",
ylab = "True Positive Rate",
col = "red",
col_band = NULL,
alpha = 0.5,
lwd = 1,
lty = 1,
quantiles = c(0.05, 0.95),
add = FALSE

)

70 PlotROC

Arguments

roc output of ROC or ExplanatoryPerformance.

xlab label of the x-axis.

ylab label of the y-axis.

col colour of the point-wise median curve.

col_band colour of the band defined by point-wise quantiles.

alpha level of opacity for the band.

lwd line width, as in par. Only used if stability is the output of BiSelection.

lty line type, as in par. Only used if stability is the output of BiSelection.

quantiles point-wise quantiles of the performances defining the band.

add logical indicating if the curve should be added to the current plot.

Value

A plot.

See Also

VariableSelection, Recalibrate

Other prediction performance functions: ExplanatoryPerformance(), Incremental(), PlotIncremental(),
ROC()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 10, family = "binomial")

Balanced split: 50% variable selection set and 50% for evaluation of performances
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train,]
ytrain <- simul$ydata[ids_train,]
xtest <- simul$xdata[-ids_train,]
ytest <- simul$ydata[-ids_train,]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

Evaluation of the performances on recalibrated models (K=1)
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab, n_thr = NULL

)
PlotROC(roc)

PLS 71

Using more recalibration/test splits
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
stability = stab, K = 100

)
PlotROC(roc)

Comparison with saturated model
roc <- ExplanatoryPerformance(

xdata = xtest, ydata = ytest,
family = "binomial", K = 100

)
PlotROC(roc, col = "blue", col_band = "blue", add = TRUE)

PLS Partial Least Squares ’a la carte’

Description

Runs a Partial Least Squares (PLS) model in regression mode using algorithm implemented in pls.
This function allows for the construction of components based on different sets of predictor and/or
outcome variables. This function is not using stability.

Usage

PLS(
xdata,
ydata,
selectedX = NULL,
selectedY = NULL,
family = "gaussian",
ncomp = NULL,
scale = TRUE

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

selectedX binary matrix of size (ncol(xdata) * ncomp). The binary entries indicate which
predictors (in rows) contribute to the definition of each component (in columns).
If selectedX=NULL, all predictors are selected for all components.

selectedY binary matrix of size (ncol(ydata) * ncomp). The binary entries indicate which
outcomes (in rows) contribute to the definition of each component (in columns).
If selectedY=NULL, all outcomes are selected for all components.

72 PLS

family type of PLS model. Only family="gaussian" is supported. This corresponds
to a PLS model as defined in pls (for continuous outcomes).

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).

Details

All matrices are defined as in (Wold et al. 2001). The weight matrix Wmat is the equivalent of
loadings$X in pls. The loadings matrix Pmat is the equivalent of mat.c in pls. The score matrices
Tmat and Qmat are the equivalent of variates$X and variates$Y in pls.

Value

A list with:

Wmat matrix of X-weights.

Wstar matrix of transformed X-weights.

Pmat matrix of X-loadings.

Cmat matrix of Y-weights.

Tmat matrix of X-scores.

Umat matrix of Y-scores.

Qmat matrix needed for predictions.

Rmat matrix needed for predictions.

meansX vector used for centering of predictors, needed for predictions.

sigmaX vector used for scaling of predictors, needed for predictions.

meansY vector used for centering of outcomes, needed for predictions.

sigmaY vector used for scaling of outcomes, needed for predictions.

methods a list with family and scale values used for the run.

params a list with selectedX and selectedY values used for the run.

References

Wold S, Sjöström M, Eriksson L (2001). “PLS-regression: a basic tool of chemometrics.” Chemo-
metrics and Intelligent Laboratory Systems, 58(2), 109-130. ISSN 0169-7439, doi: 10.1016/S0169-
7439(01)001551, PLS Methods, https://doi.org/https://doi.org/10.1016/S0169-7439(01)
00155-1.

See Also

VariableSelection, BiSelection

https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/https://doi.org/10.1016/S0169-7439(01)00155-1

PLS 73

Examples

oldpar <- par(no.readonly = TRUE)

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

PLS
mypls <- PLS(xdata = x, ydata = y, ncomp = 3)

Sparse PLS to identify relevant variables
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
LambdaY = 1:(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)
plot(stab)

Recalibration of PLS model
mypls <- PLS(

xdata = x, ydata = y,
selectedX = stab$selectedX,
selectedY = stab$selectedY

)

Nonzero entries in weights are the same as in selectedX
par(mfrow = c(2, 2))
Heatmap(stab$selectedX,

legend = FALSE
)
title("Selected in X")
Heatmap(ifelse(mypls$Wmat != 0, yes = 1, no = 0),

legend = FALSE
)
title("Nonzero entries in Wmat")
Heatmap(stab$selectedY,

legend = FALSE
)
title("Selected in Y")
Heatmap(ifelse(mypls$Cmat != 0, yes = 1, no = 0),

legend = FALSE
)
title("Nonzero entries in Cmat")

Multilevel PLS
if (requireNamespace("mixOmics", quietly = TRUE)) {

74 PredictPLS

Generating random design
z <- rep(1:50, each = 4)

Extracting the within-variability
x_within <- mixOmics::withinVariation(X = x, design = cbind(z))

Running PLS on within-variability
mypls <- PLS(xdata = x_within, ydata = y, ncomp = 3)

}

par(oldpar)

PredictPLS Partial Least Squares predictions

Description

Computes predicted values from a Partial Least Squares (PLS) model in regression mode applied
on xdata. This function is using the algorithm implemented in predict.pls.

Usage

PredictPLS(xdata, model)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.
model output of PLS.

Value

An array of predicted values.

See Also

PLS

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

PLS
mypls <- PLS(xdata = x, ydata = y, ncomp = 3)

Predicted values
predicted <- PredictPLS(xdata = x, model = mypls)

Recalibrate 75

Recalibrate Regression model recalibration

Description

Recalibrates the regression model with stably selected variables as predictors (without penalisation).
Variables in xdata not evaluated in the stability selection model will automatically be included as
predictors.

Usage

Recalibrate(
xdata,
ydata,
stability = NULL,
family = NULL,
implementation = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.
ydata optional vector or matrix of outcome(s). If family is set to "binomial" or

"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

stability output of VariableSelection or BiSelection. If stability=NULL (the de-
fault), a model including all variables in xdata as predictors is fitted. Argument
family must be provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), "multinomial" (multinomial regres-
sion), and "cox" (survival analysis). If provided, this argument must be consis-
tent with input stability.

implementation optional function to recalibrate the model. If implementation=NULL and stability
is the output of VariableSelection, lm (linear regression), coxph (Cox regres-
sion), glm (logistic regression), or multinom (multinomial regression) is used.
The function PLS is used for the output of BiSelection.

... additional arguments to be passed to the recalibration function (see implementation).

Value

The output as obtained from:

lm for linear regression ("gaussian" family).
coxph for Cox regression ("cox" family).
glm for logistic regression ("binomial" family).
multinom for multinomial regression ("multinomial" family).

76 Recalibrate

See Also

VariableSelection

Examples

Linear regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")

Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- simul$ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "gaussian")
print(SelectedVariables(stab))

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
stability = stab

)
recalibrated$coefficients # recalibrated coefficients
head(recalibrated$fitted.values) # recalibrated predicted values

Fitting the full model (including all possible predictors)
recalibrated <- Recalibrate(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian"

)
recalibrated$coefficients # recalibrated coefficients

Cox regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "binomial")
ydata <- cbind(

time = runif(nrow(simul$ydata), min = 100, max = 2000),
case = simul$ydata[, 1]

) # including dummy time to event

Recalibrate 77

Data split
ids_train <- Resample(

data = ydata,
tau = 0.5, family = "cox"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "cox")
print(SelectedVariables(stab))

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
stability = stab

)
recalibrated$coefficients # recalibrated coefficients
head(recalibrated$linear.predictors) # recalibrated scores

Logistic regression

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")

Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- simul$ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
stability = stab

)
recalibrated$coefficients # recalibrated coefficients
head(recalibrated$fitted.values) # recalibrated predicted probabilities

Multinomial regression

78 Recalibrate

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 15, family = "multinomial")

Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "multinomial"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- simul$ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
family = "multinomial"

)

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
stability = stab

)
summary(recalibrated) # recalibrated coefficients
head(recalibrated$fitted.values) # recalibrated predicted probabilities

Partial Least Squares (single component)

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")

Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- simul$ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- VariableSelection(

xdata = xtrain, ydata = ytrain,
implementation = SparsePLS,
family = "gaussian"

)
print(SelectedVariables(stab))

Resample 79

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
implementation = PLS,
stability = stab

)
recalibrated$Wmat # recalibrated X-weights
head(recalibrated$Tmat) # recalibrated X-scores

Partial Least Squares (multiple components)

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = c(5, 5, 5), family = "gaussian")

Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrecalib <- simul$xdata[-ids_train, , drop = FALSE]
yrecalib <- simul$ydata[-ids_train, , drop = FALSE]

Stability selection
stab <- BiSelection(

xdata = xtrain, ydata = ytrain,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(xtrain) - 1),
LambdaY = 1:(ncol(ytrain) - 1),
implementation = SparsePLS

)
plot(stab)

Recalibrating the model
recalibrated <- Recalibrate(

xdata = xrecalib, ydata = yrecalib,
stability = stab

)
recalibrated$Wmat # recalibrated X-weights
recalibrated$Cmat # recalibrated Y-weights

Resample Resampling observations

Description

Generates a vector of resampled observation IDs.

80 Resample

Usage

Resample(data, family = NULL, tau = 0.5, resampling = "subsampling", ...)

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

... additional parameters passed to the function provided in resampling.

Details

With categorical outcomes (i.e. "family" argument is set to "binomial", "multinomial" or "cox"),
the resampling is done such that the proportion of observations from each of the categories is rep-
resentative of that of the full sample.

Value

A vector of resampled IDs.

Examples

Linear regression framework
Data simulation
simul <- SimulateRegression()

Subsampling
ids <- Resample(data = simul$ydata, family = "gaussian")
sum(duplicated(ids))

Bootstrapping
ids <- Resample(data = simul$ydata, family = "gaussian", resampling = "bootstrap")
sum(duplicated(ids))

Logistic regression framework
Data simulation
simul <- SimulateRegression(family = "binomial")

Subsampling
ids <- Resample(data = simul$ydata, family = "binomial")
sum(duplicated(ids))

ROC 81

prop.table(table(simul$ydata))
prop.table(table(simul$ydata[ids]))

Data simulation for a binary confounder
conf <- ifelse(runif(n = 100) > 0.5, yes = 1, no = 0)

User-defined resampling function
BalancedResampling <- function(data, tau, Z, ...) {

s <- NULL
for (z in unique(Z)) {
s <- c(s, sample(which((data == "0") & (Z == z)), size = tau * sum((data == "0") & (Z == z))))
s <- c(s, sample(which((data == "1") & (Z == z)), size = tau * sum((data == "1") & (Z == z))))
}
return(s)

}

Resampling keeping proportions by Y and Z
ids <- Resample(data = simul$ydata, family = "binomial", resampling = BalancedResampling, Z = conf)
prop.table(table(simul$ydata, conf))
prop.table(table(simul$ydata[ids], conf[ids]))

User-defined resampling for stability selection
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata, family = "binomial",
resampling = BalancedResampling, Z = conf

)

ROC Receiver Operating Characteristic (ROC)

Description

Computes the True and False Positive Rates (TPR and FPR, respectively) and Area Under the
Curve (AUC) by comparing the true (observed) and predicted status using a range of thresholds on
the predicted score.

Usage

ROC(predicted, observed, n_thr = NULL)

Arguments

predicted numeric predicted scores.

observed factor encoding the observed binary status.

n_thr number of thresholds to use to construct the ROC curve. For faster computations
on large data, values below length(x)-1 can be used.

82 ROC

Value

A list with:

TPR True Positive Rate.

FPR False Positive Rate.

AUC Area Under the Curve.

See Also

Other prediction performance functions: ExplanatoryPerformance(), Incremental(), PlotIncremental(),
PlotROC()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 20, family = "binomial")

Balanced training/test split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
x2 <- simul$xdata[-ids_train, , drop = FALSE]
y2 <- simul$ydata[-ids_train, , drop = FALSE]
ids_recalib <- Resample(

data = y2,
tau = 0.5, family = "binomial"

)
xrecalib <- x2[ids_recalib, , drop = FALSE]
yrecalib <- y2[ids_recalib, , drop = FALSE]
xtest <- x2[-ids_recalib,]
ytest <- y2[-ids_recalib,]

Stability selection and recalibration
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")
recalibrated <- Recalibrate(xdata = xrecalib, ydata = yrecalib, stability = stab)

ROC analysis
predicted <- predict(recalibrated, newdata = as.data.frame(xtest))
roc <- ROC(predicted = predicted, observed = ytest)
PlotROC(roc)
plot(roc) # alternative formulation

SelectedVariables 83

SelectedVariables Stably selected variables

Description

Extracts the (calibrated) set of stably selected variables.

Usage

SelectedVariables(stability, argmax_id = NULL)

Arguments

stability output of VariableSelection, or BiSelection.

argmax_id optional matrix of parameter IDs. If argmax_id=NULL, the calibrated model is
used.

Value

A binary vector encoding the selection status of the variables (1 if selected, 0 otherwise).

See Also

VariableSelection, BiSelection

Other calibration functions: Adjacency(), ArgmaxId(), Argmax(), CalibrationPlot(), SelectionProportions()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(pk = 50)

Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)

Calibrated set
selected <- SelectedVariables(stab)

User-defined parameters
myids <- matrix(c(50, 10), nrow = 1)
stab$Lambda[myids[1], 1] # corresponding penalty
stab$params$pi_list[myids[2]] # corresponding threshold
selected <- SelectedVariables(stab, argmax_id = myids)

84 SelectionAlgo

SelectionAlgo Variable selection algorithm

Description

Runs the variable selection algorithm specified in the argument implementation. This function is
not using stability.

Usage

SelectionAlgo(
xdata,
ydata = NULL,
Lambda,
group_x = NULL,
family = NULL,
implementation = PenalisedRegression,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedRegression, LambdaGridRegression is used to
define a relevant grid.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

implementation function to use for variable selection. Possible functions are: PenalisedRegression,
SparsePLS, GroupPLS and SparseGroupPLS. Alternatively, a user-defined func-
tion can be provided.

... additional parameters passed to the function provided in implementation.

Value

A list with:

SelectionPerformance 85

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

See Also

VariableSelection, PenalisedRegression, SparsePCA, SparsePLS, GroupPLS, SparseGroupPLS

Other wrapping functions: GraphicalAlgo()

Examples

Data simulation (univariate outcome)
set.seed(1)
simul <- SimulateRegression(pk = 50)

Running the LASSO
mylasso <- SelectionAlgo(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "gaussian",

)

Data simulation (multivariate outcome)
set.seed(1)
simul <- SimulateRegression(pk = c(15, 15, 20))

Running multivariate Gaussian LASSO
mylasso <- SelectionAlgo(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "mgaussian"

)
str(mylasso)

SelectionPerformance Selection performance

Description

Computes different metrics of selection performance by comparing the set of selected features to
the set of true predictors/edges. This function can only be used in simulation studies (i.e. when the
true model is known).

Usage

SelectionPerformance(theta, theta_star, pk = NULL, cor = NULL, thr = 0.5)

86 SelectionPerformance

Arguments

theta output from VariableSelection, BiSelection, or GraphicalModel. Alterna-
tively, it can be a binary matrix of selected variables (in variable selection) or a
binary adjacency matrix (in graphical modelling)

theta_star output from SimulateRegression, SimulateComponents, or SimulateGraphical.
Alternatively, it can be a binary matrix of true predictors (in variable selection)
or the true binary adjacency matrix (in graphical modelling).

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

cor optional correlation matrix. Only used in graphical modelling.

thr optional threshold in correlation. Only used in graphical modelling and when
argument "cor" is not NULL.

Value

A matrix of selection metrics including:

TP number of True Positives (TP)

FN number of False Negatives (TN)

FP number of False Positives (FP)

TN number of True Negatives (TN)

sensitivity sensitivity, i.e. TP/(TP+FN)

specificity specificity, i.e. TN/(TN+FP)

accuracy accuracy, i.e. (TP+TN)/(TP+TN+FP+FN)

precision precision (p), i.e. TP/(TP+FP)

recall recall (r), i.e. TP/(TP+FN)

F1_score F1-score, i.e. 2*p*r/(p+r)

If argument "cor" is provided, the number of False Positives among correlated (FP_c) and uncorre-
lated (FP_i) pairs, defined as having correlations (provided in "cor") above or below the threshold
"thr", are also reported.

Block-specific performances are reported if "pk" is not NULL. In this case, the first row of the
matrix corresponds to the overall performances, and subsequent rows correspond to each of the
blocks. The order of the blocks is defined as in BlockStructure.

See Also

Other functions for model performance: SelectionPerformanceGraph()

SelectionPerformance 87

Examples

Variable selection model
set.seed(1)
simul <- SimulateRegression(pk = 30)
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
perf <- SelectionPerformance(theta = stab, theta_star = simul)
perf <- SelectionPerformance(

theta = SelectedVariables(stab),
theta_star = simul$theta

) # alternative formulation

Single-block graphical model
set.seed(1)
simul <- SimulateGraphical(pk = 30)
stab <- GraphicalModel(xdata = simul$data)
perf <- SelectionPerformance(theta = stab, theta_star = simul)
perf <- SelectionPerformance(

theta = stab, theta_star = simul,
cor = cor(simul$data), thr = 0.5

)
perf <- SelectionPerformance(

theta = Adjacency(stab),
theta_star = simul$theta

) # alternative formulation

Multi-block graphical model
set.seed(1)
simul <- SimulateGraphical(pk = c(10, 10))
stab <- GraphicalModel(xdata = simul$data, pk = c(10, 10), lambda_other_blocks = rep(0, 3))
perf <- SelectionPerformance(theta = stab, theta_star = simul, pk = c(10, 10))
perf <- SelectionPerformance(

theta = stab, theta_star = simul, pk = c(10, 10),
cor = cor(simul$data), thr = 0.5

)
perf <- SelectionPerformance(

theta = Adjacency(stab),
theta_star = simul$theta,
pk = c(10, 10)

) # alternative formulation

Sparse PLS model
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
LambdaY = 1:(ncol(y) - 1),
implementation = SparsePLS,

88 SelectionPerformanceGraph

n_cat = 2
)
perf <- SelectionPerformance(theta = stab, theta_star = simul)
perf <- SelectionPerformance(

theta = stab$selected,
theta_star = simul$theta

) # alternative formulation

SelectionPerformanceGraph

Graph representation of selection performance

Description

Generates an igraph object representing the True Positive, False Positive and False Negative edges
by comparing the set of selected edges to the set of true edges. This function can only be used in
simulation studies (i.e. when the true model is known).

Usage

SelectionPerformanceGraph(
theta,
theta_star,
col = c("tomato", "forestgreen", "navy"),
lty = c(2, 3, 1),
node_colour = NULL,
show_labels = TRUE,
...

)

Arguments

theta binary adjacency matrix or output of GraphicalModel, VariableSelection,
or BiSelection.

theta_star true binary adjacency matrix or output of SimulateGraphical or SimulateRegression.

col vector of edge colours. The first entry of the vector defines the colour of False
Positive edges, second entry is for True Negatives and third entry is for True
Positives.

lty vector of line types for edges. The order is defined as for argument col.

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

show_labels logical indicating if the node labels should be displayed.

... additional arguments to be passed to Graph.

SelectionPerformanceGraph 89

Value

An igraph object.

See Also

SimulateGraphical, SimulateRegression, GraphicalModel, VariableSelection, BiSelection

Other functions for model performance: SelectionPerformance()

Examples

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 30)

Stability selection
stab <- GraphicalModel(xdata = simul$data, K = 10)

Performance graph
perfgraph <- SelectionPerformanceGraph(

theta = stab,
theta_star = simul

)
plot(perfgraph)

Alternative formulation
perfgraph <- SelectionPerformanceGraph(

theta = Adjacency(stab),
theta_star = simul$theta

)
plot(perfgraph)

User-defined colours/shapes
perfgraph <- SelectionPerformanceGraph(

theta = stab, theta_star = simul,
col = c("forestgreen", "orange", "black"),
node_colour = "red", node_shape = "star"

)
plot(perfgraph)
perfgraph <- SelectionPerformanceGraph(

theta = stab, theta_star = simul,
col = c("forestgreen", "orange", "black"), lty = c(4, 2, 3)

)
plot(perfgraph)

Using and re-formatting igraph object
require(igraph)
igraph::V(perfgraph)$size <- 10
plot(perfgraph, layout = igraph::layout_with_kk(perfgraph))

Regression model
set.seed(1)

90 SelectionProportions

simul <- SimulateRegression(pk = 30)
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
perf <- SelectionPerformance(theta = stab, theta_star = simul)
perf_graph <- SelectionPerformanceGraph(theta = stab, theta_star = simul)
plot(perf_graph)

Sparse PLS model
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
LambdaX = 1:(ncol(x) - 1),
LambdaY = 1:(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)
perf <- SelectionPerformance(theta = stab, theta_star = simul)
perf_graph <- SelectionPerformanceGraph(theta = stab, theta_star = simul)
plot(perf_graph)

SelectionProportions Selection proportions

Description

Extracts the selection (or co-membership) proportions of the (calibrated) model.

Usage

SelectionProportions(stability, argmax_id = NULL)

Arguments

stability output of VariableSelection, GraphicalModel, or BiSelection.
argmax_id optional matrix of parameter IDs. If argmax_id=NULL, the calibrated model is

used.

Value

A symmetric matrix (graphical model) or vector (variable selection) of selection proportions.

See Also

VariableSelection, GraphicalModel, BiSelection

Other calibration functions: Adjacency(), ArgmaxId(), Argmax(), CalibrationPlot(), SelectedVariables()

SelectionProportions 91

Examples

Variable selection

Data simulation
set.seed(1)
simul <- SimulateRegression(pk = 50)

Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)

Calibrated selection proportions
prop <- SelectionProportions(stab)

User-defined parameters
myids <- matrix(c(80, 10), nrow = 1)
stab$Lambda[myids[1], 1] # corresponding penalty
stab$params$pi_list[myids[2]] # corresponding threshold
prop <- SelectionProportions(stab, argmax_id = myids)

Graphical model

Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20)

Stability selection
stab <- GraphicalModel(xdata = simul$data)

Calibrated matrix of selection proportions
prop <- SelectionProportions(stab)

User-defined parameters
myids <- matrix(c(20, 10), nrow = 1)
stab$Lambda[myids[1], 1] # corresponding penalty
stab$params$pi_list[myids[2]] # corresponding threshold
prop <- SelectionProportions(stab, argmax_id = myids)

Dimensionality reduction

Data simulation (continuous outcomes)
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

Sparse PLS
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,

92 SimulateAdjacency

LambdaX = 1:(ncol(x) - 1),
implementation = SparsePLS

)

Calibrated selection proportions per component
prop <- SelectionProportions(stab)

SimulateAdjacency Simulation of an undirected graph with block structure

Description

Simulates the adjacency matrix of an unweighted, undirected graph with no self-loops, and with
different densities in diagonal compared to off-diagonal blocks.

Usage

SimulateAdjacency(
pk = 10,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = 0,
...

)

Arguments

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

SimulateComponents 93

nu_between expected density (number of edges over the number of node pairs) of between-
group blocks in the graph. Similar to nu_within. By default, the same density
is used for within and between blocks (nu_within=nu_between). Only used if
length(pk)>1.

... additional arguments passed to the graph simulation function provided in implementation.

Value

A symmetric adjacency matrix encoding an unweighted, undirected graph with no self-loops, and
with different densities in diagonal compared to off-diagonal blocks.

See Also

Other simulation functions: SimulateComponents(), SimulateGraphical(), SimulateRegression()

Examples

Simulation of a scale-free graph with 20 nodes
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
plot(Graph(adjacency))

Simulation of a random graph with block structure
adjacency <- SimulateAdjacency(

pk = rep(10, 3),
nu_within = 0.7, nu_between = 0.03

)
plot(Graph(adjacency))

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode)
plot(Graph(simul)) # star
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode, hub = 2)
plot(Graph(simul)) # variable 2 is the central node

SimulateComponents Simulation of sparse orthogonal components

Description

Simulates variables following a multivariate Normal distribution that could be obtained from a
sparse linear combination of orthogonal latent variables. This generates blocks of mutually inde-
pendent variables, where all variables from a block can be obtained from a linear combination of

94 SimulateComponents

the same latent variables. The latent variables would correspond to Principal Components from a
sparse Principal Component Analysis. The loadings coefficients, their support, and the proportions
of explained variance by each of the latent variables are returned. This function can be used to
evaluate the performance of sparse Principal Component Analysis algorithms.

Usage

SimulateComponents(
n = 100,
pk = c(10, 10),
adjacency = NULL,
nu_within = 1,
v_within = c(0.5, 1),
v_sign = -1,
continuous = TRUE,
pd_strategy = "min_eigenvalue",
ev_xx = 0.1,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
output_matrices = FALSE

)

Arguments

n number of observations in the simulated data.

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

adjacency optional binary and symmetric adjacency matrix encoding the conditional graph
structure between observations. The clusters encoded in this argument must be
in line with those indicated in pk. Edges in off-diagonal blocks are not allowed
to ensure that the simulated orthogonal components are sparse. Corresponding
entries in the precision matrix will be set to zero.

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

SimulateComponents 95

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale=TRUE) or covariance (if scale=FALSE) matrix divided
by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u is chosen
by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.
If scale=TRUE, the correlation matrix is used as parameter of the multivariate
normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

Details

The data is simulated from a centered multivariate Normal distribution with a block-diagonal co-
variance matrix. Independence between variables from the different blocks ensures that sparse or-
thogonal components can be generated. The block-diagonal (partial) correlation matrix is obtained
using a graph structure encoding the conditional independence between variables. The orthogonal
latent variables are obtained from eigendecomposition of the true correlation matrix. The sparse
eigenvectors contain the weights of the linear combination of variables to construct the latent vari-
able (loadings coefficients). The proportion of explained variance by each of the latent variable is
computed from eigenvalues. As latent variables are defined from the true correlation matrix, the
number of sparse orthogonal components is not limited by the number of observations and is equal
to sum(pk).

Value

A list with:

data simulated data with n observation and sum(pk) variables.

loadings loadings coefficients of the orthogonal latent variables (principal components).

theta support of the loadings coefficients.

96 SimulateGraphical

ev proportion of explained variance by each of the orthogonal latent variables.

adjacency adjacency matrix of the simulated graph.

omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.

phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.

C simulated (true) correlation matrix. Only returned if output_matrices=TRUE.

See Also

MakePositiveDefinite, GraphicalModel

Other simulation functions: SimulateAdjacency(), SimulateGraphical(), SimulateRegression()

Examples

Simulation of 3 components with high e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.4)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of 3 components with moderate e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.25)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of multiple components with low e.v.
pk <- sample(3:10, size = 5, replace = TRUE)
simul <- SimulateComponents(

pk = pk,
nu_within = 0.3, v_within = c(0.8, 0.5), v_sign = -1, ev_xx = 0.1

)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

SimulateGraphical Simulation of data with underlying graph structure

Description

Simulates (i) a graph, and (ii) multivariate Normal data for which the graph structure is encoded in
the nonzero entries of the true partial correlation matrix. This procedure ensures that the conditional
independence structure between the variables is encoded in the simulated graph. The outputs of this
function can be used to evaluate the ability of a graphical model to identify edges of a conditional
independence graph.

SimulateGraphical 97

Usage

SimulateGraphical(
n = 100,
pk = 10,
theta = NULL,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = NULL,
v_within = c(0.5, 1),
v_between = c(0.1, 0.2),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
output_matrices = FALSE,
...

)

Arguments

n number of observations in the simulated data.

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

theta optional binary and symmetric adjacency matrix encoding the conditional inde-
pendence structure.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

nu_between expected density (number of edges over the number of node pairs) of between-
group blocks in the graph. Similar to nu_within. By default, the same density

98 SimulateGraphical

is used for within and between blocks (nu_within=nu_between). Only used if
length(pk)>1.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale=TRUE) or covariance (if scale=FALSE) matrix divided
by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u is chosen
by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.
If scale=TRUE, the correlation matrix is used as parameter of the multivariate
normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

... additional arguments passed to the graph simulation function provided in implementation.

Value

A list with:

data simulated data with n observation and sum(pk) variables.

theta adjacency matrix of the simulated graph

SimulateGraphical 99

omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.

phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.

sigma simulated (true) covariance matrix. Only returned if output_matrices=TRUE.

u value of the constant u used for the simulation of omega. Only returned if
output_matrices=TRUE.

See Also

SimulatePrecision, MakePositiveDefinite, Contrast, GraphicalModel

Other simulation functions: SimulateAdjacency(), SimulateComponents(), SimulateRegression()

Examples

Simulation of random graph with 50 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 50, topology = "random", nu_within = 0.05)
print(simul)
plot(simul)

Simulation of scale-free graph with 20 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")
plot(simul)

Extracting true precision/correlation matrices
set.seed(1)
simul <- SimulateGraphical(

n = 100, pk = 20,
topology = "scale-free", output_matrices = TRUE

)
str(simul)

Simulation of multi-block data
set.seed(1)
pk <- c(20, 30)
simul <- SimulateGraphical(

n = 100, pk = pk,
pd_strategy = "min_eigenvalue"

)
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50,
legend = FALSE, axes = FALSE

)
for (i in 1:2) {

axis(side = i, at = c(0.5, pk[1] - 0.5), labels = NA)
axis(
side = i, at = mean(c(0.5, pk[1] - 0.5)),
labels = ifelse(i == 1, yes = "Group 1", no = "Group 2"),
tick = FALSE, cex.axis = 1.5

100 SimulatePrecision

)
axis(side = i, at = c(pk[1] + 0.5, sum(pk) - 0.5), labels = NA)
axis(

side = i, at = mean(c(pk[1] + 0.5, sum(pk) - 0.5)),
labels = ifelse(i == 1, yes = "Group 2", no = "Group 1"),
tick = FALSE, cex.axis = 1.5

)
}

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode)
plot(simul) # star
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode, hub = 2)
plot(simul) # variable 2 is the central node

User-defined adjacency matrix
mytheta <- matrix(c(

0, 1, 1, 0,
1, 0, 0, 0,
1, 0, 0, 1,
0, 0, 1, 0

), ncol = 4, byrow = TRUE)
simul <- SimulateGraphical(n = 100, theta = mytheta)
plot(simul)

User-defined adjacency and block structure
simul <- SimulateGraphical(n = 100, theta = mytheta, pk = c(2, 2))
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50, legend = FALSE

)

SimulatePrecision Simulation of a precision matrix

Description

Simulates a sparse precision matrix from an adjacency matrix theta encoding a conditional in-
dependence graph. Zero entries in the precision matrix indicate pairwise conditional indepen-
dence. Diagonal entries can be tuned to (i) maximise the contrast of the correlation matrix, or
(ii) reach a user-defined proportion of explained variance by the first Principal Component (see
MakePositiveDefinite).

SimulatePrecision 101

Usage

SimulatePrecision(
pk = NULL,
theta,
v_within = c(0.5, 1),
v_between = c(0, 0.1),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

theta binary and symmetric adjacency matrix encoding the conditional independence
structure.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

102 SimulateRegression

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale=TRUE) or covariance (if scale=FALSE) matrix divided
by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u is chosen
by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Value

A list with:

omega true simulated precision matrix.

u value of the constant u used to ensure that omega is positive definite.

Examples

Simulation of an adjacency matrix
theta <- SimulateAdjacency(pk = c(5, 5), nu_within = 0.7)
print(theta)

Simulation of a precision matrix maximising the contrast
simul <- SimulatePrecision(theta = theta)
print(simul$omega)

Simulation of a precision matrix with specific ev by PC1
simul <- SimulatePrecision(

theta = theta,
pd_strategy = "min_eigenvalue",
ev_xx = 0.3, scale = TRUE

)
print(simul$omega)

SimulateRegression Simulation of predictors and associated outcome

Description

Simulates (i) a matrix xdata of n observations for sum(pk) normally distributed predictor vari-
ables, (ii) a matrix zdata of length(pk) orthogonal latent variables, and (iii) a matrix ydata of
length(pk) outcome variables. The conditional independence structure between the predictors and
latent variables is encoded in a precision matrix, where the diagonal entries corresponding to latent
variables are tuned to reach a user-defined expected proportion of explained variance. To ensure
that latent variables are orthogonal (these can be interpreted as the Principal Components of a Par-
tial Least Squares model), the predictors contributing to their definition are taken from independent

SimulateRegression 103

blocks of variables. The outcome variables are then obtained from a linear combination of the la-
tent variables. The outputs of this function can be used to evaluate the ability of variable selection
algorithms to identify, among the variables in xdata, relevant predictors of the outcome variables
in ydata.

Usage

SimulateRegression(
n = 100,
pk = 10,
N = 3,
family = "gaussian",
ev_xz = 0.8,
adjacency_x = NULL,
nu_within = 0.1,
theta_xz = NULL,
nu_xz = 0.2,
theta_zy = NULL,
nu_zy = 0.5,
eta = NULL,
eta_set = c(-1, 1),
v_within = c(0.5, 1),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

n number of observations in the simulated data.

pk vector with the number of predictors in each independent block of variables
in xdata. The number of independent blocks, which determines the maxi-
mum number of orthogonal latent variables that can be simulated, is given by
length(pk).

N number of classes of the categorical outcome. Only used if family="multinomial".

family type of outcome. If family="gaussian", normally distributed outcomes are
simulated. If family="binomial" or family="multinomial", binary outcome(s)
are simulated from a multinomial distribution where the probability is defined
from a linear combination of normally distributed outcomes.

ev_xz vector of the expected proportions of explained variances for each of the orthog-
onal latent variables. It must contain values in]0,1[, and must be a vector of
length length(pk) or a single value to generate latent variables with the same
expected proportion of explained variance.

104 SimulateRegression

adjacency_x optional matrix encoding the conditional independence structure between pre-
dictor variables in xdata. This argument must be a binary symmetric matrix of
size sum(pk) with zeros on the diagonal.

nu_within expected density (number of edges over the number of node pairs) of the condi-
tional independence graph in the within-group blocks for predictors. For inde-
pendent predictors, use nu_within=0. This argument is only used if adjancency_x
is not provided.

theta_xz optional binary matrix encoding the predictor variables from xdata (columns)
contributing to the definition of the orthogonal latent outcomes from zdata
(rows).

nu_xz expected proportion of relevant predictors over the total number of predictors to
be used for the simulation of the orthogonal latent outcomes. This argument is
only used if theta_xz is not provided.

theta_zy optional binary matrix encoding the latent variables from zdata (columns) con-
tributing to the definition of the observed outcomes from ydata (rows). This ar-
gument must be a square matrix of size length(pk). If theta_zy is a diagonal
matrix, each latent variable contributes to the definition of one observed outcome
so that there is a one-to-one relationship between latent and observed outcomes
(i.e. they are collinear). Nonzero off-diagonal elements in theta_zy introduce
some correlation between the observed outcomes by construction from linear
combinations implicating common latent outcomes. This argument is only used
if eta is not provided.

nu_zy probability for each of the off-diagonal elements in theta_zy to be a 1. If
nu_zy=0, theta_zy is a diagonal matrix. This argument is only used if theta_zy
is not provided.

eta optional matrix of coefficients used in the linear combination of latent outcomes
to generate observed outcomes.

eta_set vector defining the range of values from which eta is sampled. This argument
is only used if eta is not provided.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the

SimulateRegression 105

absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale=TRUE) or covariance (if scale=FALSE) matrix divided
by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u is chosen
by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.
If scale=TRUE, the correlation matrix is used as parameter of the multivariate
normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Value

A list with:

xdata simulated predictor data.
ydata simulated outcome data.
proba simulated probability of belonging to each outcome class. Only used for family="binomial"

or family="multinomial".
logit_proba logit of the simulated probability of belonging to each outcome class. Only used

for family="binomial" or family="multinomial".
zdata simulated data for orthogonal latent outcomes.
beta matrix of true beta coefficients used to generate outcomes in ydata from predic-

tors in xdata.
theta binary matrix indicating the predictors from xdata contributing to the definition

of each of the outcome variables in ydata.
eta matrix of coefficients used in the linear combination of latent variables from

zdata to define observed outcomes in ydata.
theta_zy binary matrix indicating the latent variables from zdata used in the definition

of observed outcomes in ydata.
xi matrix of true beta coefficients used to generate orthogonal latent outcomes in

zdata from predictors in xdata.
theta_xz binary matrix indicating the predictors from xdata contributing to the definition

of each of the latent outcome variables in zdata.
omega_xz precision matrix for variables in xdata and zdata.
adjacency binary matrix encoding the conditional independence structure between vari-

ables from xdata (var), zdata (latent) and ydata (outcome).

See Also

VariableSelection

Other simulation functions: SimulateAdjacency(), SimulateComponents(), SimulateGraphical()

106 SimulateRegression

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))

Continuous outcomes

Univariate outcome
set.seed(1)
simul <- SimulateRegression(pk = c(5, 7, 3))
print(simul)
plot(simul)

Multivariate outcome
set.seed(1)
simul <- SimulateRegression(pk = c(5, 7, 3))
print(simul)
plot(simul)

Independent predictors
set.seed(1)
simul <- SimulateRegression(pk = c(5, 3), nu_within = 0)
print(simul)
plot(simul)

Blocks of strongly inter-connected predictors
set.seed(1)
simul <- SimulateRegression(

pk = c(5, 5), nu_within = 0.5,
v_within = c(0.5, 1), v_sign = -1, continuous = TRUE, pd_strategy = "min_eigenvalue"

)
print(simul)
Heatmap(

mat = cor(simul$xdata),
col = c("navy", "white", "red"),
legend_range = c(-1, 1)

)
plot(simul)

Categorical outcomes

Binary outcome
set.seed(1)
simul <- SimulateRegression(pk = 20, family = "binomial")
print(simul)
table(simul$ydata[, 1])

Categorical outcome
set.seed(1)
simul <- SimulateRegression(pk = 20, family = "multinomial")
print(simul)
apply(simul$ydata, 2, sum)

SparseGroupPLS 107

par(oldpar)

SparseGroupPLS Sparse group Partial Least Squares

Description

Runs a sparse group Partial Least Squares model using implementation from sgPLS-package. This
function is not using stability.

Usage

SparseGroupPLS(
xdata,
ydata,
family = "gaussian",
group_x,
group_y = NULL,
Lambda,
alpha.x,
alpha.y = NULL,
keepX_previous = NULL,
keepY = NULL,
ncomp = 1,
scale = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

family type of PLS model. If family="gaussian", a sparse group PLS model as de-
fined in sgPLS is run (for continuous outcomes). If family="binomial", a
PLS-DA model as defined in sgPLSda is run (for categorical outcomes).

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group.

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group.

Lambda matrix of parameters controlling the number of selected groups at current com-
ponent, as defined by ncomp.

alpha.x vector of parameters controlling the level of sparsity within groups of predictors.

108 SparseGroupPLS

alpha.y optional vector of parameters controlling the level of sparsity within groups of
outcomes. Only used if family="gaussian".

keepX_previous number of selected groups in previous components. Only used if ncomp > 1.
The argument keepX in sgPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected groups of outcome variables. This argument is defined as in
sgPLS. Only used if family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

... additional arguments to be passed to sgPLS or sgPLSda.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi: 10.1093/bioinformatics/btv535.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparsePCA(), SparsePLS()

Examples

Sparse group PLS
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(10, 15, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

Running sgPLS with 1 group and sparsity of 0.5
mypls <- SparseGroupPLS(

xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 5), alpha.x = 0.5

)

Running sgPLS with groups on outcomes

https://doi.org/10.1093/bioinformatics/btv535

SparsePCA 109

mypls <- SparseGroupPLS(
xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 5), alpha.x = 0.5,
group_y = c(2, 1), keepY = 1, alpha.y = 0.9

)

Sparse group PLS-DA
Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "binomial")

Running sgPLS-DA with 1 group and sparsity of 0.9
mypls <- SparseGroupPLS(

xdata = simul$xdata, ydata = simul$ydata, Lambda = 1, family = "binomial",
group_x = c(10, 15, 25), alpha.x = 0.9

)

SparsePCA Sparse Principal Component Analysis

Description

Runs a sparse Principal Component Analysis model using implementation from spca (if algo="sPCA")
or spca (if algo="rSVD"). This function is not using stability.

Usage

SparsePCA(
xdata,
Lambda,
ncomp = 1,
scale = TRUE,
keepX_previous = NULL,
algorithm = "sPCA",
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.

Lambda matrix of parameters controlling the number of selected variables at current
component, as defined by ncomp.

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).

keepX_previous number of selected predictors in previous components. Only used if ncomp > 1.

110 SparsePCA

algorithm character string indicating the name of the algorithm to use for sparse PCA.
Possible values are: "sPCA" (for the algorithm proposed by Zou, Hastie and
Tibshirani and implemented in spca) or "rSVD" (for the regularised SVD ap-
proach proposed by Shen and Huang and implemented in spca).

... additional arguments to be passed to spca (if algorithm="sPCA") or spca (if
algorithm="rSVD").

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Zou H, Hastie T, Tibshirani R (2006). “Sparse Principal Component Analysis.” Journal of Compu-
tational and Graphical Statistics, 15(2), 265-286. doi: 10.1198/106186006X113430.

Shen H, Huang JZ (2008). “Sparse principal component analysis via regularized low rank matrix ap-
proximation.” Journal of Multivariate Analysis, 99(6), 1015-1034. ISSN 0047-259X, doi: 10.1016/
j.jmva.2007.06.007.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparseGroupPLS(), SparsePLS()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
x <- simul$xdata

Sparse PCA (by Zou, Hastie, Tibshirani)
mypca <- SparsePCA(xdata = x, ncomp = 2, Lambda = c(1, 2), keepX_previous = 10, algorithm = "sPCA")

Sparse PCA (by Shen and Huang)
mypca <- SparsePCA(xdata = x, ncomp = 2, Lambda = c(1, 2), keepX_previous = 10, algorithm = "rSVD")

https://doi.org/10.1198/106186006X113430
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007

SparsePLS 111

SparsePLS Sparse Partial Least Squares

Description

Runs a sparse Partial Least Squares model using implementation from sgPLS-package. This func-
tion is not using stability.

Usage

SparsePLS(
xdata,
ydata,
Lambda,
family = "gaussian",
ncomp = 1,
scale = TRUE,
keepX_previous = NULL,
keepY = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the number of selected predictors at current
component, as defined by ncomp.

family type of PLS model. If family="gaussian", a sparse PLS model as defined
in sPLS is run (for continuous outcomes). If family="binomial", a PLS-DA
model as defined in sPLSda is run (for categorical outcomes).

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

keepX_previous number of selected predictors in previous components. Only used if ncomp >
1. The argument keepX in sPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected outcome variables. This argument is defined as in sPLS.
Only used if family="gaussian".

... additional arguments to be passed to sPLS or sPLSda.

112 SparsePLS

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

KA LC, Rossouw D, Robert-Granié C, Besse P (2008). “A sparse PLS for variable selection when
integrating omics data.” Stat Appl Genet Mol Biol, 7(1), Article 35. ISSN 1544-6115, doi: 10.2202/
15446115.1390.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparseGroupPLS(), SparsePCA()

Examples

Sparse PLS

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(10, 20, 30), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

Running sPLS with 2 X-variables and 1 Y-variable
mypls <- SparsePLS(xdata = x, ydata = y, Lambda = 2, family = "gaussian", keepY = 1)

Sparse PLS-DA

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")

Running sPLS-DA with 2 X-variables and 1 Y-variable
mypls <- SparsePLS(xdata = simul$xdata, ydata = simul$ydata, Lambda = 2, family = "binomial")

https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390

Split 113

Split Splitting observations into non-overlapping sets

Description

Generates a list of length(tau) non-overlapping sets of observation IDs.

Usage

Split(data, family = NULL, tau = c(0.5, 0.25, 0.25))

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

tau vector of the proportion of observations in each of the sets.

Details

With categorical outcomes (i.e. family argument is set to "binomial", "multinomial" or "cox"),
the split is done such that the proportion of observations from each of the categories in each of the
sets is representative of that of the full sample.

Value

A list of length length(tau) with sets of non-overlapping observation IDs.

Examples

Splitting into 3 sets
simul <- SimulateRegression()
ids <- Split(data = simul$ydata)
lapply(ids, length)

Balanced splits with respect to a binary variable
simul <- SimulateRegression(family = "binomial")
ids <- Split(data = simul$ydata, family = "binomial")
lapply(ids, FUN = function(x) {

table(simul$ydata[x,])
})

114 StabilityMetrics

Square Adjacency from bipartite

Description

Generates a symmetric adjacency matrix encoding a bipartite graph.

Usage

Square(x)

Arguments

x matrix encoding the edges between two types of nodes (rows and columns).

Value

A symmetric adjacency matrix encoding a bipartite graph.

Examples

Simulated links between two sets
set.seed(1)
mat <- matrix(sample(c(0, 1), size = 15, replace = TRUE),

nrow = 5, ncol = 3
)

Adjacency matrix of a bipartite graph
Square(mat)

StabilityMetrics Stability selection metrics

Description

Computes the stability score (see StabilityScore) and upper-bounds of the PFER and FDP from
selection proportions of models with a given parameter controlling the sparsity of the underlying
algorithm and for different thresholds in selection proportions.

StabilityMetrics 115

Usage

StabilityMetrics(
selprop,
pk = NULL,
pi_list = seq(0.6, 0.9, by = 0.01),
K = 100,
n_cat = 3,
PFER_method = "MB",
PFER_thr_blocks = Inf,
FDP_thr_blocks = Inf,
Sequential_template = NULL,
graph = TRUE,
group = NULL

)

Arguments

selprop array of selection proportions.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

pi_list vector of thresholds in selection proportions. If n_cat=3, these values must be
>0.5 and <1. If n_cat=2, these values must be >0 and <1.

K number of resampling iterations.

n_cat number of categories used to compute the stability score. Possible values are 2
or 3.

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr_blocks

vector of block-specific thresholds in PFER for constrained calibration by error
control. If PFER_thr=Inf and FDP_thr=Inf, unconstrained calibration is used.

FDP_thr_blocks vector of block-specific thresholds in the expected proportion of falsely selected
features (or False Discovery Proportion, FDP) for constrained calibration by
error control. If PFER_thr=Inf and FDP_thr=Inf, unconstrained calibration is
used.

Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).

116 StabilityMetrics

graph logical indicating if stability selection is performed in a regression (if FALSE) or
graphical (if TRUE) framework.

group vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group and only needs to be provided for
group (but not sparse group) penalisation.

Value

A list with:

S a matrix of the best (block-specific) stability scores for different (sets of) penalty
parameters. In multi-block stability selection, rows correspond to different sets
of penalty parameters, (values are stored in the output "Lambda") and columns
correspond to different blocks.

Lambda a matrix of (block-specific) penalty parameters. In multi-block stability selec-
tion, rows correspond to sets of penalty parameters and columns correspond to
different blocks.

Q a matrix of average numbers of (block-specific) edges selected by the underly-
ing algorithm for different (sets of) penalty parameters. In multi-block stability
selection, rows correspond to different sets of penalty parameters, (values are
stored in the output "Lambda") and columns correspond to different blocks.

Q_s a matrix of calibrated numbers of (block-specific) stable edges for different (sets
of) penalty parameters. In multi-block stability selection, rows correspond to
different sets of penalty parameters, (values are stored in the output "Lambda")
and columns correspond to different blocks.

P a matrix of calibrated (block-specific) thresholds in selection proportions for
different (sets of) penalty parameters. In multi-block stability selection, rows
correspond to different sets of penalty parameters, (values are stored in the out-
put "Lambda") and columns correspond to different blocks.

PFER a matrix of computed (block-specific) upper-bounds in PFER of calibrated graphs
for different (sets of) penalty parameters. In multi-block stability selection, rows
correspond to different sets of penalty parameters, (values are stored in the out-
put "Lambda") and columns correspond to different blocks.

FDP a matrix of computed (block-specific) upper-bounds in FDP of calibrated sta-
bility selection models for different (sets of) penalty parameters. In multi-block
stability selection, rows correspond to different sets of penalty parameters, (val-
ues are stored in the output "Lambda") and columns correspond to different
blocks.

S_2d an array of (block-specific) stability scores obtained with different combinations
of parameters. Rows correspond to different (sets of) penalty parameters and
columns correspond to different thresholds in selection proportions. In multi-
block stability selection, indices along the third dimension correspond to differ-
ent blocks.

PFER_2d an array of computed upper-bounds of PFER obtained with different combi-
nations of parameters. Rows correspond to different penalty parameters and
columns correspond to different thresholds in selection proportions. Not avail-
able in multi-block stability selection graphical modelling.

StabilityMetrics 117

FDP_2d an array of computed upper-bounds of FDP obtained with different combina-
tions of parameters. Rows correspond to different penalty parameters and columns
correspond to different thresholds in selection proportions. Not available in
multi-block stability selection graphical modelling.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

See Also

Other stability metric functions: FDP(), PFER(), StabilityScore()

Examples

Sparse or sparse group penalisation

Simulating set of selection proportions
set.seed(1)
selprop <- matrix(round(runif(n = 20), digits = 2), nrow = 2)

Computing stability scores for different thresholds
metrics <- StabilityMetrics(

selprop = selprop, pi = c(0.6, 0.7, 0.8),
K = 100, graph = FALSE

)

Group penalisation

Simulating set of selection proportions
set.seed(1)
selprop <- matrix(round(runif(n = 6), digits = 2), nrow = 2)
selprop <- cbind(

selprop[, 1], selprop[, 1],
selprop[, 2], selprop[, 2],
matrix(rep(selprop[, 3], each = 6), nrow = 2, byrow = TRUE)

)

Computing stability scores for different thresholds
metrics <- StabilityMetrics(

selprop = selprop, pi = c(0.6, 0.7, 0.8),
K = 100, graph = FALSE, group = c(2, 2, 6)

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x

118 StabilityScore

)

StabilityScore Stability score

Description

Computes the stability score from selection proportions of models with a given parameter control-
ling the sparsity and for different thresholds in selection proportions. The score measures how
unlikely it is that the selection procedure is uniform (i.e. uninformative) for a given combination of
parameters.

Usage

StabilityScore(
selprop,
pi_list = seq(0.6, 0.9, by = 0.01),
K,
n_cat = 3,
group = NULL

)

Arguments

selprop array of selection proportions.

pi_list vector of thresholds in selection proportions. If n_cat=3, these values must be
>0.5 and <1. If n_cat=2, these values must be >0 and <1.

K number of resampling iterations.

n_cat number of categories used to compute the stability score. Possible values are 2
or 3.

group vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group and only needs to be provided for
group (but not sparse group) penalisation.

Details

The stability score is derived from the likelihood under the assumption of uniform (uninformative)
selection.

We classify the features into three categories: the stably selected ones (that have selection propor-
tions≥ π), the stably excluded ones (selection proportion≤ 1−π), and the unstable ones (selection
proportions between 1− π and π).

The likelihood of observing stably selected, stably excluded and unstable features can be expressed
as:

Lλ,π =
∏N
j=1[P (Hλ(j) ≥ Kπ)1Hλ(j)≥Kπ × P ((1 − π)K < Hλ(j) < Kπ)1(1−π)K<Hλ(j)<Kπ ×

P (Hλ(j) ≤ K(1− π))1Hλ(j)≤K(1−π)]

VariableSelection 119

where Hλ(j) is the selection count of feature j.

The stability score is computed as the minus log-transformed likelihood under the assumption of
uniform selection:

Sλ,π = −log(Lλ,π)

Alternatively, the stability score can be computed by considering only two sets of features: stably
selected (selection proportions ≥ π) or not (selection proportions < π). This can be done using
n_cat=2.

Value

A vector of stability scores obtained with the different thresholds in selection proportions.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

Other stability metric functions: FDP(), PFER(), StabilityMetrics()

Examples

Simulating set of selection proportions
set.seed(1)
selprop <- round(runif(n = 20), digits = 2)

Computing stability scores for different thresholds
score <- StabilityScore(selprop, pi_list = c(0.6, 0.7, 0.8), K = 100)

VariableSelection Stability selection in regression

Description

Performs stability selection for regression models. The underlying variable selection algorithm (e.g.
LASSO regression) is run with different combinations of parameters controlling the sparsity (e.g.
penalty parameter) and thresholds in selection proportions. These two hyper-parameters are jointly
calibrated by maximisation of the stability score.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

120 VariableSelection

Usage

VariableSelection(
xdata,
ydata = NULL,
Lambda = NULL,
pi_list = seq(0.6, 0.9, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = 3,
family = "gaussian",
implementation = PenalisedRegression,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 100,
group_x = NULL,
group_penalisation = FALSE,
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.
ydata optional vector or matrix of outcome(s). If family is set to "binomial" or

"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedRegression, LambdaGridRegression is used to
define a relevant grid.

pi_list vector of thresholds in selection proportions. If n_cat=3, these values must be
>0.5 and <1. If n_cat=2, these values must be >0 and <1.

K number of resampling iterations.
tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.
seed value of the seed to initialise the random number generator and ensure repro-

ducibility of the results (see set.seed).
n_cat number of categories used to compute the stability score. Possible values are 2

or 3.
family type of regression model. This argument is defined as in glmnet. Possible val-

ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

VariableSelection 121

implementation function to use for variable selection. Possible functions are: PenalisedRegression,
SparsePLS, GroupPLS and SparseGroupPLS. Alternatively, a user-defined func-
tion can be provided.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm. Only used if Lambda=NULL.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

group_penalisation

logical indicating if a group penalisation should be considered in the stability
score. The use of group_penalisation=TRUE strictly applies to group (not
sparse-group) penalisation.

n_cores number of cores to use for parallel computing (see mclapply). Only available
on Unix systems.

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (Lambda). For a given (set of) sparsity

122 VariableSelection

parameter(s), the proportion out of the K models in which each feature is selected is calculated.
Features with selection proportions above a threshold pi are considered stably selected. The stability
selection model is controlled by the sparsity parameter(s) for the underlying algorithm, and the
threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}
If argument group_penalisation=FALSE, "feature" refers to variable (variable selection model).
If argument group_penalisation=TRUE, "feature" refers to group (group selection model). In this
case, groups need to be defined a priori and specified in argument group_x.

These parameters can be calibrated by maximisation of a stability score (see StabilityScore)
derived from the likelihood under the assumption of uniform (uninformative) selection:

Sλ,π = −log(Lλ,π)
It is strongly recommended to examine the calibration plot carefully to check that the grids of
parameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

For categorical or time to event outcomes (argument family is "binomial", "multinomial" or
"cox"), the proportions of observations from each category in all subsamples or bootstrap samples
are the same as in the full sample.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
This relies on forking with mclapply (specific to Unix systems). Alternatively, the function can be
run manually with different seeds and all other parameters equal. The results can then be combined
using Combine.

Value

An object of class variable_selection. A list with:

S a matrix of the best stability scores for different parameters controlling the level
of sparsity in the underlying algorithm.

Lambda a matrix of parameters controlling the level of sparsity in the underlying algo-
rithm.

Q a matrix of the average number of selected features by the underlying algorithm
with different parameters controlling the level of sparsity.

VariableSelection 123

Q_s a matrix of the calibrated number of stably selected features with different pa-
rameters controlling the level of sparsity.

P a matrix of calibrated thresholds in selection proportions for different parameters
controlling the level of sparsity in the underlying algorithm.

PFER a matrix of upper-bounds in PFER of calibrated stability selection models with
different parameters controlling the level of sparsity.

FDP a matrix of upper-bounds in FDP of calibrated stability selection models with
different parameters controlling the level of sparsity.

S_2d a matrix of stability scores obtained with different combinations of parameters.
Columns correspond to different thresholds in selection proportions.

PFER_2d a matrix of upper-bounds in FDP obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

FDP_2d a matrix of upper-bounds in PFER obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

selprop a matrix of selection proportions. Columns correspond to predictors from xdata.

Beta an array of model coefficients. Columns correspond to predictors from xdata.
Indices along the third dimension correspond to different resampling iterations.
With multivariate outcomes, indices along the fourth dimension correspond to
outcome-specific coefficients.

method a list with type="variable_selection" and values used for arguments implementation,
family, resampling, cpss and PFER_method.

params a list with values used for arguments K, pi_list, tau, n_cat, pk, n (number of
observations), PFER_thr, FDP_thr and seed. The datasets xdata and ydata are
also included if output_data=TRUE.

For all matrices and arrays returned, the rows are ordered in the same way and correspond to pa-
rameter values stored in Lambda.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi: 10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi: 10.1111/j.14679868.2011.01034.x.

See Also

PenalisedRegression, SelectionAlgo, LambdaGridRegression, Resample, StabilityScore
Recalibrate, ExplanatoryPerformance, PlotROC, Incremental, PlotIncremental

Other stability selection functions: BiSelection(), GraphicalModel()

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x

124 VariableSelection

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

Linear regression
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
print(stab)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)

Using additional arguments from glmnet (e.g. penalty.factor)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata, family = "gaussian",
penalty.factor = c(rep(1, 45), rep(0, 5))

)
summary(stab)

Regression with multivariate outcomes
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(20, 30), family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "mgaussian")
summary(stab)

Logistic regression
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "binomial")
summary(stab)

Multinomial regression
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 15, family = "multinomial")
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "multinomial"

)
summary(stab)

Sparse PCA (1 component, see BiSelection for more components)
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))
stab <- VariableSelection(

xdata = simul$data,
Lambda = 1:(ncol(simul$data) - 1),
implementation = SparsePCA

)
CalibrationPlot(stab, xlab = "")
summary(stab)

VariableSelection 125

Sparse PLS (1 outcome, 1 component, see BiSelection for more options)
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = 1:(ncol(simul$xdata) - 1),
implementation = SparsePLS, family = "gaussian"

)
CalibrationPlot(stab, xlab = "")
SelectedVariables(stab)

Group PLS (1 outcome, 1 component, see BiSelection for more options)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = 1:5,
group_x = c(5, 5, 10, 20, 10),
group_penalisation = TRUE,
implementation = GroupPLS, family = "gaussian"

)
CalibrationPlot(stab, xlab = "")
SelectedVariables(stab)

Sparse PLS-DA (1 outcome, 1 component, see BiSelection for more options)
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = 1:(ncol(simul$xdata) - 1),
implementation = SparsePLS,
family = "binomial"

)
CalibrationPlot(stab, xlab = "")
summary(stab)

Example with more hyper-parameters: elastic net
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
TuneElasticNet <- function(xdata, ydata, family, alpha) {

stab <- VariableSelection(
xdata = xdata, ydata = ydata,
family = family, alpha = alpha, verbose = FALSE

)
return(max(stab$S, na.rm = TRUE))

}
myopt <- optimise(TuneElasticNet,

lower = 0.1, upper = 1, maximum = TRUE,
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian"

)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", alpha = myopt$maximum

126 VariableSelection

)
summary(stab)
enet <- SelectedVariables(stab)

Comparison with LASSO
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
summary(stab)
lasso <- SelectedVariables(stab)
table(lasso, enet)

Example using an external function: group-LASSO with gglasso
if (requireNamespace("gglasso", quietly = TRUE)) {

set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")
ManualGridGroupLasso <- function(xdata, ydata, family, group_x, ...) {
Defining the grouping
group <- do.call(c, lapply(1:length(group_x), FUN = function(i) {

rep(i, group_x[i])
}))

if (family == "binomial") {
ytmp <- ydata
ytmp[ytmp == min(ytmp)] <- -1
ytmp[ytmp == max(ytmp)] <- 1
return(gglasso::gglasso(xdata, ytmp, loss = "logit", group = group, ...))

} else {
return(gglasso::gglasso(xdata, ydata, lambda = lambda, loss = "ls", group = group, ...))
}

}
Lambda <- LambdaGridRegression(

xdata = simul$xdata, ydata = simul$ydata,
family = "binomial", Lambda_cardinal = 20,
implementation = ManualGridGroupLasso,
group_x = rep(5, 4)

)
GroupLasso <- function(xdata, ydata, Lambda, family, group_x, ...) {

Defining the grouping
group <- do.call(c, lapply(1:length(group_x), FUN = function(i) {

rep(i, group_x[i])
}))

Running the regression
if (family == "binomial") {

ytmp <- ydata
ytmp[ytmp == min(ytmp)] <- -1
ytmp[ytmp == max(ytmp)] <- 1

mymodel <- gglasso::gglasso(xdata, ytmp, lambda = Lambda, loss = "logit", group = group, ...)
}
if (family == "gaussian") {
mymodel <- gglasso::gglasso(xdata, ydata, lambda = Lambda, loss = "ls", group = group, ...)
}
Extracting and formatting the beta coefficients
beta_full <- t(as.matrix(mymodel$beta))

VariableSelection 127

beta_full <- beta_full[, colnames(xdata)]

selected <- ifelse(beta_full != 0, yes = 1, no = 0)

return(list(selected = selected, beta_full = beta_full))
}
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
implementation = GroupLasso, family = "binomial", Lambda = Lambda,
group_x = rep(5, 4),
group_penalisation = TRUE

)
summary(stab)

}

par(oldpar)

Index

∗ calibration functions
Adjacency, 5
Argmax, 7
ArgmaxId, 8
CalibrationPlot, 20
SelectedVariables, 83
SelectionProportions, 90

∗ functions for model performance
SelectionPerformance, 85
SelectionPerformanceGraph, 88

∗ lambda grid functions
LambdaGridGraphical, 53
LambdaGridRegression, 56
LambdaSequence, 58

∗ multi-block functions
BlockLambdaGrid, 18
BlockMatrix, 19
BlockStructure, 20

∗ penalised dimensionality reduction
functions

GroupPLS, 44
SparseGroupPLS, 107
SparsePCA, 109
SparsePLS, 111

∗ prediction performance functions
ExplanatoryPerformance, 25
Incremental, 48
PlotIncremental, 66
PlotROC, 69
ROC, 81

∗ simulation functions
SimulateAdjacency, 92
SimulateComponents, 93
SimulateGraphical, 96
SimulateRegression, 102

∗ stability metric functions
FDP, 31
PFER, 65
StabilityMetrics, 114

StabilityScore, 118
∗ stability selection functions

BiSelection, 9
GraphicalModel, 38
VariableSelection, 119

∗ underlying algorithm functions
PenalisedGraphical, 62
PenalisedRegression, 63

∗ wrapping functions
GraphicalAlgo, 36
SelectionAlgo, 84

Adjacency, 5, 8, 9, 22, 34, 42, 83, 90
AggregatedEffects, 6
Argmax, 5, 7, 9, 22, 83, 90
ArgmaxId, 5, 8, 8, 22, 83, 90

BiSelection, 6, 8, 9, 21, 22, 35, 42, 46, 67,
70, 72, 75, 83, 86, 88–90, 108, 110,
112, 123

BlockDiagonal, 17
BlockLambdaGrid, 18, 19, 20
BlockMatrix, 18, 19, 20
BlockStructure, 18, 19, 20, 86

CalibrationPlot, 5, 8, 9, 12, 20, 41, 48, 83,
90, 122

coef, 27
Combine, 24, 41, 122
concordance, 26, 27, 49
Contrast, 25, 59, 99
coxph, 26, 49, 75

ExplanatoryPerformance, 25, 48, 50, 67, 69,
70, 82, 123

FDP, 31, 65, 114, 117, 119
Folds, 31

glassoFast, 37, 39, 54, 62
glm, 26, 49, 75

128

INDEX 129

glmnet, 32, 56, 57, 63, 64, 80, 84, 113, 120
gPLS, 45
gPLSda, 45
Graph, 32, 36, 41, 42, 88
graph_from_adjacency_matrix, 33
GraphComparison, 35
GraphicalAlgo, 36, 42, 85
GraphicalModel, 5, 8, 9, 14, 18–22, 24,

33–35, 37, 38, 63, 86, 88–90, 96, 99,
123

GroupPLS, 14, 44, 85, 108, 110, 112

Heatmap, 47
huge.generator, 92, 94, 97

igraph, 32, 33, 35, 41
Incremental, 27, 48, 66, 67, 70, 82, 123

LambdaGridGraphical, 37, 39, 42, 53, 57, 58
LambdaGridRegression, 55, 56, 58, 84, 120,

123
LambdaSequence, 55, 57, 58
lm, 26, 49, 75

MakePositiveDefinite, 59, 96, 99, 100
MatchingArguments, 61
mclapply, 11, 12, 40, 41, 121, 122
mean, 6
median, 6
multinom, 26, 49, 75

optimise, 59, 95, 98, 102, 105

par, 22, 47, 67, 70
PenalisedGraphical, 37, 42, 62, 64
PenalisedRegression, 63, 63, 85, 123
PFER, 31, 65, 114, 117, 119
plotCI, 67
PlotIncremental, 27, 50, 66, 70, 82, 123
PlotROC, 27, 50, 67, 69, 82, 123
PLS, 71, 74, 75
pls, 71, 72
points, 21, 66
predict.pls, 74
PredictPLS, 74

RCy3, 33
Recalibrate, 6, 27, 50, 67, 70, 75, 123
Resample, 14, 42, 79, 123
ROC, 27, 50, 67, 70, 81

SelectedVariables, 5, 8, 9, 22, 83, 90
SelectionAlgo, 37, 64, 84, 123
SelectionPerformance, 85, 89
SelectionPerformanceGraph, 36, 86, 88
SelectionProportions, 5, 8, 9, 22, 83, 90
set.seed, 11, 39, 57, 120
sgPLS, 45, 107, 108
sgPLSda, 107, 108
sharp-package, 3
SimulateAdjacency, 92, 96, 99, 105
SimulateComponents, 86, 93, 93, 99, 105
SimulateGraphical, 35, 86, 88, 89, 93, 96,

96, 105
SimulatePrecision, 99, 100
SimulateRegression, 35, 86, 88, 89, 93, 96,

99, 102
SparseGroupPLS, 14, 46, 85, 107, 110, 112
SparsePCA, 14, 46, 85, 108, 109, 112
SparsePLS, 14, 46, 85, 108, 110, 111
spca, 109, 110
Split, 113
sPLS, 111
sPLSda, 111
Square, 114
StabilityMetrics, 31, 65, 114, 119
StabilityScore, 12, 14, 31, 41, 42, 65, 114,

117, 118, 122, 123

text, 22

VariableSelection, 6, 8, 9, 14, 21, 22, 24,
26, 27, 35, 42, 46, 49, 50, 64, 67, 70,
72, 75, 76, 83, 85, 86, 88–90, 105,
108, 110, 112, 119

visNetwork, 33, 41

	sharp-package
	Adjacency
	AggregatedEffects
	Argmax
	ArgmaxId
	BiSelection
	BlockDiagonal
	BlockLambdaGrid
	BlockMatrix
	BlockStructure
	CalibrationPlot
	Combine
	Contrast
	ExplanatoryPerformance
	FDP
	Folds
	Graph
	GraphComparison
	GraphicalAlgo
	GraphicalModel
	GroupPLS
	Heatmap
	Incremental
	LambdaGridGraphical
	LambdaGridRegression
	LambdaSequence
	MakePositiveDefinite
	MatchingArguments
	PenalisedGraphical
	PenalisedRegression
	PFER
	PlotIncremental
	PlotROC
	PLS
	PredictPLS
	Recalibrate
	Resample
	ROC
	SelectedVariables
	SelectionAlgo
	SelectionPerformance
	SelectionPerformanceGraph
	SelectionProportions
	SimulateAdjacency
	SimulateComponents
	SimulateGraphical
	SimulatePrecision
	SimulateRegression
	SparseGroupPLS
	SparsePCA
	SparsePLS
	Split
	Square
	StabilityMetrics
	StabilityScore
	VariableSelection
	Index

