Package ‘simfam’

October 6, 2021

Title Simulate and Model Family Pedigrees with Structured Founders
Version 1.0.3

Description
The focus is on simulating and modeling families with founders drawn from a structured popula-
tion (for example, with different ancestries or other potentially non-family relatedness), in con-
trast to traditional pedigree analysis that treats all founders as equally unrelated. Main func-
tion simulates a random pedigree for many generations, avoiding close relatives, pairing clos-
est individuals according to a 1D geography and their randomly-drawn sex, and with variable chil-
dren sizes to result in a target population size per generation. Auxiliary functions calculate kin-
ship matrices, admixture matrices, and draw random genotypes across arbitrary pedigree struc-
tures starting from the corresponding founder values. The code is built around the plink FAM ta-
ble format for pedigrees. Partially described in Yao and Ochoa (2019) <doi:10.1101/858399>.

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
Imports Rcpp, stats, tibble

Suggests testthat (>= 3.0.0), popkin, bnpsd (>= 1.3.2), kinship2,
RColorBrewer, knitr, rmarkdown

Config/testthat/edition 3
VignetteBuilder knitr
LinkingTo Rcpp

URL https://github.com/Ochoalab/simfam

BugReports https://github.com/Ochoalab/simfam/issues

NeedsCompilation yes

Author Alejandro Ochoa [aut, cre] (<https://orcid.org/0000-0003-4928-3403>)
Maintainer Alejandro Ochoa <alejandro.ochoa@duke.edu>

Repository CRAN

Date/Publication 2021-10-05 23:20:10 UTC

https://doi.org/10.1101/858399
https://github.com/OchoaLab/simfam
https://github.com/OchoaLab/simfam/issues
https://orcid.org/0000-0003-4928-3403

2 admix_fam

R topics documented:

admix_fam L e e e 2
admix_last_gen L 3
draw_SEX e 5
geno_fam L e e e 6
geno_last_gen e e 7
kinship_fam 9
kinship_last_gen 10
prune_fam L e e e e e 12
sim_pedigree 13

Index 16

admix_fam Calculate admixture matrix of a pedigree with known admixture of
founders
Description

Calculates a full admixture proportions matrix (for all individuals in the provided pedigree FAM
table) starting from the admixture proportions of the founders as provided.

Usage

admix_fam(admix, fam, missing_vals = c("", 0))

Arguments

admix The admixture proportions matrix of the founders (individuals along rows and
ancestries along columns). This matrix must have row names that identify each
founder (matching codes in fam$id). Individuals may be in a different order
than fam$id. Extra individuals in admix but absent in fam$id will be silently
ignored. All values should be non-negative and each row of admix should sum
to one; for speed, this code does not check that admix is valid, just averages data
as-is.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string () and zero (0) are also treated as missing (remove
values from here if this is a problem).

admix_last_gen 3

Value

The admixture proportions matrix of the entire fam table, based on the admixture of the founders.
These are expectations, calculated for each individual as the average ancestry proportion of the
parents. The rows of this admixture matrix correspond to fam$id in that order. The columns
(ancestries) are the same as in the input admix.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while "child” does not
library(tibble)
fam <- tibble(
id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')
)

admixture proportions of the parents

admix <- rbind(c(0.3, 9.3, 0.4), c(9.5, .25, 0.25))
Name the parents with same codes as in ‘fam®

(order can be different)

rownames(admix) <- c('mother', 'father')
name ancestries too
colnames(admix) <- c('African', 'European', 'Asian')

Calculate the full admixture proportions matrix
admix_all <- admix_fam(admix, fam)

This is a 3x3 matrix with row names matching fam$id.
The parent submatrix equals the input (reordered),
but now there's admixture to the child too (averages of parents)

admix_all
admix_last_gen Calculate admixture matrix for last generation of a pedigree with ad-
mixture of founders
Description

A wrapper around the more general admix_fam(), specialized to save memory when only the last
generation is desired (admix_fam() returns admixture for the entire pedigree in a single matrix).
This function assumes that generations are non-overlapping (met by the output of sim_pedigree()),
in which case each generation g can be drawn from generation g-1 data only. That way, only two

https://www.cog-genomics.org/plink/1.9/formats#fam

4 admix_last_gen

consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

admix_last_gen(admix, fam, ids, missing_vals = c("", @))

Arguments

admix The admixture proportions matrix of the founders (individuals along rows and
ancestries along columns). This matrix must have row names that identify each
founder (matching codes in fam$id). Individuals may be in a different order
than fam$id. Extra individuals in admix but absent in fam$id will be silently
ignored. All values should be non-negative and each row of admix should sum
to one; for speed, this code does not check that admix is valid, just averages data
as-is.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string () and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The admixture proportions matrix of the last generation (the intersection of ids[length(ids)]
and fam$id). The rows of this matrix are last-generation individuals in the order that they appear in
fam$id.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while children do not
library(tibble)
fam <- tibble(
id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')

https://www.cog-genomics.org/plink/1.9/formats#fam

draw_sex 5

)

need an ‘ids‘ list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

admixture proportions of the parents

admix <- rbind(c(0.3, 0.3, 0.4), c(0.5, 0.25, 0.25))
Name the parents with same codes as in ‘fam®

(order can be different)

rownames(admix) <- c('mother', 'father')
name ancestries too
colnames(admix) <- c('African', 'European', 'Asian')

calculate the admixture matrix of the children
admix2 <- admix_last_gen(admix, fam, ids)
admix2

draw_sex Draw sex values randomly for a list of individuals

Description

Each individual has their sex drawn between male and female with equal probability. Sex is encoded
numerically following the convention for plink FAM files (see below).

Usage

draw_sex(n)

Arguments

n The number of individuals.

Value

The length-n vector of integer sex assignments: 1L corresponds to male, 2L to female.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

draw_sex(10)

https://www.cog-genomics.org/plink/1.9/formats#fam

6 geno_fam

geno_fam Draw random genotypes on a pedigree with known founder genotypes

Description

Constructs a random genotype matrix (for all individuals in the provided pedigree FAM table)
starting from the genotype matrix of the founders as provided.

Usage
geno_fam(X, fam, missing_vals = c("", 0))
Arguments
X The genotype matrix of the founders (loci along rows, individuals along columns).
This matrix must have column names that identify each founder (matching codes
in fam$id). Individuals may be in a different order than fam$id. Extra individ-
uals in admix but absent in fam$id will be silently ignored. All values should
be in c(@L, 1L, 2L); for speed, this code does not check that X is valid (i.e. frac-
tional values between 0 and 2 may not cause errors).
fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat

are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”’) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The random genotype matrix of the entire fam table, starting from the genotypes of the founders.
The columns of this matrix correspond to fam$id in that order. The rows (loci) are the same as in
the input X.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while "child"” does not
library(tibble)
fam <- tibble(
id = c('father', 'mother', 'child"),

https://www.cog-genomics.org/plink/1.9/formats#fam

geno_last_gen 7

pat
mat

)

c(NA, NA, 'father'),
c(NA, NA, 'mother')

genotypes of the parents at 4 loci

X <= cbind(c(1, 2, @, 2), c(9, 2, 2, 1))

Name the parents with same codes as in ‘fam®
(order can be different)

colnames(X) <- c('mother', 'father')

name loci too

rownames(X) <- paste@('rs', 1:4)

Draw the full genotype matrix
X_all <- geno_fam(X, fam)

This is a 4x3 matrix with column names matching fam$id.
The parent submatrix equals the input (reordered),
but now there's random genotypes for the child too

X_all
geno_last_gen Draw random genotypes for last generation of a pedigree with known
founder genotypes
Description

A wrapper around the more general geno_fam(), specialized to save memory when only the last
generation is desired (geno_fam() returns genotypes for the entire pedigree in a single matrix). This
function assumes that generations are non-overlapping (met by the output of sim_pedigree()), in
which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage
geno_last_gen(X, fam, ids, missing_vals = c("", 0))
Arguments
X The genotype matrix of the founders (loci along rows, individuals along columns).
This matrix must have column names that identify each founder (matching codes
in fam$id). Individuals may be in a different order than fam$id. Extra individ-
uals in admix but absent in fam$id will be silently ignored. All values should
be in c(@L, 1L, 2L); for speed, this code does not check that X is valid (i.e. frac-
tional values between 0 and 2 may not cause errors).
fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat

are required. id must be unique and non-missing. Founders must be present,

ids

missing_vals

Value

geno_last_gen

and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”’) and zero (0) are also treated as missing (remove
values from here if this is a problem).

The random genotype matrix of the last generation (the intersection of ids[length(ids)] and
fam$id). The columns of this matrix are last-generation individuals in the order that they appear in
fam$id. The rows (loci) are the same as in the input X.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while children do not

library(tibble)
fam <- tibble(
id = c('father’
pat = c(NA, NA,
mat = c(NA, NA,
)

, 'mother', 'child', 'sib'),
'father', 'father'),
'mother', 'mother')

need an ‘ids‘ list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

genotypes of the parents at 4 loci

X <= cbind(c(1,

2,0, 2), c, 2 2, 1))

Name the parents with same codes as in ‘fam®
(order can be different)

colnames(X) <-
name loci too
rownames(X) <-

c('mother', 'father')

pasted('rs', 1:4)

Draw the genotype matrix of the children
X2 <- geno_last_gen(X, fam, ids)

X2

https://www.cog-genomics.org/plink/1.9/formats#fam

kinship_fam

kinship_fam

Calculate kinship matrix of a pedigree with structured founders

Description

Calculates a full kinship matrix (between all individuals in the provided pedigree FAM table) taking
into account the relatedness of the founders as provided. Output agrees with kinship2: :kinship()
but only when founders are unrelated/outbred (in other words, that function does not allow related-
ness between founders).

Usage

kinship_fam(kinship, fam, missing_vals = c("", 0))

Arguments

kinship

fam

missing_vals

Value

The kinship matrix of the founders. This matrix must have column and row
names that identify each founder (matching codes in fam$id). Individuals may
be in a different order than fam$id. Extra individuals in kinship but absent
in fam$id will be silently ignored. A traditional pedigree calculation would
use kinship =diag(n)/2 (plus appropriate column/row names), where n is
the number of founders, to model unrelated and outbred founders. However, if
kinship measures the population kinship estimates between founders, the out-
put is also a population kinship matrix (which combines the structural/ancestral
and local/pedigree relatedness values into one).

The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”’) and zero (0) are also treated as missing (remove
values from here if this is a problem).

The kinship matrix of the entire fam table, taking the relatedness of the founders into account. The
rows and columns of this kinship matrix correspond to fam$id in that order.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

https://www.cog-genomics.org/plink/1.9/formats#fam

10 kinship_last_gen

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while "child"” does not
library(tibble)
fam <- tibble(
id = c('father', 'mother', 'child"),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')
)

Kinship of the parents, here two unrelated/outbred individuals:
kinship <- diag(2)/2

Name the parents with same codes as in ‘fam®

(order can be different)

colnames(kinship) <- c('mother', 'father')

rownames (kinship) <- c('mother', 'father')

For a clearer example, make the father slightly inbred

(a self-kinship value that exceeds 1/2):

kinship[2,2] <- 0.6

Calculate the full kinship matrix
kinship_all <- kinship_fam(kinship, fam)

This is a 3x3 matrix with row/col names matching fam$id.
The parent submatrix equals the input (reordered),

but now there's relatedness to the child too
kinship_all

kinship_last_gen Calculate kinship matrix for last generation of a pedigree with struc-
tured founders

Description

A wrapper around the more general kinship_fam(), specialized to save memory when only the
last generation is desired (kinship_fam() returns kinship for the entire pedigree in a single matrix).
This function assumes that generations are non-overlapping (met by the output of sim_pedigree()),
in which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

kinship_last_gen(kinship, fam, ids, missing_vals = c("", @))

kinship_last_gen 11

Arguments

kinship The kinship matrix of the founders. This matrix must have column and row
names that identify each founder (matching codes in fam$id). Individuals may
be in a different order than fam$id. Extra individuals in kinship but absent
in fam$id will be silently ignored. A traditional pedigree calculation would
use kinship =diag(n)/2 (plus appropriate column/row names), where n is
the number of founders, to model unrelated and outbred founders. However, if
kinship measures the population kinship estimates between founders, the out-
put is also a population kinship matrix (which combines the structural/ancestral
and local/pedigree relatedness values into one).

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string () and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The kinship matrix of the last generation (the intersection of ids[length(ids)] and fam$id).
The columns/rows of this matrix are last-generation individuals in the order that they appear in
fam$id.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother” and "father” have missing parent IDs, while children do not
library(tibble)
fam <- tibble(
id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')
)
need an ‘ids‘ list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

Kinship of the parents, here two unrelated/outbred individuals:
kinship <- diag(2)/2

https://www.cog-genomics.org/plink/1.9/formats#fam

12 prune_fam

Name the parents with same codes as in ‘fam®

(order can be different)

colnames(kinship) <- c('mother', 'father')

rownames (kinship) <- c('mother', 'father')

For a clearer example, make the father slightly inbred
(a self-kinship value that exceeds 1/2):

kinship[2,2] <- 0.6

calculate the kinship matrix of the children
kinship2 <- kinship_last_gen(kinship, fam, ids)
kinship2

prune_fam Remove non-ancestors of a set of individuals from pedigree

Description

This function accepts an input pedigree and a list of individuals of interest, and returns the subset
of the pedigree including only the individuals of interest and their direct ancestors. This is useful
in simulations, to avoid modeling/drawing genotypes of individuals without descendants in the last

generation.
Usage
prune_fam(fam, ids, missing_vals = c("", @))
Arguments
fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.
ids The list of individuals of interest, whose ancestors we want to keep. All must be

present in fam$id.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”’) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The filtered FAM table with non-ancestors of ids excluded. IDs that are NA-equivalent (see missing_vals)
will be mapped to NA.

sim_pedigree 13

Examples

construct a family with three founders, but one "bob"” has no descendants
library(tibble)
fam <- tibble(

id = c('mom', 'dad', 'bob', 'child'),

pat = c(NA, NA, NA, 'dad'),
mat = c(NA, NA, NA, "mom')
)
only want 'child' and its ancestors
ids <- 'child’

fam2 <- prune_fam(fam, ids)
the filtered pedigree has "bob"” removed:
fam2

sim_pedigree Construct a random pedigree

Description

Specify the number of individuals per generation, and some other optional parameters, and a sin-
gle pedigree with those properties will be simulated, where close relatives are never paired, sex is
drawn randomly per individual and pairings are strictly across opposite-sex individuals, and oth-
erwise closest individuals (on an underlying 1D geography given by their index) are paired in a
random order. Pairs are reordered based on the average of their indexes, where their children are
placed (determines their indexes in the 1D geography). The procedure may leave some individuals
unpaired in the next generation, and family sizes vary randomly (with a fixed minimum family size)
to achieve the desired population size in each generation.

Usage

sim_pedigree(
n,
G = length(n),
sex = draw_sex(n[1]),
kinship_local = diag(n[1]1)/2,
cutoff = 1/4*3,
children_min = 1L,
full = FALSE

Arguments

n The number of individuals per generation. If scalar, the number of generations
G >= 2 must also be specified. Otherwise, the length of n is the number of gen-
erations.

14

sex

kinship_local

cutoff

children_min

full

Value

sim_pedigree

The number of generations (optional). Note G ==1 is founders only, so it is
invalid (there is no pedigree). Must specify a G >= 2 if n is a scalar. If both G is
specified and 1length(n) > 1, both values must agree.

The numeric sex values for the founders (1L for male, 2L for female). By default
they are drawn randomly using draw_sex().

The local kinship matrix of the founder population. The default value is half
the identity matrix, which corresponds to locally unrelated and locally outbred
founders. This "local" kinship is the basis for all kinship calculations used to
decide on close relative avoidance. The goal is to make a decision to not pair
close relatives based on the pedigree only (and not based on population structure,
which otherwise increases all kinship values), so the default value is appropriate.

Local kinship values strictly less than cutoff are required for pairs. The default
value of 1/4*3 corresponds to second cousins, so those and closer relatives are
forbidden pairs (but a third cousin pair is allowed).

The minimum number of children per family. Must be O or larger, but not ex-
ceed the average number of children per family in each generation (varies de-
pending on how many individuals were left unpaired, but this upper limit is
approximately 2 *x n[i] / n[i-1] for generation i). The number of children for
each given family is first chosen as children_min plus a Poisson random vari-
able with parameter equal to the mean number of children per family needed to
achieve the desired population size (n) minus children_min. As these numbers
may not exactly equal the target population size, random families are incre-
mented or decremented (respecting the minimum family size) by single counts
until the target population size is met.

If TRUE, part of the return object is a list of local kinship matrices for every gen-
eration. If FALSE (default), only the local kinship matrix of the last generation is
returned.

A list with these named elements:

» fam: the pedigree, a tibble in plink FAM format. Following the column naming convention of
the related genio package, it contains columns:

— fam: Family ID, trivial "fam1" for all individuals

— 1id: Individual ID, in this case a code of format (in regular expression) "(\d+)-(\d+)" where
the first integer is the generation number and the second integer is the index number (1 to
n[g] for generation g).

— pat: Paternal ID. Matches an id except for founders, which have fathers set to NA.

— mat: Maternal ID. Matches an id except for founders, which have mothers set to NA.

— sex: integers 1L (male) or 2L (female) which were drawn randomly; no other values
occur in these outputs.

— pheno: Phenotype, here all O (missing value).

* ids: alist of IDs for each generation (indexed in the list by generation).

e kinship_local: if full = FALSE, the local kinship matrix of the last generation, otherwise a
list of local kinship matrices for every generation.

sim_pedigree

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

number of individuals for each generation
n <- c(15, 20, 25)

create random pedigree with 3 generations, etc
data <- sim_pedigree(n)

this is the FAM table defining the entire pedigree,
which is the most important piece of information desired!
data$fam

the IDs separated by generation
data$ids

bonus: the local kinship matrix of the final generation
data$kinship_local

15

https://www.cog-genomics.org/plink/1.9/formats#fam

Index

admix_fam, 2
admix_fam(), 3
admix_last_gen, 3

draw_sex, 5
draw_sex(), 14

geno_fam, 6
geno_fam(), 7
geno_last_gen, 7

kinship2: :kinship(), 9
kinship_fam, 9
kinship_fam(), 10
kinship_last_gen, 10

prune_fam, 12

sim_pedigree, 13
sim_pedigree(), 3, 4,7, 10

16

	admix_fam
	admix_last_gen
	draw_sex
	geno_fam
	geno_last_gen
	kinship_fam
	kinship_last_gen
	prune_fam
	sim_pedigree
	Index

