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Abstract

We present the simlandr package for R, which provides a set of tools for constructing
potential landscapes for dynamic systems using Monte Carlo simulation. Potential land-
scapes can be used to quantify the stability of system states. While the canonical form
of a potential function is deĄned for gradient systems, generalized potential functions can
also be deĄned for non-gradient dynamical systems. Our method is based on the potential
landscape deĄnition by Wang, Xu, and Wang (2008), and can be used for a large vari-
ety of models. Using two multistable dynamical systems as examples, we illustrate how
simlandr can be used for model simulation, landscape construction, and barrier height
calculation.

Keywords: dynamical systems, potential landscape, Monte Carlo simulation, R.

Note: this is a preprint submitted for publication and also serves as a tuto-
rial/vignette for simlandr. The manuscript has not yet been peer-reviewed.

1. Introduction

To better understand a dynamical system, it is often important to know the stability of
different states. The metaphor of a potential landscape consisting of hills and valleys has
been used to illustrate differences in stability in many Ąelds, including biology (Wang, Zhang,
Xu, and Wang 2011; Waddington 1966), ecology (Lamothe, Somers, and Jackson 2019), and
psychology (Olthof, Hasselman, Oude Maatman, Bosman, and Lichtwarck-Aschoff 2020). In
such a landscape, the stable states of the system correspond to the lowest points (minima) in
the valleys of the landscape. Just like a ball that is thrown in such a landscape will eventually
gravitate towards such a minimum, the dynamical system is conceptually more likely to visit
its stable states in which the system is also more resilient to noise. Yet, formally quantifying
the stability of states is a nontrivial question.

Here we present an R package, simlandr, which is available from the Comprehensive R

Archive Network (CRAN) at https://CRAN.R-project.org/package=simlandr. simlandr

can quantify the stability of various kinds of systems without many mathematical restrictions.
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It was originally developed for psychological formal models (Cui, Lichtwarck-Aschoff, Olthof,
Li, and Hasselman 2021), but the workĆow can be generalized to many other Ąelds wherever
quantifying the stability is needed.

Dynamical systems are usually modeled by stochastic differential equations, which take the
form of

dX

dt
= b(X) + σ(X)

dW

dt
, (1)

where X is the random variable representing the state of the system.1 The Ąrst term on the
right-hand side of Equation 1 represents the deterministic part of the dynamics, which is a
function of the system state b(X). The second term represents the stochastic part, which is
standard white noise dW/dt multiplied by the noise strength σ(X).

If the dynamical equation 1 can be written in the following form

dX

dt
= −∇U +

√
2

dW

dt
, (2)

then U is the potential function of the system.2. However, this is not possible for general
dynamical systems. The trajectory of such system may contain loops which are not possible to
be represented by a gradient system (this issue was compared to EscherŠs stairs by Rodríguez-
Sánchez, van Nes, and Scheffer 2020). In this case, further generalization is needed. The
theoretical background of simlandr is the generalized potential landscape by Wang et al.
(2008), which is based on the Boltzmann distribution and the steady-state distribution of
the system. The Boltzmann distribution is a distribution law in physics, which states the
distribution of classical particles depends on the energy level they occupy. When the energy
is higher, the particle is exponentially less likely to be in such states

P (x) ∝ exp(−U). (3)

This is then linked to dynamical systems by the steady-state distribution. The steady-state
distribution of stochastic differential equations is the distribution that does not change over
time, denoted by PSS which satisĄes

∂PSS(x, t)

∂t
= 0. (4)

The steady-state distribution is important because it extracts time-invariant information from
a set of stochastic differential equations. Substituting the steady-state distribution to Equa-
tion 3 gives WangŠs generalized potential landscape function (Wang et al. 2008)

U(x) = − ln PSS(x). (5)

If the system has ergodicity (i.e., after sufficient time it can travel to all possible states in
the state space), the long-term sample distribution can be used to estimate the steady-state
distribution, and the generalized potential function can be calculated.

Our approach is deĄnitely not the only possible way for constructing potential landscapes.
Many other theoretical approaches are available, including the SDE decomposition method

1The corresponding variable representing positions in the state space is not a random variable, so we use
lowercase x for it as in Equation 3. This convention will be followed throughout this article.

2Under zero inertia approximation.
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by Ao (2004) and the quasi-potential by Zhou, Aliyu, Aurell, and Huang (2012) and Lv, Li,
Li, and Li (2014), and various strategies to numerically compute these landscapes have been
proposed (see Zhou and Li 2016, for a review). However, available realizations are still rare.
To our knowledge, the only existing software speciĄcally for computing potential landscapes
is rolldown by Rodríguez-Sánchez (2020). This package is based on the decomposition of
the Jacobian over a grid of points. It, therefore, requires the function to be deterministic
and differentiable in the whole state space. Additionally, rolldown currently only supports
one- or two-dimensional systems. Expanding the method to a higher dimensional case is
principally possible, but because the method requires grid points in all dimensions, many
difficulties in computation and visualization are to be expected. simlandr, on the contrary, is
based on Monte-Carlo simulation and the steady-state distribution. It does not have speciĄc
requirements for the model. Even for the models that are not globally differentiable and
have history-dependence, simlandr is still applicable by assuming ergodicity (e.g., Cui et al.
2021). The required simulation length only depends on the time scale on which ergodicity
is achieved, which is not related to the dimensionality of the system. Therefore, it is also
suitable for high-dimensional systems. Finally, we remark that we do not consider rare events
sampling in which the noise strength σ(X) is extremely small.

In the following part of this article, we will illustrate how to compute the potential landscape
for two example models using simlandr. The workĆow is divided into three parts: model
simulation, landscape construction, and barrier calculation. We Ąrst load simlandr before
going into the illustration.

R> library(simlandr)

2. Model simulation

2.1. Single simulation

As mentioned above, dynamic models often take the form of stochastic differential equations.
For numerical computation, these models are often simulated using numerical approximations,
for example, the Euler-Maruyama method. An R function is usually needed to simulate how
the model variables change over time. It takes some parameters as input and returns a
recording of the variables during the simulation process. We will refer to these kinds of
functions as simulation functions.

The sim_fun_grad() and sim_fun_nongrad() functions (available in simlandr from 0.1.3 ver-
sion) will be used for illustration. The sim_fun_grad() function represents a two-dimensional
stochastic gradient system, whose potential function is speciĄed as

U(x, y) = x4 + y4 + axy + bx + cy. (6)

Therefore, the actual potential function of the system is known and can be compared with
the results generated by simlandr. The dynamic functions of the system are

dX

dt
= −∂U

∂x
+ σ

dV

dt
= −4x3 − ay − b + σ

dV

dt
, (7)

dY

dt
= −∂U

∂y
+ σ

dW

dt
= −4y3 − ax − c + σ

dW

dt
, (8)
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where V and W are independent standard Brownian motions.

With the default parameter setting a = −4, b = c = 0, σ = 1, we generate the following
simulation data.

R> single_output_grad <- sim_fun_grad(length = 1e5, seed = 1614)

The function sim_fun_nongrad() represents a two-dimensional stochastic non-gradient model
by Wang et al. (2011). This model is based on the mutual regulations of gene expressions. If
X1 and X2 represent the expression levels of two genes which activate themselves and inhibit
each other, their dynamic functions can be written as

dX1

dt
=

axn
1

Sn + xn
1

+
bSn

Sn + xn
2

− kx1 + σ1

dW1

dt
, (9)

dX2

dt
=

axn
2

Sn + xn
2

+
bSn

Sn + xn
1

− kx2 + σ2

dW2

dt
, (10)

da

dt
= −λa + σ3

dW3

dt
, (11)

where a represents the strength of self-activation, b represents the strength of mutual-
inhibition, and k represents the speed of degradation. The development of an organism
is modeled as a decreasing at a certain speed λ. This model cannot be written in the form
of Equation 2, thus no strictly-deĄned potential function exists. The generalized potential
function obtained by an analytical method is provided by Wang et al. (2011). This landscape
will be compared with the result generated by simlandr.

With the default parameter setting b = 1, k = 1, S = 0.5, n = 4, λ = 0.01, σ2
1 = σ2

2 = 8, σ2
3 = 2,

and a bounded within [-0.3,1.8], we generate the following simulation data.

R> single_output_nongrad <- sim_fun_nongrad(

R> length = 1e6,

R> stepsize = 0.1,

R> seed = 1614

R> )

If you already have a function of a dynamic model, you can just run it to produce output
without having to use simlandr. However, for Monte-Carlo methods, it is important that the
simulation converges. In our case, it means the distribution of the system is roughly stable.
Only when the distribution estimation is good enough can we construct reasonable landscapes
based on that. simlandr provides a function check_conv() to check if the simulation con-
verges. It takes the initial, middle, and Ąnal parts of the simulation result and calculates
distributions based on that. If these distributions look similar, we can say the simulation
converges. The convergence check result for the gradient example can then be obtained by

R> check_conv(single_output_grad, var = c("x"))[[1]]

and the resulting plot is shown in Figure 1.

An exception in which this method does not work well is when the simulation is so short or
the noise of the system is so small that during the whole simulation the system is around one
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Figure 1: Convergence check result for x.

local stable state. Rough knowledge of the system and its stable states would be needed to
rule out this situation.

2.2. Out-of-memory computation

Sometimes the output of the simulation is so large that it cannot be handled properly in
the following computation. The size of single_output_nongrad, for example, is 30.5 MB.
If the simulation length and the number of variables are extended, the object size can easily
grow into GBs.3 In this case, you can use the bigmemory package (Kane, Emerson, and
Weston 2013). bigmemory only preserves a pointer in the RAM memory, so it can reduce
memory load signiĄcantly. In most cases, you can treat it as a normal matrix. The functions
in simlandr are fully compatible with bigmemory.4 The following are the example codes for
single_output_nongrad.

R> single_output_nongrad <-

R> bigmemory::as.big.matrix(single_output_nongrad,

R> backingfile = "single_output_nongrad.bin",

3Rule of thumb: retain matrices of > 1 GB in memory is likely to produce future problems in a computer
with 8 GB memory.

4 At the moment, there is an issue associated with the variable inspector of RStudio that can cause
crashes when loading the workspace image with previous big.matrix or hash_big.matrix objects. If you
are using R with RStudio, switching the variable inspector to ŞManual Refresh OnlyŤ before attaching the
external data Ąles can prevent this problem. See https://github.com/rstudio/rstudio/issues/8923 and
https://github.com/kaneplusplus/bigmemory/issues/106 for discussions.
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R> descriptorfile = "single_output_nongrad.desc"

R> )

To reuse these images on a hard drive, big.matrix class in bigmemory requires an explicit Ąle
name for each matrix. This can be cumbersome if you need to handle a lot of matrices. (And
this is even a bigger problem for batch simulation; see Section 2.3.) Therefore, simlandr

provides a S4 hash_big.matrix class to solve this problem. The hash_big.matrix class is a
modiĄcation of the big.matrix class from the bigmemory package, but it automatically gen-
erates the Ąle names using the md5 values of the matrices, calculated by the digest package
(Eddelbuettel, Lucas, Tuszynski, Bengtsson, Urbanek, Frasca, Lewis, Stokely, Muehleisen,
Murdoch, Hester, Wu, Kou, Onkelinx, Lang, Simko, Hornik, Neal, Bell, de Queljoe, Su-
ruceanu, Denney, Schumacher, and Chang 2021). The md5 value is also stored in the md5 slot
of hash_big.matrix objects. Therefore, the Ąle link can also be restored automatically with-
out having to specify a Ąle name. By default, all the backing Ąles of the hash_big.matrix

objects are in the \bp directory. After this manipulation, the size of single_output_nongrad

is reduced to only 0.9 KB.

R> single_output_nongrad <- as.hash_big.matrix(single_output_nongrad)

R> single_output_nongrad <- attach.hash_big.matrix(single_output_nongrad)

2.3. Batch simulation

Sometimes you need to run the models with different conditions. simlandr provides several
tools to do this easily. Because simlandr needs to pass those condition settings into the sim-
ulation function and record their results properly, it requires the simulation function to have
a certain format. The arguments of the simulation function should have a nested structure,
which means they are lists that contain several elements. For example, in sim_fun_grad(),
there is an argument initial that contains two elements x and y, which specify the initial
value of x and y. There is also an argument parameter that contains elements a, b, c, and
sigmasq, which specify model parameters a, b, c, and σ2. The simulation function should
also give a matrix as the output. If your original simulation function is in another format,
maybe you need to modify it or wrap it in another function.

To run a batch simulation, you need to Ąrst make a arg_set that describes the conditions of
these simulations and then make an arg_grid out of it. An arg_grid represents a grid that
contains all possible combinations of conditions. The following is an example that creates
an arg_grid for sim_fun_grad(). It initializes a new_arg_set(), adds an element of an
argument and the starting, end, and increment values of the element with add_arg_ele(),
and make_arg_grid() from the arg_set.

R> batch_arg_set_grad <- new_arg_set()

R> batch_arg_set_grad <- batch_arg_set_grad %>%

+ add_arg_ele(

+ arg_name = "parameter", ele_name = "a",

+ start = -6, end = -1, by = 1

+ )

R> batch_grid_grad <- make_arg_grid(batch_arg_set_grad)
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We are now ready to run the batch simulation for the example gradient model. simlandr uses
out-of-memory storage for batch simulations by default because most times batch simulation
will result in very large data objects. In this case, each simulation result is stored in a sepa-
rate Ąle with the hash_big.matrix class. simlandr also provides a attach_all_matrices()

function to help you attach all the out-of-memory hash_big.matrixs related to a batch sim-
ulation. Use this if you want to load the previous workspace image with (out-of-memory)
batch simulation results (but see Footnote 4).

R> batch_output_grad <- batch_simulation(batch_grid_grad, sim_fun_grad,

R> default_list = list(

R> initial = list(x = 0, y = 0),

R> parameter = list(a = -4, b = 0, c = 0, sigmasq = 1)

R> ),

R> length = 1e5,

R> seed = 1614

R> )

R> batch_output_grad <- attach_all_matrices(batch_output_grad)

If you want to keep all the original data in the memory, you can use bigmemory = FALSE.

The output of the batch_simulation() function is a batch_simulation object, which is,
basically, a complex data.frame with simulation outputs and corresponding parameter values.
You can manipulate it as a data.frame for your purpose. batch_simulation objects are also
the base for constructing landscapes from multiple simulations.

3. Landscape construction

simlandr provides a set of tools to construct 2D, 3D, and 4D5 landscapes from single or
multiple simulation results. The steady-state distribution for selected variables of the system
is Ąrst estimated using the kernel density estimates. The density() function in stats is
used for 2D landscapes. The kde()function from the ks package (Duong 2021) is used by
default for 3D and 4D landscapes. For 3D landscapes, you can also choose to use the smooth
function from MASS (Venables and Ripley 2002) package by using kde_fun = "MASS". The
distribution information can be accessed using get_dist() function. Then potential function
U is calculated from Equation 5. The landscape plots without a z-axis are based on ggplot2

(Wickham 2016), and those with a z-axis are based on plotly (Sievert 2020). These plots can
be further reĄned using the standard ggplot2 or plotly methods. See Table 1 for an overview
for the family of landscape functions.

3.1. Single simulation landscape

This family of functions takes the output of a single simulation, a matrix object, as input.
We use the data generated in Section 2.1 for illustration.

5In this package, we use the number of dimensions in landscape plots (including U) to deĄne the dimension
of landscapes. The x-, y-, z-, and color- axes can all be regarded as a dimention. Therefore, the dimension of
a landscape can be one more than the dimension of the kernel smooth function.
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Type of Input Function Dimensions

Single simulation data make_2d_static() x, y

make_3d_static()
(1) x, y, z+color;
(2) x, y, color

make_4d_static() x, y, z, color

Multiple simulation data make_2d_matrix() x, y, cols, (rows)
make_3d_matrix() x, y, z+color, cols, (rows)

make_3d_animation()

(1) x, y, z+color, fr ;
(2) x, y, color, fr ;
(3) x, y, z+color, cols

Table 1: Overview of various landscape functions provided by simlandr. Dimensions in bold
represent the potential U calculated by the function. Dimensions in italic represent model
parameters. Dimensions in parentheses are optional.

The Ąrst landscape function is make_2d_static(). In the following example, the variable
name of the x axis in the plot is "x". from and to are used to specify the range of the
variable, and adjust is used to specify the smooth level in the kernel estimate. from, to,
and adjust will be passed to stats::density(). The example plot for the gradient model
is shown in Figure 2.6

R> l_single_grad_2d <- make_2d_static(single_output_grad,

+ x = "x",

+ from = -2, to = 2, adjust = 2

+ )

R> plot(l_single_grad_2d)

The second landscape function is make_3d_static(). The parameter structure is similar to
the previous function, but two variables need to be speciĄed. The range of them is speciĄed
at lims and the smooth level is speciĄed at h, as the parameter format in MASS::kde2d().
These two parameters will be passed to ks::kde() in the following example. The landscape
can produce two kinds of plots, shown in Figure 3 (the upper panel) and 4, respectively.
Comparing the landscape generated by simlandr (Figure 3, the upper panel) and the true
landscape based on Equation 6, (Figure 3, the lower panel), we can see they have different
values on the z-axis. This is because the potential function generated by simlandr is unitless.
The absolute value of the potential function is not meaningful, but only the relative height
among different states is. The shape of the reconstructed potential landscape by simlandr

resembles the true landscape nicely, indicating the methods in simlandr are accurate.

R> l_single_grad_3d <- make_3d_static(single_output_grad,

R> x = "x", y = "y",

R> lims = c(-2, 2, -2, 2), h = 0.05,

R> kde_fun = "ks"

6The plot is slightly asymmetric because the steady-state distribution is estimated with possible errors. It
is not yet possible to quantify the magnitude of this error, but as long as the simulation converges well, the
error of landscape construction should be generally acceptable.
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Figure 2: The 2D landscape for the gradient example.

R> )

R> plot(l_single_grad_3d)

R> plot(l_single_grad_3d, 2)

Here we also show the 3D landscape for the nongradient example. The following codes are
used for generating the plot in Figure 5 (the upper panel). In this plot, the x-axis represents
∆x(= x1 − x2), and the y-axis represents a. To compare with, the potential landscape
obtained analytically by Wang et al. (2011) is shown in Figure 5 (the lower panel). The result
of simlandr appears to be very close to the result based on the analytical derivation.

R> l_single_nongrad_3d <- make_3d_static(single_output_nongrad,

R> x = "delta_x", y = "a",

R> lims = c(-3, 3, -0.5, 2), h = 0.005,

R> Umax = 5

R> )

R> plot(l_single_nongrad_3d)

Finally, there is also a make_4d_static() function which can construct the potential land-
scape for a combination of three variables. In this case, the potential function is shown as
the color of dots. The states with deeper colors have higher stability. Here we construct a
potential landscape for the nongradient example, with the x-, y-, and z-axes representing x1,
x2, and a, respectively. The resulting plot is shown in Figure 6.

R> l_single_nongrad_4d <- make_4d_static(single_output_nongrad,

R> x = "x1", y = "x2", z = "a",
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Figure 3: The 3D landscape (potential value as z-axis) for the gradient example. The upper
panel is the plot produced by simlandr; the lower panel is the true potential function as in
Equation 6.
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Figure 4: The 3D landscape (potential value as color) for the gradient example.

R> lims = c(-2, 2, -2, 2, -0.5, 2), h = 0.005,

R> Umax = 3

R> )

R> plot(l_single_nongrad_4d)

3.2. Multiple simulation landscape

The functions in this family construct landscapes simultaneously for multiple simulation re-
sults. The conditions and output for each simulation need to be recorded in detail. Hence,
they take a batch_simulation object as input. We use the data generated in Section 2.3 for
illustration.

The Ąrst function in this family is make_2d_matrix(), which constructs a matrix of landscapes
for different parameters. The rows and columns (cols) of the matrix correspond to the
parameter values. If there is only one parameter of interest, the rows argument can be left
blank. In the following example, we construct the landscapes for different a values. The plot
is shown in Figure 7.

R> l_batch_grad_2d <- make_2d_matrix(batch_output_grad,

+ x = "x", cols = "a", Umax = 10,

+ from = -2, to = 2, adjust = 2, individual_landscape = TRUE

+ )

R> plot(l_batch_grad_2d)
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Figure 5: The 3D landscape (potential value as z-axis) for the nongradient example. The
upper panel is the plot produced by simlandr; the lower panel is the potential landscape
obtained analytically by Wang et al. (2011), reproduced with the permission of the authors
and in accordance with the journal policy.
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Figure 7: The 2D landscape matrix with different a for the gradient example.
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Figure 8: The 3D landscape matrix with different a for the gradient example.

The second function in this family is make_3d_matrix(). This is similar to
make_2d_matrix(), but can show two variables. The example plot is shown in Figure 8.

R> l_batch_grad_3d <- make_3d_matrix(batch_output_grad,

+ x = "x", y = "y", cols = "a",

+ lims = c(-2, 2, -2, 2), h = 0.05, Umax = 7,

+ kde_fun = "ks", individual_landscape = TRUE

+ )

R> plot(l_batch_grad_3d)

Finally, it is also possible to show the inĆuence of model parameters by creating animations.
In the animations made by make_3d_animation(), the parameter will change over time, and
the landscape changes accordingly. This animation cannot be shown on paper. Readers may
run the following code on their devices and see the output.

R> l_batch_grad_3d_animation <- make_3d_animation(batch_output_grad,

R> x = "x", y = "y", fr = "a",

R> lims = c(-2, 2, -2, 2), h = 0.05,

R> kde_fun = "ks"

R> )

R> plot(l_batch_grad_3d_animation)

R> plot(l_batch_grad_3d_animation, 2)

R> plot(l_batch_grad_3d_animation, 3)



Jingmeng Cui, Merlijn Olthof, Anna Lichtwarck-Aschoff, Tiejun Li, Fred Hasselman 15

4. Saddle point and barrier height

An important property of the states in a landscape is their stability, which can be indicated by
the barrier height that the system has to overcome when it transitions between one stable state
to another adjacent state (see Cui et al. 2021, for further discussions about different stability
indicators). simlandr also provides tools to calculate the barrier heights from landscapes.
You can use the S3 generic function calculate_barrier() to calculate the barrier for most
landscapes. There are also speciĄc calculate_barrier_2d(), calculate_barrier_3d(),
calculate_barrier_2d_batch(), and calculate_barrier_3d_batch() functions available
for 2D or 3D landscapes from single or batch simulation results, respectively. These functions
look for the local minima in given regions and try to Ąnd the saddle point between the two7.
Then the potential differences between the saddle point and local minima are calculated as
barrier heights. The output of these functions is a barrier object, which contains both data
and graphics. In this section, we show several examples for barrier calculations.

4.1. Single simulation barriers

In 2D cases, there is only one possible path connecting two points on the landscape. The
calculate_barrier() function looks for local minima around start_location_value and
end_location_value with a radius of start_r and end_r. If all the potential values in the
region are equal to Umax (which represents effectively Inf), the barrier calculation functions
will expand the searching area automatically.8 Then, the point with the highest potential
value on the way between two local minima is marked as the saddle point, and the potential
differences between the saddle point and local minima are calculated as barrier heights. These
values can be extracted using get_barrier_height(). The following is an example with the
l_single_grad_2d landscape generated in Section 3.1.

R> b_single_grad_2d <- calculate_barrier(l_single_grad_2d,

+ start_location_value = -1, end_location_value = 1,

+ start_r = 0.3, end_r = 0.3

+ )

R> get_barrier_height(b_single_grad_2d)

delta_U_start delta_U_end

2.369303 2.440037

The barrier object contains a ggplot2 geom object that can be added to the landscape plots
to show the starting (white), end (white), and saddle (red) points. You can use get_geom()

to access those geoms and add them to the landscape plot. The resulting plot is shown in
Figure 9.

R> plot(l_single_grad_2d) + get_geom(b_single_grad_2d)

7For landscapes from multiple simulations, the searching regions for their starting and ending points are
by default the same, but they can also be individually speciĄed. We refer the interested readers to the
make_barrier_grid_2d() and make_barrier_grid_3d() functions in simlandr

8You can use expand = FALSE to disable this feature.
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Figure 9: The example 2D landscape for the gradient model with local minima (white dots)
and saddle point (red dot) marked.

It is also possible to only plot the positions of local minima and the saddle point with the S3
method for plot().

For 3D landscapes, the local minima are searched in a square space with a half side length
equals to start_r and end_r around a point speciĄed by start_location_value and
end_location_value. The point with the lowest potential value in the given region is set as
the position of the stable state. The saddle point in this case is less obvious because there
are multiple paths between two local minima. If we treat the system as if it is a gradient
system with Brownian noise, then the most probable path (termed as the minimum energy
path, MEP) that the system transitions is that it Ąrst goes along the steepest ascent path
from the starting point, and then goes along the steepest descent path to the end point (E
and Vanden-Eijnden 2010). We Ąnd this path by minimizing the following action using the
Dijkstra (1959) algorithm (Heymann and Vanden-Eijnden 2008)

φMEP = arg min
ϕ

∫ B

A
♣∇U ♣♣dφ♣



≈ min
ϕ

Σi♣∇Ui♣♣∆φi♣


, (12)

where A and B are the starting and end points and φ is the path starting at A and ending
in B. After that, we Ąnd the saddle point by searching for the point with the maximum
potential value on the MEP. Note that while the barrier height still indicates the stability of
local minima, the MEP may not be the true most probable path for a nongradient system to
transition between stable states.

The MEP is shown by default in the geoms retrieved by get_geom() as a white line. You can
disable showing this path by path = FALSE. The following are the example barrier calculations
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Figure 10: The example 3D static landscape for the gradient model with local minima (white
dots), saddle point (red dot), and the MEP (white line) marked.

for the gradient and nongradient example models. Their landscape plots with local minima,
saddle points, and MEPs are shown in Figure 10 and 11, respectively.

R> b_single_grad_3d <- calculate_barrier(l_single_grad_3d,

+ start_location_value = c(-1, -1), end_location_value = c(1, 1),

+ start_r = 0.3, end_r = 0.3

+ )

R> get_barrier_height(b_single_grad_3d)

delta_U_start delta_U_end

3.087025 3.160844

R> plot(l_single_grad_3d, 2) + get_geom(b_single_grad_3d)

R> b_single_nongrad_3d <- calculate_barrier(l_single_nongrad_3d,

+ start_location_value = c(0, 1.2), end_location_value = c(1, 0.2),

+ start_r = 0.3, end_r = 0.3

+ )

R> get_barrier_height(b_single_nongrad_3d)

delta_U_start delta_U_end

1.511747 2.047103
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Figure 11: The example 3D static landscape for the nongradient model with local minima
(white dots), saddle point (red dot), and the MEP (white line) marked. Because the system
is nongradient, the MEP shown in this Ągure is different from the analytical result (shown in
Figure 5, the lower panel).
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R> plot(l_single_nongrad_3d, 2) + get_geom(b_single_nongrad_3d)

4.2. Multiple simulation barriers

barriers can also be calculated for landscapes from multiple simulations. In this case, it
requires to set individual_landscape = TRUE in the landscape construction functions. The
following are the codes for calculating the transition barriers for the landscapes in Section
3.2.

R> b_batch_2d <- calculate_barrier(l_batch_grad_2d,

R> start_location_value = -1, end_location_value = 1,

R> start_r = 1, end_r = 1

R> )

R> plot(l_batch_grad_2d) + get_geom(b_batch_2d)

R> b_batch_3d <- calculate_barrier(l_batch_grad_3d,

R> start_location_value = c(-1, -1), end_location_value = c(1, 1),

R> start_r = 1, end_r = 1

R> )

R> plot(l_batch_grad_3d) + get_geom(b_batch_3d)

5. Concluding comments

Potential landscapes can show the stability of states for a dynamical system in an intuitive
and quantitative way. They are especially informative for multistable systems. In this article,
we illustrated how to construct potential landscapes using simlandr. The potential landscapes
generated by simlandr are based on the steady-state distribution of the system, which is in
turn estimated using Monte Carlo simulation. Compared to analytic methods, Monte Carlo
estimation is more Ćexible and thus more applicable for complex models. The Ćexibility
comes together with a higher demand for time and storage, which is necessary to make
the estimation precise enough. The hash_big.matrix class partly solved this problem by
dumping the memory storage to hard disk space. We will also explore other possibilities (e.g.,
importance sampling, Kloek and van Dijk 1978) in future developments. Also, it is important
that the simulation function itself is efficient enough. For improving the performance of the
simulation function, we refer the interested readers to Wickham (2019).

All landscape construction and barrier calculation functions in simlandr contain both visual
aids and numerical data that can be used for further processing. The html plots based on
plotly are more suitable for interactive illustrations, while it is also possible to export them
to static plots using plotly::orca(). The ggplot2 plots are readily usable for Ćat printing.
The barrier height data can also be further analyzed. For example, sometimes it is helpful
to look into how the barrier height changes with varying parameters (Cui et al. 2021). We
encourage users to explore other ways of analyzing and visualizing the various results provided
by simlandr.

Finally, we want to note that the potential landscape generated by simlandr is not a complete
description of all dynamics in a system. It emphasizes the stability of different states by
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Ąltering out other dynamical information. Some behaviors are not possible in gradient systems
(e.g., oscillations and loops), thus cannot be shown in a potential landscape. The method
we chose for simlandr is not the only possible one, either. The generalized landscape by
Wang et al. (2008), which we implemented, is more Ćexible and emphasizes the possibility
that the system is in a speciĄc state, while other methods may have other strengths (e.g., the
method by Rodríguez-Sánchez 2020, emphasizes the gradient part of the vector Ąeld). We
look forward to future theoretical and methodological developments in this direction.
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