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Abstract

In this paper we describe simode: Separable Integral Matching
for Ordinary Differential Equations. The statistical methodologies
applied in the package focus on several minimization procedures of an
integral-matching criterion function, taking advantage of the mathe-
matical structure of the differential equations like separability of pa-
rameters from equations. Application of integral based methods to
parameter estimation of ordinary differential equations was shown to
yield more accurate and stable results comparing to derivative based
ones. Linear features such as separability were shown to ease optimiza-
tion and inference. We demonstrate the functionalities of the package
using various systems of ordinary differential equations.
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1 Introduction

1.1 Background

This paper presents the simode R package [1] aimed for conducting statisti-
cal inference on systems of ordinary differential equations (ODEs). Systems
of ODEs are commonly used for the mathematical modeling of the rate of
change of dynamic processes such as in mathematical biology [2], biochem-
istry [3] and compartmental models in epidemiology [4], to mention a few
areas. Inference of ODEs involves the ’standard’ statistical problems such as
studying the identifiability of a model, estimating model parameters, predict-
ing future states of the system, testing hypotheses, and choosing the ’best’
model. However, dynamic systems are typically very complex: nonlinear,
high dimensional and only partly measured. Moreover, data may be sparse
and noisy. Thus, statistical learning (inference, prediction) of dynamical sys-
tems is not a trivial task in practice. In particular, numerical application of
standard estimators, like the maximum likelihood or the least squares, may
be difficult or computationally costly. Therefore, special computational plat-
forms that allow for performing statistical inference for ODEs were recently
developed. We first briefly mention some relevant packages we are aware of
and then point out the main focus of simode.

Existing software implementations that are most relevant to this work
are the following. CollocInfer R package of [5] implements the profiling
methodology of [6] and some extensions (there exist also a Matlab version).
In the area of systems biology, [7] present Data2Dynamics, a modeling en-
vironment for Matlab that can be used for constructing dynamical models
of biochemical reaction networks for large datasets and complex experimen-
tal conditions, and to perform efficient and reliable parameter estimation for
model fitting. [8] developed the episode R package that implements adap-
tive integral-matching (AIM) algorithm for learning polynomial or rational
ODEs with a sparse network structure. Other software libraries not directly
related to our methodological framework are described or used in [9], [10],
[11], and [12] which focus on stochastic modeling or on more specific domains.
[3] uses PLAS (Power Law Analysis and Simulation; Copyright 1996–2012 by
António Ferreira) a software suitable to analyze power-law differential equa-
tions. Also developed by António Ferreira is S-timator, a Python library
dedicated for analyzing ODE-based models.

The R package simode is substantially different from all the above tools
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in a sense that will be now explained and made clear.

1.2 The focus of simode

The statistical methodologies applied in the package are based on recent
publications that study theoretical and applied aspects of smoothing methods
in the context of ordinary differential equations ([13], [14], [15], [16], [17]). In
that sense simode is closer in spirit to CollocInfer R package of [5], and
episode R package of [8]. Unlike CollocInfer we do not consider penalized
estimation which balances between data and model. Further, we focus on
integral-matching criterion functions which were shown to be more robust
than gradient based ones [13]. Using integral-matching criteria takes us closer
in spirit to the episode R package of [8]. However, we focus on several
minimization procedures of an integral-matching criterion function, taking
advantage of the mathematical structure of the ODEs like separability of
parameters from equations. Linear features such as separability were shown
to ease optimization and inference ([13], [14], [18], [15], [16], [19]).

We demonstrate various functionalities of the package using different sys-
tems of ODEs. To be more specific, we demonstrate the ability of the package
to implement a full estimation pipeline from point estimates to generating
confidence intervals (using an example of S-system); deal with partially ob-
served systems (using SIR example); user defined likelihood functions and
system decoupling(using FitzHugh-Nagumo model); Monte-Carlo and multi-
ple subjects expeirments (using Lotka-Volterra example) and models with an
external input functions (using a seasonally forced Lotka-Volterra example).

The idea of separability of parameters and equations is now explained.
Consider the following simple biochemical system taken from Chapter 2, Page
54 of [3],

x′1(t) = 2x2(t)− 1.2x1(t)0.5x3(t)−1,
x′2(t) = 2x1(t)0.1x3(t)−1x4(t)0.5 − 2x2(t),
x3 = 0.5,
x4 = 1.

(1)

In this system the production of x2 depends on x1, x3, and x4 which enter
with different kinetic orders (power). Specifically, x3 has a negative power
which indicates an inhibiting effect since an increase in x3 leads to reduced
production of x2. The dynamics of the system for x1(0) = 2 and x2(0) = 0.1
is shown in Figure 1.
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Figure 1: Solutions x1 and x2 of the biochemical system of equation (1).

This system is a special case of an S-system ([3]) defined as

x′j(t) = αjΠd
k=1x

gjk

k (t)− βjΠd
k=1x

hjk

k (t), j = 1 . . . , d. (2)

Here, αj, βj are rate constants; gjk, hjk are kinetic orders that reflect the
strength and directionality of the effect a variable has on a given influx or
efflux. The above system is linear in αj, βj but nonlinear in gjk, hjk. In fact,
one can view this system as a regression where the ’covariates’ variables are
xj(t), the solutions of the ODEs on the right hand side of the equations, while
the ’response’ variables are the derivatives x′j(t) on the left hand side. Fur-
ther, we can say that the system is linear in its rate constants but nonlinear
in the kinetic orders (the powers).

More generally, consider a system of ordinary differential equations given
by {

x′(t) = F (x(t); θ), t ∈ [0, T ],
x(0) = ξ,

(3)

where x(t) takes values in Rd, ξ in Ξ ⊂ Rd, and θ in Θ ⊂ Rp. The simode
R package is especially useful for handling ODE systems for which

F (x(t); θ) = g(x(t); θNL)θL, (4)

where θ = (θ>NL, θ
>
L )>, > stands for the matrix transpose. Here θNL, a vector

of size pNL, stands for the ’nonlinear’ parameters that can not be separated
from the state variables x, while θL, a vector of size pL, are the ’linear’
parameters; note that p = pL + pNL. Setting

θNL = (g11, . . . , g1d, . . . , gd1, . . . , gdd, h11, . . . , h1d, . . . , hd1, . . . , hdd)>,
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and θL = (α1, β1, . . . , αd, βd)>, one can easily see that (2) is a special case of
(3) with a vector field F as given in (4). In the special case of the biochemical
example (1), fixing x3, x4, we have d = 2, so that the matrix g(x(t); θNL) is
given by (

xg11
1 (t)xg12

2 (t),−xh11
1 (t)xh12

2 (t), 0, 0
0, 0, xg21

1 (t)xg22
2 (t),−xh21

1 (t)xh22
2 (t)

)
.

Thus, the system can be written in the form(
x′1(t)
x′2(t)

)
=

(
xg11

1 (t)xg12
2 (t),−xh11

1 (t)xh12
2 (t), 0, 0

0, 0, xg21
1 (t)xg22

2 (t),−xh21
1 (t)xh22

2 (t)

)
θL, (5)

where θL = (α1, β1, α2, β2)> = (2, 2.4, 4, 2)>,
and θNL = (g11, g12, h11, h12, g21, g22, h21, h22)> = (0, 1, 0.5, 0, 0.1, 0, 0, 1)>. The
vector field in the formulation above is separable in the linear parameter vec-
tor θL, and therefore we refer to such systems as ODEs linear in the parameter
θL (as in a linear regression model). This linear property of the system turns
out to be very useful for data fitting purposes where parameter estimation is
required.

We emphasize that in our view simode should NOT be considered as a
competitor for the other tools and packages mentioned above but instead, a
complementary tool. Indeed, real problems arising in the area of dynamic
systems are complex and typically there is no one method that can handle
all type of problems uniformly better than other methods. For instance, one
may consider generating initial parameter estimates using simode and then
derive final estimates using generalized profiling implemented in CollocInfer
that enables additional flexibility in assuming that the ODEs description of
the dynamics are only approximately correct.

The paper is organized as follows. In the next section we briefly present
the statistical methodology implemented in simode. In Section 3 we describe
in detail the use of simode for parameter estimation of ODEs. Section
4 deals with partial observed systems, while additional functionalities are
demonstrated in Section 5. The last section includes a summary and some
future directions.

2 Statistical methodology

Let x(t; θ, ξ), t ∈ [0, T ] be the solution of the initial value problem (3) given
values of ξ and θ. We assume measurements of x are collected at discrete
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time points

Yj(ti) = xj(ti; θ, ξ) + εij, i = 1, . . . , n, j = 1, . . . , d, (6)

where the random variables εij are independent measurement errors (not nec-
essarily Gaussian) with zero mean and finite variance. Consider the nonlinear
least squares estimator of θ and ξ defined as a minimiser with respect to η
and ζ of the least squares criterion function

d∑
j=1

n∑
i=1

(Yj(ti)− xj(ti; η, ζ))2. (7)

Typically, the ODEs (3) are nonlinear in x, and no analytic solution of the
system exists, therefore numerical integration techniques are required in the
estimation process. In fact, in the least squares criterion above the exact so-
lution x will be approximated by x̃, a numerical solution (e.g., using Runge-
Kutta) of the ODEs equation (3) for a given parameter and initial conditions.
Thus, estimation methods such as nonlinear least squares or maximum likeli-
hood require solving the system numerically for large set of potential param-
eters values, and then choosing an optimal parameter using some nonlinear
optimisation technique. However, the combination of sparse and noisy data,
nonlinear optimisation, and the need for numerical integration makes the pa-
rameter estimation a complex task (even for systems of low dimensions, e.g.,
[20]), and in many instances requires heavy computation. Therefore we adopt
a ’smooth and match’ approach for parameter estimation which includes two
steps (i): bypassing numerical integration by using nonparametric smoothing
of the data, and (ii): estimating the parameters by fitting the ODEs model
to the estimated functions ([21], [13], [14], [18], [15], [17], [22], [23], [24], [25],
[26]; see also Chapter 8 of [27]). Then the resulting estimates are used as
initial guess for optimization of the nonlinear least squares criterion function
(7). In particular, in the first estimation stage which includes the two steps
mentioned above, we consider integral-matching which is now described.

2.1 Integral matching

By integration, equation (3) yields the system of integral equations

x(t) = ξ +
∫ t

0
F (x(s); θ) ds t ∈ [0, T ]. (8)
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Here x(t) = x(t; θ, ξ) is the true solution of the ODE. Let x̂(t) stand for a
nonparametric estimator (e.g., smoothing the data using splines or local poly-
nomials) of the solution x of the ODEs equation (3) given observations (6).
The criterion function of an integral-matching approach for a fully observed
systems of ODEs takes the form∫ T

0
‖ x̂(t)− ζ −

∫ t

0
F (x̂(s); η) ds ‖2 dt, (9)

where ‖ · ‖ denotes the standard Euclidean norm. The estimator of the
parameter will be the minimiser of the criterion function (9), with respect
to ζ and η. As its name suggests, integral-matching avoids the estimation
of derivatives of the solution x as done in other smooth and match appli-
cations and hence is more stable ([13]). While applying integral-matching
leads to stable estimators, minimizing the criterion (9) is a complicated task
in practice and good initial guess of parameter values is required for opti-
mization. Therefore, the R package simode is designed to take advantage
of separability of the ODE system, as demonstrated above in equation (5).
This separability issue is now further explained.

2.2 Exploiting linear features of the ODEs

The simode package implements three separability scenarios corresponding
to the following cases of equation (3):

(a) ODEs linear in the parameters where F (x(t); θ) = g(x(t))θ;

(b) ODEs semi-linear in the parameters where F (x(t); θ) = g(x(t); θNL)θL;

(c) ODEs nonlinear in the parameters where F (x(t); θ) has no separable
form that can be exploited.

On top of the estimation stability the integral-matching criteria ensures,
cases (a)-(b) above enable better optimization. Indeed, the above cases de-
scribe mathematical characteristics (separability) of the ODEs, and in what
follows we use a smoothed version of separable nonlinear least squares ([28])
as well as ’classical’ nonlinear least squares. These two optimization methods
can be applied in both cases (a) and (b). However, case (c) characterizes a
model for which the only optimization method applicable is a nonlinear one
since there is no separability of parameters.
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Consider case (a) of ODEs linear in the parameters where F (x(t); θ) =
g(x(t))θ. Denote

Ĝ(t) =
∫ t

0
g(x̂(s)) ds , t ∈ [0, T ],

Â =
∫ T

0
Ĝ(t) dt,

B̂ =
∫ T

0
Ĝ>(t)Ĝ(t) dt.

Minimizing the integral criterion function (9) with respect to ζ and η
results in the direct estimators

ξ̂ =
(
TId − ÂB̂−1Â>

)−1 ∫ T

0

(
Id − ÂB̂−1Ĝ>(t)

)
x̂(t) dt, (10)

θ̂ = B̂−1
∫ T

0
Ĝ>(t)

(
x̂(t)− ξ̂

)
dt, (11)

where Id denotes the d × d identity matrix. Note that these estimators are
well defined only if the inverse matrices in (10) and (11) exist. Necessary
and sufficient conditions for

√
n-consistency of the ’direct integral estima-

tors’ (10) and (11) are provided in [13]. Furthermore, the extensive simula-
tion study in the aforementioned paper has demonstrated that using integrals
as above instead of derivatives yields more accurate estimates. Indeed, it is
well known (see e.g., [3] and [29]) that estimating derivatives from noisy and
sparse data may be rather inaccurate. Additional application of the direct
integral method to a variety of synthetic and real data was shown to yield
accurate and stable results in [17] and [18]. Clearly, in this special case of
ODEs linear in the parameter θ the complex task of nonlinear optimization
reduces to the least squares solutions (10) and (11) which are easy to ob-
tain and therefore a substantial computational improvement in optimization
performance is achieved.

Now consider case (b) above of ODEs semi-linear in the parameters for
which in equation (3) the model can be written in the form F (x(t); θ) =
g(x(t); θNL)θL. Then, for a given θNL, minimizing the integral criterion func-
tion (9) yields least squares solutions similar to (10)-(11) which we denote

by ξ̂(θNL) and θ̂L(θNL) with the notation emphasizing the dependence of

the linear solutions on the nonlinear parameters. Plugging back ξ̂(θNL) and

θ̂L(θNL) into the integral criterion function (9) results with

M(θNL) :=
∫ T

0

∣∣∣∣∣∣x̂(t)− ξ̂(θNL)− Ĝ(t; θNL)θ̂L(θNL)
∣∣∣∣∣∣2 dt, (12)
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where we have defined Ĝ(t; θNL) =
∫ t

0 g(x̂(s); θNL) ds , t ∈ [0, T ]. Once

M(θNL) is minimized and a solution θ̂NL is obtained, estimators for ξ and θ

follow immediately and are given by ξ̂(θ̂NL) and θ̂L(θ̂NL), respectively. This
optimization procedure was considered in [15] and is a form of separable
nonlinear least squares ([28]). Note that the we apply nonlinear optimization
only for estimating the nonlinear parameters θNL, and hence the dimension
of the optimization problem has been substantially reduced.

Finally, case (c) above requires nonlinear optimization for estimating ξ
and θ and the dimension of the optimization problem can not be reduced.

3 Parameter estimation of ODEs using simode

In this section we demonstrate the main functionality of simode package
(version 1.1.2), for parameter estimation of ODEs, via exploring the cases

(a) ODEs linear in the parameters where F (x(t); θ) = g(x(t))θ;

(b) ODEs semi-linear in the parameters where F (x(t); θ) = g(x(t); θNL)θL;

(c) ODEs nonlinear in the parameters where F (x(t); θ) has no separable
form that can be exploited.

We continue with the biochemical example described in equation (1). Con-
sider equation (1) where we drop the last two equations and set x3 = 0.5, x4 =
1 as constants. Further, assume that the zero kinetic parameters are known
, so that the system is given by

x′1(t) = 2x2(t)− 2.4x1(t)0.5,
x′2(t) = 4x1(t)0.1 − 2x2(t). (13)

Thus, the linear parameters of the system are θL = (α1, β1, α2, β2)> =
(2, 2.4, 4, 2)>, and the nonlinear parameters are θNL = (g12, h11, g21, h22)> =
(1, 0.5, 0.1, 1)>. Here is the system given in equation (13) as it should be
written to be used later by the package:

R> pars <- c('alpha1','g12','beta1','h11', 'alpha2','g21','beta2','h22')

R> vars <- paste0('x', 1:2)

R> eq1 <- 'alpha1*(x2^g12)-beta1*(x1^h11)'

R> eq2 <- 'alpha2*(x1^g21)-beta2*(x2^h22)'
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R> equations <- c(eq1,eq2)

R> names(equations) <- vars

R> theta <- c(2,1,2.4,0.5,4,0.1,2,1)

R> names(theta) <- pars

R> x0 <- c(2,0.1)

R> names(x0) <- vars

The code above is the symbolic setup of the ODE system. The resulting
objects of variables, parameters and initial conditions are

R> equations

x1 x2

"alpha1*(x2^g12)-beta1*(x1^h11)" "alpha2*(x1^g21)-beta2*(x2^h22)"

R> theta

alpha1 g12 beta1 h11 alpha2 g21 beta2 h22

2.0 1.0 2.4 0.5 4.0 0.1 2.0 1.0

R> x0

x1 x2

2.0 0.1

Since we are working with symbolic objects we have created a function
solve ode that uses the ode function of deSolve package ([30]). The fol-
lowing code generates observations according to the statistical model defined
in equation (6) where the distribution of the measurement error is Gaussian
with standard deviation of 0.05. The resulting ’true’ ODE solutions and the
stochastic observations are presented in Figure (2).

R> library("simode")

R> set.seed(1000)

R> n <- 50

R> time <- seq(0,10,length.out=n)

R> model_out <- solve_ode(equations,theta,x0,time)

R> x_det <- model_out[,vars]

R> sigma <- 0.05
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Figure 2: Solutions x1 and x2 of the biochemical system of equation (1) in
solid lines. Stochastic observations generated from the statistical model (6)
in circles.

R> obs <- list()

R> for(i in 1:length(vars)) {

+ obs[[i]] <- x_det[,i] + rnorm(n,0,sigma)

+ }

R> names(obs) <- vars

Now that we have setup the system of ODEs in a symbolic form and
generated observations from the statistical model we can explore cases (a)-
(b)-(c) described above: we estimate model parameters, plot model fits, and
provide profile-likelihood confidence intervals.

The package uses integral-matching as a first stage and then (by default)
executes nonlinear least squares optimization, namely minimizing equation
(7), starting from the integral-matching estimates. The first estimation stage,
i.e., the integral-matching, is based on smoothing the observations. We use
by default the smooth.spline method of the stats package, with generalized
cross validation (we also support kernel smoothing and performing integral-
matching without smoothing the observations). Our implementation of the
estimators (10)-(11) uses lsqlincon function of the pracma package, which
also allows us to introduce constraints on the parameters.
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3.1 Case (a): ODEs linear in the parameters

For simplicity we begin with assuming that the initial conditions x1(0), x2(0)
are known to the user. Here we also assume that the kinetic parameters are
all known, so that our goal is to estimate the vector θL = (α1, β1, α2, β2)>.
The code for doing so is:

R> lin_pars <- c('alpha1','beta1','alpha2','beta2')

R> nlin_pars <- setdiff(pars,lin_pars)

R> est_lin <- simode(

+ equations=equations, pars=lin_pars, fixed=c(x0,theta[nlin_pars]),

+ time=time, obs=obs)

R> summary(est_lin)

call:

simode(equations = equations, pars = lin_pars, time = time, obs = obs,

fixed = c(x0, theta[nlin_pars]))

equations:

x1 x2

"alpha1*(x2^1)-beta1*(x1^0.5)" "alpha2*(x1^0.1)-beta2*(x2^1)"

initial conditions:

x1 x2

2.0 0.1

parameter estimates:

par type im_est nls_est

1 alpha1 linear 1.932 2.013

2 beta1 linear 2.324 2.432

3 alpha2 linear 3.868 3.943

4 beta2 linear 1.923 1.959

im-method: separable

im-loss: 0.1492

nls-loss: 0.2398
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R> plot(est_lin, type='fit', pars_true=theta[lin_pars],

+ mfrow=c(1,2),legend=T)
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Figure 3: Case (a): ’True’ and estimated solutions x1 and x2 of the biochem-
ical system of equation (1).

The call to simode returns a simode object containing the parameters es-
timates obtained using integral-matching as well as those obtained using
nonlinear least squares optimization starting from the integral-matching es-
timates.

An implementation of the generic plot function for simode objects can
be used to plot the fit obtained using these estimates, either the fit after
integral-matching and nonlinear least squares optimization (the default), just
the integral-matching based fit, or both; see Figure 3. In this case, we can
also plot the fit against the true curves since we know the true values of
the parameters that were used to generate the observations. The same plot
function can also be used to show the estimates obtained as demonstrated in
the sequel.

In the code above we have defined which parameters are linear by lin pars
and which are not by nlin pars. Then we fixed the set of parameters and
initial conditions that we do not want to estimate. However, note that it is
not mandatory for the user to know which parameters are linear and which
are not. For instance, here is the result of running the estimation without
this knowledge:

R> est_par <- simode(

+ equations=equations,time=time,pars=pars,fixed=x0,obs=obs)
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Problem in eq.1 [x1] - parameter [g12] should be set as non-linear

Problem in eq.1 [x1] - parameter [h11] should be set as non-linear

Problem in eq.2 [x2] - parameter [g21] should be set as non-linear

Problem in eq.2 [x2] - parameter [h22] should be set as non-linear

As can be seen, the simode function generates error messages that point out
exactly the nonlinear parameters. This is due to the fact that the simode
function considers ODEs linear in the parameters as its default, namely
im method = ”separable”, unless im method = ”non-separable” is
defined. This added simode feature makes it very useful for handling ODEs
with linear features in case the mathematical knowledge for characterizing
them is lacking.

Now we generate and plot confidence intervals for the parameters using
profile likelihood, see Figure 4. In case nonlinear optimization for the point
estimates was used, then the profiling is done using a Gaussian based likeli-
hood with fixed sigma which we estimate in the background.

R> step_size <- 0.01*est_lin$nls_pars_est

R> profile_lin <- profile(est_lin,step_size=step_size,max_steps=50)

R> confint(profile_lin,level=0.95)

call:

confint.profile.simode(object = profile_lin, level = 0.95)

level:

0.95

intervals:

par nls_est lower upper

1 alpha1 2.013303 1.901046 2.130440

2 beta1 2.432117 2.290981 2.581607

3 alpha2 3.942877 3.825985 4.065744

4 beta2 1.959493 1.899323 2.021247

3.2 Case (b): ODEs semi-linear in the parameters

Now consider ODEs semi-linear in the parameters where separable nonlin-
ear least squares might be used as in equation (12). Thus, the nonlinear
parameters θNL = (g12, h11, g21, h22)> = (1, 0.5, 0.1, 1)> are not assumed to
be known and their estimation is needed. Estimating nonlinear parameters
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R> plot(profile_lin, mfrow=c(2,2))
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Figure 4: Profile likelihood confidence intervals for the linear parameters of
the system (1).

requires nonlinear optimization. The function simode uses the optim func-
tion, thus we need to provide initial guess for optimization. In our example,
the true parameter values are known, so we generate random initial guess
in the vicinity of the true nonlinear parameters. The code and estimation
results are given below.

R> nlin_init <- rnorm(length(theta[nlin_pars]),theta[nlin_pars],

+ 0.1*theta[nlin_pars])

R> names(nlin_init) <- nlin_pars

R> est_semilin <- simode(

+ equations=equations, pars=pars, fixed=x0, time=time, obs=obs,

+ nlin_pars=nlin_pars, start=nlin_init)

R> summary(est_semilin)

call:

simode(equations = equations, pars = pars, time = time, obs = obs,

nlin_pars = nlin_pars, fixed = x0, start = nlin_init)

equations:

x1 x2

"alpha1*(x2^g12)-beta1*(x1^h11)" "alpha2*(x1^g21)-beta2*(x2^h22)"
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initial conditions:

x1 x2

2.0 0.1

parameter estimates:

par type start im_est nls_est

1 alpha1 linear NA 1.8740 2.0580

2 g12 non-linear 0.86305878 1.0040 0.9637

3 beta1 linear NA 2.2270 2.4490

4 h11 non-linear 0.50815084 0.5136 0.4877

5 alpha2 linear NA 3.5260 3.6870

6 g21 non-linear 0.09886774 0.1057 0.1019

7 beta2 linear NA 1.5840 1.7160

8 h22 non-linear 1.08597553 1.1330 1.0840

im-method: separable

im-loss: 0.1142

nls-loss: 0.239

We can plot the resulting integral-maching and nonlinear least squares pa-
rameter estimates and compare them visualy to their true values, see Figure
5.

So far we have used the default optimization of simode function which
executes separable least squares. However, we could ignore the fact that
the ODE we consider has linear features in its parameters. In that case
we execute classical nonlinear optimization of the integral-matching criterion
function for all the parameters, θL, and θNL.

To run simode in non-separable mode set the argument im method
accordingly. Initial guesses for the nonlinear parameters are still obligatory.
Setting initial guesses for the linear parameters is optional in this case. How-
ever, unless specifically entered, initial guesses for the optimization used in
order to estimate the linear parameters appearing in the integral-matching
criterion function are calculated directly using the separability of the model.

R> est_semilin_nosep <- simode(

+ equations=equations, pars=pars, fixed=x0,
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R> plot(est_semilin, type='est', show='both', pars_true=theta, legend=T)
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Figure 5: Case (b) separable: ’True’ and estimated parameters of the bio-
chemical system of equation (1).

+ time=time, obs=obs, nlin_pars=nlin_pars, start=nlin_init,

+ im_method = "non-separable")

R> summary(est_semilin_nosep)

call:

simode(equations = equations, pars = pars, time = time, obs = obs,

nlin_pars = nlin_pars, fixed = x0, start = nlin_init,

im_method = "non-separable")

equations:

x1 x2

"alpha1*(x2^g12)-beta1*(x1^h11)" "alpha2*(x1^g21)-beta2*(x2^h22)"

initial conditions:

x1 x2

2.0 0.1

parameter estimates:

par type start im_est nls_est

1 alpha1 linear NA 1.76300 2.0690

2 g12 non-linear 0.86305878 1.05000 0.9597

3 beta1 linear NA 2.12500 2.4580
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R> plot(est_semilin_nosep, type='fit', pars_true=theta,

mfrow=c(1,2), legend=T)
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Figure 6: Case (b) non-separable: ’True’ and estimated solutions x1 and x2
of the biochemical system of equation (1).

4 h11 non-linear 0.50815084 0.53230 0.4862

5 alpha2 linear NA 3.63800 3.6930

6 g21 non-linear 0.09886774 0.09619 0.1013

7 beta2 linear NA 1.70000 1.7230

8 h22 non-linear 1.08597553 1.07100 1.0800

im-method: non-separable

im-loss: 0.1146

nls-loss: 0.2389

3.3 Case (c): ODEs nonlinear in the parameters

There are cases where the system of ODEs is not separable, meaning that
there are only nonlinear parameters. For instance, consider our toy example
where the linear parameters, namely the coefficients are known. Still we may
want to use integral-matching since this way we bypass the need for solving
numerically the ODEs, at least in the first stage of optimization. Doing so
leads to minimization of (9) as it is. The resulting code is:
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R> est_nosep <- simode(

+ equations=equations, pars=pars, nlin_pars=pars,

+ start=nlin_init, fixed=c(theta[lin_pars],x0),

+ im_method = 'non-separable', time=time, obs=obs)

R> summary(est_nosep)

call:

simode(equations = equations, pars = pars, time = time,

obs = obs, nlin_pars = pars, fixed = c(theta[lin_pars], x0),

start = nlin_init, im_method = "non-separable")

equations:

x1 x2

"2*(x2^g12)-2.4*(x1^h11)" "4*(x1^g21)-2*(x2^h22)"

initial conditions:

x1 x2

2.0 0.1

parameter estimates:

par type start im_est nls_est

1 g12 non-linear 0.86305878 0.8303 0.97600

2 h11 non-linear 0.50815084 0.3975 0.48830

3 g21 non-linear 0.09886774 0.4040 0.08095

4 h22 non-linear 1.08597553 1.4490 0.96560

im-method: non-separable

im-loss: 38.3

nls-loss: 0.2401

3.4 Initial conditions x(0) are unknown

In the examples above, for simplicity of presentation, we considered the initial
conditions to be known. Here is an example of estimating the initial condi-
tions using the separability property of the ODEs. We extend case (b) above
by adding the names of the unknown x0 variables to the list of parameters
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to estimate.

R> est_all <- simode(

+ equations=equations, pars=c(pars,names(x0)), time=time,

+ obs=obs, nlin_pars=nlin_pars, start=nlin_init)

R> summary(est_all)

call:

simode(equations = equations, pars = c(pars, names(x0)), time = time,

obs = obs, nlin_pars = nlin_pars, start = nlin_init)

equations:

x1 x2

"alpha1*(x2^g12)-beta1*(x1^h11)" "alpha2*(x1^g21)-beta2*(x2^h22)"

initial conditions:

x1 x2

NA NA

parameter estimates:

par type start im_est nls_est

1 alpha1 linear NA 1.4350 1.7800

2 g12 non-linear 0.86305878 1.1610 1.0480

3 beta1 linear NA 1.7340 2.1450

4 h11 non-linear 0.50815084 0.6020 0.5327

5 alpha2 linear NA 3.2440 3.6790

6 g21 non-linear 0.09886774 0.1204 0.1023

7 beta2 linear NA 1.3320 1.7090

8 h22 non-linear 1.08597553 1.2650 1.0870

9 x1 linear NA 1.9190 1.9580

10 x2 linear NA 0.1282 0.1037

im-method: separable

im-loss: 0.106

nls-loss: 0.2374

Note that unless otherwise defined, the simode method implements in
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the integral-matching step the estimator for initial conditions defined in (10).
Alternatively, one could estimate the initial conditions using nonlinear opti-
mization by adding the initial conditions to the nlin pars argument in the
call to simode. However, in that case an intial guess x0 for optimization is
required.

4 Partially observed systems of ODEs

In general, inference using integral-matching requires a fully observed sys-
tem. However, in some cases, integral-matching can be applied to a partially
observed system. For example, if it is possible to reconstruct the unobserved
variables using estimates of the system parameters. We demonstrate this us-
ing an example of an ODE system describing the spread of seasonal influenza
in multiple age-groups across mutiple seasons. A discrete-time version of
the model and a two-stage estimation procedure similar to the one used in
simode, was described in details in [16]. Here we present the model and show
how to employ the simode package in order to estimate its parameters.

The model is an SIR-type (Susceptible-Infected-Recovered) model. The
epidemic in each age-group 1 ≤ a ≤ M and each season 1 ≤ y ≤ L can
be described using two equations for the proportion of susceptible (S) and
infected (I) in the population (the proportion of recovered is given by 1 −
S − I):

S ′a,y(t) = −Sa,y(t)κy
∑M

j=1 βa,jIj,y(t),
I ′a,y(t) = Sa,y(t)κy

∑M
j=1(βa,jIj,y(t))− γIa,y(t). (14)

The parameters of the model include the M ×M transmission matrix β,
the recovery rate γ and κ2,...,L which signify the relative infectivity of the in-
fluenza virus strains circulating in seasons 2, ..., L compared to season 1 (κ1 is
fixed as 1). As shown in [16], taking into account separability characteristics
of this model is advantageous.

The simode package includes an example dataset called sir example,
containing pre-made structures for testing this example. In this dataset there
are two age-groups and five influenza seasons, so in total there are 10 equa-
tions for S and 10 equations for I.

R> data(sir_example)

R> summary(sir_example)
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Length Class Mode

equations 20 -none- character

beta 4 -none- numeric

gamma 1 -none- numeric

kappa 4 -none- numeric

S0 10 -none- numeric

I0 10 -none- numeric

time 18 -none- numeric

obs 10 -none- list

R> sir_example$beta

beta1_1 beta2_1 beta1_2 beta2_2

6 2 1 3

R> sir_example$gamma

gamma

2.333333

R> sir_example$kappa

kappa2 kappa3 kappa4 kappa5

0.988 1.182 1.037 1.052

R> sir_example$S0

S1_1 S2_1 S1_2 S2_2 S1_3 S2_3 S1_4 S2_4 S1_5 S2_5

0.56 0.57 0.49 0.45 0.56 0.32 0.56 0.47 0.47 0.41

The dataset contains noisy observations for the I variables created using
the parameter and initial condition values given in the example according to
model (14), where the measurement errors have a Gaussian distribution with
σ = 0.001. There are no observations of the S variables in the example as
the proportion of susceptible in the population is typically unknown. Time
is given in weeks and include 18 weeks of observations. The values of the
parameters β and γ are also given assuming a time unit of weeks.
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4.1 Case (a): SIR linear in the parameters

We begin exploring this example in the simplest case in which we assume all
the parameter values besides the matrix β, as well as all the initial conditions
are known. However, the integral-matching method requires a fully observed
system while in this case there are no observations for the S variables. Nev-
ertheless, given the observations of the I variables, and given values for the
parameter γ and the initial conditions Sa,y(0), Ia,y(0), we can generate ob-
servations for the S variables using the formula:

Sa,y(t) = Sa,y(0) + Ia,y(0)− Ia,y(t)− γ
∫ t

u=1
Ia,y(u)du

In the code below, observations for the S variables are generated using
the above formula. We then fit the data assuming the parameters γ and
κ and the initial conditions are known. Resulting data fits and parameter
estimates are presented in Figures 7-8.

R> equations <- sir_example$equations

R> S0 <- sir_example$S0

R> I0 <- sir_example$I0

R> beta <- sir_example$beta

R> gamma <- sir_example$gamma

R> kappa <- sir_example$kappa

R> time <- sir_example$time

R> I_obs <- sir_example$obs

R> S_obs <- lapply(1:length(S0),function(j)

+ S0[j] + I0[j] - I_obs[[j]]

+ - gamma*pracma::cumtrapz(time,I_obs[[j]]))

R> names(S_obs) <- names(S0)

R> obs <- c(S_obs,I_obs)

R> x0 <- c(S0,I0)

R> pars <- names(beta)

R> pars_min <- rep(0,length(pars))

R> names(pars_min) <- pars

R> est_sir_lin <- simode(

+ equations=equations, pars=pars, time=time, obs=obs,

+ fixed=c(gamma,kappa,x0), lower=pars_min)

R> summary(est_sir_lin)$est
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R> plot(est_sir_lin, type='fit', which=names(I0),

+ time=seq(1,time[length(time)],by=0.1),

+ pars_true=beta, mfrow=c(5,2))
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Figure 7: SIR case (a) - fit to observations of I

par type lower im_est nls_est

1 beta1_1 linear 0 5.924 5.932

2 beta2_1 linear 0 2.246 2.150

3 beta1_2 linear 0 1.188 1.137

4 beta2_2 linear 0 2.685 2.835
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R> plot(est_sir_lin, type='est', show='both',

+ pars_true=beta, legend=T)
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Figure 8: SIR case (a) - estimates of β

4.2 Case (b1): SIR - semi-linear with unknown initial
conditions - γ and κ are known

Now let us assume that the initial conditions S0 are not known. In this case,
we cannot generate the missing observations for the susceptible variables
ahead of time. However, if we run simode in order to estimate β and S0, then
for a given set of values of S0 within nonlinear optimization, we can generate
the missing observations and estimate β using integral-matching. To do this,
we need to define a function that will generate the missing observations given
the missing parameters, and pass this function in the call to simode using
the gen obs argument. The user-defined gen obs function should accept
as arguments the equations, parameter values, initial condition values, time
points and observations. Additional arguments could be passed to gen obs
by passing them in the call to simode using the ellipsis construct. The
function should return a list with two elements: the element ’obs’ which
should contain the observations for all the equations in the ODE, and the
element ’time’ with the time points for the observations (since ’time’ can
include different time points for each equation). In this example, we define a
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function that receives additional parameters that include γ and the names of
the S and I variables. Here is the code for this case followed by estimation
results.

R> gen_obs <- function(equations, pars, x0, time, obs,

+ gamma, S_names, I_names, ...)

+ {

+ S0 <- x0[S_names]

+ I0 <- x0[I_names]

+ I_obs <- obs

+ S_obs <- lapply(1:length(S0),function(i)

+ S0[i]+I0[i]-I_obs[[i]]-gamma*pracma::cumtrapz(time,I_obs[[i]]))

+ names(S_obs) <- S_names

+ obs <- c(S_obs,I_obs)

+ return (list(obs=obs, time=time))

+ }

R> pars <- c(names(beta),names(S0))

R> pars_min <- rep(0,length(pars))

R> names(pars_min) <- pars

R> pars_max <- rep(1,length(S0))

R> names(pars_max) <- names(S0)

R> S0_init <- rep(0.5,length(S0))

R> names(S0_init) <- names(S0)

R> est_sir_semilin <- simode(

+ equations=equations, pars=pars, time=time, obs=I_obs,

+ fixed=c(I0,gamma,kappa), nlin=names(S0), start=S0_init,

+ lower=pars_min, upper=pars_max, gen_obs=gen_obs,

+ gamma=gamma, S_names=names(S0), I_names=names(I0))

R> summary(est_sir_semilin)$est

par type lower upper start im_est nls_est

1 beta1_1 linear 0 Inf NA 6.47300 6.3400

2 beta2_1 linear 0 Inf NA 1.91200 1.9720

3 beta1_2 linear 0 Inf NA 0.02678 0.0000

4 beta2_2 linear 0 Inf NA 2.99100 2.9920

5 S1_1 non-linear 0 1 0.5 0.57560 0.5847

6 S2_1 non-linear 0 1 0.5 0.58360 0.5733

7 S1_2 non-linear 0 1 0.5 0.49930 0.5046
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8 S2_2 non-linear 0 1 0.5 0.45660 0.4537

9 S1_3 non-linear 0 1 0.5 0.55370 0.5575

10 S2_3 non-linear 0 1 0.5 0.34100 0.3279

11 S1_4 non-linear 0 1 0.5 0.56410 0.5710

12 S2_4 non-linear 0 1 0.5 0.48700 0.4740

13 S1_5 non-linear 0 1 0.5 0.47330 0.4811

14 S2_5 non-linear 0 1 0.5 0.40880 0.3979

4.3 Case (b2): SIR - semi-linear with unknown initial
conditions - γ and κ are unknown

Finally, we can try and estimate all the model parameters including the
nonlinear parameters γ and κ2,...,5. We define the function gen obs2 in
which the value of the parameter γ is taken from the pars argument.

R> gen_obs2 <- function(equations, pars, x0, time, obs,

+ S_names, I_names, ...)

+ {

+ gamma <- pars['gamma']

+ S0 <- x0[S_names]

+ I0 <- x0[I_names]

+ I_obs <- obs

+ S_obs <- lapply(1:length(S0),function(i)

+ S0[i]+I0[i]-I_obs[[i]]-gamma*pracma::cumtrapz(time,I_obs[[i]]))

+ names(S_obs) <- S_names

+ obs <- c(S_obs,I_obs)

+ return (list(obs=obs, time=time))

+ }

R> gamma_init <- 2

R> names(gamma_init) <- names(gamma)

R> kappa_init <- rep(1,length(kappa))

R> names(kappa_init) <- names(kappa)

R> pars <- names(c(beta,gamma,kappa,S0))

R> nlin_pars <- names(c(gamma,kappa,S0))

R> start <- c(gamma_init,kappa_init,S0_init)

R> names(start) <- nlin_pars

R> pars_min <- c(rep(0,length(beta)),1.4,rep(0.25,length(kappa)),

+ rep(0,length(S0)))
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R> pars_max <- c(rep(Inf,length(beta)),3.5,rep(4,length(kappa)),

+ rep(1,length(S0)))

R> names(pars_min) <- pars

R> names(pars_max) <- pars

R> est_sir_all <- simode(

+ equations=equations, pars=pars, time=time, obs=I_obs,

+ nlin_pars=nlin_pars, start=start, fixed=I0,

+ lower=pars_min, upper=pars_max,

+ gen_obs=gen_obs2, S_names=names(S0), I_names=names(I0))

R> summary(est_sir_all)$est

par type lower upper start im_est nls_est

1 beta1_1 linear 0.00 Inf NA 6.60300 6.54900

2 beta2_1 linear 0.00 Inf NA 1.75200 1.78200

3 beta1_2 linear 0.00 Inf NA 0.05009 0.04751

4 beta2_2 linear 0.00 Inf NA 3.85800 3.85200

5 gamma non-linear 1.40 3.5 2.0 2.33100 2.25700

6 kappa2 non-linear 0.25 4.0 1.0 0.89450 0.97130

7 kappa3 non-linear 0.25 4.0 1.0 1.15500 1.16800

8 kappa4 non-linear 0.25 4.0 1.0 1.05600 1.03200

9 kappa5 non-linear 0.25 4.0 1.0 1.00100 1.05400

10 S1_1 non-linear 0.00 1.0 0.5 0.56690 0.55240

11 S2_1 non-linear 0.00 1.0 0.5 0.53850 0.51820

12 S1_2 non-linear 0.00 1.0 0.5 0.52900 0.48350

13 S2_2 non-linear 0.00 1.0 0.5 0.46070 0.41450

14 S1_3 non-linear 0.00 1.0 0.5 0.55370 0.53560

15 S2_3 non-linear 0.00 1.0 0.5 0.33330 0.31070

16 S1_4 non-linear 0.00 1.0 0.5 0.54960 0.54290

17 S2_4 non-linear 0.00 1.0 0.5 0.44910 0.43600

18 S1_5 non-linear 0.00 1.0 0.5 0.48280 0.45280

19 S2_5 non-linear 0.00 1.0 0.5 0.39780 0.36290

5 Additional functionalities of the package

In this section we demonstrate some additional functionalities of the package.
We do that using other systems of ODEs in order to further explore the
package usability.
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5.1 User defined likelihood function

Consider the case where the user has her own likelihood function to be used in
the second stage of optimization, meaning after the integral-matching stage.
The default optimization of the package implements in the second stage the
nonlinear least squares loss function (7). This default estimation procedure
suffices for the method to result in consistent estimators. However, one may
prefer to implement a specific likelihood function, for example a Gaussian
distribution with known or unknown variance. We demonstrate this option
using as an example the FitzHugh-Nagumo spike potential equations where
the ODE model is given by

V ′(t) = c(V (t)− V (t)3/3 +R(t)),
R′(t) = −(V (t)− a+ bR(t))/c. (15)

See [5] for further explanation of this model. The above system is linear in
a, b but nonlinear in c. The following code sets the equations, parameters
and the ’true’ values for initial conditions and parameters:

R> pars <- c('a','b','c')

R> vars <- c('V','R')

R> eq_V <- 'c*(V-V^3/3+R)'

R> eq_R <- '-(V-a+b*R)/c'

R> equations <- c(eq_V,eq_R)

R> names(equations) <- vars

R> x0 <- c(-1,1)

R> names(x0) <- vars

R> theta <- c(0.2,0.2,3)

R> names(theta) <- pars

The following code generates observations from a Gaussian measurement
error model:

R> n <- 40

R> time <- seq(0,20,length.out=n)

R> model_out <- solve_ode(equations,theta,x0,time)

R> x_det <- model_out[,vars]

R> set.seed(1000)

R> sigma <- 0.05

R> obs <- list()
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R> for(i in 1:length(vars)) {

+ obs[[i]] <- x_det[,i] + rnorm(n,0,sigma)

+ }

R> names(obs) <- vars

Here we implement a Gaussian distribution (negative-log) likelihood func-
tion, which will be passed in the call to simode using the calc nll argument.
The function should receive as arguments the parameter values, time points,
observations and output of the solutions of the ODEs (calculated using the
estimated parameter values in the current iteration of the optimization). Ad-
ditional arguments can be passed to calc nll by passing them in the call to
simode using the ellipsis construct (in this case the parameter sigma is
passed as well). Note that the user-defined likelihood will also be used in the
call to profile and the calculation of confidence intervals based on the like-
lihood profiles. Here is the user defined (negative-log) Gaussian likelihood
function,

R> calc_nll <- function(pars, time, obs, model_out, sigma, ...) {

+

+ -sum(unlist(lapply(names(obs),function(var) {

+ dnorm(obs[[var]],mean=model_out[,var],sd=sigma,log=T)

+ })))

+ }

Now we demonstrate the usage of the likelihood function defined above,
where the variance is assumed to be known and therefore is given as a fixed
parameter. In this example the nonlinear parameters are assumed to be
known. The resulting model fits are presented in Figure 9. The parameter
estimates are

R> lin_pars <- c('a','b')

R> nlin_pars <- c('c')

R> init_vals <-

+ rnorm(length(theta[nlin_pars]),theta[nlin_pars],0.1*theta[nlin_pars])

R> names(init_vals) <- nlin_pars

R> est_fn <- simode(

+ equations=equations, pars=pars, time=time, obs=obs,

+ fixed=x0, nlin_pars=nlin_pars, start=init_vals,

+ calc_nll=calc_nll, sigma=sigma)

R> summary(est_fn)
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call:

simode(equations = equations, pars = pars, time = time, obs = obs,

nlin_pars = nlin_pars, fixed = x0, start = init_vals,

calc_nll = calc_nll, sigma = sigma)

equations:

V R

"c*(V-V^3/3+R)" "-(V-a+b*R)/c"

initial conditions:

V R

-1 1

parameter estimates:

par type start im_est nls_est

1 a linear NA 0.1724 0.2040

2 b linear NA 0.2365 0.1767

3 c non-linear 3.350783 3.3050 3.0020

im-method: separable

im-loss: 6.815

nls-loss: -130.9

Now the above example is explored but with unknown variance which
requires estimation as well. The user likelihood function has to be slightly
modified as follows.

R> calc_nll_sig <- function(pars, time, obs, model_out, ...) {

+ sigma <- pars['sigma']

+ -sum(unlist(lapply(names(obs),function(var) {

+ dnorm(obs[[var]],mean=model_out[,var],sd=sigma,log=T)

+ })))

+ }

R> names(sigma) <- 'sigma'

R> lik_pars <- names(sigma)

R> pars_fn_sig <- c(pars,lik_pars)
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R> plot(est_fn, type='fit', pars_true=theta, mfrow=c(2,1), legend=T)
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Figure 9: Solutions V and R of the FitzHugh-Nagum model (15), noisy
observations and model fits.

R> init_vals[names(sigma)] <- 0.3

R> lower <- NULL

R> lower[names(sigma)] <- 0

R> est_fn_sig <- simode(

+ equations=equations, pars=pars_fn_sig, time=time, obs=obs,

+ fixed=x0, nlin_pars=nlin_pars, likelihood_pars=lik_pars,

+ start=init_vals, lower=lower, calc_nll=calc_nll_sig)

R> summary(est_fn_sig)$est

par type lower start im_est nls_est

1 a linear -Inf NA 0.1724 0.20400

2 b linear -Inf NA 0.2365 0.17670

3 c non-linear -Inf 3.350783 3.3050 3.00200

4 sigma likelihood 0 0.300000 NA 0.04693

5.2 System Decoupling

[20] demonsrated that system decoupling combined with data smoothing may
lead to better reconstruction of the underlying dynamic system, and to bet-
ter estimation of parameters. We implemented this functionality within the
simode package. We use the ODE system of the previous example (15)
for demonstrating decoupling functionality. The only difference is that we
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now set decouple equations=T in the simode function. The resulting
integral-matching estimated values are stored in the returned simode ob-
ject (as usual). If there is a parameter shared across system equations, the
simode function will use the mean value (across system equations) of these
parameter estimates (parameter ’c’ in this example). The parameter esti-
mates for each equation before averaging are stored in the simode object in
a matrix called im pars est mat. In this matrix, parameters that are not
part of a given equation are set with NA values.

R> init_vals <- init_vals[nlin_pars]

R> est_fn_d <- simode(

+ equations=equations, pars=pars, time=time, obs=obs,

+ fixed=x0, nlin_pars=nlin_pars, start=init_vals,

+ calc_nll=calc_nll, sigma=sigma, decouple_equations=T)

R> est_fn_d$im_pars_est_mat

a b c

V NA NA 1.686992

R 0.1945346 0.1707976 2.910466

R> summary(est_fn_d)$est

par type start im_est nls_est

1 a linear NA 0.1945 0.2040

2 b linear NA 0.1708 0.1767

3 c non-linear 3.350783 2.2990 3.0020

5.3 Monte Carlo simulations

Conducting Monte Carlo experiments for ODEs can be an intensive computa-
tional task. The simode function can be given multiple sets of observations
of a system from Monte Carlo simulations and fit each of these sets separately,
returning a list of simode objects with the parameter estimates obtained
from each fit. We demonstrate this using as an example the predator-prey
Lotka-Volterra model ([2]) given by the equations (X=prey, Y=predator):

X ′(t) = αX(t)− βX(t)Y (t),
Y ′(t) = δX(t)Y (t)− γY (t). (16)
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The Lotka-Volterra system is linear in all of its parameters. The following
code sets the equations, parameters and the ’true’ values for intial conditions
and parameters:

R> pars <- c('alpha','beta','gamma','delta')

R> vars <- c('X','Y')

R> eq_X <- 'alpha*X-beta*X*Y'

R> eq_Y <- 'delta*X*Y-gamma*Y'

R> equations <- c(eq_X,eq_Y)

R> names(equations) <- vars

R> x0 <- c(0.9,0.9)

R> names(x0) <- vars

R> theta <- c(2/3,4/3,1,1)

R> names(theta) <- pars

Next, we generate ten Monte Carlo sets of observations from a Gaussian
measurement error model.

R> n <- 100

R> time <- seq(0,25,length.out=n)

R> model_out <- solve_ode(equations,theta,x0,time)

R> x_det <- model_out[,vars]

R> N <- 10

R> mc_obs <- list()

R> sigma <- 0.1

R> set.seed(1000)

R> for(j in 1:N) {

+ obs <- list()

+ for(i in 1:length(vars)) {

+ obs[[i]] <- rnorm(n,x_det[,i],sigma)

+ }

+ names(obs) <- vars

+ mc_obs[[j]] <- obs

+ }

To fit the ten sets of Monte Carlo simulations in one call to simode,
simply set obs to the list with the Monte Carlo observations (mc obs in
this case) and set the argument obs sets to the number of Monte Carlo sets.
We set the control parameter obs sets fit in simode.control to ’separate’

34



(the default) to indicate we want to fit each observation set separately. By
default, the sets will be fitted sequentially. To fit them in parallel, set the
control parameter parallel in simode.control to true:

R> lv_mc <- simode(

+ equations=equations, pars=c(pars,vars), time=time, obs=mc_obs,

+ obs_sets=N, simode_ctrl=simode.control(parallel=T))

R> summary(lv_mc,sum_mean_sd=T,pars_true=c(theta,x0),digits=2)$est

par true im_mean im_sd im_bias im_rmse nls_mean nls_sd nls_bias

1 alpha 0.67 0.65 0.039 -0.017 0.042 0.68 0.0230 0.013

2 beta 1.30 1.30 0.073 -0.033 0.081 1.40 0.0400 0.067

3 gamma 1.00 0.92 0.030 -0.080 0.081 0.98 0.0340 -0.020

4 delta 1.00 0.93 0.032 -0.070 0.080 0.98 0.0340 -0.020

5 X 0.90 0.84 0.047 -0.060 0.075 0.91 0.0290 0.010

6 Y 0.90 0.86 0.050 -0.040 0.061 0.90 0.0089 0.000

nls_rmse

1 0.0270

2 0.0530

3 0.0380

4 0.0370

5 0.0310

6 0.0086

The returned list.simode object has its own implementation of plot().
Setting the parameter plot mean sd=T the function plots the mean and
standard deviation of the fitted curves (not shown here), or parameter esti-
mates as in Figure 10, obtained from the multiple fits.

5.4 Multiple Subjects

There are cases where it is reasonable to consider a model where some pa-
rameters are assumed to be the same for all experimental subjects while
other parameters are specific to an individual subject; see [31] for an ex-
ample of mixed-effects modeling. While this is possible to do by defining a
large ODE model where each individual has his own equations within this
model, here we present an easier way to handle such a scenario using the
simode package. We consider the Lotka-Volterra system (two equations)
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R> plot(lv_mc, type='est', show='both', plot_mean_sd=T,

+ pars_true=c(theta,x0), legend=T)
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Figure 10: Mean and standard deviation of the parameter estimates from ten
Monte-Carlo simulations of the Lotka-Volterra model (16).

with N individuals. We assume that all individuals share the same system
parameter values, whereas each individual has its own initial values. Hence,
we would like to use the information from all individuals for estimating the
system parameters. We call simode with the parameter obs containing a
list of length N (where each member of this list is another list containing
the observations for this specific subject), and set the parameter obs sets to
N . We set the control parameter obs sets fit in simode.control to ’sepa-
rate x0’ to indicate we want to fit the same parameter values to all subjects
but allow different initial conditions. Running simode returns an object of
class list.simode, where each simode object contains the estimates for one
individual. The parameter estimates in this case will be the same in each
of the objects while the initial conditions estimates may be different. In the
example below we set N = 5. Note that one can use the decoupling option
here as well by setting decouple equations=T. In this case, the decoupling
is designed such that the parameters of each equation will be estimated using
the relevant data from all individuals together.
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R> pars <- c('alpha','beta','gamma','delta')

R> vars <- c('X','Y')

R> eq_X <- 'alpha*X-beta*X*Y'

R> eq_Y <- 'delta*X*Y-gamma*Y'

R> equations <- c(eq_X,eq_Y)

R> names(equations) <- vars

R> theta <- c(2/3,4/3,2,1)

R> names(theta) <- pars

R> n <- 100

R> time <- seq(0,25,length.out=n)

R> N <- 5

R> set.seed(1000)

R> sigma <- 0.05

R> obs <- list()

R> x0_vals <- matrix(NA,N,2)

R> colnames(x0_vals) <- vars

R> for(j in 1:N) {

+ x0 <-rnorm(length(vars),0.9,0.2)

+ x0[x0<0] <- 0

+ x0_vals[j,] <- x0

+ model_out <- solve_ode(equations,theta,x0_vals[j,],time)

+ x_det <- model_out[,vars]

+ obs1 <- list()

+ for(i in 1:length(vars)) {

+ obs1[[i]] <- rnorm(n,x_det[,i],sigma)

+ }

+ names(obs1) <- vars

+ obs[[j]] <- obs1

+ }

R> simode_fits_multi <- simode(

+ equations=equations, pars=c(pars,vars), time=time,

+ obs=obs, obs_sets=N, decouple_equations=T,

+ simode_ctrl=simode.control(obs_sets_fit='separate_x0'))

R> x0_vals

X Y

[1,] 0.8108443 0.6588287

[2,] 0.5635475 0.8533498
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[3,] 1.0050157 0.9853895

[4,] 0.7877634 1.1521071

[5,] 1.0325663 0.6240693

R> summary(simode_fits_multi)

$im_est

alpha beta gamma delta X Y

[1,] 0.6733 1.339 1.971 0.9832 0.9479 0.6576

[2,] 0.6733 1.339 1.971 0.9832 0.6742 0.7109

[3,] 0.6733 1.339 1.971 0.9832 0.8376 1.0550

[4,] 0.6733 1.339 1.971 0.9832 0.8087 1.0640

[5,] 0.6733 1.339 1.971 0.9832 0.8821 0.6594

$nls_est

alpha beta gamma delta X Y

[1,] 0.6656 1.335 2.007 1.004 0.8107 0.6624

[2,] 0.6656 1.335 2.007 1.004 0.5640 0.8557

[3,] 0.6656 1.335 2.007 1.004 1.0120 0.9946

[4,] 0.6656 1.335 2.007 1.004 0.7907 1.1580

[5,] 0.6656 1.335 2.007 1.004 1.0350 0.6333

$im_loss

[1] 8.829

$nls_loss

[1] 2.377

attr(,"class")

[1] "summary.list.simode"

5.5 Models with an external input function

The ODE equations given to simode can include any function of time (e.g.,
forcing functions) using the reserved symbol ’t’. To demonstrate this we ex-
pand the predator-prey Lotka-Volterra model from the previous section to
include seasonal forcing of the predation rate, using two additional parame-
ters that control the amplitude (ε) and phase (ω) of the forcing:
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X ′(t) = αX(t)− β(1 + ε sin(2π(t/T + ω)))X(t)Y (t),
Y ′(t) = δ(1 + ε sin(2π(t/T + ω)))X(t)Y (t)− γY (t). (17)

The parameter T sets the periodic time scale and is assumed to be known.
The following code sets the equations, parameters and the ’true’ values for
the initial conditions and parameters assuming T = 50:

R> pars <- c('alpha','beta','gamma','delta','epsilon','omega')

R> vars <- c('X','Y')

R> eq_X <- 'alpha*X-beta*(1+epsilon*sin(2*pi*(t/50+omega)))*X*Y'

R> eq_Y <- 'delta*(1+epsilon*sin(2*pi*(t/50+omega)))*X*Y-gamma*Y'

R> equations <- c(eq_X,eq_Y)

R> names(equations) <- vars

R> x0 <- c(0.9,0.9)

R> names(x0) <- vars

R> theta <- c(2/3,4/3,1,1,0.2,0.5)

R> names(theta) <- pars

The following code generates observations from a Gaussian measurement
error model:

R> n <- 100

R> time <- seq(1,50,length.out=n)

R> model_out <- solve_ode(equations,theta,x0,time)

R> x_det <- model_out[,vars]

R> set.seed(1000)

R> sigma <- 0.1

R> obs <- list()

R> for(i in 1:length(vars)) {

+ obs[[i]] <- x_det[,i] + rnorm(n,0,sigma)

+ }

R> names(obs) <- vars

Attempting to fit the model assuming all parameters are linear fails, as
the parameter ω is nonlinear in these equations:

R> lv_force <- simode(

+ equations=equations, pars=pars, fixed=c(x0), time=time, obs=obs)
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Problem in eq.1 [X] - parameter [omega] should be set as non-linear

Problem in eq.2 [Y] - parameter [omega] should be set as non-linear

Once ω is defined as nonlinear we encounter a new message:

R> nlin_pars <- c('omega')

R> nlin_init <- 0

R> names(nlin_init) <- nlin_pars

R> lv_force <- simode(

+ equations=equations, pars=pars, fixed=c(x0), time=time,

+ obs=obs, nlin_pars=nlin_pars, start=nlin_init)

Problem in eq.1 [X] - parameter [beta] or [epsilon] should be

set as non-linear

Problem in eq.2 [Y] - parameter [delta] or [epsilon] should be

set as non-linear

Setting ε as nonlinear we can now proceed with the fit. The package en-
ables the user to modify the optimization methods as is possible in the usual
R implementation of optim function. Here we use the simplex (’Nelder-
Mead’) method instead of the gradient-based ’BFGS’ method (the default),
which yields the model fits presented in Figure 11.

R> nlin_pars <- c('epsilon','omega')

R> nlin_init <- c(0.3,0.3)

R> names(nlin_init) <- nlin_pars

R> pars_min <- c(0,0)

R> names(pars_min) <- nlin_pars

R> pars_max <- c(1,1)

R> names(pars_max) <- nlin_pars

R> lv_force1 <- simode(

+ equations=equations, pars=pars, fixed=c(x0), time=time, obs=obs,

+ nlin_pars=nlin_pars, start=nlin_init, lower=pars_min, upper=pars_max,

+ simode_ctrl=simode.control(im_optim_method='Nelder-Mead',

+ nls_optim_method='Nelder-Mead'))

R> summary(lv_force1)$est

par type lower upper start im_est nls_est

1 alpha linear -Inf Inf NA 0.6288 0.7175
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Figure 11: Model fits according to the Lotka-Volterra equations (17) using
simplex (’Nelder-Mead’) optimization method.

2 beta linear -Inf Inf NA 1.2210 1.3860

3 gamma linear -Inf Inf NA 0.9469 0.9269

4 delta linear -Inf Inf NA 0.9388 0.9138

5 epsilon non-linear 0 1 0.3 0.1709 0.1732

6 omega non-linear 0 1 0.3 0.5174 0.4875

The above example is based on an explicit input function sin(t). How-
ever, one can think of cases where we would like to use a general input, not
necessarily for which there is a closed form. In such a case one would incor-
porate the external input by adding it to the list of observations (the obs
parameter) and referencing it in the equations using the same name:

R> pars <- c('alpha','beta','gamma','delta','epsilon')

R> vars <- c('X','Y')

R> eq_X <- 'alpha*X-beta*(1+epsilon*seasonality)*X*Y'

R> eq_Y <- 'delta*(1+epsilon*seasonality)*X*Y-gamma*Y'

R> equations <- c(eq_X,eq_Y)

R> names(equations) <- vars

R> x0 <- c(0.9,0.9)

R> names(x0) <- vars

R> theta <- c(2/3,4/3,1,1,0.2)

R> names(theta) <- pars

R> n <- 100

R> time <- seq(1,50,length.out=n)
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R> seasonality <- rep(c(rep(0,10),rep(1,10)),5)

R> xvars <- list(seasonality=seasonality)

R> model_out <- solve_ode(equations,theta,x0,time,xvars)

R> x_det <- model_out[,vars]

R> set.seed(1000)

R> sigma <- 0.1

R> obs <- list()

R> for(i in 1:length(vars)) {

+ obs[[i]] <- x_det[,i] + rnorm(n,0,sigma)

+ }

R> names(obs) <- vars

R> nlin_pars <- c('epsilon')

R> nlin_init <- 0.2

R> names(nlin_init) <- nlin_pars

R> lv_force2 <- simode(

+ equations=equations, pars=pars, fixed=x0, time=time,

+ obs=c(obs,xvars), nlin_pars=nlin_pars, start=nlin_init)

R> summary(lv_force2)$est

par type start im_est nls_est

1 alpha linear NA 0.6824 0.6737

2 beta linear NA 1.3090 1.3460

3 gamma linear NA 0.9576 0.9912

4 delta linear NA 0.9413 0.9906

5 epsilon non-linear 0.2 0.3137 0.2012

6 Summary

In this paper we describe the simode R package: Separable Integral Match-
ing for Ordinary Differential Equations, for conducting statistical inference
for ordinary differential equations. The package implements a ”two-stage”
approach where in the first stage fast estimates of the ODEs parameters are
calculated, while the second stage applies nonlinear least squares optimiza-
tion starting from the estimates obtained. The first stage involves the min-
imization of an integral criterion function (so called ”two-step” approach in
the literature) and takes into account separability of parameters and ODEs
equations, if such a mathematical feature exists. The package can handle
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several real-life scenarios such as partially observed systems, multiple sub-
jects, models with an external input function, and user defined likelihood
function. The package enables both splines and kernel smoothing methods.
In addition, we implemented automatic system decoupling which in many
cases leads to more stable numerical optimization. Furthermore, it is not
mandatory for the user to know which parameters are linear and which are
not. This added simode feature makes it very useful for handling ODEs with
linear features in case the mathematical knowledge for characterizing them is
lacking. Confidence intervals for the ODEs parameters can be calculated as
well using profile likelihood, hence a full estimation pipeline is implemented.
Finally, simode supports parallel Monte Carlo simulations. All above simode
package functionalities are demonstrated using a variety of ODEs models: a
biochemical system (S-system), SIR-type (Susceptible-Infected-Recovered),
FitzHugh-Nagumo spike potential equations, and Lotka-Volterra. All the
numerical examples presented in the paper are implemented as demos in the
simode package. Future abilities are now developed, among them the use
of kernel smoothing with automatic bandwidth selection as in [17], and a
computational efficient parameter estimation for high dimensional systems
of ordinary differential equations.
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