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sits-package sits

Description

Satellite Image Time Series Analysis for Earth Observation Data Cubes

Purpose

The SITS package provides a set of tools for analysis, visualization and classification of satellite
image time series. It includes methods for filtering, clustering, classification, and post-processing.

Author(s)

Maintainer: Gilberto Camara <gilberto.camara.inpe@gmail.com>

Authors:

• Rolf Simoes <rolf.simoes@inpe.br>

• Felipe Souza <felipe.carvalho@inpe.br>

• Lorena Santos <lorena.santos@inpe.br>

• Pedro Andrade <pedro.andrade@inpe.br>

• Karine Ferreira <karine.ferreira@inpe.br>

• Alber Sanchez <alber.ipia@inpe.br>

• Gilberto Queiroz <gilberto.queiroz@inpe.br>

See Also

Useful links:

• https://github.com/e-sensing/sits/

• https://e-sensing.github.io/sitsbook/

• Report bugs at https://github.com/e-sensing/sits/issues

https://github.com/e-sensing/sits/
https://e-sensing.github.io/sitsbook/
https://github.com/e-sensing/sits/issues
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.sits_get_top_values Get top values of a raster.

Description

Get the top values of a raster as a point ‘sf‘ object. The values locations are guaranteed to be
separated by a certain number of pixels.

Usage

.sits_get_top_values(r_obj, band, n, sampling_window)

Arguments

r_obj A raster object.

band A numeric band index used to read bricks.

n Number of values to extract.
sampling_window

Window size to collect a point (in pixels).

Value

A point ‘tibble‘ object.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

:= Set by reference in data.table

Description

Data.table assignment by reference.

Arguments

lhs, rhs A visualization and a function to apply to it.

Value

DT is modified by reference and returned invisibly.
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cerrado_2classes Samples of classes Cerrado and Pasture

Description

A dataset containing a tibble with time series samples for the Cerrado and Pasture areas of the Mato
Grosso state. The time series come from MOD13Q1 collection 5 images.

Usage

data(cerrado_2classes)

Format

A tibble with 736 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

plot Plot time series

Description

This is a generic function. Parameters depend on the specific type of input. See each function
description for the required parameters:

• sits tibble: see plot.sits

• patterns: see plot.patterns

• SOM map: see plot.som_map

• SOM evaluate cluster: see plot.som_evaluate_cluster

• classified time series: see plot.predicted

• raster cube: see plot.raster_cube

• random forest model: see plot.rfor_model

• xgboost model: see plot.xgb_model

• torch ML model: see plot.torch_model

• classification probabilities: see plot.probs_cube

• model uncertainty: see plot.uncertainty_cube

• classified image: see plot.classified_image

In the case of time series, the plot function produces different plots based on the input data:
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• "all years": Plot all samples from the same location together

• "together": Plot all samples of the same band and label together

The plot.sits function makes an educated guess of what plot is required, based on the input data.
If the input data has less than 30 samples, it will default to "all years". If there are more than 30
samples, it will default to "together".

Usage

## S3 method for class 'sits'
plot(x, y, ...)

Arguments

x Object of class "sits"

y Ignored.

... Further specifications for plot.

Value

A series of plot objects produced by ggplot2 showing all time series associated to each combination
of band and label, and including the median, and first and third quartile ranges.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

if (sits_run_examples()) # plot sets of time series plot(cerrado_2classes)

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

plot.classified_image Plot classified images

Description

plots a classified raster using ggplot.
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Usage

## S3 method for class 'classified_image'
plot(
x,
y,
...,
tiles = NULL,
title = "Classified Image",
legend = NULL,
palette = "Spectral",
rev = TRUE

)

Arguments

x Object of class "classified_image".

y Ignored.

... Further specifications for plot.

tiles Tiles to be plotted.

title Title of the plot.

legend Named vector that associates labels to colors.

palette Alternative palette that uses grDevices::hcl.pals().

rev Invert the order of hcl palette?

Value

A plot object produced by the ggplot2 package with a color maps, where each pixel has the color
associated to a label, as defined by the legend parameter.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")
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)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label cube with the most likely class
label_cube <- sits_label_classification(probs_cube)
# plot the resulting classified image
plot(label_cube)

}

plot.geo_distances Make a kernel density plot of samples distances.

Description

Make a kernel density plot of samples distances.

Usage

## S3 method for class 'geo_distances'
plot(x, y, ...)

Arguments

x Object of class "geo_distances".

y Ignored.

... Further specifications for plot.

Value

A plot showing the sample-to-sample distances and sample-to-prediction distances.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Felipe Souza, <lipecaso@gmail.com>

Rolf Simoes, <rolf.simoes@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

References

Hanna Meyer and Edzer Pebesma, "Machine learning-based global maps of ecological variables
and the challenge of assessing them" Nature Communications, 13,2022. DOI: 10.1038/s41467-
022-29838-9.
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Examples

if (sits_run_examples()) {
# read a shapefile for the state of Mato Grosso, Brazil
mt_shp <- system.file("extdata/shapefiles/mato_grosso/mt.shp",

package = "sits"
)
# convert to an sf object
mt_sf <- sf::read_sf(mt_shp)
# calculate sample-to-sample and sample-to-prediction distances
distances <- sits_geo_dist(samples_modis_4bands, mt_sf)
# plot sample-to-sample and sample-to-prediction distances
plot(distances)

}

plot.patterns Plot patterns that describe classes

Description

Plots the patterns to be used for classification

Given a sits tibble with a set of patterns, plot them.

Usage

## S3 method for class 'patterns'
plot(x, y, ...)

Arguments

x Object of class "patterns".

y Ignored.

... Further specifications for plot.

Value

A plot object produced by ggplot2 with one average pattern per label.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples. This code is reused from the dtwSat package by Victor Maus.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Victor Maus, <vwmaus1@gmail.com>
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Examples

if (sits_run_examples()) {
# plot patterns
plot(sits_patterns(cerrado_2classes))

}

plot.predicted Plot time series predictions

Description

Given a sits tibble with a set of predictions, plot them

Usage

## S3 method for class 'predicted'
plot(x, y, ..., bands = "NDVI", palette = "Harmonic")

Arguments

x Object of class "predicted".

y Ignored.

... Further specifications for plot.

bands Bands for visualization.

palette HCL palette used for visualization in case classes are not in the default sits
palette.

Value

A plot object produced by ggplot2 showing the time series and its label.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a tempCNN model
ml_model <- sits_train(samples_modis_4bands, ml_method = sits_tempcnn)
# classify the point
bands_model <- sits_bands(ml_model)
point_4bands <- sits_select(point_mt_6bands, bands = bands_model)
point_class <- sits_classify(point_4bands, ml_model)
plot(point_class)

}

plot.probs_cube Plot probability cubes

Description

plots a probability cube using stars

Usage

## S3 method for class 'probs_cube'
plot(
x,
...,
tiles = NULL,
labels = NULL,
breaks = "pretty",
n_colors = 20,
palette = "Terrain"

)

Arguments

x Object of class "probs_image".

... Further specifications for plot.

tiles Tiles to be plotted.

labels Labels to plot (optional).

breaks Type of class intervals.

n_colors Number of colors to plot.

palette HCL palette used for visualization.

Value

A plot object produced by the stars package containing maps of probabilities associated to each
class for each pixel.
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Note

Possible class intervals

"sd": intervals based on the average and standard deviation.

•• "equal": divides the range of the variable into n parts.

• "pretty": number of breaks likely to be legible.

• "quantile": quantile breaks

• "log": logarithm plot

The function accepts color palettes are defined in grDevices::hcl.pals()

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# plot the resulting probability cube
plot(probs_cube)

}

plot.raster_cube Plot RGB data cubes

Description

Plot RGB raster cube
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Usage

## S3 method for class 'raster_cube'
plot(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tile = x$tile[[1]],
date = NULL

)

Arguments

x Object of class "raster_cube".

... Further specifications for plot.

band Band for plotting grey images.

red Band for red color.

green Band for green color.

blue Band for blue color.

tile Tile to be plotted.

date Date to be plotted.

Value

A plot object produced by the terra package with an RGB or B/W image.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# plot NDVI band of the second date date of the data cube
plot(cube, band = "NDVI", date = sits_timeline(cube)[2])

}
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plot.rfor_model Plot Random Forest model

Description

Plots the important variables in a random forest model.

Usage

## S3 method for class 'rfor_model'
plot(x, y, ...)

Arguments

x Object of class "rf_model".

y Ignored.

... Further specifications for plot.

Value

A random forest object.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_4bands, ml_method = sits_rfor())
# plot the model
plot(rf_model)

}
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plot.som_evaluate_cluster

Plot confusion between clusters

Description

Plot a bar graph with informations about each cluster. The percentage of mixture between the
clusters.

Usage

## S3 method for class 'som_evaluate_cluster'
plot(x, y, ..., name_cluster = NULL, title = "Confusion by cluster")

Arguments

x Object of class "plot.som_evaluate_cluster".

y Ignored.

... Further specifications for plot.

name_cluster Choose the cluster to plot.

title Title of plot.

Value

A plot object produced by the ggplot2 package containing color bars showing the confusion between
classes.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Lorena Santos <lorena.santos@inpe.br>

Examples

if (sits_run_examples()) {
# create a SOM map
som_map <- sits_som_map(samples_modis_4bands)
# evaluate the SOM cluster
som_clusters <- sits_som_evaluate_cluster(som_map)
# plot the SOM cluster evaluation
plot(som_clusters)

}
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plot.som_map Plot a SOM map

Description

plots a SOM map generated by "sits_som_map" The plot function produces different plots based on
the input data:

• "codes": Plot the vector weight for in each neuron.

• "mapping": Shows where samples are mapped.

Usage

## S3 method for class 'som_map'
plot(x, y, ..., type = "codes", band = 1)

Arguments

x Object of class "som_map".

y Ignored.

... Further specifications for plot.

type Type of plot: "codes" for neuron weight (time series) and "mapping" for the
number of samples allocated in a neuron.

band What band will be plotted.

Value

No return value, called for side effects.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a SOM map
som_map <- sits_som_map(samples_modis_4bands)
# plot the SOM map
plot(som_map)

}
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plot.torch_model Plot Torch (deep learning) model

Description

Plots a deep learning model developed using torch.

Usage

## S3 method for class 'torch_model'
plot(x, y, ...)

Arguments

x Object of class "torch_model".

y Ignored.

... Further specifications for plot.

Value

A plot object produced by the ggplot2 package showing the evolution of the loss and accuracy of
the model.

Note

This code has been lifted from the "keras" package.

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Felipe Souza, <lipecaso@gmail.com>

Rolf Simoes, <rolf.simoes@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a tempCNN model
ml_model <- sits_train(samples_modis_4bands, ml_method = sits_tempcnn)
# plot the model
plot(ml_model)

}
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plot.uncertainty_cube Plot uncertainty cubes

Description

plots a probability cube using stars

Usage

## S3 method for class 'uncertainty_cube'
plot(
x,
...,
tiles = NULL,
n_colors = 14,
intervals = "log",
palette = "YlOrRd"

)

Arguments

x Object of class "probs_image".

... Further specifications for plot.

tiles Tiles to be plotted.

n_colors Number of colors to plot.

intervals Type of class intervals.

palette HCL palette used for visualization.

Value

A plot object produced by the stars package with a map showing the uncertainty associated to each
classified pixel.

Note

Possible class intervals

"sd": intervals based on the average and standard deviation.

•• "equal": divides the range of the variable into n parts.

• "quantile": quantile breaks

• "pretty": number of breaks likely to be legible.

• "log" : logarithm plot.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# calculate uncertainty
uncert_cube <- sits_uncertainty(probs_cube)
# plot the resulting uncertainty cube
plot(uncert_cube)

}

plot.xgb_model Plot XGB model

Description

Plots the important variables in an extreme gradient boosting.

Usage

## S3 method for class 'xgb_model'
plot(x, ..., n_trees = 3)

Arguments

x Object of class "xgb_model".

... Further specifications for plot.

n_trees Number of trees to be plotted

Value

A plot object.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train an extreme gradient boosting
xgb_model <- sits_train(samples_modis_4bands,

ml_method = sits_xgboost())
# plot the model
plot(xgb_model)

}

point_mt_6bands A time series sample with data from 2000 to 2016

Description

A dataset containing a tibble with one time series samples in the Mato Grosso state of Brazil. The
time series comes from MOD13Q1 collection 6 images.

Usage

data(point_mt_6bands)

Format

A tibble with 1 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

samples_l8_rondonia_2bands

Samples of Amazon tropical forest biome for deforestation analysis

Description

A sits tibble with time series samples from Brazilian Amazonia rain forest.

The labels are: "Deforestation", "Forest", "NatNonForest" and "Pasture".

The time series were extracted from the Landsat-8 BDC data cube (collection = "LC8_30_16D_STK-
1", tiles = "038047"). These time series comprehends a period of 12 months (25 observations) from
"2018-07-12" to "2019-07-28". The extracted bands are NDVI and EVI. Cloudy values were re-
moved and interpolated.
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Usage

data("samples_l8_rondonia_2bands")

Format

A sits tibble with 160 samples.

samples_modis_4bands Samples of nine classes for the state of Mato Grosso

Description

A dataset containing a tibble with time series samples for the Mato Grosso state in Brasil. The
time series come from MOD13Q1 collection 6 images. The data set has the following classes:
Cerrado(379 samples), Forest (131 samples), Pasture (344 samples), and Soy_Corn (364 samples).

Usage

data(samples_modis_4bands)

Format

A tibble with 1308 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

sits_accuracy Assess classification accuracy (area-weighted method)

Description

This function calculates the accuracy of the classification result. For a set of time series, it creates a
confusion matrix and then calculates the resulting statistics using the R package "caret". The time
series needs to be classified using sits_classify.

Classified images are generated using sits_classify followed by sits_label_classification.
For a classified image, the function uses an area-weighted technique proposed by Olofsson et al.
according to [1-3] to produce more reliable accuracy estimates at 95

In both cases, it provides an accuracy assessment of the classified, including Overall Accuracy,
Kappa, User’s Accuracy, Producer’s Accuracy and error matrix (confusion matrix)
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Usage

sits_accuracy(data, ...)

## S3 method for class 'sits'
sits_accuracy(data, ...)

## S3 method for class 'classified_image'
sits_accuracy(data, ..., validation_csv)

Arguments

data Either a data cube with classified images or a set of time series

... Specific parameters

validation_csv A CSV file path with validation data

Value

A list of lists: The error_matrix, the class_areas, the unbiased estimated areas, the standard error
areas, confidence interval 95 and the accuracy (user, producer, and overall), or NULL if the data is
empty. A confusion matrix assessment produced by the caret package.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

References

[1] Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E. (2013). Making better use of accu-
racy data in land change studies: Estimating accuracy and area and quantifying uncertainty using
stratified estimation. Remote Sensing of Environment, 129, pp.122-131.

[2] Olofsson, P., Foody G.M., Herold M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. (2014)
Good practices for estimating area and assessing accuracy of land change. Remote Sensing of
Environment, 148, pp. 42-57.

[3] FAO, Map Accuracy Assessment and Area Estimation: A Practical Guide. National forest
monitoring assessment working paper No.46/E, 2016.

Examples

if (sits_run_examples()) {
# show accuracy for a set of samples
train_data <- sits_sample(samples_modis_4bands, n = 200)
test_data <- sits_sample(samples_modis_4bands, n = 200)
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rfor_model <- sits_train(train_data, sits_rfor())
points_class <- sits_classify(test_data, rfor_model)
acc <- sits_accuracy(points_class)

# show accuracy for a data cube classification
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label the probability cube
label_cube <- sits_label_classification(probs_cube)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
# make accuracy assessment
as <- sits_accuracy(label_cube, validation_csv = ground_truth)

}

sits_apply Apply a function on a set of time series

Description

Apply a named expression to a sits cube or a sits tibble to be evaluated and generate new bands
(indices). In the case of sits cubes, it materializes a new band in output_dir using gdalcubes.

Usage

sits_apply(data, ...)

## S3 method for class 'sits'
sits_apply(data, ...)

## S3 method for class 'raster_cube'
sits_apply(
data,
...,
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window_size = 3,
memsize = 1,
multicores = 2,
output_dir = getwd(),
progress = TRUE

)

Arguments

data Valid sits tibble or cube

... Named expressions to be evaluated (see details).

window_size An even number representing the size of the sliding window of sits kernel func-
tions used in expressions (for a list of supported kernel functions, please see
details).

memsize Memory available for classification (in GB).

multicores Number of cores to be used for classification.

output_dir Directory where files will be saved.

progress Show progress bar?

Details

sits_apply() allow any valid R expression to compute new bands. Use R syntax to pass an
expression to this function. Besides arithmetic operators, you can use virtually any R function that
can be applied to elements of a matrix (functions that are unaware of matrix sizes, e.g. sqrt(),
sin(), log()).

Also, sits_apply() accepts a predefined set of kernel functions (see below) that can be applied to
pixels considering its neighborhood. sits_apply() considers a neighborhood of a pixel as a set of
pixels equidistant to it (including itself) according the Chebyshev distance. This neighborhood form
a square window (also known as kernel) around the central pixel (Moore neighborhood). Users can
set the window_size parameter to adjust the size of the kernel window. The image is conceptually
mirrored at the edges so that neighborhood including a pixel outside the image is equivalent to take
the ’mirrored’ pixel inside the edge.

sits_apply() applies a function to the kernel and its result is assigned to a corresponding central
pixel on a new matrix. The kernel slides throughout the input image and this process generates an
entire new matrix, which is returned as a new band to the cube. The kernel functions ignores any
NA values inside the kernel window. Central pixel is NA just only all pixels in the window are NA.

Kernel functions

Value

A sits tibble or a sits cube with new bands, produced according to the requested expression.

Summarizing kernel functions

• w_median(): returns the median of the neighborhood’s values.

• w_sum(): returns the sum of the neighborhood’s values.



sits_as_sf 27

• w_mean(): returns the mean of the neighborhood’s values.

• w_sd(): returns the standard deviation of the neighborhood’s values.

• w_var(): returns the variance of the neighborhood’s values.

• w_min(): returns the minimum of the neighborhood’s values.

• w_max(): returns the maximum of the neighborhood’s values.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

# Get a time series
# Apply a normalization function

point2 <-
sits_select(point_mt_6bands, "NDVI") %>%
sits_apply(NDVI_norm = (NDVI - min(NDVI)) / (max(NDVI) - min(NDVI)))

sits_as_sf Return a sits_tibble or sits_cube as an sf object.

Description

Return a sits_tibble or sits_cube as an sf object.

Usage

sits_as_sf(data, ..., crs)

## S3 method for class 'sits'
sits_as_sf(data, ..., crs = 4326)

## S3 method for class 'raster_cube'
sits_as_sf(data, ...)

Arguments

data A sits tibble or sits cube.

... Additional parameters.

crs A coordinate reference system of samples.

Value

An sf object of point or polygon geometry.
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Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

Examples

if (sits_run_examples()) {
# convert sits tibble to an sf object (point)
sf_object <- sits_as_sf(cerrado_2classes)

# convert sits cube to an sf object (polygon)
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
sf_objet <- sits_as_sf(cube)

}

sits_bands Get the names of the bands

Description

Finds the names of the bands of a set of time series or of a data cube

Usage

sits_bands(x)

## S3 method for class 'sits'
sits_bands(x)

## S3 method for class 'sits_cube'
sits_bands(x)

## S3 method for class 'patterns'
sits_bands(x)

## S3 method for class 'sits_model'
sits_bands(x)

Arguments

x Valid sits tibble (time series or a cube)
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Value

A vector with the names of the bands.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

bands <- sits_bands(samples_modis_4bands)

sits_bbox Get the bounding box of the data

Description

Obtain a vector of limits (either on lat/long for time series or in projection coordinates in the case
of cubes)

Usage

sits_bbox(data, wgs84 = FALSE, ...)

## S3 method for class 'sits'
sits_bbox(data, ...)

## S3 method for class 'sits_cube'
sits_bbox(data, wgs84 = FALSE, ...)

Arguments

data Valid sits tibble (time series or a cube).

wgs84 Reproject bbox to WGS84 (EPSG:4326)?

... Additional parameters (not implemented).

Value

Bounding box in WGS84 for time series or on the cube projection for a data cube unless wgs84
parameter is TRUE.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>
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Examples

bbox <- sits_bbox(samples_modis_4bands)

sits_classify Classify time series or data cubes

Description

This function classifies a set of time series or data cube given a trained model prediction model
created by sits_train.

SITS supports the following models:

• support vector machines: see sits_svm

• random forests: see sits_rfor

• extreme gradient boosting: see sits_xgboost

• multi-layer perceptrons: see sits_mlp

• 1D CNN: see sits_tempcnn

• deep residual networks:see sits_resnet

• self-attention encoders:see sits_lighttae

Usage

sits_classify(data, ml_model, ...)

## S3 method for class 'sits'
sits_classify(data, ml_model, ..., filter_fn = NULL, multicores = 2)

## S3 method for class 'raster_cube'
sits_classify(
data,
ml_model,
...,
roi = NULL,
filter_fn = NULL,
impute_fn = sits_impute_linear(),
start_date = NULL,
end_date = NULL,
memsize = 8,
multicores = 2,
output_dir = ".",
version = "v1",
verbose = FALSE,
progress = FALSE

)
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Arguments

data Data cube.

ml_model R model trained by sits_train.

... Other parameters for specific functions.

filter_fn Smoothing filter to be applied (if desired).

multicores Number of cores to be used for classification.

roi Region of interest (see below)

impute_fn Impute function to replace NA.

start_date Start date for the classification.

end_date End date for the classification.

memsize Memory available for classification (in GB).

output_dir Directory for output file.

version Version of the output (for multiple classifications).

verbose Print information about processing time?

progress Show progress bar?

Value

Predicted data (classified time series) or a data cube with probabilities for each class.

Note

The "roi" parameter defines a region of interest. It can be an sf_object, a shapefile, or a bounding
box vector with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long values
("lon_min", "lat_min", "lon_max", "lat_max")

The "filter_fn" parameter specifies a smoothing filter to be applied to time series for reducing noise.
Currently, options include Savitzky-Golay (see sits_sgolay) and Whittaker (see sits_whittaker).

The "impute_fn" function is used to remove invalid or cloudy pixels from time series. The default
is a linear interpolator, available in sits_impute_linear. Users can add their custom functions.

The "memsize" and "multicores" parameters are used for multiprocessing. The "multicores" param-
eter defines the number of cores used for processing. The "memsize" parameter controls the amount
of memory available for classification. We recommend using a 4:1 relation between "memsize" and
"multicores".

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# Example of classification of a time series
# Retrieve the samples for Mato Grosso
# select the NDVI band
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# train a random forest model
rf_model <- sits_train(samples_ndvi, ml_method = sits_rfor)

# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = c("NDVI"))
point_class <- sits_classify(point_ndvi, rf_model)
plot(point_class)

# Example of classification of a data cube
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rf_model)
# label the probability cube
label_cube <- sits_label_classification(probs_cube)
# plot the classified image
plot(label_cube)

}

sits_clustering Find clusters in time series samples

Description

These functions support hierarchical agglomerative clustering in sits. They provide support from
creating a dendrogram and using it for cleaning samples.

sits_cluster_dendro() takes a tibble containing time series and produces a sits tibble with an
added "cluster" column. The function first calculates a dendrogram and obtains a validity index
for best clustering using the adjusted Rand Index. After cutting the dendrogram using the chosen
validity index, it assigns a cluster to each sample.

sits_cluster_frequency() computes the contingency table between labels and clusters and pro-
duces a matrix. It needs as input a tibble produced by sits_cluster_dendro().

sits_cluster_clean() takes a tibble with time series that has an additional ‘cluster‘ produced by
sits_cluster_dendro() and removes labels that are minority in each cluster.
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Usage

sits_cluster_dendro(
samples = NULL,
bands = NULL,
dist_method = "dtw_basic",
linkage = "ward.D2",
k = NULL,
palette = "RdYlGn",
.plot = TRUE,
...

)

Arguments

samples Tibble with input set of time series.

bands Bands to be used in the clustering.

dist_method Distance method.

linkage Agglomeration method. Can be any ‘hclust‘ method (see ‘hclust‘). Default is
’ward.D2’.

k Desired number of clusters (overrides default value)

palette Color palette as per ‘grDevices::hcl.pals()‘ function.

.plot Plot the dendrogram?

... Additional parameters to be passed to dtwclust::tsclust() function.

Value

Tibble with added "cluster" column.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

References

"dtwclust" package (https://CRAN.R-project.org/package=dtwclust)

Examples

if (sits_run_examples()) {
clusters <- sits_cluster_dendro(cerrado_2classes)

}
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sits_cluster_clean Removes labels that are minority in each cluster.

Description

Takes a tibble with time series that has an additional ‘cluster‘ produced by sits_cluster_dendro()
and removes labels that are minority in each cluster.

Usage

sits_cluster_clean(samples)

Arguments

samples Tibble with input set of time series with additional cluster information produced
by sits::sits_cluster_dendro().

Value

Tibble with time series where clusters have been cleaned of labels that were in a minority at each
cluster.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
clusters <- sits_cluster_dendro(cerrado_2classes)
freq1 <- sits_cluster_frequency(clusters)
freq1
clean_clusters <- sits_cluster_clean(clusters)
freq2 <- sits_cluster_frequency(clean_clusters)
freq2

}

sits_cluster_frequency

Show label frequency in each cluster produced by dendrogram analy-
sis

Description

Show label frequency in each cluster produced by dendrogram analysis
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Usage

sits_cluster_frequency(samples)

Arguments

samples Tibble with input set of time series with additional cluster information produced
by sits::sits_cluster_dendro.

Value

A matrix containing frequencies of labels in clusters.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
clusters <- sits_cluster_dendro(cerrado_2classes)
freq <- sits_cluster_frequency(clusters)
freq

}

sits_confidence_sampling

Suggest high confidence samples to increase the training set.

Description

Suggest points for increasing the training set. These points are labelled with high confidence so they
can be added to the training set. They need to have a satisfactory margin of confidence to be selected.
The input is a probability cube. For each label, the algorithm finds out location where the machine
learning model has high confidence in choosing this label compared to all others. The algorithm
also considers a minimum distance between new labels, to minimize spatial autocorrelation effects.

This function is best used in the following context

• 1. Select an initial set of samples.

• 2. Train a machine learning model.

• 3. Build a data cube and classify it using the model.

• 4. Run a Bayesian smoothing in the resulting probability cube.

• 5. Create an uncertainty cube.

• 6. Perform confidence sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the like-
lihood that the resulting pixels with provide good quality samples for each class.
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Usage

sits_confidence_sampling(
probs_cube,
n = 20,
min_margin = 0.9,
sampling_window = 10

)

Arguments

probs_cube A probability cube. See sits_classify.
n Number of suggested points per class.
min_margin Minimum margin of confidence to select a sample
sampling_window

Window size for collecting points (in pixels). The minimum window size is 10.

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet
the minimum distance criteria.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# build a random forest model
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
rfor_model <- sits_train(samples_ndvi, ml_method = sits_rfor())
# classify the cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# obtain a new set of samples for active learning
# the samples are located in uncertain places
new_samples <- sits_confidence_sampling(probs_cube)

}
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sits_configuration Configure parameters for sits package

Description

These functions load and show sits configurations.

The ‘sits‘ package uses a configuration file that contains information on parameters required by
different functions. This includes information about the image collections handled by ‘sits‘.

sits_config() loads the default configuration file and the user provided configuration file. The fi-
nal configuration is obtained by overriding the options by the values provided in processing_bloat,
rstac_pagination_limit, raster_api_package, and gdal_creation_options parameters.

sits_config_show() prints the current sits configuration options. To show specific configuration
options for a source, a collection, or a palette, users can inform the corresponding keys to source,
collection, and palette parameters.

sits_list_collections() prints the collections available in each cloud service supported by sits.
Users can select to get information only for a single service by using the source parameter.

Usage

sits_config(
run_tests = NULL,
run_examples = NULL,
processing_bloat = NULL,
rstac_pagination_limit = NULL,
raster_api_package = NULL,
gdal_creation_options = NULL,
gdalcubes_chunk_size = NULL,
leaflet_max_megabytes = NULL,
leaflet_comp_factor = NULL,
reset = FALSE

)

sits_config_show(source = NULL, collection = NULL, colors = FALSE)

sits_list_collections(source = NULL)

Arguments

run_tests Should tests be run?

run_examples Should examples be run?
processing_bloat

Estimated growth size of R memory relative to block size.
rstac_pagination_limit

Limit of number of items returned by STAC.
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raster_api_package

Supported raster handling package.

gdal_creation_options

GDAL creation options for GeoTiff.

gdalcubes_chunk_size

Chunk size to be used by gdalcubes

leaflet_max_megabytes

Max image size of an image for leaflet (in MB)

leaflet_comp_factor

Compression factor for leaflet RGB display.

reset Should current configuration options be cleaned before loading config files? De-
fault is FALSE.

source Data source to be shown in detail.

collection Collection key entry to be shown in detail.

colors Show colors?

Details

Users can provide additional configuration files, by specifying the location of their file in the envi-
ronmental variable SITS_CONFIG_USER_FILE.

To see the key entries and contents of the current configuration values, use sits_config_show().

Value

sits_config() returns a list containing the final configuration options.

A list containing the respective configuration printed in the console.

Prints collections available in each cloud service supported by sits.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

current_config <- sits_config()
sits_config_show()
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sits_cube Create data cubes from image collections

Description

Creates a data cube based on spatial and temporal restrictions in collections available in cloud
services or local repositories. The following cloud providers are supported, based on the STAC
protocol:

• "AWS": Amazon Web Services (AWS), see https://registry.opendata.aws/

• "BDC": Brazil Data Cube (BDC), see http://brazildatacube.org/

• "DEAFRICA": Digital Earth Africa, see https://www.digitalearthafrica.org/

• "MPC": Microsoft Planetary Computer, see https://planetarycomputer.microsoft.com/

• "USGS":USGS LANDSAT collection, see https://registry.opendata.aws/usgs-landsat/

Data cubes can also be created using local files (see details).

Usage

sits_cube(source, collection, ..., data_dir = NULL)

## S3 method for class 'stac_cube'
sits_cube(
source,
collection,
...,
data_dir = NULL,
bands = NULL,
tiles = NULL,
roi = NULL,
start_date = NULL,
end_date = NULL,
platform = NULL

)

## S3 method for class 'local_cube'
sits_cube(
source,
collection,
data_dir,
...,
bands = NULL,
start_date = NULL,
end_date = NULL,
labels = NULL,
parse_info = NULL,
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delim = "_",
multicores = 2,
progress = TRUE

)

Arguments

source Data source (one of "AWS", "BDC", "DEAFRICA", "MPC", "USGS").

collection Image collection in data source (To find out the supported collections, use sits_list_collections()).

... Other parameters to be passed for specific types.

data_dir Local directory where images are stored (for local cubes).

bands Spectral bands and indices to be included in the cube (optional).

tiles Tiles from the collection to be included in the cube (see details below).

roi Filter collection by region of interest (see details below).
start_date, end_date

Initial and final dates to include images from the collection in the cube (op-
tional).

platform Optional parameter specifying the platform in case of collections that include
more than one satellite.

labels Labels associated to the classes (only for result cubes).

parse_info Parsing information for local files.

delim Delimiter for parsing local files.

multicores Number of workers for parallel processing

progress Show a progress bar?

Details

To create cubes from cloud providers, users need to inform:

• source: One of "AWS", "BDC", "DEAFRICA", "MPC", "USGS".

• collection: Use sits_list_collections() to see which collections are supported.

• tiles: A set of tiles defined according to the collection tiling grid.

• roi: Region of interest in WGS84 coordinates.

Either tiles or roi must be informed. The parameters bands, start_date, and end_date are
optional for cubes created from cloud providers.

The roi parameter allows a selection of an area of interest, either using a named vector ("lon_min",
"lat_min", "lon_max", "lat_max") in WGS84, a sfc or sf object from sf package in WGS84 pro-
jection. GeoJSON geometries (RFC 7946) and shapefiles should be converted to sf objects before
being used to define a region of interest. This parameter does not crop a region; it only selects
images that intersect the roi.

To create a cube from local files, users need to inform:

• source: Provider from where the data has been downloaded (e.g, "BDC", "AWS").



sits_cube 41

• collection:Collection where the data has been extracted from.

• data_dir: Local directory where images are stored.

• parse_info: Parsing information for files (see below).

• delim: Delimiter character for parsing files (see below).

To create a cube from local files, all images should have the same spatial resolution and projection
and each file should contain a single image band for a single date. Files can belong to different tiles
of a spatial reference system and file names need to include tile, date, and band information. For ex-
ample: "CBERS-4_022024_B13_2018-02-02.tif" and "cube_20LKP_B02_2018-07-18.jp2" are
accepted names. The user has to provide parsing information to allow sits to extract values of tile,
band, and date. In the examples above, the parsing info is c("X1", "tile", "band", "date") and
the delimiter is "_".

It is also possible to create result cubes; these are local cubes that have been produced by classifica-
tion or post-classification algorithms. In this case, there are more parameters that are required (see
below) and the parameter parse_info is specified differently:

• band: The band name is associated to the type of result. Use "probs", for probability
cubes produced by sits_classify(); "bayes", or "bilat" (bilateral) according to the func-
tion selected when using sits_smooth(); "entropy" when using sits_uncertainty(), or
"class" for cubes produced by sits_label_classification().

• labels: Labels associated to the classification results.

• parse_info: File name parsing information has to allow sits to deduce the values of "tile",
"start_date", "end_date" from the file name. Default is c("X1", "X2", "tile", "start_date",
"end_date", "band"). Note that, unlike non-classified image files, cubes with results have
both "start_date" and "end_date".

Value

A tibble describing the contents of a data cube.

Note

In MPC, sits can access are two open data collections: "SENTINEL-S2-L2A" for Sentinel-2/2A im-
ages, and "LANDSAT-C2-L2" for the Landsat-4/5/7/8/9 collection. (requester-pays) and "SENTINEL-S2-L2A-COGS"
(open data).

Sentinel-2/2A level 2A files in MPC are organized by sensor resolution. The bands in 10m resolu-
tion are "B02", "B03", "B04", and "B08". The 20m bands are "B05", "B06", "B07", "B8A", "B11",
and "B12". Bands "B01" and "B09" are available at 60m resolution. The "CLOUD" band is also
available.

All Landsat-4/5/7/8/9 images in MPC have bands with 30 meter resolution. To account for differ-
ences between the different sensors, Landsat bands in this collection have been renamed "BLUE",
"GREEN", "RED", "NIR08", "SWIR16" and "SWIR22". The "CLOUD" band is also available.

In AWS, there are two types of collections: open data and requester-pays. Currently, sits sup-
ports collection "SENTINEL-S2-L2A" (requester-pays) and "SENTINEL-S2-L2A-COGS" (open data).
There is no need to provide AWS credentials to access open data collections. For requester-pays
data, users need to provide their access codes as environment variables, as follows: Sys.setenv(
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AWS_ACCESS_KEY_ID = <your_access_key>, AWS_SECRET_ACCESS_KEY = <your_secret_access_key>
)

Sentinel-2/2A level 2A files in AWS are organized by sensor resolution. The AWS bands in 10m
resolution are "B02", "B03", "B04", and "B08". The 20m bands are "B05", "B06", "B07", "B8A",
"B11", and "B12". Bands "B01" and "B09" are available at 60m resolution.

For DEAFRICA, sits currently works with collection "S2_L2A" (open data). This collection is the
same as AWS collection "SENTINEL-S2-L2A-COGS", and is located in Africa (Capetown) for faster
access to African users. No payment for access is required.

For USGS, sits currently works with collection "LANDSAT-C2L2-SR", which corresponds to Land-
sat Collection 2 Level-2 surface reflectance data, covering Landsat-8 dataset. This collection is
requester-pays and requires payment for accessing.

All BDC collections are regularized. BDC users need to provide their credentials using environment
variables. To create your credentials, please see <brazil-data-cube.github.io/applications/dc_explorer/token-
module.html>. Accessing data in the BDC is free. After obtaining the BDC access key, please in-
clude it as an environment variable, as follows: Sys.setenv( BDC_ACCESS_KEY = <your_bdc_access_key>
)

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

References

rstac package (https://github.com/brazil-data-cube/rstac)

Examples

if (sits_run_examples()) {

# --- Access to the Brazil Data Cube
# Provide your BDC credentials as environment variables
bdc_access_key <- Sys.getenv("BDC_ACCESS_KEY")
if (nchar(bdc_access_key) == 0) {

stop("No BDC_ACCESS_KEY defined in environment.")
}

# create a raster cube file based on the information in the BDC
cbers_tile <- sits_cube(

source = "BDC",
collection = "CB4_64_16D_STK-1",
bands = c("NDVI", "EVI"),
tiles = "022024",
start_date = "2018-09-01",
end_date = "2019-08-28"

)

# --- Access to Digital Earth Africa
# create a raster cube file based on the information about the files
# DEAFRICA does not support definition of tiles
cube_dea <- sits_cube(

source = "DEAFRICA",
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collection = "s2_l2a",
bands = c("B04", "B08"),
roi = c(

"lat_min" = 17.379,
"lon_min" = 1.1573,
"lat_max" = 17.410,
"lon_max" = 1.1910

),
start_date = "2019-01-01",
end_date = "2019-10-28"

)

# --- Access to AWS open data Sentinel 2/2A level 2 collection
s2_cube <- sits_cube(

source = "AWS",
collection = "sentinel-s2-l2a-cogs",
tiles = c("20LKP", "20LLP"),
bands = c("B04", "B08", "B11"),
start_date = "2018-07-18",
end_date = "2019-07-23"

)

# --- Access to USGS Landsat cubes (requester pays)
# --- Need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
usgs_cube <- sits_cube(

source = "USGS",
collection = "landsat-c2l2-sr",
bands = c("B04", "CLOUD"),
roi = c(

"xmin" = -50.379,
"ymin" = -10.1573,
"xmax" = -50.410,
"ymax" = -10.1910

),
start_date = "2019-01-01",
end_date = "2019-10-28"

)

# -- Creating Sentinel cube from MPC"
s2_cube <- sits_cube(

source = "MPC",
collection = "sentinel-2-l2a",
tiles = "20LKP",
bands = c("B05", "CLOUD"),
start_date = "2018-07-18",
end_date = "2018-08-23"

)

# -- Creating Landsat cube from MPC"
mpc_cube <- sits_cube(

source = "MPC",
collection = "LANDSAT-C2-L2",
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bands = c("BLUE", "RED", "CLOUD"),
roi = c(

"xmin" = -50.379,
"ymin" = -10.1573,
"xmax" = -50.410,
"ymax" = -10.1910

),
start_date = "2005-01-01",
end_date = "2006-10-28"

)

# --- Create a cube based on a local MODIS data
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

modis_cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_"

)
}

sits_filters Filter time series and data cubes

Description

Filtering functions should be used with ‘sits_filter()‘. The following filtering functions is supported
by ‘sits‘:

‘sits_whittaker()‘: The algorithm searches for an optimal warping polynomial. The degree of
smoothing depends on smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5
for very slight smoothing and lambda = 5.0 for strong smoothing.

‘sits_filter()‘: applies a filter to all bands.

‘sits_sgolay()‘: An optimal polynomial for warping a time series. The degree of smoothing depends
on the filter order (usually 3.0). The order of the polynomial uses the parameter ‘order‘ (default =
3), the size of the temporal window uses the parameter ‘length‘ (default = 5).

Usage

sits_whittaker(data = NULL, lambda = 0.5)

sits_filter(data, filter = sits_whittaker())

sits_sgolay(data = NULL, order = 3, length = 5)
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Arguments

data Time series or matrix.

lambda Smoothing factor to be applied (default 0.5).

filter a filter function such as ‘sits_whittaker()‘ or ‘sits_sgolay()‘.

order Filter order (integer).

length Filter length (must be odd).

Value

Filtered time series

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

References

Francesco Vuolo, Wai-Tim Ng, Clement Atzberger, "Smoothing and gap-filling of high resolution
multi-spectral time series: Example of Landsat data", Int Journal of Applied Earth Observation and
Geoinformation, vol. 57, pg. 202-213, 2107.

A. Savitzky, M. Golay, "Smoothing and Differentiation of Data by Simplified Least Squares Proce-
dures". Analytical Chemistry, 36 (8): 1627–39, 1964.

See Also

sits_apply

Examples

# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit, suffix = c("", ".WHIT"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

# Filter the point using the Savitzky-Golay smoother
point_sg <- sits_filter(point_ndvi,

filter = sits_sgolay(order = 3, length = 5)
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)
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_sg, suffix = c("", ".SG"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

sits_formula_linear Define a linear formula for classification models

Description

Provides a symbolic description of a fitting model. Tells the model to do a linear transformation of
the input values. The ‘predictors_index‘ parameter informs the positions of fields corresponding to
formula independent variables. If no value is given, that all fields will be used as predictors.

Usage

sits_formula_linear(predictors_index = -2:0)

Arguments

predictors_index

Index of the valid columns whose names are used to compose formula (default:
-2:0).

Value

A function that computes a valid formula using a linear function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_4bands,

ml_method = sits_svm(formula = sits_formula_logref()))
# select the bands to classify the point
sample_bands <- sits_bands(samples_modis_4bands)
point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
# classify the point
point_class <- sits_classify(point_4bands, ml_model)
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plot(point_class)
}

sits_formula_logref Define a loglinear formula for classification models

Description

A function to be used as a symbolic description of some fitting models such as svm and random for-
est. This function tells the models to do a log transformation of the inputs. The ‘predictors_index‘
parameter informs the positions of ‘tb‘ fields corresponding to formula independent variables. If no
value is given, the default is NULL, a value indicating that all fields will be used as predictors.

Usage

sits_formula_logref(predictors_index = -2:0)

Arguments

predictors_index

Index of the valid columns to compose formula (default: -2:0).

Value

A function that computes a valid formula using a log function.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_4bands,

ml_method = sits_svm(formula = sits_formula_logref()))
# select the bands to classify the point
sample_bands <- sits_bands(samples_modis_4bands)
point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
# classify the point
point_class <- sits_classify(point_4bands, ml_model)
plot(point_class)

}
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sits_geo_dist Compute the minimum distances among samples and prediction
points.

Description

Compute the minimum distances among samples and samples to prediction points, following the
approach proposed by Meyer and Pebesma(2022).

Usage

sits_geo_dist(samples, roi = NULL, n = 1000)

Arguments

samples A ‘sits‘ tibble with time series samples.

roi A ‘sf‘ object (polygon) with a region of interest for prediction.

n Maximum number of samples to consider.

Value

A tibble with sample-to-sample and sample-to-prediction distances.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Meyer, H., Pebesma, E. "Machine learning-based global maps of ecological variables and the chal-
lenge of assessing them", Nature Communications 13, 2208 (2022). https://doi.org/10.1038/s41467-
022-29838-9

Examples

if (sits_run_examples()) {
# read a shapefile for the state of Mato Grosso, Brazil
mt_shp <- system.file("extdata/shapefiles/mato_grosso/mt.shp",

package = "sits"
)
# convert to an sf object
mt_sf <- sf::read_sf(mt_shp)
# calculate sample-to-sample and sample-to-prediction distances
distances <- sits_geo_dist(samples_modis_4bands, mt_sf)
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# plot sample-to-sample and sample-to-prediction distances
plot(distances)

}

sits_get_data Get time series from data cubes and cloud services

Description

Retrieve a set of time series from a data cube or from a time series service. Data cubes and puts it
in a "sits tibble". Sits tibbles are the main structures of sits package. They contain both the satellite
image time series and their metadata.

Usage

sits_get_data(
cube,
samples,
...,
start_date = as.Date(sits_timeline(cube)[1]),
end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
label = "NoClass",
bands = sits_bands(cube),
crs = 4326,
impute_fn = sits_impute_linear(),
label_attr = NULL,
n_sam_pol = 30,
pol_avg = FALSE,
pol_id = NULL,
multicores = 2,
output_dir = ".",
progress = FALSE

)

## Default S3 method:
sits_get_data(cube, samples, ...)

## S3 method for class 'csv'
sits_get_data(
cube,
samples,
...,
bands = sits_bands(cube),
crs = 4326,
impute_fn = sits_impute_linear(),
multicores = 2,
output_dir = ".",
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progress = FALSE
)

## S3 method for class 'shp'
sits_get_data(
cube,
samples,
...,
label = "NoClass",
start_date = as.Date(sits_timeline(cube)[1]),
end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
bands = sits_bands(cube),
impute_fn = sits_impute_linear(),
label_attr = NULL,
n_sam_pol = 30,
pol_avg = FALSE,
pol_id = NULL,
multicores = 2,
output_dir = ".",
progress = FALSE

)

## S3 method for class 'sf'
sits_get_data(
cube,
samples,
...,
bands = sits_bands(cube),
start_date = as.Date(sits_timeline(cube)[1]),
end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
impute_fn = sits_impute_linear(),
label = "NoClass",
label_attr = NULL,
n_sam_pol = 30,
pol_avg = FALSE,
pol_id = NULL,
multicores = 2,
output_dir = ".",
progress = FALSE

)

## S3 method for class 'sits'
sits_get_data(
cube,
samples,
...,
bands = sits_bands(cube),
impute_fn = sits_impute_linear(),
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multicores = 2,
output_dir = ".",
progress = FALSE

)

## S3 method for class 'data.frame'
sits_get_data(
cube,
samples,
...,
start_date = as.Date(sits_timeline(cube)[1]),
end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
label = "NoClass",
bands = sits_bands(cube),
crs = 4326,
impute_fn = sits_impute_linear(),
multicores = 2,
output_dir = ".",
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved.

samples Samples location (sits, sf, or data.frame).

... Specific parameters for specific cases.

start_date Start of the interval for the time series in "YYYY-MM-DD" format (optional).

end_date End of the interval for the time series in "YYYY-MM-DD" format (optional).

label Label to be assigned to the time series (optional).

bands Bands to be retrieved (optional).

crs A coordinate reference system of samples. The provided crs could be a character
(e.g, "EPSG:4326" or "WGS84" or a proj4string), or a a numeric with the EPSG
code (e.g. 4326). This parameter only works for ’csv’ or data.frame’ samples.
Default is 4326.

impute_fn Imputation function for NA values.

label_attr Attribute in the shapefile or sf object to be used as a polygon label.

n_sam_pol Number of samples per polygon to be read (for POLYGON or MULTIPOLY-
GON shapefile).

pol_avg Summarize samples for each polygon?

pol_id ID attribute for polygons.

multicores Number of threads to process the time series.

output_dir Directory where the time series will be saved as rds. Default is the current path.

progress A logical value indicating if a progress bar should be shown. Default is FALSE.
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Value

A tibble with the metadata and data for each time series <longitude, latitude, start_date, end_date,
label, cube, time_series>.

Note

There are four ways of specifying data to be retrieved using the "samples" parameter:

• CSV file: Provide a CSV file with columns "longitude", "latitude", "start_date", "end_date"
and "label" for each sample

• SHP file: Provide a shapefile in POINT or POLYGON geometry containing the location of
the samples and an attribute to be used as label. Also, provide start and end date for the time
series.

• sits object: A sits tibble.

• sf object: An "sf" object with POINT or POLYGON geometry.

• data.frame: A data.frame with with mandatory columns "longitude", "latitude".

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara

Examples

if (sits_run_examples()) {
# reading a lat/long from a local cube
# create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
samples <- tibble::tibble(longitude = -55.66738, latitude = -11.76990)
point_ndvi <- sits_get_data(raster_cube, samples)
#
# reading samples from a cube based on a CSV file
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
points <- sits_get_data(cube = raster_cube, samples = csv_file)

# reading a shapefile from BDC (Brazil Data Cube)
# needs a BDC access key that can be obtained
# for free by registering in the BDC website
if (nchar(Sys.getenv("BDC_ACCESS_KEY")) > 0) {
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# create a data cube from the BDC
bdc_cube <- sits_cube(

source = "BDC",
collection = "CB4_64_16D_STK-1",
bands = c("NDVI", "EVI"),
tiles = c("022024", "022025"),
start_date = "2018-09-01",
end_date = "2018-10-28"

)
# define a shapefile to be read from the cube
shp_file <- system.file("extdata/shapefiles/bdc-test/samples.shp",

package = "sits"
)
# get samples from the BDC based on the shapefile
time_series_bdc <- sits_get_data(

cube = bdc_cube,
samples = shp_file)

}
}

sits_impute_linear Replace NA values with linear interpolation

Description

Remove NA by linear interpolation

Usage

sits_impute_linear(data = NULL)

Arguments

data A time series vector or matrix

Value

A set of filtered time series using the imputation function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# reading a lat/long from a local cube
# create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
samples <- tibble::tibble(longitude = -55.66738, latitude = -11.76990)
point_ndvi <- sits_get_data(

cube = raster_cube,
samples = samples,
impute_fn = sits_impute_linear())

#
# reading samples from a cube based on a CSV file
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
points <- sits_get_data(cube = raster_cube, samples = csv_file)

}

sits_kfold_validate Cross-validate time series samples

Description

Splits the set of time series into training and validation and perform k-fold cross-validation. Cross-
validation is a technique for assessing how the results of a statistical analysis will generalize to an
independent data set. It is mainly used in settings where the goal is prediction, and one wants to
estimate how accurately a predictive model will perform. One round of cross-validation involves
partitioning a sample of data into complementary subsets, performing the analysis on one subset
(called the training set), and validating the analysis on the other subset (called the validation set or
testing set).

The k-fold cross validation method involves splitting the dataset into k-subsets. For each subset is
held out while the model is trained on all other subsets. This process is completed until accuracy is
determine for each instance in the dataset, and an overall accuracy estimate is provided.

This function returns the confusion matrix, and Kappa values.

Usage

sits_kfold_validate(
samples,
folds = 5,
ml_method = sits_rfor(),



sits_kfold_validate 55

multicores = 2
)

Arguments

samples Time series.

folds Number of partitions to create.

ml_method Machine learning method.

multicores Number of cores to process in parallel.

Value

A caret::confusionMatrix object to be used for validation assessment.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# A dataset containing a tibble with time series samples
# for the Mato Grosso state in Brasil
# create a list to store the results
results <- list()

# accuracy assessment lightTAE
acc_ltae <- sits_kfold_validate(samples_modis_4bands,

folds = 5,
ml_method = sits_lighttae()

)
# use a name
acc_ltae$name <- "LightTAE"
# put the result in a list
results[[length(results) + 1]] <- acc_ltae

# Deep Learning - ResNet
acc_rn <- sits_kfold_validate(samples_modis_4bands,

folds = 5,
ml_method = sits_resnet()

)
acc_rn$name <- "ResNet"
# put the result in a list
results[[length(results) + 1]] <- acc_rn
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# save to xlsx file
sits_to_xlsx(results, file = "./accuracy_mato_grosso_dl.xlsx")

}

sits_labels Get labels associated to a data set

Description

Finds labels in a sits tibble or data cube

Usage

sits_labels(data)

## S3 method for class 'sits'
sits_labels(data)

## S3 method for class 'sits_cube'
sits_labels(data)

## S3 method for class 'patterns'
sits_labels(data)

## S3 method for class 'sits_model'
sits_labels(data)

Arguments

data Time series or a cube.

Value

The labels associated to a set of time series or to a data cube.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# read a tibble with 400 samples of Cerrado and 346 samples of Pasture
data(cerrado_2classes)
# print the labels
sits_labels(cerrado_2classes)
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sits_labels_summary Inform label distribution of a set of time series

Description

Describes labels in a sits tibble

Usage

sits_labels_summary(data)

## S3 method for class 'sits'
sits_labels_summary(data)

Arguments

data Valid sits tibble

Value

A tibble with the frequency of each label.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# read a tibble with 400 samples of Cerrado and 346 samples of Pasture
data(cerrado_2classes)
# print the labels
sits_labels_summary(cerrado_2classes)

sits_label_classification

Build a labelled image from a probability cube

Description

Takes a set of classified raster layers with probabilities, and label them based on the maximum
probability for each pixel.
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Usage

sits_label_classification(
cube,
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

Arguments

cube Classified image data cube.

multicores Number of workers to label the classification in parallel.

memsize maximum overall memory (in GB) to label the classification.

output_dir Output directory for classified files.

version Version of resulting image (in the case of multiple runs).

Value

A data cube with an image with the classified map.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# plot the probability cube
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plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}

sits_lighttae Train a model using Lightweight Temporal Self-Attention Encoder

Description

Implementation of Light Temporal Attention Encoder (L-TAE) for satellite image time series

This function is based on the paper by Vivien Garnot referenced below and code available on github
at https://github.com/VSainteuf/lightweight-temporal-attention-pytorch If you use this method, please
cite the original TAE and the LTAE paper.

We also used the code made available by Maja Schneider in her work with Marco Körner referenced
below and available at https://github.com/maja601/RC2020-psetae.

Usage

sits_lighttae(
samples = NULL,
samples_validation = NULL,
epochs = 150,
batch_size = 128,
validation_split = 0.2,
optimizer = torchopt::optim_adamw,
opt_hparams = list(lr = 0.005, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 50,
lr_decay_rate = 1,
patience = 20,
min_delta = 0.01,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

epochs Number of iterations to train the model.
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batch_size Number of samples per gradient update.
validation_split

Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification of data cubes.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

References

Vivien Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata, "Satellite Image Time
Series Classification with Pixel-Set Encoders and Temporal Self-Attention", 2020 Conference on
Computer Vision and Pattern Recognition. pages 12322-12331. DOI: 10.1109/CVPR42600.2020.01234

Vivien Garnot, Loic Landrieu, "Lightweight Temporal Self-Attention for Classifying Satellite Im-
ages Time Series", arXiv preprint arXiv:2007.00586, 2020.

Schneider, Maja; Körner, Marco, "[Re] Satellite Image Time Series Classification with Pixel-Set
Encoders and Temporal Self-Attention." ReScience C 7 (2), 2021. DOI: 10.5281/zenodo.4835356

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a lightTAE model
torch_model <- sits_train(samples_ndvi, sits_lighttae())
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# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}

sits_merge Merge two data sets (time series or cubes)

Description

To merge two series, we consider that they contain different attributes but refer to the same data
cube, and spatiotemporal location. This function is useful to merge different bands of the same
locations. For example, one may want to put the raw and smoothed bands for the same set of
locations in the same tibble.

To merge data cubes, they should share the same sensor, resolution, bounding box, timeline, and
have different bands.

Usage

sits_merge(data1, data2, ..., suffix = c(".1", ".2"))

## S3 method for class 'sits'
sits_merge(data1, data2, ..., suffix = c(".1", ".2"))

## S3 method for class 'raster_cube'
sits_merge(data1, data2, ..., suffix = c(".1", ".2"))
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Arguments

data1 Time series or cube to be merged.

data2 Time series or cube to be merged.

... Additional parameters

suffix If there are duplicate bands in data1 and data2 these suffixes will be added.

Value

merged data sets

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit, suffix = c("", ".WHIT"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

}

sits_mixture_model Multiple endmember spectral mixture analysis

Description

Create a multiple endmember spectral mixture analyses fractions images. To calculate the fraction
of each endmember, the non-negative least squares (NNLS) solver is used. The NNLS implemen-
tation was made by Jakob Schwalb-Willmann in RStoolbox package (licensed as GPL>=3).

Usage

sits_mixture_model(
cube,
endmembers_spectra,
memsize = 1,
multicores = 2,
output_dir = getwd(),
rmse_band = TRUE,
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remove_outliers = TRUE,
progress = TRUE

)

Arguments

cube A sits data cube.
endmembers_spectra

Reference endmembers spectra in a tibble format. (see details below).

memsize Memory available for mixture model (in GB).

multicores Number of cores to be used for generate the mixture model.

output_dir Directory for output file.

rmse_band A boolean indicating whether the error associated with the linear model should
be generated. If true, a new band with the errors for each pixel is generated
using the root mean square measure (RMSE). Default is TRUE.

remove_outliers

A boolean indicating whether values larger and smaller than the limits in the
image metadata, and missing values should be marked as NA. This parameter
can be used when the cloud component is added to the mixture model. Default
is TRUE.

progress Show progress bar? Default is TRUE.

Value

a sits cube with the generated fractions.

Note

The endmembers_spectra parameter should be a tibble, csv or a shapefile. endmembers_spectra
must have the following columns: type, which defines the endmembers that will be created and the
columns corresponding to the bands that will be used in the mixture model.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Rolf Simoes, <rolf.simoes@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

References

RStoolbox package (https://github.com/bleutner/RStoolbox/)
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Examples

if (sits_run_examples()) {
# --- Create a cube based on a local MODIS data
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

modis_cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_"

)

endmembers_spectra <- tibble::tibble(
type = c("vegetation", "not-vegetation"),
NDVI = c(8500, 3400)

)

mixture_cube <- sits_mixture_model(
cube = modis_cube,
endmembers_spectra = endmembers_spectra,
memsize = 4,
multicores = 2,
output_dir = tempdir()

)
}

sits_mlp Train multi-layer perceptron models using torch

Description

Use a multi-layer perceptron algorithm to classify data. This function uses the R "torch" and "luz"
packages. Please refer to the documentation of those package for more details.

Usage

sits_mlp(
samples = NULL,
samples_validation = NULL,
layers = c(512, 512, 512),
dropout_rates = c(0.2, 0.3, 0.4),
optimizer = torchopt::optim_adamw,
opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
epochs = 100,
batch_size = 64,
validation_split = 0.2,
patience = 20,
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min_delta = 0.01,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

layers Vector with number of hidden nodes in each layer.

dropout_rates Vector with the dropout rates (0,1) for each layer.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability.. weight_decay: L2
regularization

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.
validation_split

Number between 0 and 1. Fraction of the training data for validation. The model
will set apart this fraction and will evaluate the loss and any model metrics on
this data at the end of each epoch.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A torch mlp model to be used for classification.

Note

The parameters for the MLP have been chosen based on the work by Wang et al. 2017 that takes
multilayer perceptrons as the baseline for time series classifications: (a) Three layers with 512
neurons each, specified by the parameter ‘layers‘; (b) dropout rates of 10 (c) the "optimizer_adam"
as optimizer (default value); (d) a number of training steps (‘epochs‘) of 100; (e) a ‘batch_size‘
of 64, which indicates how many time series are used for input at a given steps; (f) a validation
percentage of 20 will be randomly set side for validation. (g) The "relu" activation function.

#’ @references

Zhiguang Wang, Weizhong Yan, and Tim Oates, "Time series classification from scratch with
deep neural networks: A strong baseline", 2017 international joint conference on neural networks
(IJCNN).

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Souza, <lipecaso@gmail.com>

Alber Sanchez, <alber.ipia@inpe.br>

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create an MLP model
torch_model <- sits_train(samples_ndvi, sits_mlp())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}

sits_patterns Find temporal patterns associated to a set of time series

Description

This function takes a set of time series samples as input estimates a set of patterns. The patterns are
calculated using a GAM model. The idea is to use a formula of type y ~ s(x), where x is a temporal
reference and y if the value of the signal. For each time, there will be as many predictions as there
are sample values. The GAM model predicts a suitable approximation that fits the assumptions of
the statistical model, based on a smooth function.
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This method is based on the "createPatterns" method of the dtwSat package, which is also described
in the reference paper.

Usage

sits_patterns(data = NULL, freq = 8, formula = y ~ s(x), ...)

Arguments

data Time series.

freq Interval in days for estimates.

formula Formula to be applied in the estimate.

... Any additional parameters.

Value

Time series with patterns.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

References

Maus V, Camara G, Cartaxo R, Sanchez A, Ramos F, Queiroz GR. A Time-Weighted Dynamic
Time Warping Method for Land-Use and Land-Cover Mapping. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 9(8):3729-3739, August 2016. ISSN 1939-1404.
doi:10.1109/JSTARS.2016.2517118.

Examples

if (sits_run_examples()) {
patterns <- sits_patterns(cerrado_2classes)
plot(patterns)

}
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sits_reduce_imbalance Reduce imbalance in a set of samples

Description

Takes a sits tibble with different labels and returns a new tibble. Deals with class imbalance using
the synthetic minority oversampling technique (SMOTE) for oversampling. Undersampling is done
using the SOM methods available in the sits package.

Usage

sits_reduce_imbalance(
samples,
n_samples_over = 200,
n_samples_under = 400,
multicores = 2

)

Arguments

samples Sample set to rebalance

n_samples_over Number of samples to oversample for classes with samples less than this number
(use n_samples_over = NULL to avoid oversampling).

n_samples_under

Number of samples to undersample for classes with samples more than this num-
ber (use n_samples_over = NULL to avoid oversampling).

multicores Number of cores to process the data (default 2).

Value

A sits tibble with reduced sample imbalance.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

References

The reference paper on SMOTE is N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of artificial intelligence research,
321-357, 2002.
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Undersampling uses the SOM map developed by Lorena Santos and co-workers and used in the
sits_som_map() function. The SOM map technique is described in the paper: Lorena Santos, Karine
Ferreira, Gilberto Camara, Michelle Picoli, Rolf Simoes, “Quality control and class noise reduction
of satellite image time series”. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 177,
pp 75-88, 2021. https://doi.org/10.1016/j.isprsjprs.2021.04.014.

Examples

if (sits_run_examples()) {
# print the labels summary for a sample set
sits_labels_summary(samples_modis_4bands)
# reduce the sample imbalance
new_samples <- sits_reduce_imbalance(samples_modis_4bands,

n_samples_over = 200,
n_samples_under = 200,
multicores = 1

)
# print the labels summary for the rebalanced set
sits_labels_summary(new_samples)

}

sits_regularize Build a regular data cube from an irregular one

Description

Produces regular data cubes for analysis-ready data (ARD) image collections. Analysis-ready data
(ARD) collections available in AWS, MPC, USGS and DEAfrica are not regular in space and time.
Bands may have different resolutions, images may not cover the entire time, and time intervals are
not regular. For this reason, subsets of these collection need to be converted to regular data cubes
before further processing and data analysis.

This function requires users to include the cloud band in their ARD-based data cubes.

Usage

sits_regularize(
cube,
period,
res,
roi = NULL,
output_dir,
multicores = 1,
memsize = 4,
progress = TRUE

)
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Arguments

cube sits_cube object whose observation period and/or spatial resolution is not con-
stant.

period ISO8601-compliant time period for regular data cubes, with number and unit,
where "D", "M" and "Y" stand for days, month and year; e.g., "P16D" for 16
days.

res Spatial resolution of regularized images (in meters).

roi A named numeric vector with a region of interest. See more above.

output_dir Valid directory for storing regularized images.

multicores Number of cores used for regularization; used for parallel processing of input.

memsize Memory available for regularization (in GB).

progress show progress bar?

Value

A sits_cube object with aggregated images.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

The "roi" parameter defines a region of interest. It can be an sf_object, a shapefile, or a bounding
box vector with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long values
("lat_min", "lat_max", "long_min", "long_max"). The sits_regularize function will crop the
images that contain the roi region.

The aggregation method used in sits_regularize sorts the images based on cloud cover, where
images with the fewest clouds at the top of the stack. Once the stack of images is sorted, the method
uses the first valid value to create the temporal aggregation.

The input (non-regular) ARD cube needs to include the cloud band for the regularization to work.

References

Appel, Marius; Pebesma, Edzer. On-demand processing of data cubes from satellite image collec-
tions with the gdalcubes library. Data, v. 4, n. 3, p. 92, 2019. DOI: 10.3390/data4030092.

Examples

if (sits_run_examples()) {
# define a non-regular Sentinel-2 cube in AWS
s2_cube_open <- sits_cube(

source = "AWS",
collection = "SENTINEL-S2-L2A-COGS",
tiles = c("20LKP", "20LLP"),
bands = c("B8A", "SCL"),
start_date = "2018-10-01",
end_date = "2018-11-01"
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)
# create a directory to store the regularized images
dir_images <- paste0(".", "/images_regcube/")
if (!dir.exists(dir_images)) {

dir.create(dir_images)
}
# regularize the cube
rg_cube <- sits_regularize(

cube = s2_cube_open,
output_dir = dir_images,
res = 60,
period = "P16D",
multicores = 2,
memsize = 16

)
}

sits_resnet Train ResNet classification models

Description

Use a ResNet architecture for classifying image time series. The ResNet (or deep residual network)
was proposed by a team in Microsoft Research for 2D image classification. ResNet tries to address
the degradation of accuracy in a deep network. The idea is to replace a deep network with a combi-
nation of shallow ones. In the paper by Fawaz et al. (2019), ResNet was considered the best method
for time series classification, using the UCR dataset. Please refer to the paper for more details.

The R-torch version is based on the code made available by Zhiguang Wang, author of the original
paper. The code was developed in python using keras.

https://github.com/cauchyturing (repo: UCR_Time_Series_Classification_Deep_Learning_Baseline)

The R-torch version also considered the code by Ignacio Oguiza, whose implementation is available
at https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py.

There are differences between Wang’s Keras code and Oguiza torch code. In this case, we have
used Wang’s keras code as the main reference.

Usage

sits_resnet(
samples = NULL,
samples_validation = NULL,
blocks = c(64, 128, 128),
kernels = c(7, 5, 3),
epochs = 100,
batch_size = 64,
validation_split = 0.2,
optimizer = torchopt::optim_adamw,
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opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1,
lr_decay_rate = 0.95,
patience = 20,
min_delta = 0.01,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

blocks Number of 1D convolutional filters for each block of three layers.

kernels Size of the 1D convolutional kernels

epochs Number of iterations to train the model. for each layer of each block.

batch_size Number of samples per gradient update.
validation_split

Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Souza, <lipecaso@gmail.com>
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Alber Sanchez, <alber.ipia@inpe.br>

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Daniel Falbel, <dfalbel@gmail.com>

References

Hassan Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller,
"Deep learning for time series classification: a review", Data Mining and Knowledge Discovery,
33(4): 917–963, 2019.

Zhiguang Wang, Weizhong Yan, and Tim Oates, "Time series classification from scratch with
deep neural networks: A strong baseline", 2017 international joint conference on neural networks
(IJCNN).

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a ResNet model
torch_model <- sits_train(samples_ndvi, sits_resnet())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}
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sits_rfor Train random forest models

Description

Use Random Forest algorithm to classify samples. This function is a front-end to the "randomFor-
est" package. Please refer to the documentation in that package for more details.

Usage

sits_rfor(samples = NULL, num_trees = 120, mtry = NULL, ...)

Arguments

samples Time series with the training samples.

num_trees Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times (default: 120).

mtry Number of variables randomly sampled as candidates at each split (default:
NULL - use default value of randomForest::randomForest() function, i.e.
floor(sqrt(features))).

... Other parameters to be passed to ‘randomForest::randomForest‘ function.

Value

Model fitted to input data (to be passed to sits_classify).

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_4bands,

ml_method = sits_rfor(mtry = 20))
# select the bands to classify the point
sample_bands <- sits_bands(samples_modis_4bands)
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point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
# classify the point
point_class <- sits_classify(point_4bands, rf_model)
plot(point_class)

}

sits_run_examples Informs if sits examples should run

Description

This function informs if sits examples should run. This is useful to avoid running slow examples in
CRAN environment.

Usage

sits_run_examples()

Value

A logical value

Examples

if (sits_run_examples()) {
# set examples to FALSE
sits_config(run_examples = FALSE)
isFALSE(sits_run_examples())
# recover config state
sits_config(run_examples = TRUE)
}

sits_run_tests Informs if sits tests should run

Description

This function informs if sits test should run. Useful to avoid running slow tests in CRAN environ-
ment. Behaviour controlled by environmental variable R_CONFIG_ACTIVE_TESTS

Usage

sits_run_tests()
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Value

TRUE/FALSE

Examples

if (sits_run_examples()) {
# recover config state
config_tests <- sits_run_tests()
# set active tests to FALSE
sits_config(run_tests = FALSE)
isFALSE(sits_run_tests())
# recover config state
# set active tests
sits_config(run_tests = TRUE)
# result should be true
isTRUE(sits_run_tests())
# restore previous state
sits_config(run_tests = config_tests)
}

sits_sample Sample a percentage of a time series

Description

Takes a sits tibble with different labels and returns a new tibble. For a given field as a group criterion,
this new tibble contains a given number or percentage of the total number of samples per group.
Parameter n: number of random samples. Parameter frac: a fraction of random samples. If n is
greater than the number of samples for a given label, that label will be sampled with replacement.
Also, if frac > 1 , all sampling will be done with replacement.

Usage

sits_sample(data, n = NULL, frac = NULL, oversample = TRUE)

Arguments

data Input sits tibble.

n Number of samples to pick from each group of data.

frac Percentage of samples to pick from each group of data.

oversample Oversample classes with small number of samples?

Value

A sits tibble with a fixed quantity of samples.
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Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the labels of the resulting tibble
sits_labels(cerrado_2classes)
# Samples the data set
data <- sits_sample(cerrado_2classes, n = 10)
# Print the labels of the resulting tibble
sits_labels(data)

sits_select Filter bands on a data set (tibble or cube)

Description

Filter only the selected bands from a tibble or a data cube.

Usage

sits_select(data, bands, ...)

## S3 method for class 'sits'
sits_select(data, bands, ...)

## S3 method for class 'sits_cube'
sits_select(data, bands, ..., tiles = NULL)

## S3 method for class 'patterns'
sits_select(data, bands, ...)

Arguments

data A sits tibble or data cube.

bands Character vector with the names of the bands.

... Additional parameters to be provided in the select function.

tiles Character vector with the names of the tiles.

Value

For sits tibble, returns a sits tibble with the selected bands. For data cube, a data cube with the
selected bands.
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Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the original bands
sits_bands(cerrado_2classes)
# Select only the NDVI band
data <- sits_select(cerrado_2classes, bands = c("NDVI"))
# Print the labels of the resulting tibble
sits_bands(data)

sits_smooth Smooth probability cubes with spatial predictors

Description

Takes a set of classified raster layers with probabilities, whose metadata is]created by sits_cube,
and applies a smoothing function. There are three options, defined by the "type" parameter:

• "bayes": Use a bayesian smoother

• "bilateral: Use a bilateral smoother

Usage

sits_smooth(cube, type = "bayes", ...)

## S3 method for class 'bayes'
sits_smooth(
cube,
type = "bayes",
...,
window_size = 5,
smoothness = 20,
covar = FALSE,
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

## S3 method for class 'bilateral'
sits_smooth(
cube,
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type = "bilateral",
...,
window_size = 5,
sigma = 8,
tau = 0.1,
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

Arguments

cube Probability data cube

type Type of smoothing

... Parameters for specific functions

window_size Size of the neighbourhood.

smoothness Estimated variance of logit of class probabilities (Bayesian smoothing parame-
ter). It can be either a matrix or a scalar.

covar a logical argument indicating if a covariance matrix must be computed as the
prior covariance for bayesian smoothing.

multicores Number of cores to run the smoothing function

memsize Maximum overall memory (in GB) to run the smoothing.

output_dir Output directory for image files

version Version of resulting image (in the case of multiple tests)

sigma Standard deviation of the spatial Gaussian kernel (for bilateral smoothing)

tau Standard deviation of the class probs value (for bilateral smoothing)

Value

A tibble with metadata about the output raster objects.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

References

K. Schindler, "An Overview and Comparison of Smooth Labeling Methods for Land-Cover Clas-
sification", IEEE Transactions on Geoscience and Remote Sensing, 50 (11), 4534-4545, 2012 (for
gaussian and bilateral smoothing)
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Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a ResNet model
torch_model <- sits_train(samples_ndvi, sits_resnet())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}

sits_som Use SOM for quality analysis of time series samples

Description

These function use self-organized maps to perform quality analysis in satellite image time series

sits_som_map() creates a SOM map, where high-dimensional data is mapped into a two dimen-
sional map, keeping the topological relations between data patterns. Each sample is assigned to a
neuron, and neurons are placed in the grid based on similarity.

sits_som_evaluate_cluster() analyses the neurons of the SOM map, and builds clusters based
on them. Each cluster is a neuron or a set of neuron categorized with same label. It produces a
tibble with the percentage of mixture of classes in each cluster.

sits_som_clean_samples() evaluates the quality of the samples based on the results of the SOM
map. The algorithm identifies noisy samples, using ‘prior_threshold‘ for the prior probability and
‘posterior_threshold‘ for the posterior probability. Each sample receives an evaluation tag, accord-
ing to the following rule: (a) If the prior probability is < ‘prior_threshold‘, the sample is tagged
as "remove"; (b) If the prior probability is >= ‘prior_threshold‘ and the posterior probability is



sits_som 81

>=‘posterior_threshold‘, the sample is tagged as "clean"; (c) If the prior probability is >= ‘pos-
terior_threshold‘ and the posterior probability is < ‘posterior_threshold‘, the sample is tagged as
"analyze" for further inspection. The user can define which tagged samples will be returned using
the "keep" parameter, with the following options: "clean", "analyze", "remove".

Usage

sits_som_map(
data,
grid_xdim = 10,
grid_ydim = 10,
alpha = 1,
rlen = 100,
distance = "euclidean",
som_radius = 2,
mode = "online"

)

sits_som_clean_samples(
som_map,
prior_threshold = 0.6,
posterior_threshold = 0.6,
keep = c("clean", "analyze")

)

sits_som_evaluate_cluster(som_map)

Arguments

data A tibble with samples to be clustered.

grid_xdim X dimension of the SOM grid (default = 25).

grid_ydim Y dimension of the SOM grid.

alpha Starting learning rate (decreases according to number of iterations).

rlen Number of iterations to produce the SOM.

distance The type of similarity measure (distance).

som_radius Radius of SOM neighborhood.

mode Type of learning algorithm (default = "online").

som_map Object returned by sits_som_map.
prior_threshold

Threshold of conditional probability (frequency of samples assigned to the same
SOM neuron).

posterior_threshold

Threshold of posterior probability (influenced by the SOM neighborhood).

keep Which types of evaluation to be maintained in the data.
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Value

sits_som_map() produces a list with three members: (1) the samples tibble, with one additional
column indicating to which neuron each sample has been mapped; (2) the Kohonen map, used for
plotting and cluster quality measures; (3) a tibble with the labelled neurons, where each class of
each neuron is associated to two values: (a) the prior probability that this class belongs to a cluster
based on the frequency of samples of this class allocated to the neuron; (b) the posterior probability
that this class belongs to a cluster, using data for the neighbours on the SOM map.

sits_som_clean_samples() produces a sits tibble with an two additional columns.The first indi-
cates if each sample is clean, should be analyzed or should be removed. The second indicates the
posterior probability of the sample

sits_som_evaluate_cluster() produces a tibble with the clusters found by the SOM map. For
each cluster, ir provides the percentage of classes inside it.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Lorena Alves, <lorena.santos@inpe.br>

Karine Ferreira. <karine.ferreira@inpe.br>

References

Lorena Santos, Karine Ferreira, Gilberto Camara, Michelle Picoli, Rolf Simoes, “Quality control
and class noise reduction of satellite image time series”. ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 177, pp 75-88, 2021. https://doi.org/10.1016/j.isprsjprs.2021.04.014.

Examples

if (sits_run_examples()) {
# create a som map
som_map <- sits_som_map(samples_modis_4bands)
# plot the som map
plot(som_map)
# evaluate the som map and create clusters
clusters_som <- sits_som_evaluate_cluster(som_map)
# plot the cluster evaluation
plot(clusters_som)
# clean the samples
new_samples <- sits_som_clean_samples(som_map)

}
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sits_svm Train support vector machine models

Description

This function receives a tibble with a set of attributes X for each observation Y. These attributes are
the values of the time series for each band. The SVM algorithm is used for multiclass-classification.
For this purpose, it uses the "one-against-one" approach, in which k(k-1)/2 binary classifiers are
trained; the appropriate class is found by a voting scheme. This function is a front-end to the "svm"
method in the "e1071" package. Please refer to the documentation in that package for more details.

Usage

sits_svm(
samples = NULL,
formula = sits_formula_linear(),
scale = FALSE,
cachesize = 1000,
kernel = "radial",
degree = 3,
coef0 = 0,
cost = 10,
tolerance = 0.001,
epsilon = 0.1,
cross = 10,
...

)

Arguments

samples Time series with the training samples.

formula Symbolic description of the model to be fit. (default: sits_formula_linear).

scale Logical vector indicating the variables to be scaled.

cachesize Cache memory in MB (default = 1000).

kernel Kernel used in training and predicting. options: "linear", "polynomial", "radial",
"sigmoid" (default: "radial").

degree Exponential of polynomial type kernel (default: 3).

coef0 Parameter needed for kernels of type polynomial and sigmoid (default: 0).

cost Cost of constraints violation (default: 10).

tolerance Tolerance of termination criterion (default: 0.001).

epsilon Epsilon in the insensitive-loss function (default: 0.1).

cross Number of cross validation folds applied to assess the quality of the model (de-
fault: 10).

... Other parameters to be passed to e1071::svm function.
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Value

Model fitted to input data (to be passed to sits_classify)

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_4bands, ml_method = sits_svm)
# select the bands to classify the point
sample_bands <- sits_bands(samples_modis_4bands)
point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
# classify the point
point_class <- sits_classify(point_4bands, ml_model)
plot(point_class)

}

sits_tae Train a model using Temporal Self-Attention Encoder

Description

Implementation of Temporal Attention Encoder (TAE) for satellite image time series classification.

This function is based on the paper by Vivien Garnot referenced below and code available on github
at https://github.com/VSainteuf/pytorch-psetae.

We also used the code made available by Maja Schneider in her work with Marco Körner referenced
below and available at https://github.com/maja601/RC2020-psetae.

If you use this method, please cite Garnot’s and Schneider’s work.
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Usage

sits_tae(
samples = NULL,
samples_validation = NULL,
epochs = 150,
batch_size = 64,
validation_split = 0.2,
optimizer = torchopt::optim_adamw,
opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1,
lr_decay_rate = 0.95,
patience = 20,
min_delta = 0.01,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.
validation_split

Number between 0 and 1. Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement to reset the patience counter.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.
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Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

References

Vivien Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata, "Satellite Image Time
Series Classification with Pixel-Set Encoders and Temporal Self-Attention", 2020 Conference on
Computer Vision and Pattern Recognition. pages 12322-12331. DOI: 10.1109/CVPR42600.2020.01234

Schneider, Maja; Körner, Marco, "[Re] Satellite Image Time Series Classification with Pixel-Set
Encoders and Temporal Self-Attention." ReScience C 7 (2), 2021. DOI: 10.5281/zenodo.4835356

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a TAE model
torch_model <- sits_train(samples_ndvi, sits_tae())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}
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sits_tempcnn Train temporal convolutional neural network models

Description

Use a TempCNN algorithm to classify data, which has two stages: a 1D CNN and a multi-layer
perceptron. Users can define the depth of the 1D network, as well as the number of perceptron
layers.

This function is based on the paper by Charlotte Pelletier referenced below. If you use this method,
please cite the original tempCNN paper.

The torch version is based on the code made available by the BreizhCrops team: Marc Russwurm,
Charlotte Pelletier, Marco Korner, Maximilian Zollner. The original python code is available at the
website https://github.com/dl4sits/BreizhCrops. This code is licensed as GPL-3.

Usage

sits_tempcnn(
samples = NULL,
samples_validation = NULL,
cnn_layers = c(128, 128, 128),
cnn_kernels = c(7, 7, 7),
cnn_dropout_rates = c(0.2, 0.2, 0.2),
dense_layer_nodes = 256,
dense_layer_dropout_rate = 0.5,
epochs = 150,
batch_size = 64,
validation_split = 0.2,
optimizer = torchopt::optim_adamw,
opt_hparams = list(lr = 0.005, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1,
lr_decay_rate = 0.95,
patience = 20,
min_delta = 0.01,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

cnn_layers Number of 1D convolutional filters per layer

cnn_kernels Size of the 1D convolutional kernels.
cnn_dropout_rates

Dropout rates for 1D convolutional filters.
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dense_layer_nodes

Number of nodes in the dense layer.

dense_layer_dropout_rate

Dropout rate (0,1) for the dense layer.

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.

validation_split

Fraction of training data to be used for validation.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Souza, <lipecaso@gmail.com>

References

Charlotte Pelletier, Geoffrey Webb and François Petitjean, "Temporal Convolutional Neural Net-
work for the Classification of Satellite Image Time Series", Remote Sensing, 11,523, 2019. DOI:
10.3390/rs11050523.
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Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a TempCNN model
torch_model <- sits_train(samples_ndvi, sits_tempcnn())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(bayes_cube)
# plot the labelled cube
plot(label_cube)

}

sits_timeline Get timeline of a cube or a set of time series

Description

This function returns the timeline for a given data set, either a set of time series, a data cube, or a
trained model.

Usage

sits_timeline(data)

Arguments

data either a sits tibble, a data cube, or a trained model.

Value

Timeline of sample set or of data cube.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

sits_timeline(samples_modis_4bands)

sits_time_series Get the time series for a row of a sits tibble

Description

Returns the time series associated to a row of the a sits tibble

Usage

sits_time_series(data)

Arguments

data A sits tibble with one or more time series.

Value

A tibble in sits format with the time series.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

sits_time_series(cerrado_2classes)
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sits_to_csv Export a sits tibble metadata to the CSV format

Description

Converts metadata from a sits tibble to a CSV file. The CSV file will not contain the actual time
series. Its columns will be the same as those of a CSV file used to retrieve data from ground
information ("latitude", "longitude", "start_date", "end_date", "cube", "label").

Usage

sits_to_csv(data, file)

Arguments

data Time series.

file Name of the exported CSV file.

Value

No return value, called for side effects.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

csv_file <- paste0(tempdir(), "/cerrado_2classes.csv")
sits_to_csv(cerrado_2classes, file = csv_file)

sits_to_xlsx Save accuracy assessments as Excel files

Description

Saves confusion matrices as Excel spreadsheets. This function takes the a list of accuracy assess-
ments generated by sits_accuracy and saves them in an Excel spreadsheet.

Usage

sits_to_xlsx(acc_lst, file, data = NULL)
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Arguments

acc_lst A list of accuracy statistics

file The file where the XLSX data is to be saved.

data (optional) Print information about the samples

Value

No return value, called for side effects.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# A dataset containing a tibble with time series samples
# for the Mato Grosso state in Brasil
# create a list to store the results
results <- list()

# accuracy assessment lightTAE
acc_ltae <- sits_kfold_validate(samples_modis_4bands,

folds = 5,
multicores = 1,
ml_method = sits_lighttae()

)
# use a name
acc_ltae$name <- "LightTAE"

# put the result in a list
results[[length(results) + 1]] <- acc_ltae

# save to xlsx file
sits_to_xlsx(results, file = "./accuracy_mato_grosso_dl.xlsx")

}

sits_train Train classification models
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Description

Given a tibble with a set of distance measures, returns trained models. Currently, sits supports
the following models: ’svm’ (see sits_svm), random forests (see sits_rfor), extreme gradient
boosting (see sits_xgboost), and different deep learning functions, including multi-layer per-
ceptrons (see sits_mlp), 1D convolution neural networks sits_tempcnn, deep residual networks
sits_resnet and self-attention encoders sits_lighttae

Usage

sits_train(samples, ml_method = sits_svm())

Arguments

samples Time series with the training samples.

ml_method Machine learning method.

Value

Model fitted to input data to be passed to sits_classify

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Examples

# Retrieve the set of samples for Mato Grosso (provided by EMBRAPA)
# fit a training model (RFOR model)
samples <- sits_select(samples_modis_4bands, bands = c("NDVI"))
ml_model <- sits_train(samples, sits_rfor(num_trees = 50))
# get a point and classify the point with the ml_model
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
class <- sits_classify(point_ndvi, ml_model)

sits_tuning Tuning machine learning models hyper-parameters

Description

Machine learning models use stochastic gradient descent (SGD) techniques to find optimal solu-
tions. To perform SGD, models use optimization algorithms which have hyperparameters that have
to be adjusted to achieve best performance for each application.

This function performs a random search on values of selected hyperparameters. Instead of per-
forming an exhaustive test of all parameter combinations, it selecting them randomly. Validation
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is done using an independent set of samples or by a validation split. The function returns the best
hyper-parameters in a list.

hyper-parameters passed to params parameter should be passed by calling sits_tuning_hparams()
function.

Usage

sits_tuning(
samples,
samples_validation = NULL,
validation_split = 0.2,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(optimizer = torchopt::optim_adamw, opt_hparams = list(lr

= beta(0.3, 5))),
trials = 30,
multicores = 2,
progress = FALSE

)

Arguments

samples Time series set to be validated.
samples_validation

Time series set used for validation.
validation_split

Percent of original time series set to be used for validation (if samples_validation
is NULL)

ml_method Machine learning method.

params List with hyper parameters to be passed to ml_method. User can use uniform,
choice, randint, normal, lognormal, loguniform, and beta distribution func-
tions to randomize parameters.

trials Number of random trials to perform the random search.

multicores Number of cores to process in parallel

progress Show progress bar?

Value

A tibble containing all parameters used to train on each trial ordered by accuracy

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

References

James Bergstra, Yoshua Bengio, "Random Search for Hyper-Parameter Optimization". Journal of
Machine Learning Research. 13: 281–305, 2012.
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Examples

if (sits_run_examples()) {
# find best learning rate parameters for TempCNN
tuned <- sits_tuning(

samples_modis_4bands,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(

optimizer = choice(
torchopt::optim_adamw

),
opt_hparams = list(

lr = beta(0.3, 5)
)

),
trials = 4,
multicores = 2,
progress = FALSE

)
# obtain best accuracy, kappa and best_lr
accuracy <- tuned$accuracy[[1]]
kappa <- tuned$kappa[[1]]
best_lr <- tuned$opt_hparams[[1]]$lr

}

sits_tuning_hparams Tuning machine learning models hyper-parameters

Description

This function allow user building the hyper-parameters space used by sits_tuning() function
search randomly the best parameter combination.

User should pass the possible values for hyper-parameters as constant or by calling the following
random functions:

• uniform(min = 0, max = 1, n = 1): returns random numbers from a uniform distribution with
parameters min and max.

• choice(..., replace = TRUE, n = 1): returns random objects passed to ... with replace-
ment or not (parameter replace).

• randint(min, max, n = 1): returns random integers from a uniform distribution with param-
eters min and max.

• normal(mean = 0, sd = 1, n = 1): returns random numbers from a normal distribution with
parameters min and max.

• lognormal(meanlog = 0, sdlog = 1, n = 1): returns random numbers from a lognormal dis-
tribution with parameters min and max.

• loguniform(minlog = 0, maxlog = 1, n = 1): returns random numbers from a loguniform
distribution with parameters min and max.
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• beta(shape1, shape2, n = 1): returns random numbers from a beta distribution with param-
eters min and max.

These functions accepts n parameter to indicate how many values should be returned.

Usage

sits_tuning_hparams(...)

Arguments

... Used to prepare hyper-parameter space

Value

A list containing the hyper-parameter space to be passed to sits_tuning()’s params parameter.

Examples

if (sits_run_examples()) {
# find best learning rate parameters for TempCNN
tuned <- sits_tuning(

samples_modis_4bands,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(

optimizer = choice(
torchopt::optim_adamw,
torchopt::optim_yogi

),
opt_hparams = list(

lr = beta(0.3, 5)
)

),
trials = 4,
multicores = 2,
progress = FALSE

)
}

sits_twdtw_classify Find matches between patterns and time series using TWDTW

Description

Returns the results of the TWDTW matching function. The TWDTW matching function compares
the values of a satellite image time series with the values of known patters and tries to match each
pattern to a part of the time series
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The TWDTW (time-weighted dynamical time warping) is a version of the Dynamic Time Warping
method for LUCC mapping using a sequence of multi-band satellite images. Methods based on
dynamic time warping are flexible to handle irregular sampling and out-of-phase time series, and
they have achieved significant results in time series analysis. In contrast to standard DTW, the
TWDTW method is sensitive to seasonal changes of natural and cultivated vegetation types. It also
considers inter-annual climatic and seasonal variability.

Usage

sits_twdtw_classify(
samples,
patterns,
bands = NULL,
dist_method = "euclidean",
alpha = -0.1,
beta = 100,
theta = 0.5,
span = 0,
keep = FALSE,
start_date = NULL,
end_date = NULL,
interval = "12 month",
overlap = 0.5,
.plot = TRUE

)

Arguments

samples A sits tibble to be classified using TWDTW.

patterns Patterns to be used for classification.

bands Names of the bands to be used for classification.

dist_method Name of the method to derive the local cost matrix.

alpha Steepness of the logistic function used for temporal weighting (a double value).

beta Midpoint (in days) of the logistic function.

theta Relative weight of the time distance compared to the dtw distance.

span Minimum number of days between two matches of the same pattern in the time
series (approximate).

keep Keep internal values for plotting matches?

start_date Start date of the classification period.

end_date End date of the classification period.

interval Period between two classifications in months.

overlap Minimum overlapping between one match and the interval of classification.

.plot Plot the output?
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Value

A dtwSat S4 object with the matches.

Author(s)

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Maus V, Camara G, Cartaxo R, Sanchez A, Ramos F, Queiroz G (2016). A Time-Weighted Dynamic
Time Warping Method for Land-Use and Land-Cover Mapping. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 9(8):3729-3739, August 2016. ISSN 1939-1404.
doi:10.1109/JSTARS.2016.2517118.

Examples

if (sits_run_examples()){
# Retrieve the set of samples for the Mato Grosso region
samples <- sits_select(samples_modis_4bands, bands = c("NDVI", "EVI"))

# get a point and classify the point with the ml_model
point <- sits_select(point_mt_6bands, bands = c("NDVI", "EVI"))

# plot the series
plot(point)

# obtain a set of patterns for these samples
patterns <- sits_patterns(samples)
plot(patterns)

# find the matches between the patterns and the time series
# using the TWDTW algorithm
# (uses the dtwSat R package)
matches <- sits_twdtw_classify(point, patterns,

bands = c("NDVI", "EVI"),
alpha = -0.1, beta = 100, theta = 0.5, keep = TRUE

)
}

sits_uncertainty Estimate classification uncertainty based on probs cube

Description

Calculate the uncertainty cube based on the probabilities produced by the classifier. Takes a proba-
bility cube as input. The uncertainty measure is relevant in the context of active leaning, and helps
to increase the quantity and quality of training samples by providing information about the confi-
dence of the model. The supported types of uncertainty are ’entropy’, ’least’, ’margin’ and ’ratio’.
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’entropy’ is the difference between all predictions expressed as entropy, ’least’ is the difference
between 100 prediction, ’margin’ is the difference between the two most confident predictions, and
’ratio’ is the ratio between the two most confident predictions.

Usage

sits_uncertainty(
cube,
type = "least",
...,
multicores = 2,
memsize = 8,
output_dir = ".",
version = "v1"

)

## S3 method for class 'entropy'
sits_uncertainty(
cube,
type = "entropy",
...,
window_size = 5,
window_fn = "median",
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

## S3 method for class 'least'
sits_uncertainty(
cube,
type = "least",
...,
window_size = 5,
window_fn = "median",
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

## S3 method for class 'margin'
sits_uncertainty(
cube,
type = "margin",
...,
window_size = 5,
window_fn = "median",
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multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

## S3 method for class 'ratio'
sits_uncertainty(
cube,
type = "ratio",
...,
window_size = 5,
window_fn = "median",
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"

)

Arguments

cube Probability data cube.

type Method to measure uncertainty. See details.

... Parameters for specific functions.

multicores Number of cores to run the function.

memsize Maximum overall memory (in GB) to run the function.

output_dir Output directory for image files.

version Version of resulting image. (in the case of multiple tests)

window_size Size of neighborhood to calculate entropy.

window_fn Function to be applied in entropy calculation.

Value

An uncertainty data cube

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>
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References

Monarch, Robert Munro. Human-in-the-Loop Machine Learning: Active learning and annotation
for human-centered AI. Simon and Schuster, 2021.

Examples

if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# calculate uncertainty
uncert_cube <- sits_uncertainty(probs_cube)
# plot the resulting uncertainty cube
plot(uncert_cube)

}

sits_uncertainty_sampling

Suggest samples for enhancing classification accuracy

Description

Suggest samples for regions of high uncertainty as predicted by the model. The function selects
data points that have confused an algorithm. These points don’t have labels and need be manually
labelled by experts and then used to increase the classification’s training set.

This function is best used in the following context

• 1. Select an initial set of samples.

• 2. Train a machine learning model.

• 3. Build a data cube and classify it using the model.

• 4. Run a Bayesian smoothing in the resulting probability cube.

• 5. Create an uncertainty cube.

• 6. Perform uncertainty sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the like-
lihood that the resulting pixels with high uncertainty have meaningful information.
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Usage

sits_uncertainty_sampling(
uncert_cube,
n = 100,
min_uncert = 0.4,
sampling_window = 10

)

Arguments

uncert_cube An uncertainty cube. See sits_uncertainty.

n Number of suggested points.

min_uncert Minimum uncertainty value to select a sample.
sampling_window

Window size for collecting points (in pixels). The minimum window size is 10.

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet
the minimum distance criteria.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Robert Monarch, "Human-in-the-Loop Machine Learning: Active learning and annotation for human-
centered AI". Manning Publications, 2021.

Examples

if (sits_run_examples()) {
# create a data cube
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")

)
# build a random forest model
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
rfor_model <- sits_train(samples_ndvi, ml_method = sits_rfor())
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# classify the cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# create an uncertainty cube
uncert_cube <- sits_uncertainty(probs_cube)
# obtain a new set of samples for active learning
# the samples are located in uncertain places
new_samples <- sits_uncertainty_sampling(uncert_cube)

}

sits_validate Validate time series samples

Description

One round of cross-validation involves partitioning a sample of data into complementary subsets,
performing the analysis on one subset (called the training set), and validating the analysis on the
other subset (called the validation set or testing set).

The function takes two arguments: a set of time series with a machine learning model and another
set with validation samples. If the validation sample set is not provided, The sample dataset is split
into two parts, as defined by the parameter validation_split. The accuracy is determined by the
result of the validation test set.

This function returns the confusion matrix, and Kappa values.

Usage

sits_validate(
samples,
samples_validation = NULL,
validation_split = 0.2,
ml_method = sits_rfor()

)

Arguments

samples Time series set to be validated.
samples_validation

Time series set used for validation.
validation_split

Percent of original time series set to be used for validation (if samples_validation
is NULL)

ml_method Machine learning method.

Value

A caret::confusionMatrix object to be used for validation assessment.
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Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()){
conf_matrix <- sits_validate(cerrado_2classes)

}

sits_values Return the values of a set of time series

Description

This function returns the values of a sits tibble (according a specified format). This function is
useful to use packages such as ggplot2, dtwclust, or kohonen that require values that are rowwise
or colwise organized.

Usage

sits_values(data, bands = NULL, format = "cases_dates_bands")

Arguments

data A sits tibble with time series for different bands.

bands Bands whose values are to be extracted.

format A string with either "cases_dates_bands" or "bands_cases_dates" or "bands_dates_cases".

Value

A matrix with values.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# retrieve the values split by bands and dates
ls1 <- sits_values(cerrado_2classes[1:2, ], format = "bands_dates_cases")
# retrieve the values split by cases (occurences)
ls2 <- sits_values(cerrado_2classes[1:2, ], format = "cases_dates_bands")
#' # retrieve the values split by bands and cases (occurences)
ls3 <- sits_values(cerrado_2classes[1:2, ], format = "bands_cases_dates")
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sits_view View data cubes and samples in leaflet

Description

Uses leaflet to visualize time series, raster cube and classified images

Usage

sits_view(x, ...)

## S3 method for class 'sits'
sits_view(x, ..., legend = NULL, palette = "Harmonic")

## S3 method for class 'som_map'
sits_view(
x,
...,
label,
prob_max = 1,
prob_min = 0.7,
legend = NULL,
palette = "Harmonic"

)

## S3 method for class 'raster_cube'
sits_view(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tiles = NULL,
dates = NULL,
class_cube = NULL,
legend = NULL,
palette = "default"

)

## S3 method for class 'classified_image'
sits_view(x, ..., tiles = NULL, legend = NULL, palette = "default")

## S3 method for class 'probs_cube'
sits_view(x, ...)

## Default S3 method:
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sits_view(x, ...)

Arguments

x Object of class "sits", "raster_cube" or "classified image".

... Further specifications for sits_view.

legend Named vector that associates labels to colors.

palette Palette provided in the configuration file.

label Label from the SOM map to be shown.

prob_max Maximum a posteriori probability for SOM neuron samples to be shown

prob_min Minimum a posteriori probability for SOM neuron samples to be shown

band For plotting grey images.

red Band for red color.

green Band for green color.

blue Band for blue color.

tiles Tiles to be plotted (in case of a multi-tile cube).

dates Dates to be plotted.

class_cube Classified cube to be overlayed on top on image.

Value

A leaflet object containing either samples or data cubes embedded in a global map that can be
visualized directly in an RStudio viewer.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
sits_view(cerrado_2classes)

data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

modis_cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
parse_info = c("X1", "X2", "tile", "band", "date")

)
# get the timeline
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timeline <- sits_timeline(modis_cube)
# view the data cube
sits_view(modis_cube,

band = "NDVI",
dates = timeline[[1]]

)

samples_ndvi <- sits_select(samples_modis_4bands,
bands = c("NDVI")

)
rf_model <- sits_train(samples_ndvi, sits_rfor())

modis_probs <- sits_classify(
data = modis_cube,
ml_model = rf_model,
output_dir = tempdir(),
memsize = 4,
multicores = 1

)
modis_label <- sits_label_classification(modis_probs,

output_dir = tempdir()
)

sits_view(modis_label)

sits_view(modis_cube,
band = "NDVI",
class_cube = modis_label,
dates = sits_timeline(modis_cube)[[1]]

)
}

sits_xgboost Train extreme gradient boosting models

Description

This function uses the extreme gradient boosting algorithm. Boosting iteratively adds basis func-
tions in a greedy fashion so that each new basis function further reduces the selected loss function.
This function is a front-end to the methods in the "xgboost" package. Please refer to the documen-
tation in that package for more details.

Usage

sits_xgboost(
samples = NULL,
learning_rate = 0.15,
min_split_loss = 1,
max_depth = 5,
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min_child_weight = 1,
max_delta_step = 1,
subsample = 0.8,
nfold = 5,
nrounds = 100,
early_stopping_rounds = 20,
verbose = FALSE

)

Arguments

samples Time series with the training samples.

learning_rate Learning rate: scale the contribution of each tree by a factor of 0 < lr < 1 when
it is added to the current approximation. Used to prevent overfitting. Default:
0.15

min_split_loss Minimum loss reduction to make a further partition of a leaf. Default: 1.

max_depth Maximum depth of a tree. Increasing this value makes the model more complex
and more likely to overfit. Default: 5.

min_child_weight

If the leaf node has a minimum sum of instance weights lower than min_child_weight,
tree splitting stops. The larger min_child_weight is, the more conservative the
algorithm is. Default: 1.

max_delta_step Maximum delta step we allow each leaf output to be. If the value is set to 0, there
is no constraint. If it is set to a positive value, it can help making the update step
more conservative. Default: 1.

subsample Percentage of samples supplied to a tree. Default: 0.8.

nfold Number of the subsamples for the cross-validation.

nrounds Number of rounds to iterate the cross-validation (default: 100)
early_stopping_rounds

Training with a validation set will stop if the performance doesn’t improve for k
rounds.

verbose Print information on statistics during the process

Value

Model fitted to input data (to be passed to sits_classify)

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>
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References

Tianqi Chen, Carlos Guestrin, "XGBoost : Reliable Large-scale Tree Boosting System", SIG KDD
2016.

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train a xgboost model
ml_model <- sits_train(samples_modis_4bands, ml_method = sits_xgboost)
# select the bands to classify the point
sample_bands <- sits_bands(samples_modis_4bands)
point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
# classify the point
point_class <- sits_classify(point_4bands, ml_model)
plot(point_class)

}

%>% Pipe

Description

Magrittr compound assignment pipe-operator.

Arguments

lhs, rhs A visualization and a function to apply to it.

Value

Apply lhs as input to rhs function

‘sits_labels<-‘ Change the labels of a set of time series

Description

Given a sits tibble with a set of labels, renames the labels to the specified in value.
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Usage

sits_labels(data) <- value

## S3 replacement method for class 'sits'
sits_labels(data) <- value

## S3 replacement method for class 'probs_cube'
sits_labels(data) <- value

Arguments

data Data cube or time series.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.

Value

A sits tibble with modified labels.

A sits tibble with modified labels.

A probs cube with modified labels.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# show original samples ("Cerrado" and "Pasture")
sits_labels(cerrado_2classes)
# rename label samples to "Savanna" and "Grasslands"
sits_labels(cerrado_2classes) <- c("Savanna", "Grasslands")
# see the change
sits_labels(cerrado_2classes)
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