Package 'slopeOP'

November 23, 2020

Title Change-in-Slope OP Algorithm with a Finite Number of States

Type Package

2 plot.slopeOP

Description

An optimal partitioning algorithm with a linear fit for each segment

Usage

```
linearOP(x, data, penalty, cc = FALSE)
```

Arguments

x a vector (see data)

data a vector defining the data points (x[i], data[i])
penalty the penalty for introducing a new segment
cc a boolean to impose a continuity constraint

plot.slopeOP plot.slopeOP

Description

Plot the result of the slopeOP function and the data

Usage

```
## S3 method for class 'slopeOP'
plot(x, ..., data, chpt = NULL, states = NULL)
```

Arguments

x a slopeOP class object
... other parameters

data the data from which we get the slopeOP object x

chpt vector of changepoints of the model

states vector of states of the model

Value

plot data and the inferred slopeOP result (and the model if specified in 'chpt' and 'states' parameters)

sdHallDiff 3

Examples

```
myData <- slopeData(index = c(1,100,200,300), states = c(0,5,3,6), noise = 2) s <- slopeOP(data = myData, states = 0:6, penalty = 20) plot(s, data = myData, chpt = c(1,100,200,300), states = c(0,5,3,6))
```

sdHallDiff

sdHallDiff

Description

Estimation of the standard deviation using the HallDiff estimator

Usage

```
sdHallDiff(data)
```

Arguments

data

vector of data to segment: a univariate time series

Value

an estimation of the sd

Examples

```
myData \leftarrow slopeData(index = c(1,100,200,300), states = c(0,5,3,6), noise = 1) sdHallDiff(data = myData)
```

slopeData

slopeData

Description

Generate data with a given continuous piecewise linear model

Usage

```
slopeData(index, states, noise = 0, outlierDensity = 0,
  outlierNoise = 50)
```

4 slopeOP

Arguments

index a vector of increasing changepoint indices

states vector of successive states

noise noise level = standard deviation of an additional normal noise outlierDensity probability for a datapoint to be an outlier (has to be close to 0)

outlierNoise noise level for outlier data points

Value

a vector of simulated data

Examples

```
myData <- slopeData(index = c(1,100,200,300), states = c(0,5,3,6), noise = 1)
```

slopeOP slopeOP

Description

Optimal partitioning algorithm for change-in-slope problem with a finite number of states (beginning and ending values of each segment is restricted to a finite set of values called states). The algorithm takes into account a continuity constraint between successive segments and infers a continuous piecewise linear signal.

Usage

```
slopeOP(data, states, penalty = 0, constraint = "null", minAngle = 0,
  type = "channel", testMode = FALSE)
```

Arguments

data	vector of data to segment: a univariate time series
states	vector of states = set of accessible starting/ending values for segments in increasing order.

penalty the penalty value (a non-negative real number)

constraint string defining a constraint : "null", "isotonic", "unimodal" or "smoothing"
minAngle a minimal inner angle in degree between consecutive segments in case constraint

= "smoothing"

type string defining the pruning type to use. "null" = no pruning, "channel" = use

monotonicity property, "pruning" = pelt-type property

testMode a boolean, if true the function also returns the percent of elements to scan (=

ratio scanned elements vs. scanned elements if no pruning)

slopeSN 5

Value

```
a list of 3 elements = (changepoints, states, globalCost). (Pruning is optional)
```

changepoints is the vector of changepoints (we return the extremal values of all segments from left to right)

states is the vector of successive states. states[i] is the value we inferred at position change-points[i]

globalCost is a number equal to the global cost of the non-penalized change-in-slope problem. That is the value of the fit to the data ignoring the penalties for adding changes

pruning is the percent of positions to consider in cost matrix Q (returned only if testMode = TRUE)

Examples

```
myData <- slopeData(index = c(1,100,200,300), states = c(0,5,3,6), noise = 1) slopeOP(data = myData, states = 0:6, penalty = 10)
```

slopeSN	slopeSN
---------	---------

Description

Segment neighborhood algorithm for change-in-slope problem with a finite number of states (beginning and ending values of each segment is restricted to a finite set of values called states). The algorithm takes into account a continuity constraint between successive segments and infers a continuous piecewise linear signal with a given number of segments.

Usage

```
slopeSN(data, states, nbSegments = 1, constraint = "null",
  testMode = FALSE)
```

Arguments

data	vector of data to segment: a univariate time series
states	vector of states = set of accessible starting/ending values for segments in increasing order.
nbSegments	the number of segments to infer
constraint	string defining a constraint : "null", "isotonic"
testMode	a boolean, if true the function also returns the percent of elements to scan (= ratio scanned elements vs. scanned elements if no pruning)

6 slopeSN

Value

a list of 3 elements = (changepoints, states, globalCost). (Pruning is optional)

changepoints is the vector of changepoints (we return the extremal values of all segments from left to right)

states is the vector of successive states. states[i] is the value we inferred at position change-points[i]

globalCost is a number equal to the global cost of the non-penalized change-in-slope problem. That is the value of the fit to the data ignoring the penalties for adding changes

pruning is the percent of positions to consider in cost matrix Q (returned only if testMode = TRUE)

Examples

```
myData <- slopeData(index = c(1,100,200,300), states = c(0,5,3,6), noise = 1) slopeSN(data = myData, states = 0:6, nbSegments = 2)
```

Index

```
linearOP, 2
plot.slopeOP, 2
sdHallDiff, 3
slopeData, 3
slopeOP, 4
slopeSN, 5
```