Package 'smartsizer'

January 6, 2021

Type Package
Title Power Analysis for a SMART Design
Version 1.0.3
Description A set of tools for determining the necessary sample size in order to identify the optimal dynamic treatment regime in a sequential, multiple assignment, randomized trial (SMART). Utilizes multiple comparisons with the best methodology to adjust for multiple comparisons. Designed for an arbitrary SMART design. Please see Artman (2018) <doi:10.1093 biostatistics="" kxy064=""> for more details.</doi:10.1093>
Depends R (>= 3.4.0)
Imports MASS (>= 7.3-47)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author William Artman [aut, cre]
Maintainer William Artman < William_Artman@URMC.Rochester.edu>
Repository CRAN
Date/Publication 2021-01-06 02:10:02 UTC
R topics documented:
computePower computePowerBySampleSize computeSampleSize plotPowerByN smartsizer

2 computePower

Index 7

computePower	Compute the Power in a SMART
--------------	------------------------------

Description

Computes the power in an arbitrary SMART design with the goal of identifying optimal embedded dynamic treatment regime (EDTR). The power is the probability of excluding from the set of best EDTRs all EDTRs which are inferior to the best EDTR by min_Delta or more.

Usage

```
computePower(V, Delta, min_Delta, alpha = 0.05, sample_size)
```

Arguments

V The covariance matrix of mean EDTR estimators.

Delta The vector of effect sizes with a zero indicating the best EDTR.

min_Delta The minimum desired detectable effect size.

alpha The Type I error rate for not including the true best EDTR.

sample_size The sample size.

Details

The true best EDTR is included in the set of best with probability at least 1-alpha. Multiple comparisons are adjusted for using the Multiple Comparison with the Best methodology.

Value

The power to exclude from the set of best EDTR all EDTR which are inferior to the best EDTR by min Delta or more.

See Also

```
computeSampleSize
```

Examples

```
 \begin{tabular}{lll} $V < -$ rbind(c(1, 0.3, 0.3, 0.3), & & & & & & & & \\ $c(0.3, 1, 0.3, 0.3), & & & & & & \\ $c(0.3, 0.3, 1, 0.3), & & & & & \\ $c(0.3, 0.3, 0.3, 1)) $ \\ $\# Compute power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# Compute Power to exclude EDTRs inferior to the best by 0.3 or more $$\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# The first DTR is best and the other three are inferior by 0.2, 0.6, and 0.3 $$ \\ $\# The first DTR is best and DTR
```

 ${\tt computePowerBySampleSize}$

Compute the Power Over a Grid of Sample Size Values

Description

Computes the power over a grid of sample size values.

Usage

```
computePowerBySampleSize(V, Delta, min_Delta, alpha = 0.05, sample_size_grid)
```

Arguments

V The covariance matrix of mean EDTR estimators.

Delta The vector of effect sizes with a zero indicating the best EDTR.

min_Delta The minimum desired detectable effect size.

alpha The Type I error rate for not including the true best EDTR.

sample_size_grid

The vector of sample sizes

Details

It employs common random variables to reduce the variance. See computePower for more details.

Value

A vector of power for each sample size in the given grid.

See Also

computePower

computeSampleSize

Examples

4

```
 \begin{array}{c} \text{V} \leftarrow \text{rbind}(c(1,\ 0.3,\ 0.3,\ 0.3),\\ & c(0.3,\ 1,\ 0.3,\ 0.3),\\ & c(0.3,\ 0.3,\ 1,\ 0.3),\\ & c(0.3,\ 0.3,\ 0.3,\ 1)) \\ \text{computePowerBySampleSize(V,} \\ & \text{Delta} = c(0,\ 0.2,\ 0.6,\ 0.3),\\ & \text{min\_Delta} = 0.3,\\ & \text{sample\_size\_grid} = \text{seq}(50,300,\ 50)) \end{array}
```

computeSampleSize

Compute the Sample Size for a SMART.

Description

Computes the necessary sample size to enroll in an arbitrary SMART design for a specified power with the goal of determining optimal embedded dynamic treatment regime (EDTR). The power is the probability of excluding from the set of best EDTRs all EDTRs inferior to the best by min_Delta or more.

Usage

```
computeSampleSize(V, Delta, min_Delta, alpha = 0.05, desired_power)
```

Arguments

V The covariance matrix of mean EDTR estimators.

Delta The vector of effect sizes with the first zero indicating the best EDTR.

min_Delta The minimum desired detectable effect size.

alpha The Type I error rate for not including the true best EDTR.

desired_power The desired power.

Details

The true best EDTR is included in the set of best with probability at least 1-alpha. Multiple comparisons are adjusted for using the Multiple Comparison with the Best methodology.

Value

The minimum sample size in order to achieve a power of desired_power to exclude EDTRs from the set of best which are inferior to the optimal EDTR by min_Delta or more.

See Also

computePower

plotPowerByN 5

Examples

plotPowerByN

Plot Power by Sample Size

Description

Plots the power over a grid of sample sizes.

Usage

```
plotPowerByN(V, Delta, min_Delta, alpha = 0.05, sample_size_grid,
  color = "black")
```

Arguments

V The covariance matrix of mean EDTR estimators.

Delta The vector of effect sizes with a zero indicating the best EDTR.

min_Delta The minimum desired detectable effect size.

alpha The Type I error rate for not including the true best EDTR.

sample_size_grid

A vector of sample sizes.

color The color of the graph.

Details

It employs common random variables to reduce the variance. See computePower for more details.

6 smartsizer

smartsizer

smartsizer: A package for Sizing SMART Designs

Description

The smartsizer package is designed to assist investigators with sizing sequential, multiple assignment, randomized trial (SMART) for determination of the optimal dynamic treatment regime (DTR). smartsizer includes functions which permit calculation of the minimum number of individuals to enroll in a SMART in order to be able to detect a specified effect size between the best and inferior embedded DTR, with a specified power, smartsizer is designed for an arbitrary SMART design.

Index

```
computePower, 2, 3-5
computePowerBySampleSize, 3
computeSampleSize, 2, 4

plotPowerByN, 5

smartsizer, 6
smartsizer-package (smartsizer), 6
```