
Package ‘sorcering’
July 30, 2021

Type Package

Title Soil Organic Carbon and CN Ratio Driven Nitrogen Modelling Framework

Version 0.9.2

Date 2021-07-14

Author Marc Scherstjanoi [aut, cre], Rene Dechow [aut]

Maintainer Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>

Description Can be used to model the fate of soil organic carbon and soil organic nitrogen and to cal-
culate N mineralisation rates. Provides a framework that numerically solves differential equa-
tions of soil organic carbon models based on first-order kinetics and extends these models to in-
clude the nitrogen component. The name 'sorcering' is an acronym for 'Soil ORganic Car-
bon & CN Ratio drIven Nitrogen modellinG framework'.

LazyData true

Depends R (>= 3.5.0)

License GPL (>= 2)

Imports Rcpp (>= 1.0.6), mathjaxr, Rdpack

LinkingTo Rcpp, RcppArmadillo

RdMacros mathjaxr, Rdpack

R topics documented:

C0_ex . 2
Cin_ex . 2
fget_A_RothC . 3
N0_ex . 4
Nin_ex . 4
sorcering . 5
xi_ex . 10

Index 11

1

2 Cin_ex

C0_ex Initial Carbon Data

Description

Fictional initial carbon for a model with five soil pools

Usage

C0_ex

Format

A vector containing five numeric entries

See Also

sorcering.

Cin_ex Carbon Input Data

Description

Fictional carbon input for a model with five soil pools. Columns stand for pools and rows for
simulation time steps.

Usage

Cin_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.

fget_A_RothC 3

fget_A_RothC RothC Transfer Matrix Building Function

Description

Builds a RothC transfer matrix. Parameters taken from Coleman and Jenkinson (1996).

Usage

fget_A_RothC(clay = 23.4
)

Arguments

clay double. Soil clay content in %.

Value

fget_A_RothC() returns a 5 × 5 matrix that contains RothC specific carbon transfer parameters
based on clay content.

Author(s)

Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>, Rene Dechow

References

Coleman K, Jenkinson DS (1996). “RothC-26.3 - A Model for the turnover of carbon in soil.” In
Powlson DS, Smith P, Smith JU (eds.), Evaluation of Soil Organic Matter Models, 237–246. ISBN
978-3-642-61094-3.

See Also

sorcering.

Examples

fget_A_RothC(clay=30)

4 Nin_ex

N0_ex Initial Nitrogen Data

Description

Fictional initial nitrogen for a model with five soil pools

Usage

N0_ex

Format

A vector containing five numeric entries

See Also

sorcering.

Nin_ex Nitrogen Input Data

Description

Fictional nitrogen input for a model with five soil pools. Columns stand for pools and rows for
simulation time steps.

Usage

Nin_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.

sorcering 5

sorcering Soil ORganic Carbon & CN Ratio drIven Nitrogen modellinG frame-
work

Description

SORCERING can be used to model the fate of soil organic carbon (SOC) and soil organic nitrogen
(SON) and to calculate N mineralisation rates. It provides a framework that numerically solves
differential equations of SOC models based on first-order kinetics. Thus, SOC models can be simply
defined and run to predict the temporal development of SOC. Beyond this, SORCERING determines
the fluxes of SON and N mineralisation / immobilisation. Basic inputs are (1) the model parameters
of a given SOC model expressed as the C transfer matrix (including information on decomposition
and transfer rates between model pools), (2) the initial distributions of C and N among model pools
and (3) time series of C and N inputs and rate modulating environmental factors. The fourth-order
Runge-Kutta algorithm is used to numerically solve the system of differential equations.

Usage

sorcering(A = NULL,
t_sim = 2,
tsteps = "monthly",
C0 = NULL,
N0 = NULL,
Cin = NULL,
Nin = NULL,
xi = NULL,
calcN = FALSE,
calcNbalance = FALSE)

Arguments

A transfer matrix. Defines number of pools, decomposition and transfer rates.
Must be a square matrix. n×n elements with n = number of pools. Diagonal
values are decomposition rates [yr−1]. Off-diagonals represent the transfer be-
tween pools [yr−1].

t_sim number of simulation time steps. Must correspond to the number of rows of
Cin, Nin and xi.

tsteps character indicating the type of simulation time steps. valid options are annually,
monthly (recommended) or weekly.

C0 vector with a length equal to the number of pools. Contains initial soil organic
carbon per pool [tC ha−1]. If NULL, filled with zeros.

N0 vector with a length equal to the number of pools. Contains initial soil organic
nitrogen per pool [tN ha−1]. If NULL, filled with zeros. Only used when calcN
= TRUE.

6 sorcering

Cin matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains carbon input per pool and time step
[tC ha−1]. If NULL, filled with zeros.

Nin matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains nitrogen input per pool and time step
[tN ha−1]. If NULL, filled with zeros. Must be >0 where Cin>0. Only used
when calcN = TRUE.

xi matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains environmental factors. If NULL, filled
with ones.

calcN logical indicating whether the development of soil organic nitrogen should be
simulated.

calcNbalance logical indicating whether the balance of nitrogen cycling should be calculated.

Details

SORCERING is a general model framework to describe soil organic carbon (SOC) dynamics and soil
organic nitrogen (SON) dynamics based on models of first-order kinetics. It can be applied to any
given SOC first-order kinetics model. The approach has already been successfully tested to describe
SOC dynamics of Yasso (Tuomi et al. 2009), RothC (Coleman and Jenkinson 1996) and C-Tool
(Taghizadeh-Toosi et al. 2014). Therefore, SORCERING is a lightweight alternative to the widely
developed and multifunctional R package SoilR (Sierra et al. 2012; Sierra and Mueller 2014).
Moreover, it additionally offers the possibility of modelling N immobilisation and mineralisation
by enhancing given SOC models by an additional N module.

The following is a description of each element calculated, which also corresponds to the output
values (see section ’Value’). For a detailed mathematical description of the SORCERING function see
the extended pdf documentation at browseVignettes("sorcering").

C
SORCERING calculates SOC applying a given SOC model for every simulation time step defined by
tsteps and t_sim. SOC models applied here are defined by a number of pools, each characterised
by specific decomposition and turnover rates. The model-specific decomposition kinetics and SOC
fluxes among pools are described by a set of partial differential equations represented by the transfer
matrix A. Each row and column of A represent SOC pools. Off-diagonal elements of A describe SOC
fluxes and diagonal elements describe SOC decomposition. The differential equations furthermore
contain the boundary conditions Cin and xi. The change of SOC concentration in time thus is
defined as:

dC(t)

dt
= Cin(t) + Ae(t) · C(t)

with
Ae(t) = A · diag(xi(t))

Initial conditions must be defined for every SOC pool by C0. A description of the numerical so-
lution can be found in the extended pdf documentation at browseVignettes("sorcering"). For

sorcering 7

more information on the functioning and possibilities of solving first-order kinetics SOC models
see Sierra et al. (2012).

N

As an extension to SOC modelling, SORCERING allows the modelling of SON coupled to the mod-
elling of SOC. Its implementation is based on the following simplifying assumptions: (1) Nitrogen
transfer and turnover rates are equal to carbon rates. (2) There is no N limitation in the soil, i.e.
mineral N is always available for N immobilisation processes. (3) CN ratios of single pools are only
affected by external inputs of N and C. The transfer of organic matter among pools does not affect
CN ratios. As for SOC, the development of SON depends on initial and boundary conditions: N0
and Nin. As N decomposition is proportional to C decomposition, SON is calculated based on the
results of the SOC calculations and input conditions (for details see the extended pdf documentation
at browseVignettes("sorcering")).

Nloss, Nmin, Nmin.sink<1>, ..., Nmin.sink<n>

Along with modelling SON, further quantities are determined. Nitrogen losses are calculated as:

Nloss(t) = N(t− 1) + Nin(t− 1)−N(t)

In contrast, mineralisation rates contain information about sources and sinks of SON. They are
calculated based on the CN ratios in the pools and the turnover rates (for details see the ex-
tended pdf documentation at browseVignettes("sorcering")). Pool-specific N mineralisation
Nmin.sink 〈1〉 , ..., Nmin.sink 〈n〉 and N mineralisation Nmin are related the following:

Nminj(t) =

n∑
p=1

Nmin.sink 〈j〉p (t)

for each simulation time point t, each pool j = 1, ..., n and each pool p = 1, ..., n and n total
pools. Or in other words, the row sum of Nmin.sink 〈j〉 at one simulation time point equals the
jth column of Nmin at that time point.

As changes in SON must match the sums of all mineralisation paths, the sums over soil pools of
Nloss and Nmin, respectively, must be approximately equal for all simulation time points:

n∑
p=1

Nlossp(t) ≈
n∑

p=1

Nminp(t),∀t ∈ tseq

A verification of this relation is given by "Nbalance" (see below).

Nbalance

8 sorcering

The overall N change between two time steps is calculated as:

∆N(t) =

n∑
p=1

Np(t− 1)−
n∑

p=1

Np(t)

The total system N balance serves as a verification output. Both of the following equations should
give results close to zero:

Nbal1(t) =

n∑
p=1

Ninp(t− 1) + ∆N(t)−
n∑

p=1

Nlossp(t) ≈ 0

Nbal2(t) =

n∑
p=1

Ninp(t− 1) + ∆N(t)−
n∑

p=1

Nminp(t) ≈ 0

Value

sorcering() returns a list object with components:

C array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains soil organic carbon [tC ha−1].

N array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains soil organic nitrogen [tN ha−1]. Only
generated if calcN = TRUE.

Nloss array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains nitrogen losses [tN ha−1]. Only gener-
ated if calcN = TRUE.

Nmin array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains nitrogen mineralisation [tN ha−1].
If values are negative, nitrogen immobilisation exceeds mineralisation. Only
generated if calcN = TRUE.

Nmin.sink.1, ..., Nmin.sink.n

arrays with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools n. Contain pool-specific nitrogen mineralisation
sinks [tN ha−1] (from the pool according to variable index [1, ..., n] to the pool
according to column number). If the sink is the pool itself (index equals column
number) the amount of decomposition is recorded. Only generated if calcN =
TRUE.

Nbalance array with a number of rows corresponding to t_sim and three columns. Con-
tains information on overall N changes in the soil between two time steps (first
column) and information on total system N balance calculated based on total
Nloss (second column) and based on total Nmin (third column) [tN ha−1]. Only
generated if calcN = TRUE and calcNbalance = TRUE.

Package Building Information

The SORCERING code was written in C++ using the R packages Rcpp (Eddelbuettel et al. 2021) and
RcppArmadillo (Eddelbuettel et al. 2021). This documentation was built with the help of the R
packages mathjaxr (Viechtbauer 2021) and Rdpack (Boshnakov 2021).

sorcering 9

Author(s)

Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>, Rene Dechow

References

Boshnakov GN (2021). Rdpack: Update and Manipulate Rd Documentation Objects. R package
version 2.1.1, https://CRAN.R-project.org/package=Rdpack.

Coleman K, Jenkinson DS (1996). “RothC-26.3 - A Model for the turnover of carbon in soil.”
In Powlson DS, Smith P, Smith JU (eds.), Evaluation of Soil Organic Matter Models, 237–246.
ISBN 978-3-642-61094-3.

Eddelbuettel D, Francois R, Allaire JJ, Ushey K, Kou Q, Russell N, Bates D, Chambers J (2021).
Rcpp: Seamless R and C++ Integration. R package version 1.0.6, https://CRAN.R-project.
org/package=Rcpp.

Eddelbuettel D, Francois R, Bates D, Ni B (2021). RcppArmadillo: ’Rcpp’ Integration for the
’Armadillo’ Templated Linear Algebra Library. R package version 0.10.4.0.0, https://CRAN.
R-project.org/package=RcppArmadillo.

Sierra CA, Mueller M (2014). SoilR: Models of Soil Organic Matter Decomposition. R pack-
age version 1.1-23, https://CRAN.R-project.org/package=SoilR.

Sierra CA, Mueller M, Trumbore SE (2012). “Models of soil organic matter decomposition: the
SoilR package, version 1.0.” Geoscientific Model Development, 5(4), 1045–1060. doi: 10.5194/
gmd510452012, https://gmd.copernicus.org/articles/5/1045/2012/.

Taghizadeh-Toosi A, Christensen BT, Hutchings NJ, Vejlin J, Kaetterer T, Glendining M, Ole-
sen JE (2014). “C-TOOL: A simple model for simulating whole-profile carbon storage in tem-
perate agricultural soils.” Ecological Modelling, 292, 11–25. ISSN 0304-3800, doi: 10.1016/
j.ecolmodel.2014.08.016, https://doi.org/10.1016/j.ecolmodel.2014.08.016.

Tuomi M, Thum T, Jaervinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J
(2009). “Leaf litter decomposition-Estimates of global variability based on Yasso07 model.” Eco-
logical Modelling, 220(23), 3362–3371. ISSN 0304-3800, doi: 10.1016/j.ecolmodel.2009.05.016,
https://doi.org/10.1016/j.ecolmodel.2009.05.016.

Viechtbauer W (2021). mathjaxr: Using ’Mathjax’ in Rd Files. R package version 1.4-0, https:
//CRAN.R-project.org/package=mathjaxr.

Examples

#EXAMPLE OF RothC application with fictional input

#1. Input

data(Cin_ex, Nin_ex, N0_ex, C0_ex, xi_ex) #fictional data
A_RothC <- fget_A_RothC(clay=30) #create transfer matrix for RothC

https://CRAN.R-project.org/package=Rdpack
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=SoilR
https://doi.org/10.5194/gmd-5-1045-2012
https://doi.org/10.5194/gmd-5-1045-2012
https://gmd.copernicus.org/articles/5/1045/2012/
https://doi.org/10.1016/j.ecolmodel.2014.08.016
https://doi.org/10.1016/j.ecolmodel.2014.08.016
https://doi.org/10.1016/j.ecolmodel.2014.08.016
https://doi.org/10.1016/j.ecolmodel.2009.05.016
https://doi.org/10.1016/j.ecolmodel.2009.05.016
https://CRAN.R-project.org/package=mathjaxr
https://CRAN.R-project.org/package=mathjaxr

10 xi_ex

#2. simulation

out <- sorcering(A=A_RothC, t_sim=60, Cin=Cin_ex, Nin=Nin_ex,
N0=N0_ex, C0=C0_ex, xi=xi_ex, calcN=TRUE, tsteps="monthly")

#3. results

#output structure summary
summary(out)

#sample plot
oldpar <- par(no.readonly = TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,5,2,5))
plot(rowSums(out$N),axes=FALSE, col=1, cex.lab=1.5,xlab="",ylab="",ylim=c(0,9),pch=20)
par(new=TRUE)
plot(rowSums(Cin_ex)/rowSums(Nin_ex),

axes=FALSE,col=2, cex.lab=1.5,xlab="",ylab="",ylim=c(0,60),pch=20)
axis(side=2, pos = 0, labels = c((0:4)*1.5,"N",9),

at=(0:6)*10, hadj=1, padj = 0.5, cex.axis=1.5,las=1,col.axis=1)
axis(side=4, pos = 60, labels = c((0:4)*10,"Cin/Nin",60),

at=(0:6)*10, hadj=0, padj = 0.5, cex.axis=1.5, las=1,col.axis=2)
axis(side=1, pos = 0, labels = c((0:4)*10,"t",60),

at=(0:6)*10, hadj=0.5, padj = 0, cex.axis=1.5)
par(oldpar) #back to old par

xi_ex Environmental Factors Data

Description

Fictional environmental factors for a model with five soil pools. Columns stand for pools and rows
for simulation time steps.

Usage

xi_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.

Index

C0_ex, 2
Cin_ex, 2

fget_A_RothC, 3

N0_ex, 4
Nin_ex, 4

sorcering, 2–4, 5, 10

xi_ex, 10

11

	C0_ex
	Cin_ex
	fget_A_RothC
	N0_ex
	Nin_ex
	sorcering
	xi_ex
	Index

