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Description

SORCERING can be used to model the fate of soil organic carbon (SOC) and soil organic nitrogen (SON)
and to calculate N mineralisation rates. It provides a framework that numerically solves differential
equations of SOC models based on first-order kinetics. Thus, SOC models can be simply defined and
run to predict the temporal development of SOC. Beyond this, SORCERING determines the fluxes of
SON and N mineralisation / immobilisation. Basic inputs are (1) the model parameters of a given SOC
model expressed as the C transfer matrix (including information on decomposition and transfer rates
between model pools), (2) the initial distributions of C and N among model pools and (3) time series
of C and N inputs and rate modulating environmental factors. The fourth-order Runge-Kutta algorithm
is used to numerically solve the system of differential equations.
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Usage

sorcering(

Arguments

A

t_sim
tsteps
Co

NO

Cin

Nin

xi

calcN

calcNbalance

sorcering

A =NULL,
t_sim=2,

tsteps = "monthly",
CO0 =NULL,

NO =NULL,

Cin = NULL,

Nin = NULL,
i=NULL,

A =NULL,

calcN = FALSE,
calcNbalance = FALSE)

transfer matrix. Defines number of pools, decomposition and transfer rates. Must
be a square matrix. n X n elements with n = number of pools. Diagonal values are
decomposition rates [yr—!']. Off-diagonals represent the transfer between pools
[yr ',

number of simulation time steps. Must correspond to the number of rows of Cin,
Nin and xi.

character indicating the type of simulation time steps. valid options are
annually, monthly (recommended) or weekly.

vector with a length equal to the number of pools. Contains initial soil organic
carbon per pool [tC ha~']. If NULL, filled with zeros.

vector with a length equal to the number of pools. Contains initial soil organic
nitrogen per pool [tN ha~!]. If NULL, filled with zeros. Only used when calcN =
TRUE

matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains carbon input per pool and time step
[tC ha~']. If NULL, filled with zeros.

matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains nitrogen input per pool and time step
[tN ha~!]. If NULL, filled with zeros. Only used when calcN = TRUE Must be >0
where Cin>0.

matrix with a number of columns equal to the number of pools and a number
of rows corresponding to t_sim. Contains environmental factors. If NULL, filled
with ones.

logical indicating whether the development of soil organic nitrogen should be
simulated.

logical indicating whether the balance of nitrogen cycling should be calculated.
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Value

sorcering() returns a list object with components:

C array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains soil organic carbon [tC ha™'].

N array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains soil organic nitrogen [tN ha~']. Only
generated if calcN = TRUE

Nloss array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains nitrogen losses [tN ha~!]. Only generated
if calcN = TRUE.

Nmin array with a number of rows corresponding to t_sim and a number of columns
equal to the number of pools. Contains nitrogen mineralisation [tN ha~!]. If va-
lues are negative, nitrogen immobilisation exceeds mineralisation. Only genera-
ted if calcN = TRUE.

Nmin.sink.1, arrays with a number of rows corresponding to t_sim and a number of columns
. equal to the number of pools n. Contain pool-specific nitrogen mineralisation
Nmin.sink.n sinks [tN ha~!] (from the pool according to variable index [1, ..., n] to the pool

according to column number). If the sink is the pool itself (index equals column
number) the amount of decomposition is recorded. Only generated if calcN =
TRUE.

Nbalance array with a number of rows corresponding to t_sim and three columns. Con-
tains information on overall N changes in the soil between two time steps (first
column) and information on total system N balance calculated based on total
Nloss (second column) and based on total Nmin (third column) [tN ha~!]. Only
generated if calcN = TRUE and calcNbalance = TRUE.

Details

SORCERING is a general model framework to describe soil organic carbon (SOC) dynamics and soil
organic nitrogen (SON) dynamics based on models of first-order kinetics. It can be applied to any
given SOC first-order kinetics model. The approach has already been successfully tested to descri-
be SOC dynamics of Yasso (Tuomi et al. 2009), RothC (Coleman and Jenkinson 1996) and C-Tool
(Taghizadeh-Toosi et al. 2014). Therefore, SORCERING is a lightweight alternative to the widely deve-
loped and multifunctional R package SoilR (Sierra et al. 2012, Sierra and Mueller 2014). Moreover,
it additionally offers the possibility of modelling N immobilisation and mineralisation by enhancing
given SOC models by an additional N module.

The following is a description of each element calculated, which also corresponds to the output values
(see section Value).

C

SORCERING calculates SOC applying a given SOC model for every simulation time step defined by
tsteps and t_sim. SOC models applied here are defined by a number of pools, each characterised by
specific decomposition and turnover rates. The underlying equation of first-order kinetics defines the
change of SOC concentration in time as:

dC(t)
dt

=Cin(t) +A.(t) - C(t) (1)
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The boundary condition Cin(z) must be defined beforehand. A,(¢) is composed of transfer matrix A
and the model-specific generated environmental factor xi(z):

A1) = (AT -xi(t))"
=A-diag(xi(t)) (2)

Eq. 1 is valid for scalar values of A, C, xi and Cin, as well as for a square matrix A with side length of
number of SOC pools n and related one dimensional vectors C, xi and Cin with length n. Each element
of C, xi and Cin and each row and column of A thus stands for a specific pool. Off-diagonal elements
of A describe SOC fluxes and diagonal elements describe SOC decomposition. Analytical solutions
of eq. 1 are exponential functions and can be very complex with A containing more off-diagonals, i.e.
more types of SOC transfer among pools. Therefore, numerical solutions are an efficient way to solve
the resulting complex equation system. In SORCERING, this equation system is solved by applying the
fourth-order Runge-Kutta method:

C(t)=C(r - 1)+é(K1 +2K> +2K3 + Ky) @)

with

K>, =Cin(t — 1)+ A -diag <W) . (C(t —1)+ Kl)
1)+ g (IO (B
Ky =Cin(t — 1) +A-diag(xi(t)) - (C(t— 1)+ K3) 4)

Initial conditions must be defined for every SOC pool by C0. For more information on the functioning
of and other possibilities for solving first-order kinetics SOC models see Sierra et al. (2012).

N

As an extension to SOC modelling, SORCERING allows the modelling of SON coupled to the modelling
of SOC. Its implementation is based on the following simplifying assumptions: (1) Nitrogen transfer
and turnover rates are equal to carbon rates. (2) There is no N limitation in the soil, i.e. mineral N is
always available for N immobilisation processes. (3) CN ratios of single pools are only affected by
external inputs of N and C. The transfer of organic matter among pools does not affect CN ratios. As
for SOC, the development of SON depends on initial and boundary conditions: N@ and Nin.

Given the amount of SOC decomposed

Caecomp =C(t —1)+Cin—C(t) 5)
and the amount of SON decomposed

Naecomp = N(t —1)+Nin—N(t) (6)
between time points ¢ and # — 1, and assuming proportional C and N decomposition rates

Cdecomp Ndecomp
= 7
i) NW 7
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the amount of SON at each simulation time step is calculated as:

N(t—1)+Nin
N(t) - (Cdemmz (8)
(& +1)
Nloss, Nmin, Nmin.sink(1), ..., Nmin.sink(n)
Along with modelling SON, further quantities are determined. Nitrogen losses are calculated as:
Nloss(t) =N(t — 1)+ Nin(t — 1) — N(¢) )

In contrast, mineralisation rates contain information about sources and sinks of SON. Pool-specific N
mineralisation Nmin.sink (j) and N mineralisation Nmin are related the following:

Nminj(t) = i Nmin.sink(j) , (t) (10)
p=1

for each simulation time point ¢, each pool j = 1,...,n and each pool p = 1,...,n and n total pools. Or in
other words, the row sum of Nmin.sink (j) at one simulation time point equals the j™ column of Nmin
at that time point. Mineralisation rates and sinks are read from a mineralisation rates matrix Nmin.mat:

Nmin(t),...,Nminy(t ZNmm mat; 1 ( ZNmm mat; () (11)

= i=1

Nmin.sink (), (t),...,Nmin.sink (j), (t) = Nmin.mat; 1 (t), ..., Nmin.mat; »(t) (12)

and using the fourth-order Runge-Kutta Method Nmin.mat at time point ¢ is calculated as:

1
Nmin.mat(t) = _E(Knl +2Kny 4+ 2Kn3 + Kny) (13)

with

Kny = (A-diag(xi(t) - (C(t — 1)+ K3)))" - diag (av m) (14)
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and

<) VneN(t)>0

CN(t) = {N(f)’ 15)

n.c., otherwise

and K| - K3 taken from eq. system (4). Note that Kn; 4 are matrices and K 3 are vectors.

As changes in SON must match the sums of all mineralisation paths, the sums over soil pools of Nloss
and Nmin, respectively, must be approximately equal for all simulation time points:

Y,—1 Nlossy(t) = X}, Nminp(t) Vt € tseq (16)
A verification of this relation is given by Nbalance (see below).

Nbalance

The overall N change between two time steps is calculated as:
n n
AN(t) =Y N,(t—1)= Y N,(1) (17)
p=1 p=1

The total system N balance serves as a verification output. Both of the following equations should give
results close to zero:

n n

Npar1 (t) = Y. Niny(t = 1)+ AN(t) = Y Nloss,(t) ~ 0 (18)
p=1 p=1
Noai2(t) = Y Niny(t — 1)+ AN (1) — Y Nmin, (1) ~ 0 (19)

p=1 p=l



sorcering 7

Package Building Information

The SORCERING code was written in C++ using the R packages Rcpp (Eddelbuettel et al. 2021a) and
RcppArmadillo (Eddelbuettel et al. 2021b).

Example
#EXAMPLE OF RothC application with fictional input
#1. Input

data(Cin_ex, Nin_ex, N@_ex, CO_ex, xi_ex) #fictional data
A_RothC <— fget_A_RothC(clay=30) #create transfer matrix for RothC

#2. simulation

out <— sorcering(A=A_RothC, t_sim=60, Cin=Cin_ex, Nin=Nin_ex,
NO=N@_ex, C0=CO@_ex, xi=xi_ex, calcN=TRUE, tsteps="monthly")

#3. results

#output structure summary
summary (out)

#sample plot
oldpar <— par(no.readonly = TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(rowSums(out$N),axes=FALSE, col=1, cex.lab=2,xlab="",6ylab="" ylim=c(0,9),pch=20)
par (new=TRUE)
plot(rowSums(Cin_ex)/rowSums(Nin_ex),

axes=FALSE,col=2, cex.lab=2,xlab="",6ylab="",ylim=c(0,60),pch=20)
axis(side=2, pos = 0,

labels = (0:6) 1.5, at=(0:6) 10, hadj=1, padj = 0.5, cex.axis=2,las=1,col.axis=1)
axis(side=4, pos = 60,

labels = (0:6) 10, at=(0:6) 10, hadj=0, padj = 0.5, cex.axis=2, las=1,col.axis=2)
axis(side=1, pos = 0,

labels = (0:6) 10 , at=(0:6) 10, hadj=0.5, padj = 0@, cex.axis=2)
title(ylab="total N", line=2, cex.lab=2)
title(ylab="C input / N input”, line=—30, cex.lab=2,col.lab=2)
title(xlab="time", line= 2, cex.lab=2)
par(oldpar) #back to old par
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