
Map overlay and

spatial aggregation in sp

Edzer Pebesma∗

June 3, 2022

Abstract

Numerical “map overlay” combines spatial features from one map layer
with the attribute (numerical) properties of another. This vignette ex-
plains the R method “over”, which provides a consistent way to retrieve
indices or attributes from a given spatial object (map layer) at the lo-
cations of another. Using this, the R generic “aggregate” is extended for
spatial data, so that any spatial properties can be used to define an aggre-
gation predicate, and any R function can be used as aggregation function.

Contents

1 Introduction 1

2 Geometry overlays 2

3 Using over to extract attributes 6

4 Lines, and Polygon-Polygon overlays require rgeos 8

5 Ordering and constraining of rgeos-based intersects 12

5.1 Ordering of matches . 13
5.2 Constraining dimensionality of intersection 16

6 Aggregation 16

6.1 Constraining the dimension of intersection 18

1 Introduction

According to the free e-book by Davidson (2008),

∗Institute for Geoinformatics, University of Muenster, Weseler Strasse 253, 48151 Münster,

Germany. edzer.pebesma@uni-muenster.de

1

An overlay is a clear sheet of plastic or semi-transparent paper. It

is used to display supplemental map and tactical information related

to military operations. It is often used as a supplement to orders

given in the field. Information is plotted on the overlay at the same

scale as on the map, aerial photograph, or other graphic being used.

When the overlay is placed over the graphic, the details plotted on

the overlay are shown in their true position.

This suggests that map overlay is concerned with combining two, or possibly
more, map layers by putting them on top of each other. This kind of overlay
can be obtained in R e.g. by plotting one map layer, and plotting a second map
layer on top of it. If the second one contains polygons, transparent colours can
be used to avoid hiding of the first layer. When using the spplot command,
the sp.layout argument can be used to combine multiple layers.

O’Sullivan and Unwin (2003) argue in chapter 10 (Putting maps together:
map overlay) that map overlay has to do with the combination of two (or more)
maps. They mainly focus on the combination of the selection criteria stemming
from several map layers, e.g. finding the deciduous forest area that is less than
5 km from the nearest road. They call this boolean overlays.

One could look at this problem as a polygon-polygon overlay, where we are
looking for the intersection of the polygons with the deciduous forest with the
polygons delineating the area less than 5 km from a road. Other possibilities are
to represent one or both coverages as grid maps, and find the grid cells for which
both criteria are valid (grid-grid overlay). A third possibility would be that one
of the criteria is represented by a polygon, and the other by a grid (polygon-grid
overlay, or grid-polygon overlay). In the end, as O’Sullivan and Unwin argue,
we can overlay any spatial type (points, lines, polygons, pixels/grids) with any
other. In addition, we can address spatial attributes (as the case of grid data),
or only the geometry (as in the case of the polygon-polygon intersection).

This vignette will explain how the over method in package sp can be used
to compute map overlays, meaning that instead of overlaying maps visually,
the digital information that comes from combining two digital map layers is
retrieved. From there, methods to aggregate (compute summary statistics;
Heuvelink and Pebesma, 1999) over a spatial domain will be developed and
demonstrated. Pebesma (2012) describes overlay and aggregation for spatio-
temporal data.

2 Geometry overlays

We will use the word geometry to denote the purely spatial characteristics, mean-
ing that attributes (qualities, properties of something at a particular location)
are ignored. With location we denote a point, line, polygon or grid cell. Section
3 will discuss how to retrieve and possibly aggregate or summarize attributes
found there.

Given two geometries, A and B, the following equivalent commands

2

> A %over% B

> over(A, B)

retrieve the geometry (location) indices of B at the locations of A. More in
particular, an integer vector of length length(A) is returned, with NA values for
locations in A not matching with locations in B (e.g. those points outside a set
of polygons).

Selecting points of A inside or on some geometry B (e.g. a set of polygons)
B is done by

> A[B,]

which is short for

> A[!is.na(over(A,B)),]

We will now illustrate this with toy data created by

> library(sp)

> x = c(0.5, 0.5, 1.0, 1.5)

> y = c(1.5, 0.5, 0.5, 0.5)

> xy = cbind(x,y)

> dimnames(xy)[[1]] = c("a", "b", "c", "d")

> pts = SpatialPoints(xy)

> xpol = c(0,1,1,0,0)

> ypol = c(0,0,1,1,0)

> pol = SpatialPolygons(list(

+ Polygons(list(Polygon(cbind(xpol-1.05,ypol))), ID="x1"),

+ Polygons(list(Polygon(cbind(xpol,ypol))), ID="x2"),

+ Polygons(list(Polygon(cbind(xpol,ypol - 1.0))), ID="x3"),

+ Polygons(list(Polygon(cbind(xpol + 1.0, ypol))), ID="x4"),

+ Polygons(list(Polygon(cbind(xpol+.4, ypol+.1))), ID="x5")

+))

and shown in figure 1.
Now, the polygons pol in which points pts lie are

> over(pts, pol)

a b c d

NA 5 5 4

As points b and c touch two overlapping polygons, the output from the previous
command does not provide all information about the overlaps, only returning
the last polygon which touched them (polygon 5 in both cases). The complete
information can be retrieved as a list:

> over(pts, pol, returnList = TRUE)

3

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

x1 x2

x3

x4
x5

a

b c d

Figure 1: Toy data: points (a-d), and (overlapping) polygons (x1-x5)

$a

integer(0)

$b

[1] 2 5

$c

[1] 2 4 5

$d

[1] 4

This shows that over returns true if geometries in one element touch geometries
in another: they do not have to fully overlap (see section 5.2 to constrain the
selection criteria). The points falling in or touching any of the polygons are
selected by:

> pts[pol]

SpatialPoints:

x y

4

b 0.5 0.5

c 1.0 0.5

d 1.5 0.5

Coordinate Reference System (CRS) arguments: NA

The reverse, identical sequence of commands for selecting polygons pol that
have (one or more) points of pts in them is done by

> over(pol, pts)

x1 x2 x3 x4 x5

NA 2 NA 3 2

> over(pol, pts, returnList = TRUE)

$x1

integer(0)

$x2

[1] 2 3

$x3

integer(0)

$x4

[1] 3 4

$x5

[1] 2 3

> row.names(pol[pts])

[1] "x2" "x4" "x5"

over can also be used to query polygons in a single object overlay each other:

> over(pol, pol, returnList = TRUE)

$x1

x1

1

$x2

x2 x3 x4 x5

2 3 4 5

$x3

x2 x3 x4

5

2 3 4

$x4

x2 x3 x4 x5

2 3 4 5

$x5

x2 x4 x5

2 4 5

The output tells us that x1 does not intersect with any polygons other than
itself, within the pol object. x2 intersects with itself and x3, x4 and x5, and
so on. Note that the types of overlap queried by over include any intersecting
points or edges under the DE-9IM standard. More generic types of spatial
overlap can be queried using functions from the rgeos package, as illustrated by
the help page launched with ?rgeos::gRelate.

Constraining polygon-polygon intersections to e.g. overlap using over is
explained in section 5.2.

3 Using over to extract attributes

This section shows how over(x,y) is used to extract attribute values of argu-
ment y at locations of x. The return value is either an (aggregated) data frame,
or a list.

We now create an example SpatialPointsDataFrame and a SpatialPolygonsDataFrame
using the toy data created earlier:

> zdf = data.frame(z1 = 1:4, z2=4:1, f = c("a", "a", "b", "b"),

+ row.names = c("a", "b", "c", "d"))

> zdf

z1 z2 f

a 1 4 a

b 2 3 a

c 3 2 b

d 4 1 b

> ptsdf = SpatialPointsDataFrame(pts, zdf)

> zpl = data.frame(z = c(10, 15, 25, 3, 0), zz=1:5,

+ f = c("z", "q", "r", "z", "q"), row.names = c("x1", "x2", "x3", "x4", "x5"))

> zpl

z zz f

x1 10 1 z

x2 15 2 q

x3 25 3 r

x4 3 4 z

x5 0 5 q

6

https://en.wikipedia.org/wiki/DE-9IM

> poldf = SpatialPolygonsDataFrame(pol, zpl)

In the simplest example

> over(pts, poldf)

z zz f

a NA NA <NA>

b 15 2 q

c 15 2 q

d 3 4 z

a data.frame is created with each row corresponding to the first element of the
poldf attributes at locations in pts.

As an alternative, we can pass a user-defined function to process the table
(selecting those columns to which the function makes sense):

> over(pts, poldf[1:2], fn = mean)

z zz

a NA NA

b 7.5 3.500000

c 6.0 3.666667

d 3.0 4.000000

To obtain the complete list of table entries at each point of pts, we use the
returnList argument:

> over(pts, poldf, returnList = TRUE)

$a

[1] z zz f

<0 rows> (or 0-length row.names)

$b

z zz f

x2 15 2 q

x5 0 5 q

$c

z zz f

x2 15 2 q

x4 3 4 z

x5 0 5 q

$d

z zz f

x4 3 4 z

7

The same actions can be done when the arguments are reversed:

> over(pol, ptsdf)

z1 z2 f

x1 NA NA <NA>

x2 2 3 a

x3 NA NA <NA>

x4 3 2 b

x5 2 3 a

> over(pol, ptsdf[1:2], fn = mean)

z1 z2

x1 NA NA

x2 2.5 2.5

x3 NA NA

x4 3.5 1.5

x5 2.5 2.5

4 Lines, and Polygon-Polygon overlays require

rgeos

Package sp provides many of the over methods, but not all. Package rgeos

can compute geometry intersections, i.e. for any set of (points, lines, polygons)
to determine whether they have one ore more points in common. This means
that the over methods provided by package sp can be completed by rgeos

for any over methods where a SpatialLines object is involved (either as x

or y), or where x and y are both of class SpatialPolygons (table 1). For
this purpose, objects of class SpatialPixels or SpatialGrid are converted to
SpatialPolygons. A toy example combines polygons with lines, created by

> l1 = Lines(Line(coordinates(pts)), "L1")

> l2 = Lines(Line(rbind(c(1,1.5), c(1.5,1.5))), "L2")

> L = SpatialLines(list(l1,l2))

and shown in figure 2.
The set of over operations on the polygons, lines and points is shown below

(note that lists and vectors are named in this case):

> library(rgeos)

> over(pol, pol)

x1.x1 x2.x2 x3.x2 x4.x2 x5.x2

1 2 2 2 2

> over(pol, pol,returnList = TRUE)

8

y: Points y: Lines y: Polygons y: Pixels y: Grid
x: Points s r s s s
x: Lines r r r r:y r:y
x: Polygons s r r s:y s:y
x: Pixels s:x r:x s:x s:x s:x
x: Grid s:x r:x s:x s:x s:x

Table 1: over methods implemented for different x and y arguments. s:
provided by sp; r: provided by rgeos. s:x or s:y indicates that the x or y
argument is converted to grid cell center points; r:x or r:y indicate grids or
pixels are converted to polygons equal to the grid cell.

$x1

x1

1

$x2

x2 x3 x4 x5

2 3 4 5

$x3

x2 x3 x4

2 3 4

$x4

x2 x3 x4 x5

2 3 4 5

$x5

x2 x4 x5

2 4 5

> over(pol, L)

x1.NA x2.L1 x3.NA x4.L1 x5.L1

NA 1 NA 1 1

> over(L, pol)

L1.x2 L2.NA

2 NA

> over(L, pol, returnList = TRUE)

$L1

x2 x4 x5

2 4 5

9

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

x1 x2

x3

x4
x5

L1 L2

Figure 2: Toy data: two lines and (overlapping) polygons (x1-x5)

$L2

named integer(0)

> over(L, L)

L1 L2

1 2

> over(pts, L)

a b c d

1 1 1 1

> over(L, pts)

L1.a L2.NA

1 NA

Another example overlays a line with a grid, shown in figure 3.

10

> data(meuse.grid)

> gridded(meuse.grid) = ~x+y

> Pt = list(x = c(178274.9,181639.6), y = c(329760.4,333343.7))

> sl = SpatialLines(list(Lines(Line(cbind(Ptx,Pty)), "L1")))

> image(meuse.grid)

> xo = over(sl, geometry(meuse.grid), returnList = TRUE)

> image(meuse.grid[xo[[1]],],col=grey(0.5),add=T)

> lines(sl)

Figure 3: Overlay of line with grid, identifying cells crossed (or touched) by
the line

11

5 Ordering and constraining of rgeos-based in-

tersects

Consider the following “identical” 3×3 grid, represented as SpatialGrid, SpatialPolygons
and SpatialPixels:

> g = SpatialGrid(GridTopology(c(0,0), c(1,1), c(3,3)))

> p = as(g, "SpatialPolygons")

> px = as(g, "SpatialPixels")

> plot(g)

> text(coordinates(g), labels = 1:9)

1 2 3

4 5 6

7 8 9

We can match these geometries with themselves by

> over(g,g)

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

> over(p,p)

g1.g1 g2.g1 g3.g2 g4.g1 g5.g1 g6.g2 g7.g4 g8.g4 g9.g5

1 1 2 1 1 2 4 4 5

> over(p,g)

12

g1 g2 g3 g4 g5 g6 g7 g8 g9

1 2 3 4 5 6 7 8 9

> over(g,p)

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

and see that most give a 1:1 match, except for polygons-polygons (p,p).
When we ask for the full set of matches, we see

> over(px[5], g, returnList = TRUE)

$`1`

[1] 5

> over(p[c(1,5)], p, returnList = TRUE)

$g1

g1 g2 g4 g5

1 2 4 5

$g5

g1 g2 g3 g4 g5 g6 g7 g8 g9

1 2 3 4 5 6 7 8 9

and note that the implementation lets grids/pixels not match (intersect) with
neighbour grid cells, but that polygons do.

There are two issues we’d like to improve here: the order in which matching
features (here: polygons) are returned, and the possibility to limit this by the
dimension of the intersection (point/line/area). Both will be explained now.

5.1 Ordering of matches

By default, polygon-polygon features are matched by rgeos::gIntersects,
which just returns any match in any order (feature order, it seems). Although
it is slower, we can however improve on this by switching to rgeos::gRelate,
and see

> over(px[5], g, returnList = TRUE, minDimension = 0)

$`1`

[1] 5

> over(p[c(1,5)], p, returnList = TRUE, minDimension = 0)

$g1

[1] 1 2 4 5

$g5

[1] 5 2 4 6 8 1 3 7 9

13

When minDimension = 0 is specified, the matching geometries are being re-
turned based on a nested ordering. First, ordering is done by dimensionality of
the intersection, as returned by the rgeos function gRelate (which uses the DE-
9IM model). This means that features that have an area overlapping (dim=2)
are listed before features that have a line in common (dim=1), and that line in
common features are listed before features that only have a point in common
(dim=0).

Remaining ties, indicating cases when there are multiple different intersec-
tions of the same dimension, are ordered such that matched feature interiors

are given higher priority than matched feature boundaries.
Note that the ordering also determines which feature is matched when returnList=FALSE,

as in this case the first element of the ordered set is taken:

> over(p, p, minDimension = 0)

g1 g2 g3 g4 g5 g6 g7 g8 g9

1 2 3 4 5 6 7 8 9

Consider the following example where a point is on x1 and in x2:

> x2 = x1 = cbind(c(0,1,1,0,0), c(0,0,1,1,0))

> x1[,1] = x1[,1]+0.5

> x1[,2] = x1[,2]+0.25

> sp = SpatialPolygons(list(

+ Polygons(list(Polygon(x1)), "x1"),

+ Polygons(list(Polygon(x2)), "x2")))

> pt = SpatialPoints(cbind(0.5,0.5)) # on border of x1

> row.names(pt) = "pt1"

> plot(sp, axes = TRUE)

> text(c(0.05, 0.55, 0.55), c(0.9, 1.15, 0.5), c("x1","x2", "pt"))

> plot(pt, add=TRUE, col='red', pch=16)

14

https://en.wikipedia.org/wiki/DE-9IM
https://en.wikipedia.org/wiki/DE-9IM

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x1

x2

pt

When matching the point pt with the two polygons, the sp method (default)
gives no preference of the second polygon that (fully) contains the point; the
rgeos method however does:

> over(pt,sp)

pt1

2

> over(pt,sp,minDimension=0)

pt1

2

> over(pt,sp,returnList=TRUE)

$pt1

[1] 1 2

> rgeos::overGeomGeom(pt,sp)

pt1.x1

1

> rgeos::overGeomGeom(pt,sp,returnList=TRUE)

15

$pt1

x1 x2

1 2

> rgeos::overGeomGeom(pt,sp,returnList=TRUE,minDimension=0)

$pt1

[1] 2 1

5.2 Constraining dimensionality of intersection

In some cases for feature selection it may be desired to constrain matching
to features that have an area overlap, or that have an area overlap or line in
common. This can be done using the parameter minDimension:

> over(p[5], p, returnList=TRUE, minDimension=0)

$g5

[1] 5 2 4 6 8 1 3 7 9

> over(p[5], p, returnList=TRUE, minDimension=1)

$g5

[1] 5 2 4 6 8

> over(p[5], p, returnList=TRUE, minDimension=2)

$g5

[1] 5

> rgeos::overGeomGeom(pt, pt, minDimension=2) # empty

[1] NA

> rgeos::overGeomGeom(pt, pt, minDimension=1) # empty

[1] NA

> rgeos::overGeomGeom(pt, pt, minDimension=0)

pt1

1

6 Aggregation

In the following example, the values of a fine grid with 40 m x 40 m cells are
aggregated to a course grid with 400 m x 400 m cells.

16

> data(meuse.grid)

> gridded(meuse.grid) = ~x+y

> off = gridparameters(meuse.grid)$cellcentre.offset + 20

> gt = GridTopology(off, c(400,400), c(8,11))

> SG = SpatialGrid(gt)

> agg = aggregate(meuse.grid[3], SG, mean)

Figure 5 shows the result of this aggregation (agg, in colors) and the points
(+) of the original grid (meuse.grid). Function aggregate aggregates its first
argument over the geometries of the second argument, and returns a geometry
with attributes. The default aggregation function (mean) can be overridden.

Figure 4: aggregation over meuse.grid distance values to a 400 m x 400 m grid

An example of the aggregated values of meuse.grid along (or under) the
line shown in Figure 2 are

> sl.agg = aggregate(meuse.grid[,1:3], sl, mean)

> class(sl.agg)

[1] "SpatialLinesDataFrame"

attr(,"package")

[1] "sp"

17

> as.data.frame(sl.agg)

part.a part.b dist

1 0.4904459 0.5095541 0.3100566

Function aggregate returns a spatial object of the same class of sl (SpatialLines),
and as.data.frame shows the attribute table as a data.frame.

6.1 Constraining the dimension of intersection

Building on the simple example of section 5.2, we can see what happens if we
aggregate polygons without specifying how polygons intersect1, the result of
which is shown in Figure 5.

> g = SpatialGrid(GridTopology(c(5,5), c(10,10), c(3,3)))

> p = as(g, "SpatialPolygons")

> p$z = c(1,0,1,0,1,0,1,0,1)

> cc = coordinates(g)

> p$ag1 = aggregate(p, p, mean)[[1]]

> p$ag1a = aggregate(p, p, mean, minDimension = 0)[[1]]

> p$ag2 = aggregate(p, p, mean, minDimension = 1)[[1]]

> p$ag3 = aggregate(p, p, mean, minDimension = 2)[[1]]

> p$ag4 = aggregate(p, p, areaWeighted=TRUE)[[1]]

The option areaWeighted=TRUE aggregates area-weighted, giving zero weight
to polygons that only have a point or line in common with the target polygon;
minDimension is passed to over to constrain the intersecting polygons used.

The following example furher illustrates the difference between selection us-
ing minDimension, and area weighting for aggregating the 0-1 checker board of
figure 5 by the green square polygon (sq) shown in the last panel of that figure:

> round(c(

+ aggDefault = aggregate(p, sq, mean)[[1]],

+ aggMinDim0 = aggregate(p, sq, mean, minDimension = 0)[[1]],

+ aggMinDim1 = aggregate(p, sq, mean, minDimension = 1)[[1]],

+ aggMinDim2 = aggregate(p, sq, mean, minDimension = 2)[[1]],

+ areaWeighted = aggregate(p, sq, areaWeighted=TRUE)[[1]]), 3)

aggDefault aggMinDim0 aggMinDim1 aggMinDim2 areaWeighted

0.556 0.556 0.556 0.556 0.722

References

• O’Sullivan, D., Unwin, D. (2003) Geographical Information Analysis. Wi-
ley, NJ.

1sp versions 1.2-1, rgeos versions 0.3-13

18

5

10

15

20

25 1 0 1

0 1 0

1 0 1

source

5 10 15 20 25

0.5 0.5 0.5

0.5 0.56 0.5

0.5 0.5 0.5

default aggregate

0.5 0.5 0.5

0.5 0.56 0.5

0.5 0.5 0.5

minDimension=0

5 10 15 20 25

0.33 0.75 0.33

0.75 0.2 0.75

0.33 0.75 0.33

minDimension=1

1 0 1

0 1 0

1 0 1

minDimension=2

5 10 15 20 25

5

10

15

20

251 0 1

0 1 0

1 0 1

areaWeighted=TRUE

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Effect of aggregating checker board SpatialPolygons by themselves,
for different values of minDimension and areaWeighted; the green square ex-
ample is given in the text.

• Davidson, R., 2008. Reading topographic maps. Free e-book from: http:
//www.map-reading.com/

• Heuvelink, G.B.M., and E.J. Pebesma, 1999. Spatial aggregation and soil
process modelling. Geoderma 89, 1-2, 47-65.

• Pebesma, E., 2012. Spatio-temporal overlay and aggregation. Pack-
age vignette for package spacetime, https://cran.r-project.org/web/
packages/spacetime/vignettes/sto.pdf

19

http://www.map-reading.com/
http://www.map-reading.com/
http://dx.doi.org/10.1016/S0016-7061(98)00077-9
https://cran.r-project.org/web/packages/spacetime/vignettes/sto.pdf
https://cran.r-project.org/web/packages/spacetime/vignettes/sto.pdf

	Introduction
	Geometry overlays
	Using over to extract attributes
	Lines, and Polygon-Polygon overlays require rgeos
	Ordering and constraining of rgeos-based intersects
	Ordering of matches
	Constraining dimensionality of intersection

	Aggregation
	Constraining the dimension of intersection

