
Package ‘sparseSVM’
June 2, 2018

Type Package

Title Solution Paths of Sparse High-Dimensional Support Vector Machine
with Lasso or Elastic-Net Regularization

Version 1.1-6

Date 2018-06-01

Author Congrui Yi and Yaohui Zeng

Maintainer Congrui Yi <eric.ycr@gmail.com>

Description Fast algorithm for fitting solution paths of sparse SVM models with lasso or elastic-
net regularization.

License GPL-3

NeedsCompilation yes

Imports parallel

Repository CRAN

Date/Publication 2018-06-02 12:27:22 UTC

R topics documented:

sparseSVM-package . 2
cv.sparseSVM . 3
plot.cv.sparseSVM . 4
plot.sparseSVM . 5
predict.cv.sparseSVM . 6
predict.sparseSVM . 8
sparseSVM . 9

Index 12

1

2 sparseSVM-package

sparseSVM-package Solution Paths for Sparse High-Dimensional Support Vector Machine
with Lasso or Elastic-Net Regularization

Description

Fast algorithm for fitting solution paths for sparse SVM regularized by lasso or elastic-net that
generate sparse solutions.

Details

Package: sparseSVM
Type: Package
Version: 1.1-6
Date: 2018-06-01
License: GPL-3

Accepts X,y data for binary classification and produces the solution path over a grid of values of the
regularization parameter lambda. Also provides functions for plotting, prediction and parallelized
cross-validation.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

References

Yi, C. and Huang, J. (2017) Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Pe-
nalized Huber Loss Regression and Quantile Regression, https://www.tandfonline.com/doi/
abs/10.1080/10618600.2016.1256816?journalCode=ucgs20
Journal of Computational and Graphical Statistics

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

fit = sparseSVM(X, y)
coef(fit, 0.05)
predict(fit, X[1:5,], lambda = c(0.2, 0.1))
plot(fit)

https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1256816?journalCode=ucgs20
https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1256816?journalCode=ucgs20

cv.sparseSVM 3

cv.fit <- cv.sparseSVM(X, y, ncores = 2, seed = 1234)
predict(cv.fit, X)
coef(cv.fit)
plot(cv.fit)

cv.sparseSVM Cross validation for sparseSVM

Description

Perform k-fold cross validation for sparse linear SVM regularized by lasso or elastic-net over a
sequence of lambda values and find an optimal lambda.

Usage

cv.sparseSVM(X, y, ..., ncores = 1, eval.metric = c("me"),
nfolds = 10, fold.id, seed, trace = FALSE)

Arguments

X Input matrix.

y Response vector.

... Additional arguments to sparseSVM.

ncores cv.sparseSVM can be run in parallel across a cluster using the parallel pack-
age. If ncores > 1,a cluster is created to run cv.sparseSVM in parallel. The
code is run in series if ncores = 1 (the default). An error occurs if ncores is
larger than the total number of available cores.

eval.metric The metric used to choose optimial lambda. Current version only supports "me":
misclassification error.

nfolds The number of cross-validation folds. Default is 10.

seed The seed of the random number generator in order to obtain reproducible results.

fold.id Which fold each observation belongs to. By default the observations are ran-
domly assigned by cv.sparseSVM.

trace If set to TRUE, cv.sparseSVM will inform the user of its progress by announc-
ing the beginning of each CV fold. Default is FALSE. (No trace output when
running in parallel even if trace=TRUE.)

Details

The function randomly partitions the data in nfolds. It calls sparseSVM nfolds+1 times, the first
to obtain the lambda sequence, and the remainder to fit with each of the folds left out once for
validation. The cross-validation error is the average of validation errors for the nfolds fits.

Note by default, the cross-validation fold assignments are balanced across the two classes, so that
each fold has the same class proportion (or as close to the same proportion as it is possible to achieve
if cases do not divide evenly).

4 plot.cv.sparseSVM

Value

The function returns an object of S3 class "cv.sparseSVM", which is a list containing:

cve The validation error for each value of lambda, averaged across the cross-validation
folds.

cvse The estimated standard error associated with each value of cve.

lambda The values of lambda used in the cross-validation fits.

fit The fitted sparseSVM object for the whole data.

min The index of lambda corresponding to lambda.min.

lambda.min The value of lambda with the minimum cross-validation error in terms of eval.metric.

eval.metric The metric used in selecting optimal lambda.

fold.id The same as above.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

sparseSVM, predict.cv.sparseSVM, plot.cv.sparseSVM

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

cv.fit1 <- cv.sparseSVM(X, y, nfolds = 5, ncores = 2, seed = 1234)
cv.fit2 <- cv.sparseSVM(X, y, nfolds = 5, seed = 1234)
stopifnot(all.equal(cv.fit1, cv.fit2))

plot.cv.sparseSVM Plot the cross-validation curve for a "cv.sparseSVM" object

Description

Plot the cross-validation curve for a "cv.sparseSVM" object against the lambda values used, along
with standard error bars.

Usage

S3 method for class 'cv.sparseSVM'
plot(x, log.l = TRUE, nvars = TRUE, ...)

plot.sparseSVM 5

Arguments

x A "cv.sparseSVM" object.

log.l Should log(lambda) be used instead of lambda for the X-axis? Default is
TRUE.

nvars If TRUE (the default), places an axis on top of the plot denoting the number of
variables with nonzero coefficients at each lambda.

... Other graphical parameters to plot

Details

Produces a plot of mean cv errors at each lambda along with upper and lower standard error bars.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

sparseSVM, cv.sparseSVM

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

cv.fit <- cv.sparseSVM(X, y, ncores = 2, seed = 1234)
plot(cv.fit)
plot(cv.fit, log.l = FALSE)

plot.sparseSVM Plot coefficients from a "sparseSVM" object

Description

Produce a plot of the coefficient paths for a fitted "sparseSVM" object.

Usage

S3 method for class 'sparseSVM'
plot(x, xvar = c("lambda", "norm"), log.l = TRUE, nvars = TRUE,

alpha = 1, ...)

6 predict.cv.sparseSVM

Arguments

x A sparseSVM object.

xvar What is on the X-axis. "lambda" plots against the lambda sequence, "norm"
against the L1-norm of the coefficients. Default is "lambda".

log.l Should log(lambda) be used instead of lambda when xvar = "lambda"? De-
fault is TRUE. It has no effect on "norm".

nvars If TRUE (the default), places an axis on top of the plot denoting the number of
variables with nonzero coefficients at each lambda.

alpha A value between 0 and 1 for alpha transparency channel(0 means transparent
and 1 means opaque), helpful when the number of variables is large.

... Other graphical parameters to plot.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

sparseSVM

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

fit = sparseSVM(X, y)
par(mfrow = c(2,2))
plot(fit)
plot(fit, nvars = FALSE, alpha = 0.5)
plot(fit, log.l = FALSE)
plot(fit, xvar = "norm")

predict.cv.sparseSVM Model predictions based on "cv.sparseSVM" object.

Description

This function returns fitted values, coefficients and more from a fitted "cv.sparseSVM" object.

predict.cv.sparseSVM 7

Usage

S3 method for class 'cv.sparseSVM'
predict(object, X, lambda = object$lambda.min,

type = c("class","coefficients","nvars"), exact = FALSE, ...)
S3 method for class 'cv.sparseSVM'
coef(object, lambda = object$lambda.min, exact = FALSE, ...)

Arguments

object Fitted "cv.sparseSVM" model object.

X Matrix of values at which predictions are to be made. Used only for type = "class".

lambda Values of the regularization parameter lambda at which predictions are requested.
Default is the one corresponding to the minimum cross-validation error.

type Type of prediction. "class" returns the class labels; "coefficients" returns
the coefficients; "nvars" returns the number of nonzero coefficients at each
value of lambda.

exact If exact=FALSE (default), then the function uses linear interpolation to make
predictions for values of lambda that do not coincide with those used to fit the
model. If exact=TRUE, and predictions are requested at values of lambda not
included in the original fit, the model is refit on a lambda sequence consisting
object$lambda and the new ones before predictions are made.

... Not used. Other arguments to predict.

Value

The object returned depends on type.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

sparseSVM, cv.sparseSVM

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

cv.fit <- cv.sparseSVM(X, y, ncores = 2, seed = 1234)
predict(cv.fit, X)
predict(cv.fit, type = 'nvars')
predict(cv.fit, type = 'coef')

8 predict.sparseSVM

coef(cv.fit)

predict.sparseSVM Model predictions based on "sparseSVM" object.

Description

This function returns fitted values, coefficients and more from a fitted "sparseSVM" object.

Usage

S3 method for class 'sparseSVM'
predict(object, X, lambda, type = c("class","coefficients","nvars"),

exact = FALSE, ...)
S3 method for class 'sparseSVM'
coef(object, lambda, exact = FALSE, ...)

Arguments

object Fitted "sparseSVM" model object.

X Matrix of values at which predictions are to be made. Used only for type = "class".

lambda Values of the regularization parameter lambda at which predictions are requested.
Default is the entire sequence used to create the model.

type Type of prediction. "class" returns the class labels; "coefficients" returns
the coefficients; "nvars" returns the number of nonzero coefficients at each
value of lambda.

exact If exact=FALSE (default), then the function uses linear interpolation to make
predictions for values of lambda that do not coincide with those used to fit the
model. If exact=TRUE, and predictions are requested at values of lambda not
included in the original fit, the model is refit on a lambda sequence consisting
object$lambda and the new ones before predictions are made.

... Not used. Other arguments to predict.

Value

The object returned depends on type.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

sparseSVM

sparseSVM 9

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

fit = sparseSVM(X, y)
predict(fit, X[1:5,], lambda = c(0.05, 0.03))
predict(fit, X[1:5,], lambda = 0.05, exact = TRUE)
predict(fit, type = "nvars")
coef(fit, lambda = 0.05)

sparseSVM Fit sparse linear SVM with lasso or elasti-net regularization

Description

Fit solution paths for sparse linear SVM regularized by lasso or elastic-net over a grid of values for
the regularization parameter lambda.

Usage

sparseSVM(X, y, alpha = 1, gamma = 0.1, nlambda=100,
lambda.min = ifelse(nrow(X)>ncol(X), 0.01, 0.05),

lambda, preprocess = c("standardize", "rescale", "none"),
screen = c("ASR", "SR", "none"), max.iter = 1000, eps = 1e-5,
dfmax = ncol(X)+1, penalty.factor=rep(1, ncol(X)), message = FALSE)

Arguments

X Input matrix.

y Output vector. Currently the function only supports binary output and converts
the output into +1/-1 coding internally.

alpha The elastic-net mixing parameter that controls the relative contribution from the
lasso and the ridge penalty. It must be a number between 0 and 1. alpha=1 is
the lasso penalty and alpha=0 the ridge penalty.

gamma The tuning parameter for huberization smoothing of hinge loss. Default is 0.1.

nlambda The number of lambda values. Default is 100.

lambda.min The smallest value for lambda, as a fraction of lambda.max, the data derived
entry value. Default is 0.01 if the number of observations is larger than the
number of variables and 0.05 otherwise.

lambda A user-specified sequence of lambda values. Typical usage is to leave blank and
have the program automatically compute a lambda sequence based on nlambda
and lambda.min. Specifying lambda overrides this. This argument should be
used with care and supplied with a decreasing sequence instead of a single value.

10 sparseSVM

To get coefficients for a single lambda, use coef or predict instead after fitting
the solution path with sparseSVM.

preprocess Preprocessing technique to be applied to the input. Either "standardize" (de-
fault), "rescale" or "none" (see Details). The coefficients are always returned
on the original scale.

screen Screening rule to be applied at each lambda that discards variables for speed.
Either "ASR" (default), "SR" or "none". "SR" stands for the strong rule, and
"ASR" for the adaptive strong rule. Using "ASR" typically requires fewer iter-
ations to converge than "SR", but the computing time are generally close. Note
that the option "none" is used mainly for debugging, which may lead to much
longer computing time.

max.iter Maximum number of iterations. Default is 1000.

eps Convergence threshold. The algorithms continue until the maximum change in
the objective after any coefficient update is less than eps times the null deviance.
Default is 1E-7.

dfmax Upper bound for the number of nonzero coefficients. The algorithm exits and
returns a partial path if dfmax is reached. Useful for very large dimensions.

penalty.factor A numeric vector of length equal to the number of variables. Each component
multiplies lambda to allow differential penalization. Can be 0 for some vari-
ables, in which case the variable is always in the model without penalization.
Default is 1 for all variables.

message If set to TRUE, sparseSVM will inform the user of its progress. This argument
is kept for debugging. Default is FALSE.

Details

The sequence of models indexed by the regularization parameter lambda is fitted using a semis-
mooth Newton coordinate descent algorithm. The objective function is defined to be

1

n

∑
hingeLoss(yi(x

′
iw + b)) + λpenalty(w).

where
hingeLoss(t) = max(0, 1− t)

and the intercept b is unpenalized.

The program supports different types of preprocessing techniques. They are applied to each column
of the input matrix X. Let x be a column of X. For preprocess = "standardize", the formula is

x′ =
x−mean(x)

sd(x)
;

for preprocess = "rescale",

x′ =
x−min(x)

max(x)−min(x)
.

The models are fit with preprocessed input, then the coefficients are transformed back to the original
scale via some algebra.

sparseSVM 11

Value

The function returns an object of S3 class "sparseSVM", which is a list containing:

call The call that produced this object.

weights The fitted matrix of coefficients. The number of rows is equal to the number of
coefficients, and the number of columns is equal to nlambda. An intercept is
included.

iter A vector of length nlambda containing the number of iterations until conver-
gence at each value of lambda.

saturated A logical flag for whether the number of nonzero coefficients has reached dfmax.

lambda The sequence of regularization parameter values in the path.

alpha Same as above.

gamma Same as above.

penalty.factor Same as above.

levels Levels of the output class labels.

Author(s)

Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>

See Also

plot.sparseSVM, cv.sparseSVM

Examples

X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))

fit = sparseSVM(X, y)
coef(fit, 0.05)
predict(fit, X[1:5,], lambda = c(0.2, 0.1))

Index

∗Topic SVM
cv.sparseSVM, 3
plot.cv.sparseSVM, 4
plot.sparseSVM, 5
predict.cv.sparseSVM, 6
predict.sparseSVM, 8
sparseSVM, 9
sparseSVM-package, 2

∗Topic classification
cv.sparseSVM, 3
plot.cv.sparseSVM, 4
plot.sparseSVM, 5
predict.cv.sparseSVM, 6
predict.sparseSVM, 8
sparseSVM, 9
sparseSVM-package, 2

∗Topic machine learning
cv.sparseSVM, 3
plot.cv.sparseSVM, 4
plot.sparseSVM, 5
predict.cv.sparseSVM, 6
predict.sparseSVM, 8
sparseSVM, 9
sparseSVM-package, 2

∗Topic models
cv.sparseSVM, 3
plot.cv.sparseSVM, 4
plot.sparseSVM, 5
predict.cv.sparseSVM, 6
predict.sparseSVM, 8
sparseSVM, 9
sparseSVM-package, 2

coef.cv.sparseSVM
(predict.cv.sparseSVM), 6

coef.sparseSVM (predict.sparseSVM), 8
cv.sparseSVM, 3, 5, 7, 11

plot.cv.sparseSVM, 4, 4
plot.sparseSVM, 5, 11

predict.cv.sparseSVM, 4, 6
predict.sparseSVM, 8

sparseSVM, 4–8, 9
sparseSVM-package, 2

12

	sparseSVM-package
	cv.sparseSVM
	plot.cv.sparseSVM
	plot.sparseSVM
	predict.cv.sparseSVM
	predict.sparseSVM
	sparseSVM
	Index

