
Package ‘spatPomp’
January 15, 2022

Type Package

Title Inference for Spatiotemporal Partially Observed Markov Processes

Version 0.29.0.0

Date 2022-01-12

URL https://github.com/kidusasfaw/spatPomp

Description Inference on panel data using spatiotemporal partially-observed Markov process (Spat-
POMP) models. To do so, it relies on and extends a number of facilities that the 'pomp' pack-
age provides for inference on time series data using partially-observed Markov pro-
cess (POMP) models. Implemented methods include filtering and inference meth-
ods in Park and Ionides (2020) <doi:10.1007/s11222-020-09957-3>, Rebeschini and van Han-
del (2015) <doi:10.1214/14-
AAP1061>, Evensen and van Leeuwen (1996) <doi:10.1029/94JC00572> and Ion-
ides et al. (2021) <arXiv:2002.05211v2>. Pre-print statistical software article: As-
faw et al. (2021) <arXiv:2101.01157>.

SystemRequirements For Windows users, Rtools (see
https://cran.r-project.org/bin/windows/Rtools/).

License GPL-3

Encoding UTF-8

LazyData true

Contact kasfaw at umich dot edu

Depends pomp (>= 4.1), R(>= 4.0.0), methods

LinkingTo pomp

Suggests testthat, doParallel (>= 1.0.11), parallel

Imports foreach, dplyr, tidyr, stringr, abind, rlang, magrittr

Collate 'spatPomp_class.R' 'abf.R' 'abfir.R' 'get_covariate_names.R'
'as_data_frame.R' 'as_spatPomp.R' 'bm.R' 'bpfilter.R'
'city_data_UK.R' 'skeleton_spec.R' 'safecall.R'
'rprocess_spec.R' 'pstop.R' 'undefined.R' 'spatPomp.R'
'dunit_measure.R' 'enkf.R' 'eunit_measure.R' 'gbm.R' 'girf.R'
'iter_filter.R' 'ienkf.R' 'igirf.R' 'iubf.R' 'loglik.R'
'lorenz.R' 'mcap.R' 'measles.R' 'measlesUK.R' 'munit_measure.R'

1

https://github.com/kidusasfaw/spatPomp
https://doi.org/10.1007/s11222-020-09957-3
https://doi.org/10.1214/14-AAP1061
https://doi.org/10.1214/14-AAP1061
https://doi.org/10.1029/94JC00572
https://arxiv.org/abs/2002.05211v2
https://arxiv.org/abs/2101.01157

2 R topics documented:

'package.R' 'pipe.R' 'plot.R' 'print.R' 'runit_measure.R'
'simulate.R' 'spatPomp_Csnippet.R' 'spatPomp_workhorses.R'
'unit_names.R' 'vec_dmeasure.R' 'vec_rmeasure.R'
'vunit_measure.R'

RoxygenNote 7.1.1

NeedsCompilation yes

Author Kidus Asfaw [aut, cre],
Aaron A. King [aut],
Edward Ionides [aut],
Joonha Park [ctb],
Allister Ho [ctb]

Maintainer Kidus Asfaw <kasfaw@umich.edu>

Repository CRAN

Date/Publication 2022-01-15 16:30:02 UTC

R topics documented:
spatPomp-package . 3
abf . 4
abfir . 6
as.data.frame . 7
as_spatPomp . 8
bm . 9
bpfilter . 9
city_data_UK . 11
dunit_measure . 12
enkf . 13
eunit_measure . 14
gbm . 15
girf . 15
ienkf . 18
igirf . 19
iubf . 22
logLik . 24
lorenz . 25
mcap . 26
measles . 27
measlesUK . 28
munit_measure . 29
plot . 30
print . 31
runit_measure . 31
simulate . 32
spatPomp . 33
spatPomp-class . 38
spatPomp_Csnippet . 38

spatPomp-package 3

unit_names . 40
vec_dmeasure . 41
vec_rmeasure . 41
vunit_measure . 42

Index 44

spatPomp-package Inference for SpatPOMPs (Spatiotemporal Partially Observed Markov
Processes)

Description

The spatPomp package provides facilities for inference on panel data using spatiotemporal partially-
observed Markov process (SPATPOMP) models. To do so, it relies on and extends a number of fa-
cilities that the pomp package provides for inference on time series data using partially-observed
Markov process (POMP) models.

The spatPomp package concerns models consisting of a collection of interacting units. The meth-
ods in spatPomp may be applicable whether or not these units correspond to spatial locations.

Data analysis using spatPomp

The first step in using spatPomp is to encode one’s model(s) and data in objects of class spatPomp.
This can be done via a call to the spatPomp constructor function.

Extending the pomp platform for developing inference tools

spatPomp extends to panel data the general interface to the components of POMP models provided
by pomp. In doing so, it contributes to the goal of the pomp project of facilitating the development
of new algorithms in an environment where they can be tested and compared on a growing body of
models and datasets.

Documentation

spatPomp is described by Asfaw et al. (2020)

License

spatPomp is provided under the MIT License.

Author(s)

Kidus Asfaw, Joonha Park, Allister Ho, Edward Ionides, Aaron King

References

Asfaw, K. et al. (2020) Statistical inference for spatiotemporal partially observed Markov processes
via the R package spatPomp. Manuscript in preparation.

4 abf

See Also

pomp package

abf Adapted Bagged Filter (ABF)

Description

An algorithm for estimating the likelihood of a spatiotemporal partially-observed Markov process
model. Running abf causes the algorithm to run bootstrap replicate jobs which each yield an
imperfect adapted simulation. Simulating from the "adapted filter" distribution runs into a curse
of dimensionality (COD) problem, which is mitigated by keeping particles in each replicate close
to each other through resampling down to one particle per replicate at each observation time point.
The adapted simulations are then weighted in a way that mitigates COD by making a weak coupling
assumption to get an approximate filter distribution. As a by-product, we also get an estimate of the
likelihood of the data.

Usage

S4 method for signature 'spatPomp'
abf(
object,
Nrep,
Np,
nbhd,
tol = 1e-300,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'abfd_spatPomp'
abf(
object,
Nrep,
Np,
nbhd,
tol = 1e-300,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

object A spatPomp object.

Nrep The number of bootstrap replicates for the adapted simulations.

Np The number of particles used within each replicate for the adapted simulations.

abf 5

nbhd A neighborhood function with three arguments: object, time and unit. The
function should return a list of two-element vectors that represent space-time
neighbors of (u, n), which is represented by c(unit,time). See example below
for more details.

tol If the resampling weight for a particle is zero due to floating-point precision
issues, it is set to the value of tol since resampling has to be done.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, abf() returns an object of class ‘abfd_spatPomp’ containing the al-
gorithmic parameters used to run abf() and the estimated likelihood.

Methods

The following methods are available for such an object:

logLik yields an estimate of the log-likelihood of the data under the model.

See Also

Other particle filter methods: abfir(), bpfilter(), enkf(), girf(), ienkf(), igirf(), iubf()

Examples

Create a simulation of a Brownian motion
b <- bm(U=3, N=10)

Create a neighborhood function mapping a point in space-time
to a list of neighboring points in space-time
bm_nbhd <- function(object, time, unit) {

nbhd_list = list()
if(time > 1 && unit > 1){
nbhd_list = c(nbhd_list, list(c(unit-1, time-1)))

}
return(nbhd_list)

}

Run ABF specified number of Monte Carlo replicates and particles per replicate
abfd_bm <- abf(b, Nrep=2, Np=10, nbhd=bm_nbhd)

Get the likelihood estimate from ABF
logLik(abfd_bm)

6 abfir

abfir Adapted Bagged Filter with Intermediate Resampling (ABF-IR)

Description

An algorithm for estimating the filter distribution and likelihood of a spatiotemporal partially-
observed Markov process model. Running abfir causes the algorithm to run Monte Carlo repli-
cated jobs which each carry out an adapted simulation using intermediate resampling. Adapted
simulation is an easier task than filtering, since particles in each replicate remain close to each
other. Intermediate resampling further assists against the curse of dimensionality (COD) problem
for importance sampling. The adapted simulations are then weighted in a way that mitigates COD
by making a weak coupling assumption to get an approximate filter distribution. As a by-product,
we also get an approximation to the likelihood of the data.

Usage

S4 method for signature 'spatPomp'
abfir(
object,
Np,
Nrep,
nbhd,
Ninter,
tol = (1e-300),
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'abfird_spatPomp'
abfir(object, Np, Nrep, nbhd, Ninter, tol, ...)

Arguments

object A spatPomp object.

Np The number of particles used within each replicate for the adapted simulations.

Nrep The number of bootstrap replicates for the adapted simulations.

nbhd A neighborhood function with three arguments: object, time and unit. The
function should return a list of two-element vectors that represent space-time
neighbors of (u, n), which is represented by c(unit,time). See example below
for more details.

Ninter the number of intermediate resampling time points.

tol If the resampling weight for a particle is zero due to floating-point precision
issues, it is set to the value of tol since resampling has to be done.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

as.data.frame 7

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, abfir() returns an object of class ‘abfird_spatPomp’ containing the
algorithmic parameters used to run abfir() and the estimated likelihood.

Methods

The following methods are available for such an object:

logLik yields a biased estimate of the log-likelihood of the data under the model.

See Also

Other particle filter methods: abf(), bpfilter(), enkf(), girf(), ienkf(), igirf(), iubf()

Examples

Create a simulation of a Brownian motion
b <- bm(U=3, N=10)

Create a neighborhood function mapping a point in space-time
to a list of ``neighboring points" in space-time
bm_nbhd <- function(object, time, unit) {

nbhd_list = list()
if(time > 1 && unit > 1){
nbhd_list = c(nbhd_list, list(c(unit-1, time-1)))

}
return(nbhd_list)

}
Run ABFIR with specified number of Monte Carlo replicates and particles per replicate
abfird_bm <- abfir(b,

Nrep = 2,
Np=20,
nbhd = bm_nbhd,
Ninter = length(unit_names(b)))

Get the likelihood estimate from ABFIR
logLik(abfird_bm)

as.data.frame Coerce to data frame

Description

spatPomp objects can be recast as data frames.

8 as_spatPomp

Usage

S3 method for class 'spatPomp'
as.data.frame(x, ...)

Arguments

x a spatPomp object.

... additional arguments to be passed to or from methods.

Details

When object is a simple ‘spatPomp’ object, as(object,"data.frame") or as.data.frame(object)
results in a data frame with the times, units, observables, states (if known), and interpolated covari-
ates (if any).

Value

A ‘data.frame’ with columns for time, spatial unit and observations.

as_spatPomp Coerce to spatPomp

Description

Convert to class spatPomp object

Details

When object is a simple ‘pomp’ object, construct and return a one-dimensional ‘spatPomp’ object.

Value

a class ‘spatPomp’ representation of the object.

bm 9

bm Brownian motion spatPomp simulator

Description

Generate a class ‘spatPomp’ object representing a U-dimensional Brownian motion with spatial cor-
relation decaying geometrically with distance around a circle. The model is defined in continuous
time though in this case an Euler approximation is exact at the evaluation times.

Usage

bm(U = 5, N = 100, delta_t = 0.1)

Arguments

U A length-one numeric signifying dimension of the process.

N A length-one numeric signifying the number of observation time steps to evolve
the process.

delta_t Process simulations are performed every delta_t time units whereas observa-
tions occur every one time unit

Value

An object of class ‘spatPomp’ representing a simulation from a U-dimensional Brownian motion

Examples

b <- bm(U=4, N=20)
See all the model specifications of the object
spy(b)

bpfilter Block particle filter (BPF)

Description

An implementation of the block particle filter algorithm of Rebeschini and van Handel (2015),
which is used to estimate the filter distribution of a spatiotemporal partially-observed Markov
process. bpfilter requires a partition of the spatial units which can be provided by either the
block_size or the block_list argument. The elements of the partition are called blocks. We
perform resampling for each block independently based on sample weights within the block. Each
resampled block only contains latent states for the spatial components within the block which al-
lows for a “cross-pollination" of particles where the highest weighted segments of each particle are
more likely to be resampled and get combined with resampled components of other particles. The
method mitigates the curse of dimensionality by resampling locally.

10 bpfilter

Usage

S4 method for signature 'spatPomp'
bpfilter(
object,
Np,
block_size,
block_list,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

object A spatPomp object.

Np The number of particles used within each replicate for the adapted simulations.

block_size The number of spatial units per block. If this is provided, the method subdivides
units approximately evenly into blocks with size block_size.

block_list List that specifies an exact partition of the spatial units. Each partition element,
or block, is an integer vector of neighboring units.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, bpfilter() returns an object of class ‘bpfilterd_spatPomp’ contain-
ing the algorithmic parameters used to run bpfilter() and the estimated likelihood.

Details

Only one of block_size or block_list should be specified. If both or neither is provided, an error
is triggered.

Methods

The following methods are available for such an object:

logLik yields an estimate of the log-likelihood of the data under the model.

References

Rebeschini, P., & Van Handel, R. (2015). Can local particle filters beat the curse of dimensionality?.
The Annals of Applied Probability, 25(5), 2809-2866.

See Also

Other particle filter methods: abfir(), abf(), enkf(), girf(), ienkf(), igirf(), iubf()

city_data_UK 11

Examples

Create a simulation of a Brownian motion
b <- bm(U=6, N=10)

Run BPF with the specified number of units per block
bpfilterd_b1 <- bpfilter(b, Np = 100, block_size = 2)

Run BPF with the specified partition
bpfilterd_b2 <- bpfilter(b,

Np = 20,
block_list = list(c(1,2), c(3,4), c(5,6)))

Get a likelihood estimate
logLik(bpfilterd_b2)

city_data_UK City data in the United Kingdom

Description

Population and birth information about cities in England and Wales during the measles pre-vaccine
era.

Details

Data includes births and population at bi-weekly observations from 40 cities and towns.

Value

a ‘data.frame’ of the 40 largest cities and towns in the UK and Wales, their latitude, longitude and
mean population during the measles pre-vaccine period.

References

Dalziel, Benjamin D. et al. (2016) Persistent chaos of measles epidemics in the prevaccination
United States caused by a small change in seasonal transmission patterns. PLoS computational
biology, 12(2), e1004655. DOI: 10.5061/dryad.r4q34

See Also

Other datasets: measlesUK

12 dunit_measure

dunit_measure dunit_measure dunit_measure evaluates the unit measurement den-
sity of a unit’s observation given the entire state

Description

dunit_measure dunit_measure evaluates the unit measurement density of a unit’s observation given
the entire state

Usage

S4 method for signature 'spatPomp'
dunit_measure(object, y, x, unit, time, params, log = TRUE, ...)

Arguments

object An object of class spatPomp

y A U by 1 matrix of observations for all units

x A state vector for all units

unit The unit for which to evaluate the unit measurement density

time The time for which to evaluate the unit measurement density

params parameters at which to evaluate the unit measurement density

log logical; should the density be returned on log scale?

... additional arguments will be ignored

Value

A class ‘matrix’ with the unit measurement density for spatial unit unit corresponding to the cor-
responding measurement in y and states in x.

Examples

b <- bm(U=3)
s <- states(b)[,1,drop=FALSE]
rownames(s) -> rn
dim(s) <- c(3,1,1)
dimnames(s) <- list(variable=rn, rep=NULL)
p <- coef(b); names(p) -> rnp
dim(p) <- c(length(p),1); dimnames(p) <- list(param=rnp)
o <- obs(b)[,1,drop=FALSE]
dunit_measure(b, y=o, x=s, unit=1, time=1, params=p)

enkf 13

enkf Generalized Ensemble Kalman filter (EnKF)

Description

A function to perform filtering using the ensemble Kalman filter of Evensen, G. (1994). This
function is generalized to allow for an measurement covariance matrix that varies over time. This
is useful if the measurement model varies with the state.

Usage

S4 method for signature 'spatPomp'
enkf(data, Np, ..., verbose = getOption("verbose", FALSE))

Arguments

data A spatPomp object.

Np The number of Monte Carlo particles used to approximate the filter distribution.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

An object of class ‘enkfd_spatPomp’ that contains the estimate of the log likelihood (via the loglik
attribute), algorithmic parameters used to run enkf(). Also included are estimated filter means,
prediction means and forecasts that are generated during an enkf() run.

References

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte
Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans 99, 10143–
10162, 1994.

G. Evensen. Data assimilation: the ensemble Kalman filter. Springer-Verlag, 2009.

J.L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation. Monthly Weather
Review 129, 2884–2903, 2001.

See Also

Other particle filter methods: abfir(), abf(), bpfilter(), girf(), ienkf(), igirf(), iubf()

14 eunit_measure

Examples

Create a simulation of a Brownian motion
b <- bm(U=6, N=10)

Run EnKF
enkfd_bm <- enkf(b, Np = 100)

Get a likelihood estimate
logLik(enkfd_bm)

eunit_measure eunit_measure

Description

eunit_measure evaluates the expectation of a unit’s observation given the entire state

Usage

S4 method for signature 'spatPomp'
eunit_measure(object, x, unit, time, params, Np = 1, log = FALSE)

Arguments

object An object of class spatPomp
x A state vector for all units
unit The unit for which to evaluate the expectation
time The time for which to evaluate the expectation
params parameters at which to evaluate the unit expectation
Np numeric; defaults to 1 and the user need not change this
log logical; should the density be returned on log scale?

Value

A class ‘matrix’ with the unit expected observation for spatial unit unit corresponding to the cor-
responding states in x.

Examples

b <- bm(U=3)
s <- states(b)[,1,drop=FALSE]
rownames(s) -> rn
dim(s) <- c(3,1,1)
dimnames(s) <- list(variable=rn, rep=NULL)
p <- coef(b); names(p) -> rnp
dim(p) <- c(length(p),1); dimnames(p) <- list(param=rnp)
o <- obs(b)[,1,drop=FALSE]
eunit_measure(b, x=s, unit=2, time=1, params=p)

gbm 15

gbm Geometric Brownian motion spatPomp simulator

Description

Generate a spatPomp object representing a U-dimensional geometric Brownian motion with spatial
correlation decaying geometrically with distance around a circle. The model is defined in continu-
ous time, but an Euler approximation is used for this numerical implementation.

Usage

gbm(U = 5, N = 100, delta_t = 0.1, IVP_values = 1, delta_obs = 1)

Arguments

U A length-one numeric signifying dimension of the process.

N A length-one numeric signifying the number of time steps to evolve the process.

delta_t process simulations are performed every delta_t time units

IVP_values initial value parameters for the latent states

delta_obs observations occur every delta_obs time units

Value

An object of class ‘spatPomp’ representing a simulation from a U-dimensional geometric Brownian
motion

Examples

g <- gbm(U=4, N=20)
See all the model specifications of the object
spy(g)

girf Guided intermediate resampling filter (GIRF)

Description

An implementation of the algorithm of Park and Ionides (2020), following the pseudocode in Asfaw
et al. (2020).

16 girf

Usage

S4 method for signature 'missing'
girf(object, ...)

S4 method for signature 'ANY'
girf(object, ...)

S4 method for signature 'spatPomp'
girf(
object,
Np,
Ninter,
lookahead = 1,
Nguide,
kind = c("bootstrap", "moment"),
tol,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'girfd_spatPomp'
girf(
object,
Np,
Ninter,
lookahead,
Nguide,
kind = c("bootstrap", "moment"),
tol,
...

)

Arguments

object A spatPomp object.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

Np The number of particles used within each replicate for the adapted simulations.

Ninter the number of intermediate resampling time points.

lookahead The number of future observations included in the guide function.

Nguide The number of simulations used to estimate state process uncertainty for each
particle.

kind One of two types of guide function construction. Defaults to 'bootstrap'. See
Park and Ionides (2020) for more details.

tol If all of the guide function evaluations become too small (beyond floating-point
precision limits), we set them to this value.

girf 17

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, girf() returns an object of class ‘girfd_spatPomp’ which contains
the algorithmic parameters that were used to run girf() and the resulting log likelihood estimate.

Methods

The following methods are available for such an object:

logLik yields an unbiased estimate of the log-likelihood of the data under the model.

References

Park, J. and Ionides, E. L. (2020) Inference on high-dimensional implicit dynamic models using a
guided intermediate resampling filter. Statistics and Computing, DOI: 10.1007/s11222-020-09957-
3

Asfaw, K. et al. (2020) Statistical inference for spatiotemporal partially observed Markov processes
via the R package spatPomp. Manuscript in preparation.

See Also

Other particle filter methods: abfir(), abf(), bpfilter(), enkf(), ienkf(), igirf(), iubf()

Examples

Create a simulation of a Brownian motion
b <- bm(U=3, N=10)

Run GIRF
girfd_bm <- girf(b,

Np = 100,
Ninter = length(unit_names(b)),
lookahead = 1,
Nguide = 50

)
Get the likelihood estimate from GIRF
logLik(girfd_bm)

Compare with the likelihood estimate from particle filter
pfd_bm <- pfilter(b, Np = 500)
logLik(pfd_bm)

18 ienkf

ienkf Iterated ensemble Kalman filter (IEnKF)

Description

An implementation of a parameter estimation algorithm that uses the ensemble Kalman filter (Evensen,
G. (1994)) to perform the filtering step in the parameter-perturbed iterated filtering scheme of Ion-
ides et al. (2015) following the pseudocode in Asfaw, et al. (2020).

Usage

S4 method for signature 'spatPomp'
ienkf(
data,
Nenkf = 1,
rw.sd,
cooling.type = c("geometric", "hyperbolic"),
cooling.fraction.50,
Np,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data an object of class spatPomp

Nenkf number of iterations of perturbed EnKF.

rw.sd specification of the magnitude of the random-walk perturbations that will be
applied to some or all model parameters. Parameters that are to be estimated
should have positive perturbations specified here. The specification is given
using the rw.sd function, which creates a list of unevaluated expressions. The
latter are evaluated in a context where the model time variable is defined (as
time). The expression ivp(s) can be used in this context as shorthand for

ifelse(time==time[1],s,0).

Likewise, ivp(s,lag) is equivalent to

ifelse(time==time[lag],s,0).

See below for some examples.
The perturbations that are applied are normally distributed with the specified
s.d. If parameter transformations have been supplied, then the perturbations are
applied on the transformed (estimation) scale.

cooling.type specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

igirf 19

cooling.fraction.50

specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

Np The number of particles used within each replicate for the adapted simulations.

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, ienkf returns an object of class ‘ienkfd_spatPomp’. This object con-
tains the convergence record of the iterative algorithm with respect to the likelihood and the param-
eters of the model (which can be accessed using the traces attribute) as well as a final parameter
estimate, which can be accessed using the coef().

Methods

The following methods are available for such an object:

coef gives the Monte Carlo estimate of the maximum likelihood.

References

Evensen, G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model us-
ing Monte Carlo methods to forecast error statistics Journal of Geophysical Research: Oceans
99:10143–10162

Evensen, G. (2009) Data assimilation: the ensemble Kalman filter Springer-Verlag.

Anderson, J. L. (2001) An Ensemble Adjustment Kalman Filter for Data Assimilation Monthly
Weather Review 129:2884–2903

See Also

Other particle filter methods: abfir(), abf(), bpfilter(), enkf(), girf(), igirf(), iubf()

Other spatPomp parameter estimation methods: igirf(), iubf()

igirf Iterated guided intermediate resampling filter (IGIRF)

Description

An implementation of a parameter estimation algorithm combining the intermediate resampling
scheme of the guided intermediate resampling filter of Park and Ionides (2020) and the parameter
perturbation scheme of Ionides et al. (2015) following the pseudocode in Asfaw, et al. (2020).

20 igirf

Usage

S4 method for signature 'missing'
igirf(data, ...)

S4 method for signature 'ANY'
igirf(data, ...)

S4 method for signature 'spatPomp'
igirf(
data,
Ngirf,
Np,
rw.sd,
cooling.type,
cooling.fraction.50,
Ninter,
lookahead = 1,
Nguide,
kind = c("bootstrap", "moment"),
tol = 1e-300,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'igirfd_spatPomp'
igirf(
data,
Ngirf,
Np,
rw.sd,
cooling.type,
cooling.fraction.50,
Ninter,
lookahead,
Nguide,
kind = c("bootstrap", "moment"),
tol,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data an object of class spatPomp or igirfd_spatPomp

... If a params argument is specified, abf will estimate the likelihood at that pa-
rameter set instead of at coef(object).

Ngirf the number of iterations of parameter-perturbed GIRF.

igirf 21

Np The number of particles used within each replicate for the adapted simulations.

rw.sd specification of the magnitude of the random-walk perturbations that will be
applied to some or all model parameters. Parameters that are to be estimated
should have positive perturbations specified here. The specification is given
using the rw.sd function, which creates a list of unevaluated expressions. The
latter are evaluated in a context where the model time variable is defined (as
time). The expression ivp(s) can be used in this context as shorthand for

ifelse(time==time[1],s,0).

Likewise, ivp(s,lag) is equivalent to

ifelse(time==time[lag],s,0).

See below for some examples.
The perturbations that are applied are normally distributed with the specified
s.d. If parameter transformations have been supplied, then the perturbations are
applied on the transformed (estimation) scale.

cooling.type specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

cooling.fraction.50

specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

Ninter the number of intermediate resampling time points.

lookahead The number of future observations included in the guide function.

Nguide The number of simulations used to estimate state process uncertainty for each
particle.

kind One of two types of guide function construction. Defaults to 'bootstrap'. See
Park and Ionides (2020) for more details.

tol If all of the guide function evaluations become too small (beyond floating-point
precision limits), we set them to this value.

verbose logical; if TRUE, messages updating the user on progress will be printed to the
console.

Value

Upon successful completion, igirf() returns an object of class ‘igirfd_spatPomp’. This object
contains the convergence record of the iterative algorithm with respect to the likelihood and the
parameters of the model (which can be accessed using the traces attribute) as well as a final
parameter estimate, which can be accessed using the coef(). The algorithmic parameters used to
run igirf() are also included.

22 iubf

Methods

The following methods are available for such an object:

coef gives the Monte Carlo maximum likelihood parameter estimate.

References

Park, J. and Ionides, E. L. (2020) Inference on high-dimensional implicit dynamic models using a
guided intermediate resampling filter. Statistics and Computing, DOI: 10.1007/s11222-020-09957-
3

Asfaw, K. et al. (2020) Statistical inference for spatiotemporal partially observed Markov processes
via the R package spatPomp. Manuscript in preparation.

See Also

Other particle filter methods: abfir(), abf(), bpfilter(), enkf(), girf(), ienkf(), iubf()

Other spatPomp parameter estimation methods: ienkf(), iubf()

iubf Iterated Unadapted Bagged Filter (IUBF)

Description

An algorithm for estimating the parameters of a spatiotemporal partially-observed Markov process.
Running iubf causes the algorithm to perform a specified number of iterations of unadapted simu-
lations with parameter perturbation and parameter resamplings. At each iteration, unadapted simu-
lations are performed on a perturbed version of the model, in which the parameters to be estimated
are subjected to random perturbations at each observation. After cycling through the data, each
replicate’s weight is calculated and is used to rank the bootstrap replictates. The highest ranking
replicates are recycled into the next iteration. This extra variability introduced through parameter
perturbation effectively smooths the likelihood surface and combats particle depletion by introduc-
ing diversity into particle population. As the iterations progress, the magnitude of the perturbations
is diminished according to a user-specified cooling schedule.

Usage

S4 method for signature 'spatPomp'
iubf(
object,
Nubf = 1,
Nrep_per_param,
Nparam,
nbhd,
prop,
rw.sd,
cooling.type = c("geometric", "hyperbolic"),

iubf 23

cooling.fraction.50,
tol = (1e-18)^17,
verbose = getOption("verbose"),
...

)

Arguments

object A spatPomp object.

Nubf The number of iterations to perform

Nrep_per_param The number of replicates used to estimate the likelihood at a parameter

Nparam The number of parameters that will undergo the iterated perturbation

nbhd A neighborhood function with three arguments: object, time and unit. The
function should return a list of two-element vectors that represent space-time
neighbors of (u, n), which is represented by c(unit,time). See example below
for more details.

prop A numeric between 0 and 1. The top prop*100% of the parameters are resam-
pled at each observation

rw.sd specification of the magnitude of the random-walk perturbations that will be
applied to some or all model parameters. Parameters that are to be estimated
should have positive perturbations specified here. The specification is given
using the rw.sd function, which creates a list of unevaluated expressions. The
latter are evaluated in a context where the model time variable is defined (as
time). The expression ivp(s) can be used in this context as shorthand for

ifelse(time==time[1],s,0).

Likewise, ivp(s,lag) is equivalent to

ifelse(time==time[lag],s,0).

See below for some examples.
The perturbations that are applied are normally distributed with the specified
s.d. If parameter transformations have been supplied, then the perturbations are
applied on the transformed (estimation) scale.

cooling.type specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

cooling.fraction.50

specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

tol If the resampling weight for a particle is zero due to floating-point precision
issues, it is set to the value of tol since resampling has to be done.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

24 logLik

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

Value

Upon successful completion, iubf() returns an object of class ‘iubfd_spatPomp’. This object con-
tains the convergence record of the iterative algorithm with respect to the likelihood and the param-
eters of the model (which can be accessed using the traces attribute) as well as a final parameter
estimate, which can be accessed using the coef(). The algorithmic parameters used to run iubf()
are also included.

Methods

The following methods are available for such an object:

coef extracts the point estimate

See Also

Other particle filter methods: abfir(), abf(), bpfilter(), enkf(), girf(), ienkf(), igirf()

Other spatPomp parameter estimation methods: ienkf(), igirf()

logLik Log likelihood

Description

Extract the estimated log likelihood.

Usage

S4 method for signature 'girfd_spatPomp'
logLik(object)

S4 method for signature 'bpfilterd_spatPomp'
logLik(object)

S4 method for signature 'abfd_spatPomp'
logLik(object)

S4 method for signature 'iubfd_spatPomp'
logLik(object)

lorenz 25

S4 method for signature 'abfird_spatPomp'
logLik(object)

S4 method for signature 'igirfd_spatPomp'
logLik(object)

Arguments

object fitted model object

Value

a numeric which is the estimated log likelihood

lorenz Lorenz ’96 spatPomp simulator

Description

Generate a spatPomp object representing a U-dimensional stochastic Lorenz ’96 process with N mea-
surements made at times tn = n ∗ deltaobs, simulated using an Euler method with time increment
delta_t.

Usage

lorenz(
U = 5,
N = 100,
delta_t = 0.01,
delta_obs = 0.5,
regular_params = c(F = 8, sigma = 1, tau = 1)

)

Arguments

U A length-one numeric signifying the number of spatial units for the process.

N A length-one numeric signifying the number of observations.

delta_t A length-one numeric giving the Euler time step for the numerical solution.

delta_obs A length-one numeric giving the time between observations.

regular_params A named numeric vector containing the values of the F, sigma and tau parame-
ters. F=8 is a common value that causes chaotic behavior.

Value

An object of class ‘spatPomp’ representing a simulation from a U-dimensional Lorenz 96 model

26 mcap

References

Lorenz, E. N. (1996) Predictability: A problem partly solved. Proceedings of the seminar on pre-
dictability

Examples

l <- lorenz(U=5, N=100, delta_t=0.01, delta_obs=1)
See all the model specifications of the object
spy(l)

mcap Monte Carlo adjusted profile

Description

Given a collection of points maximizing the likelihood over a range of fixed values of a focal
parameter, this function constructs a profile likelihood confidence interval accommodating both
Monte Carlo error in the profile and statistical uncertainty present in the likelihood function.

Usage

mcap(lp, parameter, confidence = 0.95, lambda = 1, Ngrid = 1000)

Arguments

lp a vector of profile likelihood evaluations.

parameter the corresponding values of the focal parameter.

confidence the required level of the confidence interval.

lambda the loess parameter used to smooth the profile.

Ngrid the number of points to evaluate the smoothed profile.

Value

mcap() returns a list including the smoothed profile, a quadratic approximation, and the constructed
confidence interval.

Author(s)

Edward L. Ionides

measles 27

measles Measles in UK spatPomp generator

Description

Generate a spatPomp object for measles in the top-U most populous cities in England and Wales.
The model is adapted from He et al. (2010) with gravity transport following Park and Ionides
(2019). The data in the object is simulated using the process and measurement models of He et al.
(2010).

Usage

measles(
U = 6,
dt = 2/365,
fixed_ivps = TRUE,
shared_ivps = TRUE,
S_0 = 0.032,
E_0 = 5e-05,
I_0 = 4e-05

)

Arguments

U A length-one numeric signifying the number of cities to be represented in the
spatPomp object.

dt a numeric (in unit of years) that is used as the Euler time-increment for simulat-
ing measles data.

fixed_ivps a logical. If TRUE initial value parameters will be declared in the globals slot
and will not be part of the parameter vector.

shared_ivps a logical. If TRUE and fixed_ivps=TRUE the values of S_0, E_0 and I_0 in the
call to measles will be used as initial value parameters for all spatial units.

S_0 a numeric. If shared_ivps=TRUE and fixed_ivps=TRUE this is the initial pro-
portion of all of the spatial units that are susceptible.

E_0 a numeric. If shared_ivps=TRUE and fixed_ivps=TRUE this is the initial pro-
portion of all of the spatial units that are exposed.

I_0 a numeric. If shared_ivps=TRUE and fixed_ivps=TRUE this is the initial pro-
portion of all of the spatial units that are infected.

Value

An object of class ‘spatPomp’ representing a U-dimensional spatially coupled measles POMP model.

28 measlesUK

Note

This function goes through a typical workflow of constructing a typical spatPomp object (1-4 be-
low). This allows the user to have a file that replicates the exercise of model building as well as
function that creates a typical nonlinear model in epidemiology in case they want to test a new in-
ference methodology. We purposely do not modularize this function because it is not an operational
piece of the package and is instead useful as an example.
1. Getting a measurements data.frame with columns for times, spatial units and measurements.
2. Getting a covariates data.frame with columns for times, spatial units and covariate data.
3. Constructing model components (latent state initializer, latent state transition simulator and mea-
surement model). Depending on the methods used, the user may have to supply a vectorfield to be
integrated that represents the deterministic skeleton of the latent process.
4. Bringing all the data and model components together to form a spatPomp object via a call to
spatPomp().

References

Robert J. Hijmans (2019). The geosphere spherical trigonometry package. https://CRAN.R-project.
org/package=geosphere.

Examples

m <- measles(U = 5)
See all the model specifications of the object
spy(m)

measlesUK Measles in the United Kingdom

Description

Measles case data from various cities and towns in England and Wales during the pre-vaccine era.

Details

Data includes bi-weekly case counts as well as births and population from 40 cities and towns.

Value

a ‘data.frame’ of the 40 largest cities and towns in the UK and Wales, their latitude, longitude and
bi-weekly measles case counts, population and birthrates.

References

Dalziel, Benjamin D. et al. (2016) Persistent chaos of measles epidemics in the prevaccination
United States caused by a small change in seasonal transmission patterns. PLoS computational
biology, 12(2), e1004655. DOI: 10.5061/dryad.r4q34

https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere

munit_measure 29

See Also

Other datasets: city_data_UK

munit_measure munit_measure

Description

munit_measure returns a moment-matched parameter set given an empirically calculated mea-
surement variance and latent states. This is used in girf() and igirf() when they are run with
kind='moment'.

Usage

S4 method for signature 'spatPomp'
munit_measure(object, x, vc, unit, time, params, Np = 1)

Arguments

object An object of class spatPomp

x A state vector for all units

vc The empirically calculated variance used to perform moment-matching

unit The unit for which to obtain a moment-matched parameter set

time The time for which to obtain a moment-matched parameter set

params parameters to use to obtain a moment-matched parameter set

Np Number of particle replicates for which to get parameter sets

Value

An array with dimensions dim(array.params)[1] by dim(x)[2] by length(unit) bylength(time)
representing the moment-matched parameter set(s) corresponding to the variance of the measure-
ments, vc, and the states, x.

Examples

b <- bm(U=3)
s <- states(b)[,1,drop=FALSE]
rownames(s) -> rn
dim(s) <- c(3,1,1)
dimnames(s) <- list(variable=rn, rep=NULL)
p <- coef(b); names(p) -> rnp
dim(p) <- c(length(p),1); dimnames(p) <- list(param=rnp)
o <- obs(b)[,1,drop=FALSE]
array.params <- array(p,

dim = c(length(p),
length(unit_names(b)), 1, 1),

30 plot

dimnames = list(params = rownames(p)))
vc <- c(4, 9, 16); dim(vc) <- c(length(vc), 1, 1)
munit_measure(b, x=s, vc=vc, Np=1, unit = 1, time=1, params=array.params)

plot Plotting spatPomp data

Description

Visualize spatPomp data

Diagnostic plot for igirf()

Visualize spatPomp data

Usage

S4 method for signature 'igirfd_spatPomp'
plot(x, params = names(coef(x)), ncol = 3)

S4 method for signature 'spatPomp'
plot(x, type = c("l", "h"), log = F, ...)

Arguments

x a spatPomp object

params the names of the parameters for which the user would like to see a trace plot

ncol the number of columns in the grid plot

type for visualizing an object of class spatPomp, the user can obtain a grid of line
plots by default ('l') or a heat map by supplying argument 'h'.

log should the data be log-transformed before plotting? This helps in contexts where
there are spikes that could take away attention from the dynamics illustrated by
the rest of the data.

... for visualizing an object of class spatPomp, the user can add arguments like
nrow to specify the number of rows in the grid.

Value

a ggplot facet plot of class ‘gg’ and ‘ggplot’ visualizing the convergence record of running igirf()
with respect to the likelihood and the parameters of the model.

a ggplot plot of class ‘gg’ and ‘ggplot’ visualizing the time series data over multiple spatial units
via a tile-plot.

print 31

print Print methods

Description

Prints its argument.

Usage

S4 method for signature 'spatPomp'
print(x)

Arguments

x a spatPomp object

Value

An object of class ‘spatPomp’ is returned *invisibly*. The user is notified on the console only the
class of the object.

Note

Use spy() to see model components of x instead.

runit_measure runit_measure

Description

runit_measure simulates a unit’s observation given the entire state

Usage

S4 method for signature 'spatPomp'
runit_measure(object, x, unit, time, params, log = FALSE)

Arguments

object An object of class spatPomp

x A state vector for all units

unit The unit for which to simulate an observation

time The time for which to simulate an observation

params parameters to use to simulate an observation

log logical; should the density be returned on log scale?

32 simulate

Value

A matrix with the simulated observation corresponding to state x and unit unit with parameter set
params.

Examples

b <- bm(U=3)
s <- states(b)[,1,drop=FALSE]
rownames(s) -> rn
dim(s) <- c(3,1,1)
dimnames(s) <- list(variable=rn, rep=NULL)
p <- coef(b); names(p) -> rnp
dim(p) <- c(length(p),1); dimnames(p) <- list(param=rnp)
o <- obs(b)[,1,drop=FALSE]
runit_measure(b, x=s, unit=2, time=1, params=p)

simulate Simulation of a spatiotemporal partially-observed Markov process

Description

simulate generates simulations of the latent and measurement processes.

Usage

S4 method for signature 'spatPomp'
simulate(
object,
nsim = 1,
seed = NULL,
format = c("spatPomps", "data.frame"),
include.data = FALSE,
...

)

Arguments

object optional; if present, it should be a data frame or a ‘pomp’ object.

nsim number of simulations.

seed optional; if set, the pseudorandom number generator (RNG) will be initialized
with seed. the random seed to use. The RNG will be restored to its original
state afterward.

format the format of the simulated results. If the argument is set to 'spatPomps', the
default behavior, then the output is a list of spatPomp objects. Options are
'spatPomps' and 'data.frame'.

include.data if TRUE, the original data and covariates (if any) are included (with .id = "data").
This option is ignored unless format = "data.frame".

spatPomp 33

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

Value

if format='spatPomps' and nsim=1 an object of class ‘spatPomp’ representing a simulation from
the model in object is returned. If format='spatPomps' and nsim>1 a list of class ‘spatPomp’
objects is returned. If format='data.frame' then a class ‘data.frame’ object is returned.

Examples

Get a spatPomp object
b <- bm(U=5, N=10)
Get 10 simulations from same model as data.frame
sims <- simulate(b, nsim=10, format='data.frame')

spatPomp Constructor of the spatPomp object

Description

This function constructs a class ‘spatPomp’ object, encoding a spatiotemporal partially observed
Markov process (SPATPOMP) model together with a uni- or multi-variate time series on a collection
of units. Users will typically develop a POMP model for a single unit before embarking on a coupled
SpatPOMP analysis. Consequently, we assume some familiarity with pomp and its description by
King, Nguyen and Ionides (2016). The spatPomp class inherits from pomp with the additional unit
structure being a defining feature of the resulting models and inference algorithms.

Usage

spatPomp(
data,
units,
times,
covar,
t0,
...,
eunit_measure,
munit_measure,
vunit_measure,
dunit_measure,
runit_measure,

34 spatPomp

rprocess,
rmeasure,
dprocess,
dmeasure,
skeleton,
rinit,
rprior,
dprior,
unit_statenames,
unit_accumvars,
shared_covarnames,
globals,
paramnames,
params,
cdir,
cfile,
shlib.args,
PACKAGE,
partrans,
compile = TRUE,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a dataframe holding the spatiotemporal data, or an object of class ‘spat-
Pomp’, i.e., the output of another spatPomp calculation. If dataframe, the user
must provide the name of the times column using the times argument and the
spatial unit column name using the units argument. The dataframe provided
should be sorted in increasing order of time and unit name respectively, i.e. ob-
servation 1 in unit A should come before observation 1 in unit B, which should
come before observation 2 in unit A.

units when data is a data.frame this is the name of the column containing the spatial
units.

times the sequence of observation times. times must indicate the column of obser-
vation times by name or index. The time vector must be numeric and non-
decreasing.

covar An optional dataframe for supplying covariate information. If provided, there
must be two columns that provide the observation time and the observation spa-
tial unit with the same names and arrangement as the data.

t0 The zero-time, i.e., the time of the initial state. This must be no later than the
time of the first observation, i.e., t0 <= times[1].

... If there are arguments that the user would like to pass to pomp’s basic construc-
tor function’s . . . argument, this argument passes them along. Not recommended
for this version of spatPomp.

eunit_measure Evaluator of the expected measurement given the latent states and model pa-
rameters. The unit variable is pre-defined, which allows the user to specify

spatPomp 35

differing specifications for each unit using if conditions. Only C snippets are
accepted. The C snippet should assign the scalar approximation to the expected
measurement to the pre-defined variable ey given the latent state and the param-
eters. For more information, see the examples section below.

munit_measure Evaluator of a moment-matched parameter set (like the standard deviation pa-
rameter of a normal distribution or the size parameter of a negative binomial
distribution) given an empirical variance estimate, the latent states and all model
parameters. Only Csnippets are accepted. The Csnippet should assign the scalar
approximation to the measurement variance parameter to the pre-defined vari-
able corresponding to that parameter, which has been predefined with a M_ pre-
fix. For instance, if the moment-matched parameter is psi, then the user should
assign M_psi to the moment-matched value. For more information, see the ex-
amples section below.

vunit_measure Evaluator of the theoretical measurement variance given the latent states and
model parameters. The unit variable is pre-defined, which allows the user to
specify differing specifications for each unit using if conditions. Only C snip-
pets are accepted. The C snippet should assign the scalar approximation to the
measurement variance to the pre-defined variable vc given the latent state and
the parameters. For more information, see the examples section below.

dunit_measure Evaluator of the unit measurement model density given the measurement, the
latent states and model parameters. The unit variable is pre-defined, which
allows the user to specify differing specifications for each unit using if con-
ditions. Only Csnippets are accepted. The Csnippet should assign the scalar
measurement density to the pre-defined variable lik. The user is encouraged
to provide a logged density in an if condition that checks whether the prede-
fined give_log variable is true. For more information, see the examples section
below.

runit_measure Simulator of the unit measurement model given the latent states and the model
parameters. The unit variable is pre-defined, which allows the user to spec-
ify differing specifications for each unit using if conditions. Only Csnippets
are accepted. The Csnippet should assign the scalar measurement density to
the pre-defined which corresponds to the name of the observation for each unit
(e.g. cases for the measles spatPomp example). For more information, see the
examples section below.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

dprocess optional; specification of the probability density evaluation function of the un-
observed state process. Setting dprocess=NULL removes the latent-state density
evaluator. For more information, see dprocess specification.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-

36 spatPomp

cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

skeleton optional; the deterministic skeleton of the unobserved state process. Depend-
ing on whether the model operates in continuous or discrete time, this is either a
vectorfield or a map. Accordingly, this is supplied using either the vectorfield
or map fnctions. For more information, see skeleton specification. Setting
skeleton=NULL removes the deterministic skeleton.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprior optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see prior specification. Setting rprior=NULL
removes the prior distribution sampler.

dprior optional; prior distribution density evaluator, specified either as a C snippet,
an R function, or the name of a pre-compiled native routine available in a dy-
namically loaded library. For more information, see prior specification. Setting
dprior=NULL resets the prior distribution to its default, which is a flat improper
prior.

unit_statenames

The names of the components of the latent state. E.g. if the user is constructing
an joint SIR model over many spatial units, c('S','I','R') would be passed.

unit_accumvars a subset of the unit_statenames argument that are accumulator variables. See
accumulator variables for more on the concept of pomp accumulator variables.

shared_covarnames

If covar is supplied, covariates that are shared must still be specified for each
unit, i.e., rows with equal values for the same time over all units must be sup-
plied. However, if such covariates exists, supply the names using this argument.

globals optional character; arbitrary C code that will be hard-coded into the shared-
object library created when C snippets are provided. If no C snippets are used,
globals has no effect.

paramnames optional character vector; names of model parameters. It is typically only nec-
essary to supply paramnames when C snippets are in use.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

cdir optional character variable. cdir specifies the name of the directory within
which C snippet code will be compiled. By default, this is in a temporary
directory specific to the R session. One can also set this directory using the
pomp_cdir global option.

cfile optional character variable. cfile gives the name of the file (in directory cdir)
into which C snippet codes will be written. By default, a random filename is
used. If the chosen filename would result in over-writing an existing file, an
error is generated.

spatPomp 37

shlib.args optional character variables. Command-line arguments to the R CMD SHLIB call
that compiles the C snippets.

PACKAGE optional character; the name (without extension) of the external, dynamically
loaded library in which any native routines are to be found. This is only useful
if one or more of the model components has been specified using a precompiled
dynamically loaded library; it is not used for any component specified using C
snippets. PACKAGE can name at most one library.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

compile logical; if FALSE, compilation of the C snippets will be postponed until they are
needed.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

One implements a SPATPOMP model by specifying some or all of its basic components, including:

rinit, the simulator from the distribution of the latent state process at the zero-time;

rprocess, the transition simulator of the latent state process;

dunit_measure, the evaluator of the conditional density at a unit’s measurement given the unit’s
latent state;

eunit_measure, the evaluator of the expectation of a unit’s measurement given the unit’s latent
state;

munit_measure, the evaluator of the moment-matched parameter set given a unit’s latent state and
some empirical measurement variance;

vunit_measure, the evaluator of the variance of a unit’s measurement given the unit’s latent state;

runit_measure, the simulator of a unit’s measurement conditional on the unit’s latent state;

dprocess, the evaluator of the density for transitions of the latent state process;

rmeasure, the simulator of the measurements conditional on the latent state;

dmeasure, the evaluator of the conditional density of the measurements given the latent state;

rprior, the simulator from a prior distribution on the parameters;

dprior, the evaluator of the prior density;

skeleton, which computes the deterministic skeleton of the unobserved state process;

partrans, which performs parameter transformations.

The basic structure and its rationale are described in Asfaw et al. (2020).

Each basic component is supplied via an argument of the same name to spatPomp(). The five
unit-level model components must be provided via C snippets. The remaining components, whose
behaviors are inherited from pomp may be furnished using C snippets, R functions, or pre-compiled
native routine available in user-provided dynamically loaded libraries.

38 spatPomp_Csnippet

Value

An object of class ‘spatPomp’ representing observations and model components from the spatiotem-
poral POMP model.

References

Asfaw, K. et al. (2020) Statistical inference for spatiotemporal partially observed Markov processes
via the R package spatPomp. Manuscript in preparation.

spatPomp-class An S4 class to represent a spatiotemporal POMP model and data.

Description

An S4 class to represent a spatiotemporal POMP model and data.

Slots

unit_names A vector containing the spatial units of a spatiotemporal POMP.

unit_statenames A vector containing the state names such that appending the unit indices to the
unit statenames will result in the each unit’s corresponding states.

unit_obsnames A vector of observation types for a spatial unit.

eunit_measure A pomp_fun representing the expected measurement for each spatial unit given
its states.

dunit_measure A pomp_fun representing the unit measurement density for each spatial unit.

runit_measure A pomp_fun representing the unit observation simulator.

spatPomp_Csnippet C snippets

Description

spatPomp_Csnippet() is used to provide snippets of C code that specify model components. It
functions similarly to Csnippet() from the pomp package; in fact, the output of spatPomp_Csnippet
is an object of class Csnippet. It additionally provides some arguments that allow the user to stay
focused on model development in the spatiotemporal context where model size grows.

spatPomp_Csnippet 39

Usage

S4 method for signature 'character'
spatPomp_Csnippet(
code,
unit_statenames,
unit_obsnames,
unit_covarnames,
unit_ivpnames,
unit_paramnames,
unit_vfnames

)

Arguments

code encodes a component of a spatiotemporal POMP model using C code
unit_statenames

a subset of the unit_statenames slot of the spatPomp object for which we
are writing a model. This argument allows the user to get variables that can be
indexed conveniently to update states and measurements in a loop. See examples
for more details.

unit_obsnames a subset of the unit_obsnames slot of the spatPomp object for which we are
writing a model. This argument allows the user to get variables that can be
indexed conveniently to update states and measurements in a loop. See examples
for more details.

unit_covarnames

if the model has covariate information for each unit, the names of the covari-
ates for each unit can be supplied to this argument. This allows the user to
get variables that can be indexed conveniently to use incorporate the covariate
information in a loop. See examples for more details.

unit_ivpnames This argument is particularly useful when specifying the rinit model com-
ponent. The paramnames argument to the spatPomp() constructor often has
names for initial value parameters for the latent states (e.g. S1_0, S2_0 for the
the quantity of susceptibles at unit 1 and unit 2 at the initial time in an SIR
model). By supplying unit_ivpnames, we can get variables that can be eas-
ily indexed to reference the initial value parameters (in the previous example,
unit_ivpnames=c('S') we can get a variable named S_0 that we can index as
S_0[0] and S_0[1] to refer to S1_0 and S2_0). See examples for more details.

unit_paramnames

This argument is particularly useful when there are non-initial value parameters
that are unit-specific.

unit_vfnames This argument is particularly useful when specifying the skeleton model com-
ponent. For all components of the latent state, the user can assume a vari-
able defining the time-derivative is pre-defined (e.g. DS1 and DS2 for the time-
derivative of the quantity of the susceptibles at unit 1 and unit 2 in an SIR
model). By supplying unit_vfnames, we can get variables that can be easily in-
dexed to reference these variables (in the previous example, setting unit_vfnames=c('S')
gets us a variable named DS that we can index as DS[0] and DS[1] to refer to
DS1 and DS2). See examples for more details.

40 unit_names

Value

An object of class ‘Csnippet’ which represents a model specification in C code.

Examples

Set initial states for Brownian motion
bm_rinit <- spatPomp_Csnippet(

unit_statenames = c("X"),
unit_ivpnames = c("X"),
code = "
for (int u = 0; u < U; u++) {

X[u]=X_0[u];
}

"
)
Skeleton for Brownian motion
bm_skel <- spatPomp_Csnippet(

unit_statenames = c("X"),
unit_vfnames = c("X"),
code = "

for (int u = 0 ; u < U ; u++) {
DX[u] = 0;

}
"

)

unit_names Unit names of a spatiotemporal model

Description

unit_names outputs the contents of the unit_names slot of a spatPomp object. The order in which
the units appear in the output vector determines the order in which latent states and observations for
the spatial units are stored.

Usage

S4 method for signature 'spatPomp'
unit_names(x)

Arguments

x a spatPomp object

Value

A character vector with the unit names used to create the ‘spatPomp’ object.

vec_dmeasure 41

vec_dmeasure Vector of measurement densities

Description

Evaluate the unit measurement model density function for each unit. This method is used primarily
as part of likelihood evaluation and parameter inference algorithms.

Usage

S4 method for signature 'spatPomp'
vec_dmeasure(object, y, x, units, times, params, log = FALSE, ...)

Arguments

object a spatPomp object

y numeric; measurements whose densities given the latent states are evaluated

x numeric; state at which conditional measurement densities are evaluated

units numeric; units at which measurement densities are evaluated

times numeric; time at which measurement densities are evaluated

params numeric; parameter set at which measurement densities is evaluated

log logical; should the outputted measurement densities be on log scale?

... additional parameters will be ignored

Value

An array of dimension length(unit_names(object)) by dim(x)[2] by dim(x)[3] representing
each unit’s measurement density assessed for each replicate in x for each observation time.

vec_rmeasure Vector of simulated measurements

Description

Simulate from the unit measurement model density function for each unit

Usage

S4 method for signature 'spatPomp'
vec_rmeasure(object, x, times, params, ...)

42 vunit_measure

Arguments

object a spatPomp object

x numeric; state at which measurements are simulated

times numeric; time at which measurements are simulated

params numeric; parameter set at which measurements are simulated

... additional parameters will be ignored

Value

An array of dimension length(unit_names(object)) by dim(x)[2] by dim(x)[3] representing
each unit’s simulated measurement assessed for each replicate in x for each observation time.

vunit_measure vunit_measure

Description

vunit_measure evaluates the variance of a unit’s observation given the entire state

Usage

S4 method for signature 'spatPomp'
vunit_measure(object, x, unit, time, params, Np = 1)

Arguments

object An object of class spatPomp

x A state vector for all units

unit The unit for which to evaluate the variance

time The time for which to evaluate the variance

params parameters at which to evaluate the unit variance

Np numeric; defaults to 1 and the user need not change this

Value

A matrix with the unit measurement variance implied by the state, x, and the parameter set params
for unit unit.

vunit_measure 43

Examples

b <- bm(U=3)
s <- states(b)[,1,drop=FALSE]
rownames(s) -> rn
dim(s) <- c(3,1,1)
dimnames(s) <- list(variable=rn, rep=NULL)
p <- coef(b); names(p) -> rnp
dim(p) <- c(length(p),1); dimnames(p) <- list(param=rnp)
o <- obs(b)[,1,drop=FALSE]
vunit_measure(b, x=s, unit=2, time=1, params=p)

Index

∗ datasets
city_data_UK, 11
measlesUK, 28
spatPomp-package, 3

∗ models
spatPomp-package, 3

∗ particle filter methods
abf, 4
abfir, 6
bpfilter, 9
enkf, 13
girf, 15
ienkf, 18
igirf, 19
iubf, 22

∗ spatPomp parameter estimation methods
ienkf, 18
igirf, 19
iubf, 22

∗ ts
spatPomp-package, 3

abf, 4, 7, 10, 13, 17, 19, 22, 24
abf,abfd_spatPomp-method (abf), 4
abf,spatPomp-method (abf), 4
abf-abfd_spatPomp (abf), 4
abf-spatPomp (abf), 4
abfir, 5, 6, 10, 13, 17, 19, 22, 24
abfir,abfird_spatPomp-method (abfir), 6
abfir,spatPomp-method (abfir), 6
abfir-abfird_spatPomp (abfir), 6
abfir-spatPomp (abfir), 6
accumulator variables, 36
as.data.frame, 7
as_spatPomp, 8

bm, 9
bpfilter, 5, 7, 9, 13, 17, 19, 22, 24
bpfilter,spatPomp-method (bpfilter), 9
bpfilter-spatPomp (bpfilter), 9

city_data_UK, 11, 29
coef, 19, 22, 24
coerce,pomp,spatPomp-method

(as_spatPomp), 8
coerce,spatPomp,data.frame-method

(as.data.frame), 7
coerce-pomp-spatPomp (as_spatPomp), 8

dmeasure specification, 36
dprocess specification, 35
dunit_measure, 12
dunit_measure,spatPomp-method

(dunit_measure), 12
dunit_measure-spatPomp (dunit_measure),

12

enkf, 5, 7, 10, 13, 17, 19, 22, 24
enkf,ANY-method (enkf), 13
enkf,missing-method (enkf), 13
enkf,spatPomp-method (enkf), 13
enkf-spatPomp (enkf), 13
eunit_measure, 14
eunit_measure,spatPomp-method

(eunit_measure), 14
eunit_measure-spatPomp (eunit_measure),

14

gbm, 15
girf, 5, 7, 10, 13, 15, 19, 22, 24
girf,ANY-method (girf), 15
girf,girfd_spatPomp-method (girf), 15
girf,missing-method (girf), 15
girf,spatPomp-method (girf), 15
girf-ANY (girf), 15
girf-girfd_spatPomp (girf), 15
girf-missing (girf), 15
girf-spatPomp (girf), 15

ienkf, 5, 7, 10, 13, 17, 18, 22, 24
ienkf,spatPomp-method (ienkf), 18

44

INDEX 45

ienkf-spatPomp (ienkf), 18
igirf, 5, 7, 10, 13, 17, 19, 19, 24
igirf,ANY-method (igirf), 19
igirf,igirfd_spatPomp-method (igirf), 19
igirf,missing-method (igirf), 19
igirf,spatPomp-method (igirf), 19
igirf-ANY (igirf), 19
igirf-igirfd_spatPomp (igirf), 19
igirf-missing (igirf), 19
igirf-spatPomp (igirf), 19
iubf, 5, 7, 10, 13, 17, 19, 22, 22
iubf,spatPomp-method (iubf), 22
iubf-spatPomp (iubf), 22

logLik, 5, 7, 10, 17, 24
logLik,abfd_spatPomp-method (logLik), 24
logLik,abfird_spatPomp-method (logLik),

24
logLik,bpfilterd_spatPomp-method

(logLik), 24
logLik,girfd_spatPomp-method (logLik),

24
logLik,igirfd_spatPomp-method (logLik),

24
logLik,iubfd_spatPomp-method (logLik),

24
logLik-abfd_spatPomp (logLik), 24
logLik-abfird_spatPomp (logLik), 24
logLik-bpfilterd_spatPomp (logLik), 24
logLik-girfd_spatPomp (logLik), 24
logLik-igirfd_spatPomp (logLik), 24
logLik-iubfd_spatPomp (logLik), 24
lorenz, 25

map, 36
mcap, 26
measles, 27
measlesUK, 11, 28
munit_measure, 29
munit_measure,spatPomp-method

(munit_measure), 29
munit_measure-spatPomp (munit_measure),

29

parameter_trans, 37
plot, 30
plot,igirfd_spatPomp-method (plot), 30
plot,spatPomp-method (plot), 30
plot-igirfd_spatPomp (plot), 30

plot-spatPomp (plot), 30
pomp, 24, 33
pomp package, 4
print, 31
print,spatPomp-method (print), 31
print-spatPomp (print), 31
prior specification, 36

rinit specification, 36
rmeasure specification, 35
rprocess plugins, 35
rprocess specification for the

documentation on these
plugins, 35

runit_measure, 31
runit_measure,spatPomp-method

(runit_measure), 31
runit_measure-spatPomp (runit_measure),

31
rw.sd, 18, 21, 23

simulate, 32
simulate,spatPomp-method (simulate), 32
simulate-spatPomp (simulate), 32
skeleton specification, 36
spatPomp, 3, 33
spatPomp-class, 38
spatPomp-package, 3
spatPomp_Csnippet, 38
spatPomp_Csnippet,character-method

(spatPomp_Csnippet), 38
spatPomp_Csnippet-character

(spatPomp_Csnippet), 38

unit_names, 40
unit_names,spatPomp-method

(unit_names), 40
unit_names-spatPomp (unit_names), 40
userdata, 24, 33

vec_dmeasure, 41
vec_dmeasure,spatPomp-method

(vec_dmeasure), 41
vec_dmeasure-spatPomp (vec_dmeasure), 41
vec_rmeasure, 41
vec_rmeasure,spatPomp-method

(vec_rmeasure), 41
vec_rmeasure-spatPomp (vec_rmeasure), 41
vectorfield, 36

46 INDEX

vunit_measure, 42
vunit_measure,spatPomp-method

(vunit_measure), 42
vunit_measure-spatPomp (vunit_measure),

42

	spatPomp-package
	abf
	abfir
	as.data.frame
	as_spatPomp
	bm
	bpfilter
	city_data_UK
	dunit_measure
	enkf
	eunit_measure
	gbm
	girf
	ienkf
	igirf
	iubf
	logLik
	lorenz
	mcap
	measles
	measlesUK
	munit_measure
	plot
	print
	runit_measure
	simulate
	spatPomp
	spatPomp-class
	spatPomp_Csnippet
	unit_names
	vec_dmeasure
	vec_rmeasure
	vunit_measure
	Index

