Package 'spatstat.random'

March 30, 2022
Version 2.2-0
Date 2022-03-29
Title Random Generation Functionality for the 'spatstat' Family
Maintainer Adrian Baddeley Adrian.Baddeley@curtin.edu.au
Depends R ($>=3.5 .0$), spatstat.data ($>=2.1-0$), spatstat.geom ($>=$ 2.4-0), stats, utils, methods, grDevices

Imports spatstat.utils (>=2.2-0)
Suggests spatial, RandomFields ($>=$ 3.1.24.1), RandomFieldsUtils($>=$ 0.3.3.1), spatstat.linnet $(>=2.0-0)$, spatstat.core $(>=2.4-0)$, spatstat ($>=2.3-3$)

Description Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness,
Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes (simple sequential inhibition, Matern inhibition models, Matern cluster process, Neyman-Scott cluster processes, log-
Gaussian Cox processes, product shot noise cluster processes)
and simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics).
Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'.
License GPL (>=2)
URL http://spatstat.org/
NeedsCompilation yes
ByteCompile true
BugReports https://github.com/spatstat/spatstat.random/issues
Author Adrian Baddeley [aut, cre],
Rolf Turner [aut],
Ege Rubak [aut],
Kasper Klitgaard Berthelsen [ctb],
Tilman Davies [ctb],Ute Hahn [ctb],Abdollah Jalilian [ctb],Dominic Schuhmacher [ctb],Rasmus Plenge Waagepetersen [ctb]
Repository CRAN
Date/Publication 2022-03-30 07:30:02 UTC
R topics documented:
spatstat.random-package 4
as.owin.rmhmodel 9
clusterfield 12
clusterkernel 13
clusterradius 14
default.expand 16
default.rmhcontrol 17
dmixpois 18
domain.rmhmodel 20
expand.owin 21
gauss.hermite 22
indefinteg 23
is.stationary 24
quadratresample 25
rags 27
ragsAreaInter 28
ragsMultiHard 29
rCauchy 30
rcell 33
rcellnumber 34
rDGS 36
rDiggleGratton 37
reach 39
rGaussPoisson 41
rHardcore 42
rjitter.psp 44
rknn 45
rlabel 46
rLGCP 48
rMatClust 50
rMaternI 52
rMaternII 54
rmh 55
rmh.default 56
rmhcontrol 67
rmhexpand 71
R topics documented: 3
rmhmodel 73
rmhmodel.default 75
rmhmodel.list 81
rmhstart 84
rMosaicField 86
rMosaicSet 87
rmpoint 88
rmpoispp 92
rNeymanScott 95
rnoise 98
rPenttinen 99
rpoint 101
rpoisline 103
rpoislinetess 104
rpoispp 105
rpoispp3 107
rpoisppOnLines 108
rpoisppx 110
rPoissonCluster 111
rPSNCP 113
rshift 115
rshift.ppp 117
rshift.psp 119
rshift.splitppp 121
rSSI 123
rstrat 125
rStrauss 126
rStraussHard 128
rtemper 129
rthin 131
rthinclumps 132
rThomas 134
runifdisc 136
runifpoint 137
runifpoint3 139
runifpointOnLines 140
runifpointx 141
rVarGamma 142
update.rmhcontrol 145
will.expand 146
Window.rmhmodel 147
Index 148

```
spatstat.random-package
```

The spatstat.random Package

Description

The spatstat.random package belongs to the spatstat family of packages. It contains the functionality for generating random spatial patterns and simulation of random point processes.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the analysis of spatial patterns of points in two-dimensional space.
This sub-package spatstat.random contains the functions that perform random generation of spatial patterns and simulation of random point processes:

- generating random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell);
- randomised alteration of spatial patterns (thinning, random shifting, jittering, random labelling);
- simulated realisations of random point processes (simple sequential inhibition, Matérn inhibition models, Matérn cluster process, Neyman-Scott cluster processes, log-Gaussian Cox processes, product shot noise cluster processes);
- simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, perfect simulation/ dominated coupling from the past, alternating Gibbs sampler);
- generating random spatial patterns of line segments;
- generating random tessellations;
- generating random images (random noise, random mosaics).
(Functions for linear networks are in the separate sub-package spatstat.linnet.)

Structure of the spatstat family

The spatstat family of packages is designed to support a complete statistical analysis of spatial data. It supports

- creation, manipulation and plotting of point patterns;
- exploratory data analysis;
- spatial random sampling;
- simulation of point process models;
- parametric model-fitting;
- non-parametric smoothing and regression;
- formal inference (hypothesis tests, confidence intervals);
- model diagnostics.

The orginal spatstat package grew to be very large. It has now been divided into several subpackages:

- spatstat.utils containing basic utilities
- spatstat.sparse containing linear algebra utilities
- spatstat.data containing datasets
- spatstat.geom containing geometrical objects and geometrical operations
- spatstat.random containing functionality for simulation and random generation
- spatstat.core containing the main functionality for statistical analysis and modelling of spatial data
- spatstat.linnet containing functions for spatial data on a linear network
- spatstat, which simply loads the other sub-packages listed above, and provides documentation.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat package by typing library (spatstat), the other sub-packages listed above will automatically be loaded or imported.
For an overview of all the functions available in the sub-packages of spatstat, see the help file for "spatstat-package" in the spatstat package.

Additionally there are several extension packages:

- spatstat.gui for interactive graphics
- spatstat.local for local likelihood (including geographically weighted regression)
- spatstat.Knet for additional, computationally efficient code for linear networks
- spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the earth's surface

The extension packages must be installed separately and loaded explicitly if needed. They also have separate documentation.

Functionality in spatstat.random

Following is a list of the functionality provided in the spatstat.random package only.
To simulate a random point pattern:
\(\left.$$
\begin{array}{ll}\text { runifpoint } & \begin{array}{l}\text { generate } n \text { independent uniform random points } \\
\text { rpoint }\end{array}
$$

generate n independent random points\end{array}\right]\)| rmpoint | generate n independent multitype random points |
| :--- | :--- |
| rpoispp | simulate the (in)homogeneous Poisson point process |
| runifdisc | simulate the (in)homogeneous multitype Poisson point process |
| rstrat | generate n independent uniform random points in disc |
| rMaternI | stratified random sample of points |
| rMaternII | simulate the Matérn Model I inhibition process |
| rSSI | simulate the Matérn Model II inhibition process |
| rStrauss | simulate Simple Sequential Inhibition process |
| | simulate Strauss process (perfect simulation) |

```
rHardcore simulate Hard Core process (perfect simulation)
rStraussHard simulate Strauss-hard core process (perfect simulation)
rDiggleGratton simulate Diggle-Gratton process (perfect simulation)
rDGS
rPenttinen
rNeymanScott
rPoissonCluster
rMatClust
rThomas
rGaussPoisson
rCauchy
rVarGamma
rthin
rcell
rmh
runifpointOnLines
rpoisppOnLines
simulate Hard Core process (perfect simulation)
simulate Strauss-hard core process (perfect simulation)
simulate Diggle-Gratton process (perfect simulation)
simulate Diggle-Gates-Stibbard process (perfect simulation)
simulate Penttinen process (perfect simulation)
simulate a general Neyman-Scott process
simulate a general Poisson cluster process
simulate the Matérn Cluster process
simulate the Thomas process
simulate the Gauss-Poisson cluster process
simulate Neyman-Scott Cauchy cluster process
simulate Neyman-Scott Variance Gamma cluster process random thinning
simulate the Baddeley-Silverman cell process
simulate Gibbs point process using Metropolis-Hastings
generate \(n\) random points along specified line segments generate Poisson random points along specified line segments
```


To randomly change an existing point pattern:

rshift	random shifting of points
rthin	random thinning
rlabel	random (re)labelling of a multitype point pattern
quadratresample	block resampling

Random pixel images:

An object of class "im" represents a pixel image.

> rnoise random pixel noise

Line segment patterns

An object of class "psp" represents a pattern of straight line segments.
rpoisline generate a realisation of the Poisson line process inside a window

Tessellations

An object of class "tess" represents a tessellation.
rpoislinetess generate tessellation using Poisson line process

Three-dimensional point patterns

An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box is represented by an object of class "box3".

```
runifpoint3 generate uniform random points in 3-D
    rpoispp3 generate Poisson random points in 3-D
```


Multi-dimensional space-time point patterns

An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

$$
\begin{array}{ll}
\text { runifpointx } & \text { generate uniform random points } \\
\text { rpoisppx } & \text { generate Poisson random points }
\end{array}
$$

Probability Distributions

rknn	theoretical distribution of nearest neighbour distance
dmixpois	mixed Poisson distribution

Simulation

There are many ways to generate a random point pattern, line segment pattern, pixel image or tessellation in spatstat.

Random point patterns:

runifpoint
rpoint
rmpoint
rpoispp
rmpoispp
runifdisc
rstrat
rMaternI
rMaternII
rSSI
rHardcore
rStrauss
rStraussHard
rDiggleGratton
rDGS
rPenttinen
rNeymanScott
rMatClust
rThomas
rLGCP
rGaussPoisson
rCauchy
rVarGamma
rcell
runifpointOnLines
rpoisppOnLines
generate n independent uniform random points generate n independent random points generate n independent multitype random points simulate the (in)homogeneous Poisson point process simulate the (in)homogeneous multitype Poisson point process generate n independent uniform random points in disc stratified random sample of points
simulate the Matérn Model I inhibition process
simulate the Matérn Model II inhibition process
simulate Simple Sequential Inhibition process
simulate hard core process (perfect simulation)
simulate Strauss process (perfect simulation)
simulate Strauss-hard core process (perfect simulation)
simulate Diggle-Gratton process (perfect simulation)
simulate Diggle-Gates-Stibbard process (perfect simulation)
simulate Penttinen process (perfect simulation)
simulate a general Neyman-Scott process
simulate the Matérn Cluster process
simulate the Thomas process
simulate the log-Gaussian Cox process
simulate the Gauss-Poisson cluster process
simulate Neyman-Scott process with Cauchy clusters
simulate Neyman-Scott process with Variance Gamma clusters
simulate the Baddeley-Silverman cell process
generate n random points along specified line segments
generate Poisson random points along specified line segments

Resampling a point pattern:

```
quadratresample block resampling
    rshift random shifting of (subsets of) points
    rthin random thinning
```


Other random patterns:

rpoisline	simulate the Poisson line process within a window
rpoislinetess	generate random tessellation using Poisson line process
rMosaicSet	generate random set by selecting some tiles of a tessellation
rMosaicField	generate random pixel image by assigning random values in each tile of a tessellation

Resampling and randomisation procedures

You can build your own tests based on randomisation and resampling using the following capabilities:

quadratresample	block resampling
rshift	random shifting of (subsets of) points
rthin	random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License", a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Tilman Davies, Ute Hahn, Abdollah Jalilian, and Rasmus Waagepetersen made substantial contributions of code.
For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Anderson, Ang Qi Wei, Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele, Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bernhardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger Bivand, Jose M. Blanco Moreno, Florent Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Simon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Lucía Cobo Sanchez, Jean-Francois Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Constantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario D'Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Martin Bøgsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Maximilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack Hywood, Ross Ihaka, C̆enk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn, Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee, George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben

Madin, Martin Maechler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Monia Mahling, Jorge Mateu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi Xiangcheng, Lore De Middeleer, Robin Milne, Enrique Miranda, Jesper Møller, Annie Mollié, Ines Moncada, Mehdi Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nicoletta Nava, Linda Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlägel, Thierry Onkelinx, Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington, Mike Porter, Sergiy Protsiv, Adrian Raftery, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowlingson, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila Särkkä, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, François Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva, Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Torben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vihtakari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates, Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

Description

Converts data specifying an observation window in any of several formats, into an object of class "owin".

Usage

\#\# S3 method for class 'rmhmodel'
as.owin(W, ..., fatal=FALSE)

Arguments

W Data specifying an observation window, in any of several formats described under Details below.
fatal Logical value determining what to do if the data cannot be converted to an observation window. See Details.
... Ignored.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin. object for an overview.
The generic function as. owin converts data in any of several formats into an object of class "owin" for use by the spatstat package. The function as.owin is generic, with methods for different classes of objects, and a default method.

The argument W may be

- an object of class "owin"
- a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle
- a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y dimensions of a rectangle. This will accept objects of class bbox in the sf package.
- a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) specifying the x and y dimensions of a rectangle
- a structure with entries named $\mathrm{xl}, \mathrm{xu}, \mathrm{yl}, \mathrm{yu}$ (in any order) specifying the x and y dimensions of a rectangle as $(x \min , x \max)=(x l, x u)$ and (ymin,ymax) $=(y l, y u)$. This will accept objects of class spp used in the Venables and Ripley spatial package.
- an object of class "ppp" representing a point pattern. In this case, the object's window structure will be extracted.
- an object of class "psp" representing a line segment pattern. In this case, the object's window structure will be extracted.
- an object of class "tess" representing a tessellation. In this case, the object's window structure will be extracted.
- an object of class "quad" representing a quadrature scheme. In this case, the window of the data component will be extracted.
- an object of class "im" representing a pixel image. In this case, a window of type "mask" will be returned, with the same pixel raster coordinates as the image. An image pixel value of NA, signifying that the pixel lies outside the window, is transformed into the logical value FALSE, which is the corresponding convention for window masks.
- an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model. In this case, if from="data" (the default), as.owin extracts the original point pattern data to which the model was fitted, and returns the observation window of this point pattern. If from="covariates" then as.owin extracts the covariate images to which the model was fitted, and returns a binary mask window that specifies the pixel locations.
- an object of class "lpp" representing a point pattern on a linear network. In this case, as . owin extracts the linear network and returns a window containing this network.
- an object of class "lppm" representing a fitted point process model on a linear network. In this case, as. owin extracts the linear network and returns a window containing this network.
- A data.frame with exactly three columns. Each row of the data frame corresponds to one pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating whether the pixel lies inside the window.
- A data.frame with exactly two columns. Each row of the data frame contains the x and y coordinates of a pixel that lies inside the window.
- an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location, defined on a spatial domain. The spatial domain of the function will be extracted.
- an object of class "rmhmodel" representing a point process model that can be simulated using rmh. The window (spatial domain) of the model will be extracted. The window may be NULL in some circumstances (indicating that the simulation window has not yet been determined). This is not treated as an error, because the argument fatal defaults to FALSE for this method.
- an object of class "layered" representing a list of spatial objects. See layered. In this case, as. owin will be applied to each of the objects in the list, and the union of these windows will be returned.
- an object of class "SpatialPolygon", "SpatialPolygons" or "SpatialPolygonsDataFrame". To handle these data types, the package maptools must be loaded, because it provides the methods for as. owin for these classes. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise, the spacing will be guessed from the data.

Value

An object of class "owin" (see owin. object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

> as.owin, as.owin.ppm, as.owin.lpp.
owin.object, owin.
Additional methods for as. owin are provided in the maptools package: as owin. SpatialPolygon, as.owin. SpatialPolygons, as.owin.SpatialPolygonsDataFrame.

Examples

```
    m <- rmhmodel(cif='poisson', par=list(beta=1), w=square(2))
    as.owin(m)
```


clusterfield Field of clusters

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

```
Usage
    clusterfield(model, locations = NULL, ...)
    ## S3 method for class 'character'
    clusterfield(model, locations = NULL, ...)
        ## S3 method for class 'function'
    clusterfield(model, locations = NULL, ..., mu = NULL)
```


Arguments

model Cluster model. Either a fitted cluster model (object of class "kppm"), a character string specifying the type of cluster model, or a function defining the cluster kernel. See Details.
locations A point pattern giving the locations of the kernels. Defaults to the centroid of the observation window for the "kppm" method and to the center of a unit square otherwise.
... Additional arguments passed to density.ppp or the cluster kernel. See Details.
mu Mean number of offspring per cluster. A single number or a pixel image.

Details

These functions require the spatstat.core package. The actual calculations are performed by density.ppp and ... arguments are passed thereto for control over the pixel resolution etc. (These arguments are then passed on to pixellate.ppp and as.mask.)
For the method clusterfield.function, the given kernel function should accept vectors of x and y coordinates as its first two arguments. Any additional arguments may be passed through the
The function method also accepts the optional parameter mu (defaulting to 1) specifying the mean number of points per cluster (as a numeric) or the inhomogeneous reference cluster intensity (as an "im" object or a function (x, y)). The interpretation of $m u$ is as explained in the simulation functions referenced in the See Also section below.

For the method clusterfield.character, the argument model must be one of the following character strings: model="Thomas" for the Thomas process, model="MatClust" for the Matérn cluster process, model="Cauchy" for the Neyman-Scott cluster process with Cauchy kernel, or model="VarGamma" for the Neyman-Scott cluster process with Variance Gamma kernel. For all these models the parameter scale is required and passed through . . . as well as the parameter nu when model="VarGamma". This method calls clusterfield.function so the parameter mu may also be passed through . . . and will be interpreted as explained above.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

density.ppp and kppm.
Simulation algorithms for cluster models: rCauchy rMatClust rThomas rVarGamma

Examples

```
    if(require(spatstat.core)) {
    # method for functions
    kernel <- function(x,y, scal) {
        r<- sqrt(x^2 + y^2)
        ifelse(r>0,
            dgamma(r, shape=5, scale=scal)/(2 * pi * r),
            0)
    }
    X <- runifpoint(10)
    clusterfield(kernel, X, scal=0.05)
    }
```

clusterkernel Extract Cluster Offspring Kernel

Description

Given a cluster point process model, this command returns the probability density of the cluster offspring.

Usage

clusterkernel(model, ...)
\#\# S3 method for class 'character'
clusterkernel(model, ...)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or a character string specifying the type of cluster model.
... Parameter values for the model, when model is a character string.

Details

Given a specification of a cluster point process model, this command returns a function (x, y) giving the two-dimensional probability density of the cluster offspring points assuming a cluster parent located at the origin.

Value

A function in the R language with arguments x, y, \ldots

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

clusterfield, kppm

Examples

```
    f <- clusterkernel("Thomas", kappa=10, scale=0.5)
    f(0.1, 0.2)
```

```
clusterradius Compute or Extract Effective Range of Cluster Kernel
```


Description

Given a cluster point process model, this command returns a value beyond which the the probability density of the cluster offspring is neglible.

Usage

clusterradius(model, ...)
\#\# S3 method for class 'character'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or a character string specifying the type of cluster model.
. . Parameter values for the model, when model is a character string.
thresh Numerical threshold relative to the cluster kernel value at the origin (parent location) determining when the cluster kernel will be considered neglible. A sensible default is provided.
precision Logical. If precision=TRUE the precision of the calculated range is returned as an attribute to the range. See details.

Details

Given a cluster model this function by default returns the effective range of the model with the given parameters as used in spatstat. For the Matérn cluster model (see e.g. rMatClust) this is simply the finite radius of the offsring density given by the paramter scale irrespective of other options given to this function. The remaining models in spatstat have infinite theoretical range, and an effective finite value is given as follows: For the Thomas model (see e.g. rThomas the default is $4 \star$ scale where scale is the scale or standard deviation parameter of the model. If thresh is given the value is instead found as described for the other models below.

For the Cauchy model (see e.g. rCauchy) and the Variance Gamma (Bessel) model (see e.g. rVarGamma) the value of thresh defaults to 0.001 , and then this is used to compute the range numerically as follows. If $k(x, y)=k_{0}(r)$ with $r=\sqrt{\left(x^{2}+y^{2}\right) \text { denotes the isotropic cluster }}$ kernel then $f(r)=2 \pi r k_{0}(r)$ is the density function of the offspring distance from the parent. The range is determined as the value of r where $f(r)$ falls below thresh times $k_{0}(r)$.

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally this should be close to the value 1 which would be obtained for the true theretical infinite range.

Value

A positive numeric.
Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
Rolf Turner < r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math. aau.dk>

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

Examples

```
clusterradius("Thomas", scale = .1)
clusterradius("Thomas", scale = .1, thresh = 0.001)
clusterradius("VarGamma", scale = .1, nu = 2, precision = TRUE)
```


Description

Defines the default expansion window or expansion rule for simulation of a point process model.

Usage

default.expand(object, $m=2$, epsilon=1e-6, w=Window(object))

Arguments

object	A point process model (object of class "ppm" or "rmhmodel").
m	A single numeric value. The window will be expanded by a distance $\mathrm{m} *$ reach (object) along each side.
epsilon	Threshold argument passed to reach to determine reach (object). w
Optional. The un-expanded window in which the model is defined. The result- ing simulated point patterns will lie in this window.	

Details

This function computes a default value for the expansion rule (the argument expand in rmhcontrol) given a fitted point process model object. This default is used by rmh, simulate.ppm, envelope, qqplot.ppm, and other functions.
Suppose we wish to generate simulated realisations of a fitted point process model inside a window w. It is advisable to first simulate the pattern on a larger window, and then clip it to the original window w . This avoids edge effects in the simulation. It is called expansion of the simulation window.

Accordingly, for the Metropolis-Hastings simulation algorithm rmh, the algorithm control parameters specified by rmhcontrol include an argument expand that determines the expansion of the simulation window.
The function default.expand determines the default expansion rule for a fitted point process model object.

If the model is Poisson, then no expansion is necessary. No expansion is performed by default, and default. expand returns a rule representing no expansion. The simulation window is the original window $w=$ Window (object).
If the model depends on external covariates (i.e. covariates other than the Cartesian covariates x and y and the marks) then no expansion is feasible, in general, because the spatial domain of the covariates is not guaranteed to be large enough. default. expand returns a rule representing no expansion. The simulation window is the original window $w=$ Window (object).
If the model depends on the Cartesian covariates x and y, it would be feasible to expand the simulation window, and this was the default for spatstat version 1.24-1 and earlier. However this
sometimes produces artefacts (such as an empty point pattern) or memory overflow, because the fitted trend, extrapolated outside the original window of the data, may become very large. In spatstat version 1.24-2 and later, the default rule is not to expand if the model depends on x or y. Again default. expand returns a rule representing no expansion.
Otherwise, expansion will occur. The original window $w=$ Window (object) is expanded by a distance $m * r r$, where $r r$ is the interaction range of the model, computed by reach. If w is a rectangle then each edge of w is displaced outward by distance $m * r r$. If w is not a rectangle then w is dilated by distance m * rr using dilation.

Value

A window expansion rule (object of class "rmhexpand").

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au> and Rolf Turner < r.turner@auckland.ac.nz>

See Also

rmhexpand, rmhcontrol, rmh, envelope, qqplot.ppm

Examples

```
if(require(spatstat.core)) {
    fit <- ppm(cells, ~1, Strauss(0.07))
    default.expand(fit)
}
    mod <- rmhmodel(cif="strauss", par=list(beta=100, gamma=0.5, r=0.07))
    default.expand(mod)
```

default.rmhcontrol Set Default Control Parameters for Metropolis-Hastings Algorithm.

Description

For a Gibbs point process model (either a fitted model, or a model specified by its parameters), this command sets appropriate default values of the parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

```
default.rmhcontrol(model, w=NULL)
```


Arguments

model A fitted point process model (object of class "ppm") or a description of a Gibbs point process model (object of class "rmhmodel").
w
Optional. Window for the resulting simulated patterns.

Details

This function sets the values of the parameters controlling the iterative behaviour of the MetropolisHastings simulation algorithm. It uses default values that would be appropriate for the fitted point process model model.
The expansion parameter expand is set to default.expand(model,w).
All other parameters revert to their defaults given in rmhcontrol.default.
See rmhcontrol for the full list of control parameters. To override default parameters, use update. rmhcontrol.

Value

An object of class "rmhcontrol". See rmhcontrol.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

rmhcontrol, update.rmhcontrol, ppm, default.expand

Examples

```
if(require(spatstat.core)) {
    fit <- ppm(cells, ~1, Strauss(0.1))
    default.rmhcontrol(fit)
    default.rmhcontrol(fit, w=square(2))
}
    m <- rmhmodel(cif='strauss',
                                    par=list(beta=100, gamma=0.5, r=0.1),
                            w=unit.square())
    default.rmhcontrol(m)
    default.rmhcontrol(m, w=square(2))
```

```
dmixpois Mixed Poisson Distribution
```


Description

Density, distribution function, quantile function and random generation for a mixture of Poisson distributions.

Usage

dmixpois(x, mu, sd, invlink = exp, GHorder = 5)
pmixpois(q, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
qmixpois(p, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
rmixpois(n, mu, sd, invlink = exp)

Arguments

X
q
p
n
mu
sd
invlink
lower.tail

GHorder
vector of (non-negative integer) quantiles.
vector of quantiles.
vector of probabilities.
number of random values to return.
Mean of the linear predictor. A single numeric value.
Standard deviation of the linear predictor. A single numeric value.
Inverse link function. A function in the R language, used to transform the linear predictor into the parameter lambda of the Poisson distribution. $x]$.
Number of quadrature points in the Gauss-Hermite quadrature approximation. A small positive integer.

Details

These functions are analogous to dpois ppois, qpois and rpois except that they apply to a mixture of Poisson distributions.

In effect, the Poisson mean parameter lambda is randomised by setting lambda = invlink(Z) where Z has a Gaussian $N\left(\mu, \sigma^{2}\right)$ distribution. The default is invlink=exp which means that lambda is lognormal. Set invlink=I to assume that lambda is approximately Normal.

For dmixpois, pmixpois and qmixpois, the probability distribution is approximated using GaussHermite quadrature. For rmixpois, the deviates are simulated exactly.

Value

Numeric vector: dmixpois gives probability masses, ppois gives cumulative probabilities, qpois gives (non-negative integer) quantiles, and rpois generates (non-negative integer) random deviates.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
, Rolf Turner r.turner@auckland.ac.nz
and Ege Rubak <rubak@math. aau.dk>

See Also

dpois, gauss.hermite.

Examples

```
    dmixpois(7, 10, 1, invlink = I)
    dpois(7, 10)
    pmixpois(7, log(10), 0.2)
    ppois(7, 10)
```

```
    qmixpois(0.95, log(10), 0.2)
    qpois(0.95, 10)
    x <- rmixpois(100, log(10), log(1.2))
    mean(x)
var(x)
```

domain.rmhmodel Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts the spatial domain in which the object is defined.

Usage

```
    ## S3 method for class 'rmhmodel'
domain(X, ...)
```


Arguments

$X \quad$ A spatial object such as a point pattern (in any number of dimensions), line segment pattern or pixel image.
.. Extra arguments. They are ignored by all the methods listed here.

Details

The function domain is generic.
For a spatial object X in any number of dimensions, domain (X) extracts the spatial domain in which X is defined.

For a two-dimensional object X, typically domain (X) is the same as Window (X).
Exceptions occur for methods related to linear networks.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a threedimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

domain, domain.ppm, domain.lpp. Window, Frame.

Examples

domain(rmhmodel(cif='poisson', par=list(beta=1), w=square(2)))
expand.owin ApplyExpansion Rule

Description

Applies an expansion rule to a window.

Usage

expand.owin(W, ...)

Arguments

W
A window.
... Arguments passed to rmhexpand to determine an expansion rule.

Details

The argument W should be a window (an object of class "owin").
This command applies the expansion rule specified by the arguments . . . to the window W, yielding another window.
The arguments . . . are passed to rmhexpand to determine the expansion rule.
For other transformations of the scale, location and orientation of a window, see shift, affine and rotate.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner r.turner@auckland.ac.nz

See Also

rmhexpand about expansion rules.
shift, rotate, affine for other types of manipulation.

Examples

```
expand.owin(square(1), 9)
expand.owin(square(1), distance=0.5)
expand.owin(letterR, length=2)
expand.owin(letterR, distance=0.1)
```

gauss.hermite Gauss-Hermite Quadrature Approximation to Expectation for Normal
Distribution

Description

Calculates an approximation to the expected value of any function of a normally-distributed random variable, using Gauss-Hermite quadrature.

Usage

gauss.hermite(f, mu = 0, sd = 1, ..., order = 5)

Arguments

$f \quad$ The function whose moment should be approximated.
mu Mean of the normal distribution.
sd Standard deviation of the normal distribution.
... Additional arguments passed to f.
order Number of quadrature points in the Gauss-Hermite quadrature approximation. A small positive integer.

Details

This algorithm calculates the approximate expected value of $f(Z)$ when Z is a normally-distributed random variable with mean mu and standard deviation sd. The expected value is an integral with respect to the Gaussian density; this integral is approximated using Gauss-Hermite quadrature.
The argument f should be a function in the R language whose first argument is the variable Z. Additional arguments may be passed through The value returned by f may be a single numeric value, a vector, or a matrix. The values returned by f for different values of Z must have compatible dimensions.

The result is a weighted average of several values of f.

Value

Numeric value, vector or matrix.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
, Rolf Turner r.turner@auckland.ac.nz
and Ege Rubak <rubak@math. aau.dk>.

Examples

```
    gauss.hermite(function(x) x^2, 3, 1)
```

 indefinteg Indefinite Integral

Description

Computes the indefinite integral of the given function.

Usage

```
indefinteg(f, x, ...,
method=c("trapezoid", "quadrature"),
    lower=min(x), nfine=8192)
```


Arguments

f
x
... additional arguments to be passed to f.
method String (partially matched) specifying how to compute the integrals.
lower Lower limit of integration. A single number.
nfine \quad Number of sub-intervals to use for computation if method=' trapezoid'.

Details

The indefinite integral of the given function f is computed numerically at each of the desired values x. The lower limit of integration is taken to be $\min (x)$.
The result is a numeric vector y of the same length as x, with entries

$$
y_{i}=\int_{\text {lower }}^{x_{i}} f(t) d t
$$

If method='trapezoid' (the default), the integrals are computed rapidly using the trapezoid rule. If method='quadrature' the integrals are computed accurately but much more slowly, using the numerical quadrature routine integrate.
If method='trapezoid' the function f is first evaluated on a finer grid of values of the function argument. The fine grid contains nfine sample points. The values of the indefinite integral on the fine grid are computed using the trapezoidal approximation. Finally the values of the indefinite integral are extracted at the desired argument values x.

Value

Numeric vector of the same length as x .

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>.

See Also

integrate

Examples

```
    curve(indefinteg(sin, x), to=pi)
```

is.stationary Recognise Stationary and Poisson Point Process Models

Description

Given a point process model (either a model that has been fitted to data, or a model specified by its parameters), determine whether the model is a stationary point process, and whether it is a Poisson point process.

Usage

```
is.stationary(x)
## S3 method for class 'rmhmodel'
is.stationary(x)
is.poisson(x)
## S3 method for class 'rmhmodel'
is.poisson(x)
```


Arguments

X
A fitted spatial point process model (object of class "ppm", "kppm", "lppm", "dppm" or "slrm") or a specification of a Gibbs point process model (object of class "rmhmodel") or a similar object.

Details

The argument x represents a fitted spatial point process model or a similar object.
is. stationary (x) returns TRUE if x represents a stationary point process, and FALSE if not.
is. poisson (x) returns TRUE if x represents a Poisson point process, and FALSE if not.
The functions is.stationary and is.poisson are generic, with methods for the classes "ppm" (Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial logistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algorithm). Additionally is.stationary has a method for classes "detpointprocfamily" and "dppm" (both determinantal point processes) and is.poisson has a method for class "interact" (interaction structures for Gibbs models).
is.poisson. kppm will return FALSE, unless the model x is degenerate: either x has zero intensity so that its realisations are empty with probability 1 , or it is a log-Gaussian Cox process where the log intensity has zero variance.
is. poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

See Also

is.marked to determine whether a model is a marked point process.

Examples

```
    m <- rmhmodel(cif='strauss', par=list(beta=10, gamma=0.1, r=1))
    is.stationary(m)
    is.poisson(m)
    is.poisson(rmhmodel(cif='strauss', par=list(beta=10, gamma=1, r=1)))
```

quadratresample Resample a Point Pattern by Resampling Quadrats

Description

Given a point pattern dataset, create a resampled point pattern by dividing the window into rectangular quadrats and randomly resampling the list of quadrats.

Usage

$$
\begin{aligned}
& \text { quadratresample }(X, n x, n y=n x, \ldots, \\
& \text { replace }=\text { FALSE, nsamples }=1, \\
&\text { verbose }=(\text { nsamples }>1))
\end{aligned}
$$

Arguments

X	A point pattern dataset (object of class "ppp").
nx, ny	Numbers of quadrats in the x and y directions.
\ldots	Ignored.
replace	Logical value. Specifies whether quadrats should be sampled with or without replacement.
nsamples	Number of randomised point patterns to be generated.
verbose	Logical value indicating whether to print progress reports.

Details

This command implements a very simple bootstrap resampling procedure for spatial point patterns X.

The dataset X must be a point pattern (object of class "ppp") and its observation window must be a rectangle.

The window is first divided into $N=n x * n y$ rectangular tiles (quadrats) of equal size and shape. To generate one resampled point pattern, a random sample of N quadrats is selected from the list of N quadrats, with replacement (if replace=TRUE) or without replacement (if replace=FALSE). The i th quadrat in the original dataset is then replaced by the i th sampled quadrat, after the latter is shifted so that it occupies the correct spatial position. The quadrats are then reconstituted into a point pattern inside the same window as X .
If replace $=F A L S E$, this procedure effectively involves a random permutation of the quadrats. The resulting resampled point pattern has the same number of points as X. If replace=TRUE, the number of points in the resampled point pattern is random.

Value

A point pattern (if nsamples $=1$) or a list of point patterns (if nsamples >1).

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

quadrats, quadratcount.
See varblock to estimate the variance of a summary statistic by block resampling.

Examples

```
data(bei)
quadratresample(bei, 6, 3)
```

rags Alternating Gibbs Sampler for Multitype Point Processes

Description

Simulate a realisation of a point process model using the alternating Gibbs sampler.

Usage

rags(model, ..., ncycles = 100)

Arguments

model Data specifying some kind of point process model.
... Additional arguments passed to other code.
ncycles \quad Number of cycles of the alternating Gibbs sampler that should be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure. Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation from the conditional distribution of points of type i given the points of all other types. Successive steps of the sampler update the points of type 1 , then type 2, type 3 , and so on.
This is an experimental implementation which currently works only for multitype hard core processes (see MultiHard) in which there is no interaction between points of the same type.

The argument model should be an object describing a point process model. At the moment, the only permitted format for model is of the form list(beta, hradii) where beta gives the first order trend and hradii is the matrix of interaction radii. See ragsMultiHard for full details.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au

See Also

ragsMultiHard, ragsAreaInter

Examples

```
mo <- list(beta=c(30, 20),
            hradii = 0.05 * matrix(c(0,1,1,0), 2, 2))
    rags(mo, ncycles=10)
```

```
ragsAreaInter
Alternating Gibbs Sampler for Area-Interaction Process
```


Description

Generate a realisation of the area-interaction process using the alternating Gibbs sampler. Applies only when the interaction parameter eta is greater than 1 .

Usage

```
ragsAreaInter (beta, eta, r, ...,
win = NULL, bmax = NULL, periodic = FALSE, ncycles = 100)
```


Arguments

beta First order trend. A number, a pixel image (object of class "im"), or a function(x, y).
eta Interaction parameter (canonical form) as described in the help for AreaInter. A number greater than 1.
$r \quad$ Disc radius in the model. A number greater than 1.
... Additional arguments for beta if it is a function.
win Simulation window. An object of class "owin". (Ignored if beta is a pixel image.)
bmax Optional. The maximum possible value of beta, or a number larger than this.
periodic Logical value indicating whether to treat opposite sides of the simulation window as being the same, so that points close to one side may interact with points close to the opposite side. Feasible only when the window is a rectangle.
ncycles Number of cycles of the alternating Gibbs sampler to be performed.

Details

This function generates a simulated realisation of the area-interaction process (see AreaInter) using the alternating Gibbs sampler (see rags).
It exploits a mathematical relationship between the (unmarked) area-interaction process and the two-type hard core process (Baddeley and Van Lieshout, 1995; Widom and Rowlinson, 1970). This relationship only holds when the interaction parameter eta is greater than 1 so that the areainteraction process is clustered.
The parameters beta, eta are the canonical parameters described in the help for AreaInter. The first order trend beta may be a constant, a function, or a pixel image.

The simulation window is determined by beta if it is a pixel image, and otherwise by the argument win (the default is the unit square).

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au.

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the Institute of Statistical Mathematics 47 (1995) 601-619.
Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions. The Journal of Chemical Physics 52 (1970) 1670-1684.

See Also

rags, ragsMultiHard
AreaInter

Examples

plot(ragsAreaInter(100, 2, 0.07, ncycles=15))
ragsMultiHard Alternating Gibbs Sampler for Multitype Hard Core Process

Description

Generate a realisation of the multitype hard core point process using the alternating Gibbs sampler.

Usage

ragsMultiHard(beta, hradii, ..., types=NULL, bmax = NULL, periodic=FALSE, ncycles $=100$)

Arguments

beta First order trend. A numeric vector, a pixel image, a function, a list of functions, or a list of pixel images.
hradii Matrix of hard core radii between each pair of types. Diagonal entries should be 0 or NA.
types Vector of all possible types for the multitype point pattern.
... Arguments passed to rmpoispp when generating random points.
bmax Optional upper bound on beta.
periodic Logical value indicating whether to measure distances in the periodic sense, so that opposite sides of the (rectangular) window are treated as identical.
ncycles \quad Number of cycles of the sampler to be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure. Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation from the conditional distribution of points of type i given the points of all other types. Successive steps of the sampler update the points of type 1 , then type 2 , type 3 , and so on.

This is an experimental implementation which currently works only for multitype hard core processes (see MultiHard) in which there is no interaction between points of the same type, and for the area-interaction process (see ragsAreaInter).
The argument beta gives the first order trend for each possible type of point. It may be a single number, a numeric vector, a function (x, y), a pixel image, a list of functions, a function (x, y, m), or a list of pixel images.

The argument hradii is the matrix of hard core radii between each pair of possible types of points. Two points of types i and j respectively are forbidden to lie closer than a distance hradii[i,j] apart. The diagonal of this matrix must contain NA or 0 values, indicating that there is no hard core constraint applying between points of the same type.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>

See Also

rags, ragsAreaInter

Examples

$b<-c(30,20)$
h <- 0.05 * matrix $(c(0,1,1,0), 2,2)$
ragsMultiHard(b, h, ncycles=10)
ragsMultiHard(b, h, ncycles=5, periodic=TRUE)

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Cauchy cluster kernel.

```
Usage
    rCauchy(kappa, scale, mu, win = owin(), thresh = 0.001,
        nsim=1, drop=TRUE,
        saveLambda=FALSE, expand = NULL, ...,
        poisthresh=1e-6, nonempty=TRUE, saveparents=TRUE)
```


Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
scale Scale parameter for cluster kernel. Determines the size of clusters. A positive number, in the same units as the spatial coordinates.
mu Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin.
thresh Threshold relative to the cluster kernel value at the origin (parent location) determining when the cluster kernel will be treated as zero for simulation purposes. Will be overridden by argument expand if that is given.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
expand Numeric. Size of window expansion for generation of parent points. By default determined by calling clusterradius with the numeric threshold value given in thresh.
... Passed to clusterfield to control the image resolution when saveLambda=TRUE and to clusterradius when expand is missing or NULL.
poisthresh Numerical threshold below which the model will be treated as a Poisson process. See Details.
nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which parents are generated conditionally on having at least one offspring point. If FALSE, parents are generated even if they have no offspring. Both choices are valid; the default is recommended unless you need to simulate all the parent points for some other purpose.
saveparents Logical value indicating whether to save the locations of the parent points as an attribute.

Details

This algorithm generates a realisation of the Neyman-Scott process with Cauchy cluster kernel, inside the window win.

The process is constructed by first generating a Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of points, the number of points in each cluster being random with a Poisson (mu) distribution, and the points being placed independently and uniformly according to a Cauchy kernel.
In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.

This model can be fitted to data by the method of minimum contrast, maximum composite likelihood or Palm likelihood using kppm.
The algorithm can also generate spatially inhomogeneous versions of the cluster process:

- The parent points can be spatially inhomogeneous. If the argument kappa is a function (x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument mu is a function (x, y) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomogeneous (mu is a function or pixel image), the model can be fitted to data using kppm.
If the pair correlation function of the model is very close to that of a Poisson process, deviating by less than poisthresh, then the model is approximately a Poisson process, and will be simulated as a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian. Baddeley@curtin. edu. a

References

Ghorbani, M. (2013) Cauchy cluster process. Metrika 76, 697-706.
Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous NeymanScott processes. Biometrics 63, 252-258.

See Also

rpoispp, rMatClust, rThomas, rVarGamma, rNeymanScott, rGaussPoisson.
For fitting the model, see kppm, clusterfit.

Examples

```
# homogeneous
X <- rCauchy(30, 0.01, 5)
# inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
Z <- as.im(ff, W= owin())
Y <- rCauchy(50, 0.01, Z)
YY <- rCauchy(ff, 0.01, 5)
```

 rcell Simulate Baddeley-Silverman Cell Process

Description

Generates a random point pattern, a simulated realisation of the Baddeley-Silverman cell process model.

Usage

```
rcell(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
    N=10, nsim=1, drop=TRUE)
```


Arguments

win A window. An object of class owin, or data in any format acceptable to as owin().
$\mathrm{nx} \quad$ Number of columns of cells in the window. Incompatible with dx .
ny \quad Number of rows of cells in the window. Incompatible with dy.
... Ignored.
$\mathrm{dx} \quad$ Width of the cells. Incompatible with nx .
dy Height of the cells. Incompatible with ny.
$\mathrm{N} \quad$ Integer. Distributional parameter: the maximum number of random points in each cell. Passed to rcellnumber.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a simulated realisation of the "cell process" (Baddeley and Silverman, 1984), a random point process with the same second-order properties as the uniform Poisson process. In particular, the K function of this process is identical to the K function of the uniform Poisson process (aka Complete Spatial Randomness). The same holds for the pair correlation function and all other second-order properties. The cell process is a counterexample to the claim that the K function completely characterises a point pattern.

A cell process is generated by dividing space into equal rectangular tiles. In each tile, a random number of random points is placed. By default, there are either 0,1 or 10 points, with probabilities $1 / 10,8 / 9$ and $1 / 90$ respectively. The points within a tile are independent and uniformly distributed in that tile, and the numbers of points in different tiles are independent random integers.
The tile width is determined either by the number of columns $n x$ or by the horizontal spacing $d x$. The tile height is determined either by the number of rows ny or by the vertical spacing $d y$. The cell process is then generated in these tiles. The random numbers of points are generated by rcellnumber.

Some of the resulting random points may lie outside the window win: if they do, they are deleted. The result is a point pattern inside the window win.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcellnumber, rstrat, rsyst, runifpoint, Kest

Examples

```
    X <- rcell(nx=15)
    plot(X)
    if(require(spatstat.core)) {
        plot(Kest(X))
    }
```

rcellnumber Generate Random Numbers of Points for Cell Process

Description

Generates random integers for the Baddeley-Silverman counterexample.

Usage

rcellnumber ($\mathrm{n}, \mathrm{N}=10$, mu=1)

Arguments

n
N
mu

Number of random integers to be generated.
Distributional parameter: the largest possible value (when mu <= 1). An integer greater than 1. Mean of the distribution (equals the variance). Any positive real number.

Details

If $\mathrm{mu}=1$ (the default), this function generates random integers which have mean and variance equal to 1 , but which do not have a Poisson distribution. The random integers take the values 0,1 and N with probabilities $1 / N,(N-2) /(N-1)$ and $1 /(N(N-1))$ respectively. See Baddeley and Silverman (1984).

If mu is another positive number, the random integers will have mean and variance equal to mu. They are obtained by generating the one-dimensional counterpart of the cell process and counting the number of points in the interval from 0 to mu. The maximum possible value of each random integer is N * ceiling(mu).

Value

An integer vector of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcell

Examples

rcellnumber (30, 3)

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gates-Stibbard process, using a perfect simulation algorithm.

Usage

```
rDGS(beta, rho, W = owin(), expand=TRUE, nsim=1, drop=TRUE)
```


Arguments

beta intensity parameter (a positive number).
rho interaction range (a non-negative number).
W window (object of class "owin") in which to generate the random pattern.
expand Logical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Diggle-Gates-Stibbard point process in the window W using a 'perfect simulation' algorithm.

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair of points separated by a distance d contributes a factor $e(d)$ to the probability density, where

$$
e(d)=\sin ^{2}\left(\frac{\pi d}{2 \rho}\right)
$$

for $d<\rho$, and $e(d)$ is equal to 1 for $d \geq \rho$.
The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).
There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If nsim $=1$, a point pattern (object of class "ppp"). If nsim >1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>, based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 - 770. Scandinavian Journal of Statistics 21, 359-373.
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.

See Also

rmh, DiggleGatesStibbard.
rStrauss, rHardcore, rStraussHard, rDiggleGratton, rPenttinen.

Examples

```
    X <- rDGS(50, 0.05)
    Z <- rDGS(50, 0.03, nsim=2)
```

 rDiggleGratton Perfect Simulation of the Diggle-Gratton Process

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gratton process, using a perfect simulation algorithm.

Usage

```
rDiggleGratton(beta, delta, rho, kappa=1, W = owin(),
```

 expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta	intensity parameter (a positive number).
delta	hard core distance (a non-negative number).
rho	interaction range (a number greater than delta).
kappa	interaction exponent (a non-negative number). W
window (object of class "owin") in which to generate the random pattern. Cur-	
rently this must be a rectangular window.	

Details

This function generates a realisation of the Diggle-Gratton point process in the window W using a 'perfect simulation' algorithm.
Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with pair potential $h(t)$ of the form

$$
h(t)=\left(\frac{t-\delta}{\rho-\delta}\right)^{\kappa} \quad \text { if } \delta \leq t \leq \rho
$$

with $h(t)=0$ for $t<\delta$ and $h(t)=1$ for $t>\rho$. Here δ, ρ and κ are parameters.
Note that we use the symbol κ where Diggle and Gratton (1984) use β, since in spatstat we reserve the symbol β for an intensity parameter.
The parameters must all be nonnegative, and must satisfy $\delta \leq \rho$.
The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If $n s i m=1$, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au>
based on original code for the Strauss process by Kasper Klitgaard Berthelsen.
reach

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193-212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.

See Also

rmh, rStrauss, rHardcore, rStraussHard, rDGS, rPenttinen.
For fitting the model, see DiggleGratton.

Examples

```
    X <- rDiggleGratton(50, 0.02, 0.07)
    Z <- rDiggleGratton(50, 0.02, 0.07, 2, nsim=2)
```

reach Interaction Distance of a Point Process Model

Description

Computes the interaction distance of a point process model.

Usage

$$
\operatorname{reach}(x, \ldots)
$$

\#\# S3 method for class 'rmhmodel'
reach (x, \ldots)

Arguments

x
Either a fitted point process model (object of class "ppm"), an interpoint interaction (object of class "interact"), a fitted interpoint interaction (object of class "fii") or a point process model for simulation (object of class "rmhmodel").
$\ldots \quad$ Other arguments are ignored.

Details

The function reach computes the 'interaction distance' or 'interaction range' of a point process model.
The definition of the interaction distance depends on the type of point process model. This help page explains the interaction distance for a Gibbs point process. For other kinds of models, see reach. kppm and reach.dppm.
For a Gibbs point process model, the interaction distance is the shortest distance D such that any two points in the process which are separated by a distance greater than D do not interact with each other.
For example, the interaction range of a Strauss process (see Strauss or rStrauss) with parameters β, γ, r is equal to r, unless $\gamma=1$ in which case the model is Poisson and the interaction range is 0 . The interaction range of a Poisson process is zero. The interaction range of the Ord threshold process (see OrdThresh) is infinite, since two points may interact at any distance apart.
The function reach is generic, with methods for the case where x is

- a fitted point process model (object of class "ppm", usually obtained from the model-fitting function ppm);
- an interpoint interaction structure (object of class "interact")
- a fitted interpoint interaction (object of class "fii")
- a point process model for simulation (object of class "rmhmodel"), usually obtained from rmhmodel.

Value

The interaction distance, or NA if this cannot be computed from the information given.

Other types of models

Methods for reach are also defined for point process models of class "kppm" and "dppm". Their technical definition is different from this one. See reach.kppm and reach.dppm.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

reach.ppm
rmhmodel
See reach.kppm and reach. dppm for other types of point process models.

Examples

reach(rmhmodel(cif='poisson', par=list(beta=100)))
\# returns 0
reach(rmhmodel(cif='strauss', par=list(beta=100, gamma=0.1, r=7)))

```
# returns 7
reach(rmhmodel(cif='sftcr', par=list(beta=100, sigma=1, kappa=0.7)))
# returns Inf
reach(rmhmodel(cif='multihard',
par=list(beta=c(10,10), hradii=matrix(c(1,3,3,1),2,2))))
# returns 3
```

```
rGaussPoisson Simulate Gauss-Poisson Process
```


Description

Generate a random point pattern, a simulated realisation of the Gauss-Poisson Process.

Usage

```
rGaussPoisson(kappa, r, p2, win = owin(c(0,1),c(0,1)),
    ..., nsim=1, drop=TRUE)
```


Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
$r \quad$ Diameter of each cluster that consists of exactly 2 points.
p2 Probability that a cluster contains exactly 2 points.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin.
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This algorithm generates a realisation of the Gauss-Poisson point process inside the window win. The process is constructed by first generating a Poisson point process of parent points with intensity kappa. Then each parent point is either retained (with probability $1-p 2$) or replaced by a pair of points at a fixed distance r apart (with probability $p 2$). In the case of clusters of 2 points, the line joining the two points has uniform random orientation.

In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of the point pattern. See rNeymanScott.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

rpoispp, rThomas, rMatClust, rNeymanScott

Examples

```
pp <- rGaussPoisson(30, 0.07, 0.5)
```

```
rHardcore Perfect Simulation of the Hardcore Process
```


Description

Generate a random pattern of points, a simulated realisation of the Hardcore process, using a perfect simulation algorithm.

Usage

rHardcore(beta, $R=0, W=$ owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).
$\mathrm{R} \quad$ hard core distance (a non-negative number).
W window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
expand Logical. If FALSE, simulation is performed in the window W , which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Hardcore point process in the window W using a 'perfect simulation' algorithm.

The Hardcore process is a model for strong spatial inhibition. Two points of the process are forbidden to lie closer than R units apart. The Hardcore process is the special case of the Strauss process (see rStrauss) with interaction parameter γ equal to zero.

The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If $n s i m=1$, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.

See Also

rmh, rStrauss, rStraussHard, rDiggleGratton. rDGS, rPenttinen.
For fitting the model, see Hardcore.

Examples

$$
X<- \text { rHardcore(0.05,1.5, square(50)) }
$$

rjitter.psp Random Perturbation of Line Segment Pattern

Description

Randomly pertubs a spatial pattern of line segments by applying independent random displacements to the segment endpoints.

Usage

\#\# S3 method for class 'psp'
rjitter (X, radius, ..., clip=TRUE, nsim=1, drop=TRUE)

Arguments

X
radius
...
clip Logical value specifying what to do if segments cross the boundary of the window. See Details.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a spatial pattern of line segments (class "psp") rather than a list of length 1 containing this pattern.

Details

The function rjitter is generic. This function is the method for the class "psp" of line segment patterns.
Each of the endpoints of each segment in X will be subjected to an independent random displacement. The displacement vectors are uniformly distributed in a circle of radius radius.
If clip=TRUE (the default), segment endpoints are permitted to move to locations slightly outside the window of X, and the resulting segments will be clipped to the window. If clip=FALSE, segment endpoints are conditioned to fall inside the window.
If nsim=1 and drop=TRUE, the result is another spatial pattern of line segments (object of class "psp"). Otherwise, the result is a list of nsim line segment patterns.

Value

A spatial pattern of line segments (object of class "psp") or a list of such patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner < r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

rjitter for point patterns in two dimensions.

Examples

```
E <- edges(letterR)
    Window(E) <- owin(c(1.9, 4.1), c(0.5, 3.5))
    plot(rjitter(E, 0.1))
```

rknn

Theoretical Distribution of Nearest Neighbour Distance

Description

Density, distribution function, quantile function and random generation for the random distance to the k th nearest neighbour in a Poisson point process in d dimensions.

Usage

```
dknn(x, k = 1, d = 2, lambda = 1)
pknn(q, k = 1, d = 2, lambda = 1)
qknn(p, k = 1, d = 2, lambda = 1)
rknn(n, k = 1, d = 2, lambda = 1)
```


Arguments

$x, q \quad$ vector of quantiles.
$p \quad$ vector of probabilities.
$\mathrm{n} \quad$ number of observations to be generated.
k order of neighbour.
d dimension of space.
lambda intensity of Poisson point process.

Details

In a Poisson point process in d-dimensional space, let the random variable R be the distance from a fixed point to the k-th nearest random point, or the distance from a random point to the k-th nearest other random point.
Then R^{d} has a Gamma distribution with shape parameter k and rate $\lambda * \alpha$ where α is a constant (equal to the volume of the unit ball in d-dimensional space). See e.g. Cressie (1991, page 61).
These functions support calculation and simulation for the distribution of R.

Value

A numeric vector: dknn returns the probability density, pknn returns cumulative probabilities (distribution function), qknn returns quantiles, and rknn generates random deviates.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner r.turner@auckland.ac.nz

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Examples

```
x <- seq(0, 5, length=20)
densities <- dknn(x, k=3, d=2)
cdfvalues <- pknn(x, k=3, d=2)
randomvalues <- rknn(100, k=3, d=2)
deciles <- qknn((1:9)/10, k=3, d=2)
```

rlabel Random Re-Labelling of Point Pattern

Description

Randomly allocates marks to a point pattern, or permutes the existing marks, or resamples from the existing marks.

Usage

```
    rlabel(X, labels=marks(X), permute=TRUE, group=NULL, ..., nsim=1, drop=TRUE)
```


Arguments

X
labels Vector of values from which the new marks will be drawn at random. Defaults to the vector of existing marks.
permute Logical value indicating whether to generate new marks by randomly permuting labels or by drawing a random sample with replacement.
group Optional. A factor, or other data dividing the points into groups. Random relabelling will be performed separately within each group. See Details.
... Additional arguments passed to cut.ppp to determine the grouping factor, when group is given.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This very simple function allocates random marks to an existing point pattern X. It is useful for hypothesis testing purposes. (The function can also be applied to line segment patterns.)
In the simplest case, the command $\operatorname{rlabel}(\mathrm{X})$ yields a point pattern obtained from X by randomly permuting the marks of the points.

If permute=TRUE, then labels should be a vector of length equal to the number of points in X. The result of rlabel will be a point pattern with locations given by X and marks given by a random permutation of labels (i.e. a random sample without replacement).
If permute=FALSE, then labels may be a vector of any length. The result of rlabel will be a point pattern with locations given by X and marks given by a random sample from labels (with replacement).
The argument group specifies that the points are divided into several different groups, and that the random labelling shall be performed separately on each group. The arguments group and ... are passed to cut.ppp to determine the grouping. Thus group could be a factor, or the name of a column of marks in X, or a tessellation, or a factor-valued pixel image, etc.

Value

If nsim = 1 and drop=TRUE, a marked point pattern (of the same class as X). If nsim >1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

See Also

marks<- to assign arbitrary marks.

Examples

```
    amacrine
    # Randomly permute the marks "on" and "off"
    # Result always has 142 "off" and 152 "on"
    Y <- rlabel(amacrine)
    # randomly allocate marks "on" and "off"
    # with probabilities p(off) = 0.48, p(on) = 0.52
    Y <- rlabel(amacrine, permute=FALSE)
    # randomly allocate marks "A" and "B" with equal probability
    Y <- rlabel(cells, labels=factor(c("A", "B")), permute=FALSE)
    # divide the window into tiles and
    # randomly permute the marks within each tile
    Z <- rlabel(amacrine, group=quadrats(Window(amacrine), 4, 3))
```


rLGCP Simulate Log-Gaussian Cox Process

Description

Generate a random point pattern, a realisation of the log-Gaussian Cox process.

Usage

```
rLGCP(model="exp", mu = 0, param = NULL,
    ...,
    win=NULL, saveLambda=TRUE, nsim=1, drop=TRUE)
```


Arguments

model
mu
param List of parameters for the covariance. Standard arguments are var and scale.
... Additional parameters for the covariance, or arguments passed to as.mask to determine the pixel resolution.
win Window in which to simulate the pattern. An object of class "owin".
saveLambda Logical. If TRUE (the default) then the simulated random intensity will also be saved, and returns as an attribute of the point pattern.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a realisation of a log-Gaussian Cox process (LGCP). This is a Cox point process in which the logarithm of the random intensity is a Gaussian random field with mean function μ and covariance function $c(r)$. Conditional on the random intensity, the point process is a Poisson process with this intensity.

The string model specifies the covariance function of the Gaussian random field, and the parameters of the covariance are determined by param and
To determine the covariance model, the string model is prefixed by "RM", and a function of this name is sought in the RandomFields package. For a list of available models see RMmodel in the RandomFields package. For example the Matérn covariance is specified by model="matern", corresponding to the function RMmatern in the RandomFields package.
Standard variance parameters (for all functions beginning with "RM" in the RandomFields package) are var for the variance at distance zero, and scale for the scale parameter. Other parameters are
specified in the help files for the individual functions beginning with "RM". For example the help file for RMmatern states that nu is a parameter for this model.
This algorithm uses the function RFsimulate in the RandomFields package to generate values of a Gaussian random field, with the specified mean function mu and the covariance specified by the arguments model and param, on the points of a regular grid. The exponential of this random field is taken as the intensity of a Poisson point process, and a realisation of the Poisson process is then generated by the function rpoispp in the spatstat package.
If the simulation window win is missing or NULL, then it defaults to Window(mu) if mu is a pixel image, and it defaults to the unit square otherwise.
The LGCP model can be fitted to data using kppm.

Value

A point pattern (object of class "ppp") or a list of point patterns.
Additionally, the simulated intensity function for each point pattern is returned as an attribute "Lambda" of the point pattern, if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Modified by Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak rubak@math.aau.dk.

References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandinavian Journal of Statistics 25, 451-482.

See Also

rpoispp, rMatClust, rGaussPoisson, rNeymanScott.
For fitting the model, see kppm, lgcp.estK.

Examples

```
if(require(RandomFields)) {
# homogeneous LGCP with exponential covariance function
X <- rLGCP("exp", 3, var=0.2, scale=.1)
# inhomogeneous LGCP with Gaussian covariance function
m<- as.im(function(x, y){5-1.5 * (x - 0.5)^2 + 2 * (y - 0.5)^2}, W=owin())
X <- rLGCP("gauss", m, var=0.15, scale =0.5)
plot(attr(X, "Lambda"))
points(X)
# inhomogeneous LGCP with Matern covariance function
X <- rLGCP("matern", function(x, y){ 1 - 0.4 * x},
    var=2, scale=0.7, nu=0.5,
    win = owin(c(0, 10), c(0, 10)))
plot(X)
}
```

```
rMatClust
```

Simulate Matern Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Matérn Cluster Process.

Usage

```
rMatClust(kappa, scale, mu, win = owin(c(0,1),c(0,1)),
    nsim=1, drop=TRUE,
    saveLambda=FALSE, expand = scale, ...,
    poisthresh=1e-6, nonempty=TRUE, saveparents=TRUE)
```


Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
scale \quad Radius parameter of the clusters.
mu
Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as . owin.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
expand Numeric. Size of window expansion for generation of parent points. Defaults to scale which is the cluster radius.
... Passed to clusterfield to control the image resolution when saveLambda=TRUE.
poisthresh Numerical threshold below which the model will be treated as a Poisson process. See Details.
nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which parents are generated conditionally on having at least one offspring point. If FALSE, parents are generated even if they have no offspring. Both choices are valid; the default is recommended unless you need to simulate all the parent points for some other purpose.
saveparents Logical value indicating whether to save the locations of the parent points as an attribute.

Details

This algorithm generates a realisation of Matérn's cluster process, a special case of the NeymanScott process, inside the window win.
In the simplest case, where kappa and mu are single numbers, the algorithm generates a uniform Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of "offspring" points, the number of points per cluster being Poisson (mu) distributed, and their positions being placed and uniformly inside a disc of radius scale centred on the parent point. The resulting point pattern is a realisation of the classical "stationary Matérn cluster process" generated inside the window win. This point process has intensity kappa * mu.

The algorithm can also generate spatially inhomogeneous versions of the Matérn cluster process:

- The parent points can be spatially inhomogeneous. If the argument kappa is a function (x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument mu is a function (x, y) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to $\mathrm{mu} /\left(\mathrm{pi} * \mathrm{scale}^{\wedge} 2\right.$) inside the disc of radius scale centred on the parent point, and zero intensity outside this disc. Equivalently we first generate, for each parent point, a Poisson (M) random number of offspring (where M is the maximum value of mu) placed independently and uniformly in the disc of radius scale centred on the parent location, and then randomly thin the offspring points, with retention probability mu / M.
- Both the parent points and the offspring points can be inhomogeneous, as described above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because an offspring point inside win could have its parent point lying outside win. In order to allow this, the simulation algorithm first expands the original window win by a distance expand and generates the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain must contain this larger window.
The intensity of the Matérn cluster process is kappa * mu if either kappa or mu is a single number. In the general case the intensity is an integral involving kappa, mu and scale.
The Matérn cluster process model with homogeneous parents (i.e. where kappa is a single number) can be fitted to data using kppm. Currently it is not possible to fit the Matérn cluster process model with inhomogeneous parents.

If the pair correlation function of the model is very close to that of a Poisson process, deviating by less than poisthresh, then the model is approximately a Poisson process, and will be simulated as a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner r.turner@auckland.ac.nz

References

Matérn, B. (1960) Spatial Variation. Meddelanden från Statens Skogsforskningsinstitut, volume 59, number 5. Statens Skogsforskningsinstitut, Sweden.
Matérn, B. (1986) Spatial Variation. Lecture Notes in Statistics 36, Springer-Verlag, New York.
Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous NeymanScott processes. Biometrics 63, 252-258.

See Also

rpoispp, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.
For fitting the model, see kppm, clusterfit.

Examples

```
# homogeneous
X <- rMatClust(10, 0.05, 4)
# inhomogeneous
ff <- function(x,y){ 4 * exp(2 * abs(x) - 1) }
Z <- as.im(ff, owin())
Y <- rMatClust(10, 0.05, Z)
YY <- rMatClust(ff, 0.05, 3)
```

```
rMaternI Simulate Matern Model I
```


Description

Generate a random point pattern, a simulated realisation of the Matérn Model I inhibition process model.

Usage

rMaternI(kappa, r, win $=\operatorname{owin}(c(0,1), c(0,1))$, stationary=TRUE, \ldots, nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.
$r \quad$ Inhibition distance.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Alternatively a higher-dimensional box of class "box3" or "boxx".

stationary	Logical. Whether to start with a stationary process of proposal points (stationary=TRUE) or to generate the proposal points only inside the window (stationary=FALSE).
\ldots	Ignored.
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn's Model I inhibition process inside the window win.

The process is constructed by first generating a uniform Poisson point process of "proposal" points with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a window larger than win that effectively means the proposals are stationary. If stationary=FALSE then the proposal points are only generated inside the window win.
A proposal point is then deleted if it lies within r units' distance of another proposal point. Otherwise it is retained.

The retained points constitute Matérn's Model I.

Value

A point pattern if nsim=1, or a list of point patterns if nsim>1. Each point pattern is normally an object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
, Ute Hahn, Rolf Turner < r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math. aau.dk>

See Also

rpoispp, rMatClust

Examples

```
X <- rMaternI(20, 0.05)
Y <- rMaternI(20, 0.05, stationary=FALSE)
```

```
rMaternII Simulate Matern Model II
```


Description

Generate a random point pattern, a simulated realisation of the Matérn Model II inhibition process.

Usage

rMaternII(kappa, r, win $=\operatorname{owin}(c(0,1), c(0,1))$, stationary=TRUE, \ldots, nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.
$r \quad$ Inhibition distance.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Alternatively a higher-dimensional box of class "box3" or "boxx".
stationary Logical. Whether to start with a stationary process of proposal points (stationary=TRUE) or to generate the proposal points only inside the window (stationary=FALSE).
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn's Model II inhibition process inside the window win.
The process is constructed by first generating a uniform Poisson point process of "proposal" points with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a window larger than win that effectively means the proposals are stationary. If stationary=FALSE then the proposal points are only generated inside the window win.
Then each proposal point is marked by an "arrival time", a number uniformly distributed in $[0,1]$ independently of other variables.
A proposal point is deleted if it lies within r units' distance of another proposal point that has an earlier arrival time. Otherwise it is retained. The retained points constitute Matérn's Model II.
The difference between Matérn's Model I and II is the italicised statement above. Model II has a higher intensity for the same parameter values.

Value

A point pattern if $n s i m=1$, or a list of point patterns if $n s i m>1$. Each point pattern is normally an object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
, Ute Hahn, Rolf Turner < r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math. aau.dk>

See Also

rpoispp, rMatClust, rMaternI

Examples

```
X <- rMaternII(20, 0.05)
Y <- rMaternII(20, 0.05, stationary=FALSE)
```


Description

Generic function for running the Metropolis-Hastings algorithm to produce simulated realisations of a point process model.

Usage

rmh (model, ...)

Arguments

model The point process model to be simulated.
... Further arguments controlling the simulation.

Details

The Metropolis-Hastings algorithm can be used to generate simulated realisations from a wide range of spatial point processes. For caveats, see below.
The function rmh is generic; it has methods rmh. ppm (for objects of class "ppm") and rmh. default (the default). The actual implementation of the Metropolis-Hastings algorithm is contained in rmh. default. For details of its use, see rmh.ppm or rmh. default.
[If the model is a Poisson process, then Metropolis-Hastings is not used; the Poisson model is generated directly using rpoispp or rmpoispp.]
In brief, the Metropolis-Hastings algorithm is a Markov Chain, whose states are spatial point patterns, and whose limiting distribution is the desired point process. After running the algorithm for a very large number of iterations, we may regard the state of the algorithm as a realisation from the desired point process.

However, there are difficulties in deciding whether the algorithm has run for "long enough". The convergence of the algorithm may indeed be extremely slow. No guarantees of convergence are given!

While it is fashionable to decry the Metropolis-Hastings algorithm for its poor convergence and other properties, it has the advantage of being easy to implement for a wide range of models.

Value

A point pattern, in the form of an object of class "ppp". See rmh. default for details.

Warning

As of version 1.22-1 of spatstat a subtle change was made to rmh. default(). We had noticed that the results produced were sometimes not "scalable" in that two models, differing in effect only by the units in which distances are measured and starting from the same seed, gave different results. This was traced to an idiosyncracy of floating point arithmetic. The code of rmh. default () has been changed so that the results produced by rmh are now scalable. The downside of this is that code which users previously ran may now give results which are different from what they formerly were.

In order to recover former behaviour (so that previous results can be reproduced) set spatstat.options(scalable=FALSE). See the last example in the help for rmh. default.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r . turner@auckland.ac.nz>

See Also

```
rmh.default
```


Examples

\# See examples in rmh.default and rmh.ppm

rmh. default	Simulate Point Process Models using the Metropolis-Hastings Algo- rithm.

Description

Generates a random point pattern, simulated from a chosen point process model, using the MetropolisHastings algorithm.

Usage

```
    ## Default S3 method:
rmh(model, start=NULL,
    control=default.rmhcontrol(model),
    ...,
    nsim=1, drop=TRUE, saveinfo=TRUE,
    verbose=TRUE, snoop=FALSE)
```


Arguments

model	Data specifying the point process model that is to be simulated.
start	Data determining the initial state of the algorithm.
control	Data controlling the iterative behaviour and termination of the algorithm.
\ldots	Further arguments passed to rmhcontrol or to trend functions in model.
nsim	Number of simulated point patterns that should be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a single point pattern.
saveinfo	Logical value indicating whether to save auxiliary information. verbose
Logical value indicating whether to print progress reports.	

Details

This function generates simulated realisations from any of a range of spatial point processes, using the Metropolis-Hastings algorithm. It is the default method for the generic function rmh.

This function executes a Metropolis-Hastings algorithm with birth, death and shift proposals as described in Geyer and Møller (1994).
The argument model specifies the point process model to be simulated. It is either a list, or an object of class "rmhmodel", with the following components:
cif A character string specifying the choice of interpoint interaction for the point process.
par Parameter values for the conditional intensity function.
\mathbf{w} (Optional) window in which the pattern is to be generated. An object of class "owin", or data acceptable to as . owin.
trend Data specifying the spatial trend in the model, if it has a trend. This may be a function, a pixel image (of class "im"), (or a list of functions or images if the model is multitype).
If the trend is a function or functions, any auxiliary arguments . . . to rmh. default will be passed to these functions, which should be of the form function (x, y, \ldots).
types List of possible types, for a multitype point process.
For full details of these parameters, see rmhmodel. default.
The argument start determines the initial state of the Metropolis-Hastings algorithm. It is either NULL, or an object of class "rmhstart", or a list with the following components:
n.start Number of points in the initial point pattern. A single integer, or a vector of integers giving the numbers of points of each type in a multitype point pattern. Incompatible with $x . s t a r t$.
x.start Initial point pattern configuration. Incompatible with n . start.
x.start may be a point pattern (an object of class "ppp"), or data which can be coerced to this class by as.ppp, or an object with components x and y, or a two-column matrix. In the last two cases, the window for the pattern is determined by model $\$ \mathrm{w}$. In the first two cases, if model $\$ \mathrm{w}$ is also present, then the final simulated pattern will be clipped to the window model\$w.

For full details of these parameters, see rmhstart.
The third argument control controls the simulation procedure (including conditional simulation), iterative behaviour, and termination of the Metropolis-Hastings algorithm. It is either NULL, or a list, or an object of class "rmhcontrol", with components:
p The probability of proposing a "shift" (as opposed to a birth or death) in the Metropolis-Hastings algorithm.
q The conditional probability of proposing a death (rather than a birth) given that birth/death has been chosen over shift.
nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It should be large.
expand Either a numerical expansion factor, or a window (object of class "owin"). Indicates that the process is to be simulated on a larger domain than the original data window w, then clipped to w when the algorithm has finished.
The default is to expand the simulation window if the model is stationary and non-Poisson (i.e. it has no trend and the interaction is not Poisson) and not to expand in all other cases.

If the model has a trend, then in order for expansion to be feasible, the trend must be given either as a function, or an image whose bounding box is large enough to contain the expanded window.
periodic A logical scalar; if periodic is TRUE we simulate a process on the torus formed by identifying opposite edges of a rectangular window.
ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new point.
fixall A logical scalar specifying whether to condition on the number of points of each type.
nverb An integer specifying how often "progress reports" (which consist simply of the number of repetitions completed) should be printed out. If nverb is left at 0 , the default, the simulation proceeds silently.
x.cond If this argument is present, then conditional simulation will be performed, and x.cond specifies the conditioning points and the type of conditioning.
nsave, nburn If these values are specified, then intermediate states of the simulation algorithm will be saved every nsave iterations, after an initial burn-in period of nburn iterations.
track Logical flag indicating whether to save the transition history of the simulations.
For full details of these parameters, see rmhcontrol. The control parameters can also be given in the . . . arguments.

Value

A point pattern (an object of class "ppp", see ppp. object) or a list of point patterns.
The returned value has an attribute info containing modified versions of the arguments model, start, and control which together specify the exact simulation procedure. The info attribute can be printed (and is printed automatically by summary.ppp). For computational efficiency, the info attribute can be omitted by setting saveinfo=FALSE.

The value of . Random. seed at the start of the simulations is also saved and returned as an attribute seed.

If the argument track=TRUE was given (see rmhcontrol), the transition history of the algorithm is saved, and returned as an attribute history. The transition history is a data frame containing a factor proposaltype identifying the proposal type (Birth, Death or Shift) and a logical vector accepted indicating whether the proposal was accepted. The data frame also has columns numerator, denominator which give the numerator and denominator of the Hastings ratio for the proposal.
If the argument nsave was given (see rmhcontrol), the return value has an attribute saved which is a list of point patterns, containing the intermediate states of the algorithm.

Conditional Simulation

There are several kinds of conditional simulation.

- Simulation conditional upon the number of points, that is, holding the number of points fixed. To do this, set control $\$ p$ (the probability of a shift) equal to 1 . The number of points is then determined by the starting state, which may be specified either by setting start\$n.start to be a scalar, or by setting the initial pattern start\$x.start.
- In the case of multitype processes, it is possible to simulate the model conditionally upon the number of points of each type, i.e. holding the number of points of each type to be fixed. To do this, set control\$p equal to 1 and control\$fixall to be TRUE. The number of points is then determined by the starting state, which may be specified either by setting start $\$ \mathrm{n}$. start to be an integer vector, or by setting the initial pattern start\$x.start.
- Simulation conditional on the configuration observed in a sub-window, that is, requiring that, inside a specified sub-window V, the simulated pattern should agree with a specified point pattern y.To do this, set control $\$ x$. cond to equal the specified point pattern y, making sure that it is an object of class "ppp" and that the window Window(control\$x.cond) is the conditioning window V.
- Simulation conditional on the presence of specified points, that is, requiring that the simulated pattern should include a specified set of points. This is simulation from the Palm distribution of the point process given a pattern y. To do this, set control $\$ x$.cond to be a data.frame containing the coordinates (and marks, if appropriate) of the specified points.

For further information, see rmhcontrol.
Note that, when we simulate conditionally on the number of points, or conditionally on the number of points of each type, no expansion of the window is possible.

Visual Debugger

If snoop $=$ TRUE, an interactive debugger is activated. On the current plot device, the debugger displays the current state of the Metropolis-Hastings algorithm together with the proposed transition to the next state. Clicking on this graphical display (using the left mouse button) will re-centre the display at the clicked location. Surrounding this graphical display is an array of boxes representing different actions. Clicking on one of the action boxes (using the left mouse button) will cause the action to be performed. Debugger actions include:

- Zooming in or out
- Panning (shifting the field of view) left, right, up or down
- Jumping to the next iteration
- Skipping $10,100,1000,10000$ or 100000 iterations
- Jumping to the next Birth proposal (etc)
- Changing the fate of the proposal (i.e. changing whether the proposal is accepted or rejected)
- Dumping the current state and proposal to a file
- Printing detailed information at the terminal
- Exiting the debugger (so that the simulation algorithm continues without further interruption).

Right-clicking the mouse will also cause the debugger to exit.

Warnings

There is never a guarantee that the Metropolis-Hastings algorithm has converged to its limiting distribution.

If start $\$ x$. start is specified then expand is set equal to 1 and simulation takes place in Window (x. start). Any specified value for expand is simply ignored.
The presence of both a component w of model and a non-null value for Window(x.start) makes sense ONLY if w is contained in Window (x. start).

For multitype processes make sure that, even if there is to be no trend corresponding to a particular type, there is still a component (a NULL component) for that type, in the list.

Other models

In theory, any finite point process model can be simulated using the Metropolis-Hastings algorithm, provided the conditional intensity is uniformly bounded.

In practice, the list of point process models that can be simulated using rmh. default is limited to those that have been implemented in the package's internal C code. More options will be added in the future.

Note that the lookup conditional intensity function permits the simulation (in theory, to any desired degree of approximation) of any pairwise interaction process for which the interaction depends only on the distance between the pair of points.

Reproducible simulations

If the user wants the simulation to be exactly reproducible (e.g. for a figure in a journal article, where it is useful to have the figure consistent from draft to draft) then the state of the random number generator should be set before calling rmh. default. This can be done either by calling set. seed or by assigning a value to .Random. seed. In the examples below, we use set. seed.
If a simulation has been performed and the user now wants to repeat it exactly, the random seed should be extracted from the simulated point pattern X by seed <-attr (x, "seed"), then assigned to the system random nunber state by . Random. seed <-seed before calling rmh. default.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner r.turner@auckland.ac.nz

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Australian and New Zealand Journal of Statistics 42, 283 - 322.

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193-212.
Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763-770.
Geyer, C.J. and Møller, J. (1994) Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics 21, 359-373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. BarndorffNielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79-140.

See Also

rmh, rmh.ppm, rStrauss, ppp, ppm
Interactions: AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson, Softcore, Strauss, StraussHard and Triplets.

Examples

if(interactive()) \{
nr <- 1e5
nv <- 5000
ns <- 200
\} else \{
$n r<-20$
nv <- 5
ns <- 20

```
    oldopt <- spatstat.options()
    spatstat.options(expand=1.05)
}
set.seed(961018)
# Strauss process.
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
                    w=c(0,10,0,10))
X1.strauss <- rmh(model=mod01,start=list(n.start=ns),
            control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X1.strauss)
# Strauss process, conditioning on n = 42:
X2.strauss <- rmh(model=mod01,start=list(n.start=42),
                    control=list(p=1,nrep=nr, nverb=nv))
# Tracking algorithm progress:
# (a) saving intermediate states:
X <- rmh(model=mod01,start=list(n.start=ns),
    control=list(nrep=nr, nsave=nr/5, nburn=nr/2))
Saved <- attr(X, "saved")
plot(Saved)
# (b) inspecting transition history:
X <- rmh(model=mod01,start=list(n.start=ns),
    control=list(nrep=nr, track=TRUE))
History <- attr(X, "history")
head(History)
# Hard core process:
mod02 <- list(cif="hardcore",par=list(beta=2,hc=0.7),w=c(0, 10,0,10))
X3.hardcore <- rmh(model=mod02,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X3.hardcore)
# Strauss process equal to pure hardcore:
mod02s <- list(cif="strauss",par=list(beta=2,gamma=0,r=0.7),w=c(0,10,0,10))
X3.strauss <- rmh(model=mod02s,start=list(n.start=ns),
            control=list(nrep=nr,nverb=nv))
# Strauss process in a polygonal window.
x <- c(0.55,0.68,0.75,0.58,0.39,0.37,0.19,0.26,0.42)
y <- c(0.20,0.27,0.68,0.99,0.80,0.61,0.45,0.28,0.33)
mod03 <- list(cif="strauss",par=list(beta=2000,gamma=0.6,r=0.07),
            w=owin(poly=list(x=x,y=y)))
X4.strauss <- rmh(model=mod03,start=list(n.start=ns),
                                    control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X4.strauss)
# Strauss process in a polygonal window, conditioning on n = 80.
X5.strauss <- rmh(model=mod03,start=list(n.start=ns),
```

```
control=list(p=1,nrep=nr,nverb=nv))
```

\# Strauss process, starting off from X4.strauss, but with the \# polygonal window replace by a rectangular one. At the end, \# the generated pattern is clipped to the original polygonal window. xxx <- X4.strauss
Window (xxx) <- as.owin(c(0,1, 0,1))
X6.strauss <- rmh(model=mod03, start=list(x.start=xxx), control=list(nrep=nr, nverb=nv))
\# Strauss with hardcore:
$\bmod 04<-$ list(cif="straush", par=list(beta=2, gamma=0.2,r=0.7,hc=0.3), $\mathrm{w}=\mathrm{c}(0,10,0,10)$)
X1.straush <- rmh(model=mod04, start=list(n.start=ns), control=list(nrep=nr, nverb=nv))
\# Another Strauss with hardcore (with a perhaps surprising result):
mod05 <- list(cif="straush", par=list(beta=80, gamma=0.36,r=45,hc=2.5), $w=c(0,250,0,250))$
X2.straush <- rmh(model=mod05, start=list(n.start=ns), control=list($n r e p=n r, n v e r b=n v)$)
\# Pure hardcore (identical to X3.strauss).
mod06 <- list(cif="straush", par=list(beta=2, gamma=1, r=1, hc=0.7), $w=c(0,10,0,10))$
X3.straush <- rmh(model=mod06, start=list(n.start=ns), control=list($n r e p=n r, n v e r b=n v)$)
\# Soft core:
$w<-c(0,10,0,10)$
mod07 <- list(cif="sftcr", par=list(beta=0.8, sigma=0.1,kappa=0.5), $\omega=c(0,10,0,10))$
X.sftcr <- rmh(model=mod07, start=list(n.start=ns), control=list(nrep=nr, nverb=nv))
if(interactive()) plot(X.sftcr)
\# Area-interaction process:
$\bmod 42<-$ rmhmodel(cif="areaint", par=list(beta=2, eta=1.6,r=0.7), $\mathrm{w}=\mathrm{c}(0,10,0,10))$
X.area <- rmh(model=mod42, start=list(n.start=ns), control=list (nrep=nr, nverb=nv))
if(interactive()) plot(X.area)
\# Triplets process
modtrip <- list(cif="triplets", par=list(beta=2, gamma=0.2,r=0.7), $\mathrm{w}=\mathrm{c}(0,10,0,10)$)
X.triplets <- rmh(model=modtrip,
start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))
if(interactive()) plot(X.triplets)
\# Multitype Strauss:
beta <- c $(0.027,0.008)$

```
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",par=list(beta=beta,gamma=gmma,radii=r),
    w=c(0, 250,0, 250))
X1.straussm <- rmh(model=mod08,start=list(n.start=ns),
                            control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
if(interactive()) plot(X1.straussm)
# Multitype Strauss conditioning upon the total number
# of points being 80:
X2.straussm <- rmh(model=mod08,start=list(n.start=ns),
    control=list(p=1,ptypes=c(0.75,0.25),nrep=nr,
                                    nverb=nv))
# Conditioning upon the number of points of type 1 being 60
# and the number of points of type 2 being 20:
X3.straussm <- rmh(model=mod08,start=list(n.start=c(60,20)),
control=list(fixall=TRUE,p=1,ptypes=c(0.75,0.25),
                            nrep=nr,nverb=nv))
# Multitype Strauss hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod09 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
    iradii=r,hradii=rhc) w=c(0, 250,0,250))
X.straushm <- rmh(model=mod09,start=list(n.start=ns),
                    control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
tr3 <- function(x,y){x <- x/250; y <- y/250;
    exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
                            }
                            # log quadratic trend
tr4 <- function(x,y){x <- x/250; y <- y/250;
                            exp(-0.6*x+0.5*y)}
                            # log linear trend
mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
    iradii=r,hradii=rhc),w=c(0, 250,0,250),
    trend=list(tr3,tr4))
X1.straushm.trend <- rmh(model=mod10,start=list(n.start=ns),
                    control=list(ptypes=c(0.75,0.25),
                            nrep=nr,nverb=nv))
if(interactive()) plot(X1.straushm.trend)
# Multitype Strauss hardcore with trends for each type, given as images:
bigwin <- square(250)
i1 <- as.im(tr3, bigwin)
i2 <- as.im(tr4, bigwin)
mod11 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
    iradii=r,hradii=rhc),w=bigwin,
    trend=list(i1,i2))
X2.straushm.trend <- rmh(model=mod11,start=list(n.start=ns),
                                    control=list(ptypes=c(0.75,0.25), expand=1,
```

```
nrep=nr,nverb=nv))
```

```
# Diggle, Gates, and Stibbard:
mod12 <- list(cif="dgs",par=list(beta=3600,rho=0.08),w=c(0,1,0,1))
X.dgs <- rmh(model=mod12,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.dgs)
# Diggle-Gratton:
mod13 <- list(cif="diggra",
    par=list(beta=1800,kappa=3,delta=0.02,rho=0.04),
    w=square(1))
X.diggra <- rmh(model=mod13,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.diggra)
# Fiksel:
modFik <- list(cif="fiksel",
    par=list(beta=180,r=0.15,hc=0.07,kappa=2,a= -1.0),
    w=square(1))
X.fiksel <- rmh(model=modFik,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.fiksel)
# Geyer:
mod14 <- list(cif="geyer",par=list(beta=1.25,gamma=1.6,r=0.2, sat=4.5),
    w=c(0,10,0,10))
X1.geyer <- rmh(model=mod14,start=list(n.start=ns),
        control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X1.geyer)
# Geyer; same as a Strauss process with parameters
# (beta=2.25,gamma=0.16,r=0.7):
mod15 <- list(cif="geyer",par=list(beta=2.25,gamma=0.4,r=0.7, sat=10000),
    w=c(0,10,0,10))
X2.geyer <- rmh(model=mod15,start=list(n.start=ns),
                control=list(nrep=nr,nverb=nv))
mod16 <- list(cif="geyer",par=list(beta=8.1,gamma=2.2,r=0.08,sat=3))
data(redwood)
X3.geyer <- rmh(model=mod16,start=list(x.start=redwood),
                                    control=list(periodic=TRUE,nrep=nr,nverb=nv))
# Geyer, starting from the redwood data set, simulating
# on a torus, and conditioning on n:
X4.geyer <- rmh(model=mod16,start=list(x.start=redwood),
                control=list(p=1,periodic=TRUE, nrep=nr,nverb=nv))
# Lookup (interaction function h_2 from page 76, Diggle (2003)):
    r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
    h <- 20*(r-0.05)
    h[r<0.05] <- 0
```

```
    h[r>0.10] <- 1
    mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
    X.lookup <- rmh(model=mod17,start=list(n.start=ns),
                    control=list(nrep=nr,nverb=nv))
    if(interactive()) plot(X.lookup)
# Strauss with trend
tr <- function(x,y){x <- x/250; y <- y/250;
    exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
        }
beta <- 0.3
gmma <- 0.5
r <- 45
modStr <- list(cif="strauss",par=list(beta=beta,gamma=gmma,r=r),
    w=square(250), trend=tr)
X1.strauss.trend <- rmh(model=modStr,start=list(n.start=ns),
                    control=list(nrep=nr,nverb=nv))
# Baddeley-Geyer
r<- seq(0,0.2,length=8)[-1]
gmma <- c(0.5,0.6,0.7,0.8,0.7,0.6,0.5)
mod18 <- list(cif="badgey",par=list(beta=4000, gamma=gmma,r=r,sat=5),
    w=square(1))
X1.badgey <- rmh(model=mod18,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
mod19 <- list(cif="badgey",
    par=list(beta=4000, gamma=gmma,r=r,sat=1e4),
    w=square(1))
set.seed(1329)
X2.badgey <- rmh(model=mod18,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
# Check:
h <- ((prod(gmma)/cumprod(c(1,gmma)))[-8])^2
hs <- stepfun(r,c(h,1))
mod20 <- list(cif="lookup",par=list(beta=4000,h=hs),w=square(1))
set.seed(1329)
X.check <- rmh(model=mod20,start=list(n.start=ns),
    control=list(nrep=nr,nverb=nv))
# X2.badgey and X.check will be identical.
mod21 <- list(cif="badgey",par=list(beta=300,gamma=c(1,0.4,1),
    r=c(0.035,0.07,0.14),sat=5), w=square(1))
X3.badgey <- rmh(model=mod21,start=list(n.start=ns),
        control=list(nrep=nr, nverb=nv))
# Same result as Geyer model with beta=300, gamma=0.4, r=0.07,
# sat = 5 (if seeds and control parameters are the same)
# Or more simply:
mod22 <- list(cif="badgey",
    par=list(beta=300,gamma=0.4,r=0.07, sat=5),
    w=square(1))
X4.badgey <- rmh(model=mod22,start=list(n.start=ns),
        control=list(nrep=nr,nverb=nv))
```

```
# Same again --- i.e. the BadGey model includes the Geyer model.
# Illustrating scalability.
if(FALSE) {
    M1 <- rmhmodel(cif="strauss",par=list(beta=60,gamma=0.5,r=0.04),w=owin())
    set.seed(496)
    X1 <- rmh(model=M1,start=list(n.start=300))
    M2 <- rmhmodel(cif="strauss",par=list(beta=0.6,gamma=0.5,r=0.4),
    w=owin(c(0,10),c(0,10)))
    set.seed(496)
    X2 <- rmh(model=M2,start=list(n.start=300))
    chk <- affine(X1,mat=diag(c(10,10)))
    all.equal(chk,X2,check.attributes=FALSE)
    # Under the default spatstat options the foregoing all.equal()
    # will yield TRUE. Setting spatstat.options(scalable=FALSE) and
    # re-running the code will reveal differences between X1 and X2.
}
if(!interactive()) spatstat.options(oldopt)
```

rmhcontrol Set Control Parameters for Metropolis-Hastings Algorithm.

Description

Sets up a list of parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

```
    rmhcontrol(...)
    ## Default S3 method:
rmhcontrol(..., p=0.9, q=0.5, nrep=5e5,
                            expand=NULL, periodic=NULL, ptypes=NULL,
                        x.cond=NULL, fixall=FALSE, nverb=0,
                    nsave=NULL, nburn=nsave, track=FALSE,
                        pstage=c("block", "start"))
```


Arguments

... Arguments passed to methods.
p Probability of proposing a shift (as against a birth/death).
$\mathrm{q} \quad$ Conditional probability of proposing a death given that a birth or death will be proposed.
nrep Total number of steps (proposals) of Metropolis-Hastings algorithm that should be run.

expand	Simulation window or expansion rule. Either a window (object of class "owin") or a numerical expansion factor, specifying that simulations are to be performed in a domain other than the original data window, then clipped to the original data window. This argument is passed to rmhexpand. A numerical expansion factor can be in several formats: see rmhexpand.
periodic	Logical value (or NULL) indicating whether to simulate "periodically", i.e. identifying opposite edges of the rectangular simulation window. A NULL value means "undecided."
ptypes	For multitype point processes, the distribution of the mark attached to a new random point (when a birth is proposed)
x. cond	Conditioning points for conditional simulation.
fixall	(Logical) for multitype point processes, whether to fix the number of points of each type.
nverb	Progress reports will be printed every nverb iterations
nsave, nburn	If these values are specified, then intermediate states of the simulation algorithm will be saved every nsave iterations, after an initial burn-in period of nburn iterations.
track	Logical flag indicating whether to save the transition history of the simulations.
pstage	Character string specifying when to generate proposal points. Either "start" or "block".

Details

The Metropolis-Hastings algorithm, implemented as rmh, generates simulated realisations of point process models. The function rmhcontrol sets up a list of parameters which control the iterative behaviour and termination of the Metropolis-Hastings algorithm, for use in a subsequent call to rmh. It also checks that the parameters are valid.
(A separate function rmhstart determines the initial state of the algorithm, and rmhmodel determines the model to be simulated.)
The parameters are as follows:
p The probability of proposing a "shift" (as opposed to a birth or death) in the Metropolis-Hastings algorithm.
If $p=1$ then the algorithm only alters existing points, so the number of points never changes, i.e. we are simulating conditionally upon the number of points. The number of points is determined by the initial state (specified by rmhstart).
If $p=1$ and fixall=TRUE and the model is a multitype point process model, then the algorithm only shifts the locations of existing points and does not alter their marks (types). This is equivalent to simulating conditionally upon the number of points of each type. These numbers are again specified by the initial state.
If $p=1$ then no expansion of the simulation window is allowed (see expand below).
The default value of p can be changed by setting the parameter rmh. p in spatstat.options.
\mathbf{q} The conditional probability of proposing a death (rather than a birth) given that a shift is not proposed. This is of course ignored if p is equal to 1 .
The default value of q can be changed by setting the parameter rmh.q in spatstat.options.
nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It should be large.
The default value of nrep can be changed by setting the parameter rmh. nrep in spatstat.options.
expand Either a number or a window (object of class "owin"). Indicates that the process is to be simulated on a domain other than the original data window w, then clipped to w when the algorithm has finished. This would often be done in order to approximate the simulation of a stationary process (Geyer, 1999) or more generally a process existing in the whole plane, rather than just in the window w.
If expand is a window object, it is taken as the larger domain in which simulation is performed. If expand is numeric, it is interpreted as an expansion factor or expansion distance for determining the simulation domain from the data window. It should be a named scalar, such as expand=c (area=2), expand=c(distance=0.1), expand=c(length=1.2). See rmhexpand() for more details. If the name is omitted, it defaults to area.
Expansion is not permitted if the number of points has been fixed by setting $p=1$ or if the starting configuration has been specified via the argument x.start in rmhstart.
If expand is NULL, this is interpreted to mean "not yet decided". An expansion rule will be determined at a later stage, using appropriate defaults. See rmhexpand.
periodic A logical value (or NULL) determining whether to simulate "periodically". If periodic is TRUE, and if the simulation window is a rectangle, then the simulation algorithm effectively identifies opposite edges of the rectangle. Points near the right-hand edge of the rectangle are deemed to be close to points near the left-hand edge. Periodic simulation usually gives a better approximation to a stationary point process. For periodic simulation, the simulation window must be a rectangle. (The simulation window is determined by expand as described above.)
The value NULL means 'undecided'. The decision is postponed until rmh is called. Depending on the point process model to be simulated, rmh will then set periodic=TRUE if the simulation window is expanded and the expanded simulation window is rectangular; otherwise periodic=FALSE.
Note that periodic=TRUE is only permitted when the simulation window (i.e. the expanded window) is rectangular.
ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new point. Defaults to a vector each of whose entries is $1 / n t$ where $n t$ is the number of types for the process. Convergence of the simulation algorithm should be improved if ptypes is close to the relative frequencies of the types which will result from the simulation.
x.cond If this argument is given, then conditional simulation will be performed, and x. cond specifies the location of the fixed points as well as the type of conditioning. It should be either a point pattern (object of class "ppp") or a list (x, y) or a data.frame. See the section on Conditional Simulation.
fixall A logical scalar specifying whether to condition on the number of points of each type. Meaningful only if a marked process is being simulated, and if $p=1$. A warning message is given if fixall is set equal to TRUE when it is not meaningful.
nverb An integer specifying how often "progress reports" (which consist simply of the number of repetitions completed) should be printed out. If nverb is left at 0 , the default, the simulation proceeds silently.
nsave, nburn If these integers are given, then the current state of the simulation algorithm (i.e. the current random point pattern) will be saved every nsave iterations, starting from iteration nburn. (Alternatively nsave can be a vector, specifying different numbers of iterations between each successive save. This vector will be recycled until the end of the simulations.)
track Logical flag indicating whether to save the transition history of the simulations (i.e. information specifying what type of proposal was made, and whether it was accepted or rejected, for each iteration).
pstage Character string specifying the stage of the algorithm at which the randomised proposal points should be generated. If pstage="start" or if nsave=0, the entire sequence of nrep random proposal points is generated at the start of the algorithm. This is the original behaviour of the code, and should be used in order to maintain consistency with older versions of spatstat. If pstage="block" and nsave >0, then a set of nsave random proposal points will be generated before each block of nsave iterations. This is much more efficient. The default is pstage="block".

Value

An object of class "rmhcontrol", which is essentially a list of parameter values for the algorithm.
There is a print method for this class, which prints a sensible description of the parameters chosen.

Conditional Simulation

For a Gibbs point process X, the Metropolis-Hastings algorithm easily accommodates several kinds of conditional simulation:
conditioning on the total number of points: We fix the total number of points $N(X)$ to be equal to n. We simulate from the conditional distribution of X given $N(X)=n$.
conditioning on the number of points of each type: In a multitype point process, where Y_{j} denotes the process of points of type j, we fix the number $N\left(Y_{j}\right)$ of points of type j to be equal to n_{j}, for $j=1,2, \ldots, m$. We simulate from the conditional distribution of X given $N\left(Y_{j}\right)=n_{j}$ for $j=1,2, \ldots, m$.
conditioning on the realisation in a subwindow: We require that the point process X should, within a specified sub-window V, coincide with a specified point pattern y. We simulate from the conditional distribution of X given $X \cap V=y$.
Palm conditioning: We require that the point process X include a specified list of points y. We simulate from the point process with probability density $g(x)=c f(x \cup y)$ where f is the probability density of the original process X, and c is a normalising constant.

To achieve each of these types of conditioning we do as follows:
conditioning on the total number of points: Set $p=1$. The number of points is determined by the initial state of the simulation: see rmhstart.
conditioning on the number of points of each type: Set $p=1$ and fixall=TRUE. The number of points of each type is determined by the initial state of the simulation: see rmhstart.
conditioning on the realisation in a subwindow: Set x. cond to be a point pattern (object of class "ppp"). Its window $\mathrm{V}=$ Window (x .cond) becomes the conditioning subwindow V.
Palm conditioning: Set x.cond to be a list (x, y) or data.frame with two columns containing the coordinates of the points, or a list (x, y, marks) or data.frame with three columns containing the coordinates and marks of the points.

The arguments x.cond, p and fixall can be combined.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. BarndorffNielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79-140.

See Also

rmh, rmhmodel, rmhstart, rmhexpand, spatstat.options

Examples

```
    # parameters given as named arguments
    c1 <- rmhcontrol(p=0.3,periodic=TRUE,nrep=1e6,nverb=1e5)
    # parameters given as a list
    liz <- list(p=0.9, nrep=1e4)
    c2 <- rmhcontrol(liz)
    # parameters given in rmhcontrol object
    c3 <- rmhcontrol(c1)
```

rmhexpand Specify Simulation Window or Expansion Rule

Description

Specify a spatial domain in which point process simulations will be performed. Alternatively, specify a rule which will be used to determine the simulation window.

Usage

rmhexpand(x = NULL, ..., area $=$ NULL, length $=$ NULL, distance $=$ NULL)

Arguments

x
... Ignored.
area Area expansion factor. Incompatible with other arguments.
length Length expansion factor. Incompatible with other arguments.
distance Expansion distance (buffer width). Incompatible with other arguments.

Details

In the Metropolis-Hastings algorithm rmh for simulating spatial point processes, simulations are usually carried out on a spatial domain that is larger than the original window of the point process model, then subsequently clipped to the original window.
The command rmhexpand can be used to specify the simulation window, or to specify a rule which will later be used to determine the simulation window from data.

The arguments are all incompatible: at most one of them should be given.
If the first argument x is given, it may be any of the following:

- a window (object of class "owin") specifying the simulation window.
- an object of class "rmhexpand" specifying the expansion rule.
- a single numerical value, without attributes. This will be interpreted as the value of the argument area.
- either $c(a r e a=v)$ or list (area=v), where v is a single numeric value. This will be interpreted as the value of the argument area.
- either $c(l e n g t h=v$) or list (length=v), where v is a single numeric value. This will be interpreted as the value of the argument length.
- either $c(d i s t a n c e=v)$ or list (distance=v), where v is a single numeric value. This will be interpreted as the value of the argument distance.
- NULL, meaning that the expansion rule is not yet determined.

If one of the arguments area, length or distance is given, then the simulation window is determined from the original data window as follows.
area The bounding box of the original data window will be extracted, and the simulation window will be a scalar dilation of this rectangle. The argument area should be a numerical value, greater than or equal to 1 . It specifies the area expansion factor, i.e. the ratio of the area of the simulation window to the area of the original point process window's bounding box.
length The bounding box of the original data window will be extracted, and the simulation window will be a scalar dilation of this rectangle. The argument length should be a numerical value, greater than or equal to 1 . It specifies the length expansion factor, i.e. the ratio of the width (height) of the simulation window to the width (height) of the original point process window's bounding box.
distance The argument distance should be a numerical value, greater than or equal to 0 . It specifies the width of a buffer region around the original data window. If the original data window is a rectangle, then this window is extended by a margin of width equal to distance around all sides of the original rectangle. The result is a rectangle. If the original data window is not a rectangle, then morphological dilation is applied using dilation. owin so that a margin or buffer of width equal to distance is created around all sides of the original window. The result is a non-rectangular window, typically of a different shape.

Value

An object of class "rmhexpand" specifying the expansion rule. There is a print method for this class.

Undetermined expansion

If expand=NULL, this is interpreted to mean that the expansion rule is "not yet decided". Expansion will be decided later, by the simulation algorithm $r m h$. If the model cannot be expanded (for example if the covariate data in the model are not available on a larger domain) then expansion will not occur. If the model can be expanded, then if the point process model has a finite interaction range r, the default is rmhexpand(distance $=2 * r$), and otherwise $r m h e x p a n d(a r e a=2)$.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner r.turner@auckland.ac.nz

See Also

expand. owin to apply the rule to a window.
will. expand to test whether expansion will occur.
rmh, rmhcontrol for background details.

Examples

```
    rmhexpand()
    rmhexpand(2)
    rmhexpand(1)
    rmhexpand(length=1.5)
    rmhexpand(distance=0.1)
    rmhexpand(letterR)
```

 rmhmodel

Description

Builds a description of a point process model for use in simulating the model by the MetropolisHastings algorithm.

Usage

rmhmodel(...)

Arguments

.. Arguments specifying the point process model in some format.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings algorithm rmh. The algorithm requires the model to be specified in a particular format: an object of class "rmhmodel".

The function rmhmodel takes a description of a point process model in some other format, and converts it into an object of class "rmhmodel". It also checks that the parameters of the model are valid.

The function rmhmodel is generic, with methods for
fitted point process models: an object of class "ppm", obtained by a call to the model-fitting function ppm. See rmhmodel.ppm.
lists: a list of parameter values in a certain format. See rmhmodel.list.
default: parameter values specified as separate arguments to See rmhmodel. default.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.
There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner < r .turner@auckland.ac.nz>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193-212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 - 770. Scandinavian Journal of Statistics 21, 359-373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. BarndorffNielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79-140.

See Also

rmhmodel.ppm, rmhmodel.default, rmhmodel.list, rmh, rmhcontrol, rmhstart, ppm, Strauss, Softcore, StraussHard, Triplets, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece Penttinen
rmhmodel.default Build Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the MetropolisHastings algorithm.

Usage

\#\# Default S3 method:
rmhmodel(...,

$$
\mathrm{cif}=\mathrm{NULL}, \text { par=NULL, w=NULL, trend=NULL, types=NULL) }
$$

Arguments

... Ignored.
cif Character string specifying the choice of model
par Parameters of the model
w Spatial window in which to simulate
trend Specification of the trend in the model
types A vector of factor levels defining the possible marks, for a multitype process.

Details

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.
This function rmhmodel. default is the default method. It builds a description of the point process model from the simple arguments listed.
The argument cif is a character string specifying the choice of interpoint interaction for the point process. The current options are
'areaint' Area-interaction process.
'badgey' Baddeley-Geyer (hybrid Geyer) process.
'dgs' Diggle, Gates and Stibbard (1987) process
'diggra' Diggle and Gratton (1984) process
'fiksel' Fiksel double exponential process (Fiksel, 1984).
'geyer' Saturation process (Geyer, 1999).
'hardcore' Hard core process
'lennard' Lennard-Jones process
'lookup' General isotropic pairwise interaction process, with the interaction function specified via a "lookup table".
'multihard' Multitype hardcore process
'penttinen' The Penttinen process
'strauss' The Strauss process
'straush' The Strauss process with hard core
'sftcr' The Softcore process
'straussm' The multitype Strauss process
'straushm' Multitype Strauss process with hard core
'triplets' Triplets process (Geyer, 1999).
It is also possible to specify a hybrid of these interactions in the sense of Baddeley et al (2013). In this case, cif is a character vector containing names from the list above. For example, cif=c('strauss' , 'geyer') would specify a hybrid of the Strauss and Geyer models.

The argument par supplies parameter values appropriate to the conditional intensity function being invoked. For the interactions listed above, these parameters are:
areaint: (Area-interaction process.) A named list with components beta, eta, r which are respectively the "base" intensity, the scaled interaction parameter and the interaction radius.
badgey: (Baddeley-Geyer process.) A named list with components beta (the "base" intensity), gamma (a vector of non-negative interaction parameters), r (a vector of interaction radii, of the same length as gamma, in increasing order), and sat (the saturation parameter(s); this may be a scalar, or a vector of the same length as gamma and r; all values should be at least 1). Note that because of the presence of "saturation" the gamma values are permitted to be larger than 1.
dgs: (Diggle, Gates, and Stibbard process. See Diggle, Gates, and Stibbard (1987)) A named list with components beta and rho. This process has pairwise interaction function equal to

$$
e(t)=\sin ^{2}\left(\frac{\pi t}{2 \rho}\right)
$$

for $t<\rho$, and equal to 1 for $t \geq \rho$.
diggra: (Diggle-Gratton process. See Diggle and Gratton (1984) and Diggle, Gates and Stibbard (1987).) A named list with components beta, kappa, delta and rho. This process has pairwise interaction function $e(t)$ equal to 0 for $t<\delta$, equal to

$$
\left(\frac{t-\delta}{\rho-\delta}\right)^{\kappa}
$$

for $\delta \leq t<\rho$, and equal to 1 for $t \geq \rho$. Note that here we use the symbol κ where Diggle, Gates, and Stibbard use β since we reserve the symbol β for an intensity parameter.
fiksel: (Fiksel double exponential process, see Fiksel (1984)) A named list with components beta, r, hc, kappa and a. This process has pairwise interaction function $e(t)$ equal to 0 for $t<h c$, equal to

$$
\exp (a \exp (-\kappa t))
$$

for $h c \leq t<r$, and equal to 1 for $t \geq r$.
geyer: (Geyer's saturation process. See Geyer (1999).) A named list with components beta, gamma, r, and sat. The components beta, gamma, r are as for the Strauss model, and sat is the "saturation" parameter. The model is Geyer's "saturation" point process model, a modification of the Strauss process in which we effectively impose an upper limit (sat) on the number of neighbours which will be counted as close to a given point.
Explicitly, a saturation point process with interaction radius r, saturation threshold s, and parameters β and γ, is the point process in which each point x_{i} in the pattern X contributes a factor

$$
\beta \gamma^{\min \left(s, t\left(x_{i}, X\right)\right)}
$$

to the probability density of the point pattern, where $t\left(x_{i}, X\right)$ denotes the number of " r-close neighbours" of x_{i} in the pattern X.
If the saturation threshold s is infinite, the Geyer process reduces to a Strauss process with interaction parameter γ^{2} rather than γ.
hardcore: (Hard core process.) A named list with components beta and hc where beta is the base intensity and hc is the hard core distance. This process has pairwise interaction function $e(t)$ equal to 1 if $t>h c$ and 0 if $t<=h c$.
lennard: (Lennard-Jones process.) A named list with components sigma and epsilon, where sigma is the characteristic diameter and epsilon is the well depth. See LennardJones for explanation.
multihard: (Multitype hard core process.) A named list with components beta and hradii, where beta is a vector of base intensities for each type of point, and hradii is a matrix of hard core radii between each pair of types.
penttinen: (Penttinen process.) A named list with components beta, gamma, r which are respectively the "base" intensity, the pairwise interaction parameter, and the disc radius. Note that gamma must be less than or equal to 1 . See Penttinen for explanation. (Note that there is also an algorithm for perfect simulation of the Penttinen process, rPenttinen)
strauss: (Strauss process.) A named list with components beta, gamma, r which are respectively the "base" intensity, the pairwise interaction parameter and the interaction radius. Note that gamma must be less than or equal to 1 . (Note that there is also an algorithm for perfect simulation of the Strauss process, rStrauss)
straush: (Strauss process with hardcore.) A named list with entries beta, gamma, r, hc where beta, gamma, and r are as for the Strauss process, and hc is the hardcore radius. Of course hc must be less than r.
sftcr: (Softcore process.) A named list with components beta, sigma,kappa. Again beta is a "base" intensity. The pairwise interaction between two points $u \neq v$ is

$$
\exp \left\{-\left(\frac{\sigma}{\|u-v\|}\right)^{2 / \kappa}\right\}
$$

Note that it is necessary that $0<\kappa<1$.
straussm: (Multitype Strauss process.) A named list with components

- beta: A vector of "base" intensities, one for each possible type.
- gamma: A symmetric matrix of interaction parameters, with $\gamma_{i j}$ pertaining to the interaction between type i and type j.
- radii: A symmetric matrix of interaction radii, with entries $r_{i j}$ pertaining to the interaction between type i and type j.
straushm: (Multitype Strauss process with hardcore.) A named list with components beta and gamma as for straussm and two "radii" components:
- iradii: the interaction radii
- hradii: the hardcore radii
which are both symmetric matrices of nonnegative numbers. The entries of hradii must be less than the corresponding entries of iradii.
triplets: (Triplets process.) A named list with components beta, gamma, r which are respectively the "base" intensity, the triplet interaction parameter and the interaction radius. Note that gamma must be less than or equal to 1 .
lookup: (Arbitrary pairwise interaction process with isotropic interaction.) A named list with components beta, r, and h, or just with components beta and h.
This model is the pairwise interaction process with an isotropic interaction given by any chosen function H. Each pair of points x_{i}, x_{j} in the point pattern contributes a factor $H\left(d\left(x_{i}, x_{j}\right)\right)$ to the probability density, where d denotes distance and H is the pair interaction function.
The component beta is a (positive) scalar which determines the "base" intensity of the process.
In this implementation, H must be a step function. It is specified by the user in one of two ways.
- as a vector of values: If r is present, then r is assumed to give the locations of jumps in the function H, while the vector h gives the corresponding values of the function.
Specifically, the interaction function $H(t)$ takes the value $\mathrm{h}[1]$ for distances t in the interval [0, r[1]); takes the value h[i] for distances t in the interval [r[i-1],r[i]) where $i=2, \ldots, n$; and takes the value 1 for $t \geq r[n]$. Here n denotes the length of r. The components r and h must be numeric vectors of equal length. The r values must be strictly positive, and sorted in increasing order.
The entries of h must be non-negative. If any entry of h is greater than 1 , then the entry $\mathrm{h}[1]$ must be 0 (otherwise the specified process is non-existent).
Greatest efficiency is achieved if the values of r are equally spaced.
[Note: The usage of r and h has changed from the previous usage in spatstat versions 1.4-7 to $1.5-1$, in which ascending order was not required, and in which the first entry of r had to be 0.]
- as a stepfun object: If r is absent, then h must be an object of class "stepfun" specifying a step function. Such objects are created by stepfun.
The stepfun object h must be right-continuous (which is the default using stepfun.)
The values of the step function must all be nonnegative. The values must all be less than 1 unless the function is identically zero on some initial interval $[0, r)$. The rightmost value (the value of $h(t)$ for large t) must be equal to 1 .
Greatest efficiency is achieved if the jumps (the "knots" of the step function) are equally spaced.
For a hybrid model, the argument par should be a list, of the same length as cif, such that par[[i]] is a list of the parameters required for the interaction cif[i]. See the Examples.
The optional argument trend determines the spatial trend in the model, if it has one. It should be a function or image (or a list of such, if the model is multitype) to provide the value of the trend at an arbitrary point.
trend given as a function: A trend function may be a function of any number of arguments, but the first two must be the x, y coordinates of a point. Auxiliary arguments may be passed to the trend function at the time of simulation, via the . . argument to rmh.
The function must be vectorized. That is, it must be capable of accepting vector valued x and y arguments. Put another way, it must be capable of calculating the trend value at a number of points, simultaneously, and should return the vector of corresponding trend values.
trend given as an image: An image (see im.object) provides the trend values at a grid of points in the observation window and determines the trend value at other points as the value at the nearest grid point.

Note that the trend or trends must be non-negative; no checking is done for this.
The optional argument w specifies the window in which the pattern is to be generated. If specified, it must be in a form which can be coerced to an object of class owin by as owin.

The optional argument types specifies the possible types in a multitype point process. If the model being simulated is multitype, and types is not specified, then this vector defaults to $1: n$ nypes where ntypes is the number of types.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.
There is a print method for this class, which prints a sensible description of the model chosen.

Warnings in Respect of "lookup"

For the lookup cif, the entries of the r component of par must be strictly positive and sorted into ascending order.

Note that if you specify the lookup pairwise interaction function via stepfun() the arguments x and y which are passed to stepfun() are slightly different from r and h : length (y) is equal to $1+$ length (x); the final entry of y must be equal to 1 - i.e. this value is explicitly supplied by the user rather than getting tacked on internally.
The step function returned by stepfun() must be right continuous (this is the default behaviour of stepfun()) otherwise an error is given.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au> and Rolf Turner < r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and their implementation. Journal of Statistical Software 55:11, 1-43. DOI: 10.18637/jss.v055. i11
Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193-212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 - 770. Scandinavian Journal of Statistics 21, 359-373.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian point processes. Electronische Informationsverabeitung und Kybernetika 20, 270-278.
Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. BarndorffNielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79-140.

See Also

rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson, Softcore, Strauss, StraussHard and Triplets.

Examples

```
# Strauss process:
mod01 <- rmhmodel(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
            w=c(0,10,0,10))
    mod01
    # The above could also be simulated using 'rStrauss'
    # Strauss with hardcore:
    mod04 <- rmhmodel(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),
            w=owin(c(0,10),c(0,5)))
    # Hard core:
    mod05 <- rmhmodel(cif="hardcore",par=list(beta=2,hc=0.3),
            w=square(5))
# Soft core:
w <- square(10)
mod07 <- rmhmodel(cif="sftcr",
                                    par=list(beta=0.8, sigma=0.1,kappa=0.5),
                w=w)
# Penttinen process:
modpen <- rmhmodel(cif="penttinen",par=list(beta=2,gamma=0.6,r=1),
            w=c}(0,10,0,10)
# Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),
            w=c}(0,10,0,10)
# Baddeley-Geyer process:
mod99 <- rmhmodel(cif="badgey",par=list(beta=0.3,
                    gamma=c(0.2,1.8,2.4),r=c(0.035,0.07,0.14), sat=5),
                            w=unit.square())
# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
```

```
mod08 <- rmhmodel(cif="straussm",
    par=list(beta=beta,gamma=gmma,radii=r),
    w=square(250))
# specify types
mod09 <- rmhmodel(cif="straussm",
    par=list(beta=beta,gamma=gmma,radii=r),
    w=square(250),
    types=c("A", "B"))
# Multitype Hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod08hard <- rmhmodel(cif="multihard",
    par=list(beta=beta,hradii=rhc),
    w=square(250),
    types=c("A", "B"))
    # Multitype Strauss hardcore with trends for each type:
    beta <- c(0.27,0.08)
    ri <- matrix(c(45,45,45,45),2,2)
    rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
    tr3 <- function(x,y){x<- x/250; y <- y/250;
        exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
            }
            # log quadratic trend
tr4 <- function(x,y){x <- x/250; y <- y/250;
                            exp(-0.6*x+0.5*y)}
                            # log linear trend
mod10 <- rmhmodel(cif="straushm", par=list(beta=beta,gamma=gmma,
                        iradii=ri,hradii=rhc) ,w=c(0, 250,0, 250),
                        trend=list(tr3,tr4))
# Triplets process:
mod11 <- rmhmodel(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7),
    w=c}(0,10,0,10)
# Lookup (interaction function h_2 from page 76, Diggle (2003)):
    r<- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
    h<- 20*(r-0.05)
    h[r<0.05] <- 0
    h[r>0.10] <- 1
    mod17 <- rmhmodel(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
# hybrid model
modhy <- rmhmodel(cif=c('strauss', 'geyer'),
    par=list(list(beta=100, gamma=0.5,r=0.05),
            list(beta=1, gamma=0.7,r=0.1, sat=2)),
        w=square(1))
modhy
```


Description

Given a list of parameters, builds a description of a point process model for use in simulating the model by the Metropolis-Hastings algorithm.

Usage

```
    ## S3 method for class 'list'
    rmhmodel(model, ...)
```


Arguments

model A list of parameters. See Details.
$\ldots \quad$ Optional list of additional named parameters.

Details

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.
This function rmhmodel.list is the method for lists. The argument model should be a named list of parameters of the form
list(cif, par,w, trend, types)
where cif and par are required and the others are optional. For details about these components, see rmhmodel. default.
The subsequent arguments ... (if any) may also have these names, and they will take precedence over elements of the list model.

Value

An object of class "rmhmodel", which is essentially a validated list of parameter values for the model.
There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner r.turner@auckland.ac.nz

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193-212.
Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 - 770. Scandinavian Journal of Statistics 21, 359-373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. BarndorffNielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79-140.

See Also

rmhmodel, rmhmodel.default, rmhmodel.ppm, rmh, rmhcontrol, rmhstart, ppm, Strauss, Softcore, StraussHard, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece

Examples

```
# Strauss process:
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
        w=c(0,10,0,10))
mod01 <- rmhmodel(mod01)
# Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),
            w=owin(c(0,10),c(0,5)))
mod04 <- rmhmodel(mod04)
# Soft core:
w <- square(10)
mod07 <- list(cif="sftcr",
                    par=list(beta=0.8, sigma=0.1,kappa=0.5),
            w=w)
mod07 <- rmhmodel(mod07)
# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",
                                    par=list(beta=beta,gamma=gmma,radii=r),
                            w=square(250))
mod08 <- rmhmodel(mod08)
# specify types
mod09 <- rmhmodel(list(cif="straussm",
                    par=list(beta=beta,gamma=gmma,radii=r),
                    w=square(250),
                    types=c("A", "B")))
# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;
        exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
                            }
                            # log quadratic trend
```

```
tr4 <- function(x,y){x <- x/250; y <- y/250;
                    exp(-0.6*x+0.5*y)}
                            # log linear trend
mod10 <- list(cif="straushm", par=list(beta=beta,gamma=gmma,
    iradii=ri,hradii=rhc) ,w=c(0, 250,0, 250),
    trend=list(tr3,tr4))
mod10 <- rmhmodel(mod10)
# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r<- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup", par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
mod17 <- rmhmodel(mod17)
```

rmhstart Determine Initial State for Metropolis-Hastings Simulation.

Description

Builds a description of the initial state for the Metropolis-Hastings algorithm.

Usage

```
        rmhstart(start, ...)
        ## Default S3 method:
    rmhstart(start=NULL, ..., n.start=NULL, x.start=NULL)
```


Arguments

start An existing description of the initial state in some format. Incompatible with the arguments listed below.
... There should be no other arguments.
n.start Number of initial points (to be randomly generated). Incompatible with x. start.
x.start Initial point pattern configuration. Incompatible with n. start.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings algorithm implemented in rmh.
This function rmhstart creates a full description of the initial state of the Metropolis-Hastings algorithm, including possibly the initial state of the random number generator, for use in a subsequent call to rmh. It also checks that the initial state is valid.
The initial state should be specified either by the first argument start or by the other arguments n.start, x.start etc.

If start is a list, then it should have components named n.start or x.start, with the same interpretation as described below.

The arguments are:
n.start The number of "initial" points to be randomly (uniformly) generated in the simulation window w . Incompatible with x . start.

For a multitype point process, n. start may be a vector (of length equal to the number of types) giving the number of points of each type to be generated.
If expansion of the simulation window is selected (see the argument expand to rmhcontrol), then the actual number of starting points in the simulation will be n. start multiplied by the expansion factor (ratio of the areas of the expanded window and original window).
For faster convergence of the Metropolis-Hastings algorithm, the value of n. start should be roughly equal to (an educated guess at) the expected number of points for the point process inside the window.
x.start Initial point pattern configuration. Incompatible with n. start.
x. start may be a point pattern (an object of class ppp), or an object which can be coerced to this class by as.ppp, or a dataset containing vectors x and y.
If x. start is specified, then expansion of the simulation window (the argument expand of rmhcontrol) is not permitted.

The parameters n. start and x. start are incompatible.

Value

An object of class "rmhstart", which is essentially a list of parameters describing the initial point pattern and (optionally) the initial state of the random number generator.

There is a print method for this class, which prints a sensible description of the initial state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

rmh, rmhcontrol, rmhmodel

Examples

```
# 30 random points
a <- rmhstart(n.start=30)
a
# a particular point pattern
b <- rmhstart(x.start=cells)
```

```
rMosaicField Mosaic Random Field
```


Description

Generate a realisation of a random field which is piecewise constant on the tiles of a given tessellation.

Usage

rMosaicField(X, rgen $=$ function(n) $\{\operatorname{sample}(0: 1, n$, replace $=$ TRUE $)\}$, ..., rgenargs=NULL)

Arguments

X
... Arguments passed to as.mask determining the pixel resolution.
rgen Function that generates random values for the tiles of the tessellation.
rgenargs List containing extra arguments that should be passed to rgen (typically specifying parameters of the distribution of the values).

Details

This function generates a realisation of a random field which is piecewise constant on the tiles of the given tessellation X. The values in each tile are independent and identically distributed.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Rolf Turner r.turner@auckland.ac.nz

See Also

```
rpoislinetess, rMosaicSet
```


Examples

```
X <- rpoislinetess(3)
plot(rMosaicField(X, runif))
plot(rMosaicField(X, runif, dimyx=256))
plot(rMosaicField(X, rnorm, rgenargs=list(mean=10, sd=2)))
    plot(rMosaicField(dirichlet(runifpoint(30)), rnorm))
```

rMosaicSet Mosaic Random Set

Description

Generate a random set by taking a random selection of tiles of a given tessellation.

Usage

rMosaicSet(X, p=0.5)

Arguments

X A tessellation (object of class "tess").
$\mathrm{p} \quad$ Probability of including a given tile. A number strictly between 0 and 1.

Details

Given a tessellation X, this function randomly selects some of the tiles of X, including each tile with probability p independently of the other tiles. The selected tiles are then combined to form a set in the plane.
One application of this is Switzer's (1965) example of a random set which has a Markov property. It is constructed by generating X according to a Poisson line tessellation (see rpoislinetess).

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner < r.turner@auckland.ac.nz>

References

Switzer, P. A random set process in the plane with a Markovian property. Annals of Mathematical Statistics 36 (1965) 1859-1863.

See Also

rpoislinetess, rMosaicField

Examples

```
    # Switzer's random set
    X <- rpoislinetess(3)
    plot(rMosaicSet(X, 0.5), col="green", border=NA)
    # another example
    plot(rMosaicSet(dirichlet(runifpoint(30)), 0.4))
```

rmpoint Generate N Random Multitype Points

Description

Generate a random multitype point pattern with a fixed number of points, or a fixed number of points of each type.

Usage

```
rmpoint(n, f=1, fmax=NULL, win=unit.square(),
types, ptypes,
    ..., giveup=1000, verbose=FALSE,
    nsim=1, drop=TRUE)
```


Arguments

$\mathrm{n} \quad$ Number of marked points to generate. Either a single number specifying the
$f \quad$ The probability density of the multitype points, usually un-normalised. Either a constant, a vector, a function $f(x, y, m, \ldots)$, a pixel image, a list of functions $f(x, y, \ldots)$ or a list of pixel images.
fmax An upper bound on the values of f. If missing, this number will be estimated.
win Window in which to simulate the pattern. Ignored if f is a pixel image or list of pixel images.
types All the possible types for the multitype pattern.
ptypes Optional vector of probabilities for each type.
... Arguments passed to f if it is a function.
giveup Number of attempts in the rejection method after which the algorithm should stop trying to generate new points.
verbose Flag indicating whether to report details of performance of the simulation algorithm.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates random multitype point patterns consisting of a fixed number of points.
Three different models are available:
I. Random location and type: If n is a single number and the argument ptypes is missing, then n independent, identically distributed random multitype points are generated. Their locations ($\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}]$) and types $\mathrm{m}[\mathrm{i}]$ have joint probability density proportional to $f(x, y, m)$.
II. Random type, and random location given type: If n is a single number and ptypes is given, then n independent, identically distributed random multitype points are generated. Their types $\mathrm{m}[\mathrm{i}]$ have probability distribution ptypes. Given the types, the locations ($\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}]$) have conditional probability density proportional to $f(x, y, m)$.
III. Fixed types, and random location given type: If n is a vector, then we generate $n[i]$ independent, identically distributed random points of type types[i]. For points of type m the conditional probability density of location (x, y) is proportional to $f(x, y, m)$.

Note that the density f is normalised in different ways in Model I and Models II and III. In Model I the normalised joint density is $g(x, y, m)=f(x, y, m) / Z$ where

$$
Z=\sum_{m} \iint \lambda(x, y, m) \mathrm{d} x \mathrm{~d} y
$$

while in Models II and III the normalised conditional density is $g(x, y \mid m)=f(x, y, m) / Z_{m}$ where

$$
Z_{m}=\iint \lambda(x, y, m) \mathrm{d} x \mathrm{~d} y
$$

In Model I, the marginal distribution of types is $p_{m}=Z_{m} / Z$.
The unnormalised density f may be specified in any of the following ways.
single number: If f is a single number, the conditional density of location given type is uniform. That is, the points of each type are uniformly distributed. In Model I, the marginal distribution of types is also uniform (all possible types have equal probability).
vector: If f is a numeric vector, the conditional density of location given type is uniform. That is, the points of each type are uniformly distributed. In Model I, the marginal distribution of types is proportional to the vector f . In Model II, the marginal distribution of types is ptypes, that is, the values in f are ignored. The argument types defaults to names(f), or if that is null, 1 : length(f).
function: If f is a function, it will be called in the form $f(x, y, m, \ldots)$ at spatial location (x, y) for points of type m . In Model I, the joint probability density of location and type is proportional to $f(x, y, m, \ldots)$. In Models II and III, the conditional probability density of location (x, y) given type m is proportional to $f(x, y, m, \ldots)$. The function f must work correctly with vectors x, y and m, returning a vector of function values. (Note that m will be a factor with levels types.) The value fmax must be given and must be an upper bound on the values of $f(x, y, m, \ldots)$ for all locations (x, y) inside the window win and all types m. The argument types must be given.
list of functions: If f is a list of functions, then the functions will be called in the form $f[[i]](x, y, \ldots)$ at spatial location (x, y) for points of type types[i]. In Model I, the joint probability density
of location and type is proportional to $f[[m]](x, y, \ldots)$. In Models II and III, the conditional probability density of location (x, y) given type m is proportional to $f[[m]](x, y, \ldots)$. The function $f[[i]]$ must work correctly with vectors x and y, returning a vector of function values. The value fmax must be given and must be an upper bound on the values of $f[[i]](x, y, \ldots)$ for all locations (x, y) inside the window win. The argument types defaults to names (f), or if that is null, 1 : length (f).
pixel image: If f is a pixel image object of class "im" (see im.object), the unnormalised density at a location (x, y) for points of any type is equal to the pixel value of f for the pixel nearest to (x, y). In Model I, the marginal distribution of types is uniform. The argument win is ignored; the window of the pixel image is used instead. The argument types must be given.
list of pixel images: If f is a list of pixel images, then the image $f[[i]$ determines the density values of points of type types[i]. The argument win is ignored; the window of the pixel image is used instead. The argument types defaults to names(f), or if that is null, 1: length(f).

The implementation uses the rejection method. For Model I, rmpoispp is called repeatedly until n points have been generated. It gives up after giveup calls if there are still fewer than n points. For Model II, the types are first generated according to ptypes, then the locations of the points of each type are generated using rpoint. For Model III, the locations of the points of each type are generated using rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object

Examples

```
abc <- c("a","b","c")
##### Model I
rmpoint(25, types=abc)
rmpoint(25, 1, types=abc)
# 25 points, equal probability for each type, uniformly distributed locations
rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc)
# same as above
rmpoint(25, list(function(x,y){rep(1, length(x))},
                    function(x,y){rep(1, length(x))},
                    function(x,y){rep(1, length(x))}),
        types=abc)
```

\# same as above

```
rmpoint(25, function(x,y,m) { x }, types=abc)
# 25 points, equal probability for each type,
# locations nonuniform with density proportional to x
rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc)
rmpoint(25, list(function(x,y) { rep(1, length(x)) },
    function(x,y) { x },
    function(x,y) { x }),
    types=abc)
# 25 points, UNEQUAL probabilities for each type,
# type "a" points uniformly distributed,
# type "b" and "c" points nonuniformly distributed.
##### Model II
```

rmpoint (25, 1, types=abc, ptypes=rep (1,3)/3)
rmpoint $(25,1$, types=abc, ptypes=rep $(1,3))$
\# 25 points, equal probability for each type,
\# uniformly distributed locations
rmpoint(25, function(x,y,m) \{rep(1, length(x))\}, types=abc, ptypes=rep(1, 3))
\# same as above
rmpoint (25, list(function($x, y)\{\operatorname{rep}(1$, length $(x))\}$,
function $(x, y)\{\operatorname{rep}(1$, length $(x))\}$,
function(x,y)\{rep(1, length(x))\}),
types=abc, ptypes=rep $(1,3))$
\# same as above
rmpoint(25, function(x, y, m) \{ x \}, types=abc, ptypes=rep(1,3))
\# 25 points, equal probability for each type,
\# locations nonuniform with density proportional to x
rmpoint(25, function(x,y,m) \{ ifelse(m == "a", 1, x) \}, types=abc, ptypes=rep(1,3))
\# 25 points, EQUAL probabilities for each type,
\# type "a" points uniformly distributed,
\# type "b" and "c" points nonuniformly distributed.
\#\#\#\#\#\# Model III
rmpoint (c(12, 8, 4), 1, types=abc)
\# 12 points of type "a",
\# 8 points of type "b",
\# 4 points of type "c",
\# each uniformly distributed
rmpoint (c (12, 8, 4), function(x, y, m) \{ ifelse(m=="a", 1, x)\}, types=abc)
rmpoint (c(12, 8, 4), list(function $(x, y)\{\operatorname{rep}(1$, length($x)$) \},
function $(x, y)\{x\}$,
function $(x, y)\{x\})$,
types=abc)

```
# 12 points of type "a", uniformly distributed
# 8 points of type "b", nonuniform
# 4 points of type "c", nonuniform
#########
## Randomising an existing point pattern:
# same numbers of points of each type, uniform random locations (Model III)
rmpoint(table(marks(demopat)), 1, win=Window(demopat))
# same total number of points, distribution of types estimated from X,
# uniform random locations (Model II)
rmpoint(npoints(demopat), 1, types=levels(marks(demopat)), win=Window(demopat),
    ptypes=table(marks(demopat)))
```

rmpoispp Generate Multitype Poisson Point Pattern

Description

Generate a random point pattern, a realisation of the (homogeneous or inhomogeneous) multitype Poisson process.

Usage

rmpoispp(lambda, lmax=NULL, win, types, ...,
nsim=1, drop=TRUE, warnwin=!missing(win))

Arguments

lambda	Intensity of the multitype Poisson process. Either a single positive number, a vector, a function (x, y, m, \ldots), a pixel image, a list of functions function (x, y, \ldots), or a list of pixel images.
lmax	An upper bound for the value of lambda. May be omitted
win	Window in which to simulate the pattern. An object of class "owin" or some- thing acceptable to as. owin. Ignored if lambda is a pixel image or list of im- ages.
types	All the possible types for the multitype pattern.
\ldots	Arguments passed to lambda if it is a function.
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.
warnwin	Logical value specifying whether to issue a warning when win is ignored.

Details

This function generates a realisation of the marked Poisson point process with intensity lambda.
Note that the intensity function $\lambda(x, y, m)$ is the average number of points of type \mathbf{m} per unit area near the location (x, y). Thus a marked point process with a constant intensity of 10 and three possible types will have an average of 30 points per unit area, with 10 points of each type on average.
The intensity function may be specified in any of the following ways.
single number: If lambda is a single number, then this algorithm generates a realisation of the uniform marked Poisson process inside the window win with intensity lambda for each type. The total intensity of points of all types is lambda * length(types). The argument types must be given and determines the possible types in the multitype pattern.
vector: If lambda is a numeric vector, then this algorithm generates a realisation of the stationary marked Poisson process inside the window win with intensity lambda[i] for points of type types[i]. The total intensity of points of all types is sum(lambda). The argument types defaults to names (lambda), or if that is null, 1 :length(lambda).
function: If lambda is a function, the process has intensity lambda (x, y, m, \ldots) at spatial location (x, y) for points of type m. The function lambda must work correctly with vectors x, y and m, returning a vector of function values. (Note that m will be a factor with levels equal to types.) The value lmax, if present, must be an upper bound on the values of lambda (x, y, m, \ldots) for all locations (x, y) inside the window win and all types m. The argument types must be given.
list of functions: If lambda is a list of functions, the process has intensity lambda[[i]] (x,y,..) at spatial location (x, y) for points of type types[i]. The function lambda[[i]] must work correctly with vectors x and y, returning a vector of function values. The value lmax, if given, must be an upper bound on the values of lambda (x, y, \ldots) for all locations (x, y) inside the window win. The argument types defaults to names(lambda), or if that is null, 1:length(lambda).
pixel image: If lambda is a pixel image object of class "im" (see im.object), the intensity at a location (x, y) for points of any type is equal to the pixel value of lambda for the pixel nearest to (x, y). The argument win is ignored; the window of the pixel image is used instead. The argument types must be given.
list of pixel images: If lambda is a list of pixel images, then the image lambda[[i]] determines the intensity of points of type types[i]. The argument win is ignored; the window of the pixel image is used instead. The argument types defaults to names(lambda), or if that is null, 1:length(lambda).

If Imax is missing, an approximate upper bound will be calculated.
To generate an inhomogeneous Poisson process the algorithm uses "thinning": it first generates a uniform Poisson process of intensity lmax for points of each type m, then randomly deletes or retains each point independently, with retention probability $p(x, y, m)=\lambda(x, y, m) / \operatorname{lmax}$.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim>1. Each point pattern is multitype (it carries a vector of marks which is a factor).

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner r.turner@auckland.ac.nz

See Also

rpoispp for unmarked Poisson point process; rmpoint for a fixed number of random marked points; ppp.object, owin. object.

Examples

```
# uniform bivariate Poisson process with total intensity 100 in unit square
pp <- rmpoispp(50, types=c("a","b"))
# stationary bivariate Poisson process with intensity A = 30, B = 70
pp <- rmpoispp(c(30,70), types=c("A", "B"))
pp <- rmpoispp(c(30,70))
# works in any window
pp <- rmpoispp(c(30,70), win=letterR, types=c("A","B"))
# inhomogeneous lambda(x,y,m)
# note argument 'm' is a factor
lam <- function(x,y,m) { 50 * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"))
# extra arguments
lam <- function(x,y,m,scal) { scal * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"), scal=50)
# list of functions lambda[[i]](x,y)
lams <- list(function(x,y){50 * x^2}, function(x,y){20 * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"))
pp <- rmpoispp(lams, win=letterR)
# functions with extra arguments
lams <- list(function(x,y,scal){5 * scal * x^2},
                    function(x,y, scal){2 * scal * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"), scal=10)
pp <- rmpoispp(lams, win=letterR, scal=10)
# florid example
lams <- list(function(x,y){
            100*exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
                                    }
                                    # log quadratic trend
            ,
            function(x,y){
                                    100*exp(-0.6*x+0.5*y)
                                    }
                                    # log linear trend
            )
    X <- rmpoispp(lams, win=unit.square(), types=c("on", "off"))
```

```
# pixel image
Z <- as.im(function(x,y){30* (x^2 + y^3)}, letterR)
pp <- rmpoispp(Z, types=c("A","B"))
# list of pixel images
ZZ <- list(
    as.im(function(x,y){20* (x^2 + y^3)}, letterR),
    as.im(function(x,y){40 * (x^3 + y^2)}, letterR))
pp <- rmpoispp(ZZ, types=c("A","B"))
pp <- rmpoispp(ZZ)
# randomising an existing point pattern
rmpoispp(intensity(amacrine), win=Window(amacrine))
```

rNeymanScott Simulate Neyman-Scott Process

Description

Generate a random point pattern, a realisation of the Neyman-Scott cluster process.

Usage

r NeymanScott(kappa, expand, rcluster, win $=\operatorname{owin}(c(0,1), c(0,1))$, ..., lmax=NULL, nsim=1, drop=TRUE, nonempty=TRUE, saveparents=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
expand Size of the expansion of the simulation window for generating parent points. A single non-negative number.
rcluster A function which generates random clusters, or other data specifying the random cluster mechanism. See Details.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as . owin.
... Arguments passed to rcluster.
lmax Optional. Upper bound on the values of kappa when kappa is a function or pixel image.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which parents are generated conditionally on having at least one offspring point. If FALSE, parents are generated even if they have no offspring. Both choices are valid; the default is recommended unless you need to simulate all the parent points for some other purpose.
saveparents Logical value indicating whether to save the locations of the parent points as an attribute.

Details

This algorithm generates a realisation of the general Neyman-Scott process, with the cluster mechanism given by the function rcluster.
First, the algorithm generates a Poisson point process of "parent" points with intensity kappa in an expanded window as explained below. Here kappa may be a single positive number, a function kappa (x, y), or a pixel image object of class "im" (see im. object). See rpoispp for details.
Second, each parent point is replaced by a random cluster of points. These clusters are combined together to yield a single point pattern, and the restriction of this pattern to the window win is then returned as the result of rNeymanScott.

The expanded window consists of as.rectangle(win) extended by the amount expand in each direction. The size of the expansion is saved in the attribute "expand" and may be extracted by attr (X , "expand") where X is the generated point pattern.
The argument rcluster specifies the cluster mechanism. It may be either:

- A function which will be called to generate each random cluster (the offspring points of each parent point). The function should expect to be called in the form rcluster ($x 0, y 0, \ldots$) for a parent point at a location $(x 0, y 0)$. The return value of rcluster should specify the coordinates of the points in the cluster; it may be a list containing elements x, y, or a point pattern (object of class "ppp"). If it is a marked point pattern then the result of r NeymanScott will be a marked point pattern.
- A list(mu,f) where mu specifies the mean number of offspring points in each cluster, and f generates the random displacements (vectors pointing from the parent to the offspring). In this case, the number of offspring in a cluster is assumed to have a Poisson distribution, implying that the Neyman-Scott process is also a Cox process. The first element mu should be either a single nonnegative number (interpreted as the mean of the Poisson distribution of cluster size) or a pixel image or a function (x, y) giving a spatially varying mean cluster size (interpreted in the sense of Waagepetersen, 2007). The second element f should be a function that will be called once in the form $f(n)$ to generate n independent and identically distributed displacement vectors (i.e. as if there were a cluster of size n with a parent at the origin $(0,0)$). The function should return a point pattern (object of class "ppp") or something acceptable to $x y$.coords that specifies the coordinates of n points.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can also be extracted from the return value of rNeymanScott through the attributes "parents" and "parentid". The attribute "parents" is the point pattern of parent points. The attribute "parentid" is an integer vector specifying the parent for each of the points in the simulated pattern.
Neyman-Scott models where kappa is a single number and rcluster $=\operatorname{list}(\mathrm{mu}, \mathrm{f})$ can be fitted to data using the function kppm.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of this point pattern: see Details.

Inhomogeneous Neyman-Scott Processes

There are several different ways of specifying a spatially inhomogeneous Neyman-Scott process:

- The point process of parent points can be inhomogeneous. If the argument kappa is a function (x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process according to which the parent points are generated.
- The number of points in a typical cluster can be spatially varying. If the argument rcluster is a list of two elements mu, f and the first entry mu is a function (x, y) or a pixel image (object of class " im "), then mu is interpreted as the reference intensity for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to $m u(x, y) * g(x-x 0, y-y 0)$ where g is the probability density of the offspring displacements generated by the function f.
Equivalently, clusters are first generated with a constant expected number of points per cluster: the constant is mumax, the maximum of mu. Then the offspring are randomly thinned (see r thin) with spatially-varying retention probabilities given by mu/mumax.
- The entire mechanism for generating a cluster can be dependent on the location of the parent point. If the argument rcluster is a function, then the cluster associated with a parent point at location ($x 0, y 0$) will be generated by calling $\operatorname{rcluster}(x 0, y 0, \ldots)$. The behaviour of this function could depend on the location $(x 0, y 0)$ in any fashion.

Note that if kappa is an image, the spatial domain covered by this image must be large enough to include the expanded window in which the parent points are to be generated. This requirement means that win must be small enough so that the expansion of as.rectangle(win) is contained in the spatial domain of kappa. As a result, one may wind up having to simulate the process in a window smaller than what is really desired.

In the first two cases, the intensity of the Neyman-Scott process is equal to kappa * mu if at least one of kappa or mu is a single number, and is otherwise equal to an integral involving kappa, mu and f .

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Rolf Turner < r.turner@auckland.ac.nz>

References

Neyman, J. and Scott, E.L. (1958) A statistical approach to problems of cosmology. Journal of the Royal Statistical Society, Series B 20, 1-43.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous NeymanScott processes. Biometrics 63, 252-258.

See Also

rpoispp, rThomas, rGaussPoisson, rMatClust, rCauchy, rVarGamma

Examples

```
    # each cluster consist of 10 points in a disc of radius 0.2
    nclust <- function(x0, y0, radius, n) {
                    return(runifdisc(n, radius, centre=c(x0, y0)))
            }
    plot(rNeymanScott(10, 0.2, nclust, radius=0.2, n=5))
    # multitype Neyman-Scott process (each cluster is a multitype process)
    nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {
        X <- runifdisc(n, radius, centre=c(x0, y0))
        M <- sample(types, n, replace=TRUE)
        marks(X) <- M
        return(X)
}
    plot(rNeymanScott(15,0.1,nclust2, radius=0.1, n=5))
```

rnoise Random Pixel Noise

Description

Generate a pixel image whose pixel values are random numbers following a specified probability distribution.

Usage

rnoise(rgen = runif, $w=$ square (1), ...)

Arguments

rgen Random generator for the pixel values. A function in the R language.
w Window (region or pixel raster) in which to generate the image. Any data acceptable to as.mask.
... Arguments, matched by name, to be passed to rgen to specify the parameters of the probability distribution, or passed to as . mask to control the pixel resolution.

Details

The argument w could be a window (class "owin"), a pixel image (class "im") or other data. It is first converted to a binary mask by as . mask using any relevant arguments in
Then each pixel inside the window (i.e. with logical value TRUE in the mask) is assigned a random numerical value by calling the function rgen.
The function rgen would typically be one of the standard random variable generators like runif (uniformly distributed random values) or rnorm (Gaussian random values). Its first argument n is the number of values to be generated. Other arguments to rgen must be matched by name.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
Rolf Turner r.turner@auckland.ac.nz
and Ege Rubak <rubak@math. aau.dk>

See Also

as.mask, as.im, Distributions.

Examples

plot(rnoise(), main="Uniform noise")
plot(rnoise(rnorm, dimyx=32, mean=2, sd=1), main="White noise")

Description

Generate a random pattern of points, a simulated realisation of the Penttinen process, using a perfect simulation algorithm.

Usage

rPenttinen(beta, gamma=1, R, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta	intensity parameter (a positive number).
gamma	Interaction strength parameter (a number between 0 and 1).
R	disc radius (a non-negative number).
W	window (object of class "owin") in which to generate the random pattern. expandLogical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim	Number of simulated realisations to be generated. drop
	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Penttinen point process in the window W using a 'perfect simulation' algorithm.
Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction point process with interaction factor

$$
h(d)=e^{\theta A(d)}=\gamma^{A(d)}
$$

between each pair of points separated by a distance $\$ \mathrm{~d} \$$. Here $A(d)$ is the area of intersection between two discs of radius R separated by a distance d, normalised so that $A(0)=1$.
The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).
There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If nsim $=1$, a point pattern (object of class "ppp"). If nsim >1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Cormack, R.M. (1979) Spatial aspects of competition between individuals. Pages 151-212 in Spatial and Temporal Analysis in Ecology, eds. R.M. Cormack and J.K. Ord, International Co-operative Publishing House, Fairland, MD, USA.
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.
Penttinen, A. (1984) Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics 7, University of Jyväskylä, Finland.

```
See Also
rmh,
rStrauss, rHardcore, rStraussHard, rDiggleGratton, rDGS.
Penttinen.
```


Examples

$X<-r P e n t t i n e n(50,0.5,0.02)$
$Z<-r P e n t t i n e n(50,0.5,0.01, n s i m=2)$
rpoint Generate N Random Points

Description

Generate a random point pattern containing n independent, identically distributed random points with any specified distribution.

Usage

rpoint(n, f, fmax=NULL, win=unit.square(), ..., giveup=1000, verbose=FALSE, nsim=1, drop=TRUE, forcewin=FALSE)

Arguments

$\mathrm{n} \quad$ Number of points to generate.
f The probability density of the points, possibly un-normalised. Either a constant, a function $f(x, y, \ldots)$, or a pixel image object.
fmax An upper bound on the values of f. If missing, this number will be estimated.
win Window in which to simulate the pattern. (Ignored if f is a pixel image, unless forcewin=TRUE).
... Arguments passed to the function f.
giveup Number of attempts in the rejection method after which the algorithm should stop trying to generate new points.
verbose Flag indicating whether to report details of performance of the simulation algorithm.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
forcewin Logical. If TRUE, then simulations will be generated inside win in all cases. If FALSE (the default), the argument win is ignored when f is a pixel image.

Details

This function generates n independent, identically distributed random points with common probability density proportional to f.
The argument f may be
a numerical constant: uniformly distributed random points will be generated.
a function: random points will be generated in the window win with probability density proportional to $f(x, y, \ldots)$ where x and y are the cartesian coordinates. The function f must accept two vectors of coordinates x, y and return the corresponding vector of function values. Additional arguments . . . of any kind may be passed to the function.
a pixel image: if f is a pixel image (object of class "im", see im. object) then random points will be generated with probability density proportional to the pixel values of f. To be precise, pixels are selected with probabilities proportional to the pixel values, and within each selected pixel, a point is generated with a uniform distribution inside the pixel.
The window of the simulated point pattern is determined as follows. If forcewin=FALSE (the default) then the argument win is ignored, and the simulation window is the window of the pixel image, Window(f). If forcefit=TRUE then the simulation window is win.

The algorithm is as follows:

- If f is a constant, we invoke runifpoint.
- If f is a function, then we use the rejection method. Proposal points are generated from the uniform distribution. A proposal point (x, y) is accepted with probability $f(x, y, \ldots) / f m a x$ and otherwise rejected. The algorithm continues until n points have been accepted. It gives up after giveup $* \mathrm{n}$ proposals if there are still fewer than n points.
- If f is a pixel image, then a random sequence of pixels is selected (using sample) with probabilities proportional to the pixel values of f. Then for each pixel in the sequence we generate a uniformly distributed random point in that pixel.

The algorithm for pixel images is more efficient than that for functions.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1 .

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

See Also

```
ppp.object, owin.object, runifpoint
```


Examples

```
# 100 uniform random points in the unit square
X <- rpoint(100)
# 100 random points with probability density proportional to x^2 + y^2
X <- rpoint(100, function(x,y) { x^2 + y^2}, 1)
# `fmax' may be omitted
X <- rpoint(100, function(x,y) { x^2 + y^2})
# irregular window
```

```
    X <- rpoint(100, function(x,y) { x^2 + y^2}, win=letterR)
    # make a pixel image
    Z <- setcov(letterR)
    # 100 points with density proportional to pixel values
X <- rpoint(100, Z)
```

rpoisline Generate Poisson Random Line Process

Description

Generate a random pattern of line segments obtained from the Poisson line process.

Usage

rpoisline(lambda, win=owin())

Arguments

lambda Intensity of the Poisson line process. A positive number.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as. owin.

Details

This algorithm generates a realisation of the uniform Poisson line process, and clips it to the window win.
The argument lambda must be a positive number. It controls the intensity of the process. The expected number of lines intersecting a convex region of the plane is equal to lambda times the perimeter length of the region. The expected total length of the lines crossing a region of the plane is equal to lambda * pi times the area of the region.

Value

A line segment pattern (an object of class "psp").
The result also has an attribute called "lines" (an object of class "infline" specifying the original infinite random lines) and an attribute "linemap" (an integer vector mapping the line segments to their parent lines).

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin. edu. au> and Rolf Turner < r.turner@auckland.ac.nz>

See Also

psp

Examples

```
    # uniform Poisson line process with intensity 10,
    # clipped to the unit square
    rpoisline(10)
```

rpoislinetess Poisson Line Tessellation

Description

Generate a tessellation delineated by the lines of the Poisson line process

Usage

rpoislinetess(lambda, win = owin())

Arguments

lambda Intensity of the Poisson line process. A positive number.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as .owin. Currently, the window must be a rectangle.

Details

This algorithm generates a realisation of the uniform Poisson line process, and divides the window win into tiles separated by these lines.
The argument lambda must be a positive number. It controls the intensity of the process. The expected number of lines intersecting a convex region of the plane is equal to lambda times the perimeter length of the region. The expected total length of the lines crossing a region of the plane is equal to lambda * pi times the area of the region.

Value

A tessellation (object of class "tess").
Also has an attribute "lines" containing the realisation of the Poisson line process, as an object of class "infline".

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

rpoisline to generate the lines only.

Examples

```
X <- rpoislinetess(3)
plot(as.im(X), main="rpoislinetess(3)")
plot(X, add=TRUE)
```

```
rpoispp Generate Poisson Point Pattern
```


Description

Generate a random point pattern using the (homogeneous or inhomogeneous) Poisson process. Includes CSR (complete spatial randomness).

Usage

rpoispp(lambda, lmax=NULL, win=owin(), ...,
nsim=1, drop=TRUE, ex=NULL, warnwin=TRUE)

Arguments

lambda Intensity of the Poisson process. Either a single positive number, a function (x, y, \ldots), or a pixel image.
lmax \quad Optional. An upper bound for the value of $\operatorname{lambda}(x, y)$, if lambda is a function.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Ignored if lambda is a pixel image.
... Arguments passed to lambda if it is a function.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
ex Optional. A point pattern to use as the example. If ex is given and lambda, lmax, win are missing, then lambda and win will be calculated from the point pattern ex.
warnwin Logical value specifying whether to issue a warning when win is ignored (which occurs when lambda is an image and win is present).

Details

If lambda is a single number, then this algorithm generates a realisation of the uniform Poisson process (also known as Complete Spatial Randomness, CSR) inside the window win with intensity lambda (points per unit area).
If lambda is a function, then this algorithm generates a realisation of the inhomogeneous Poisson process with intensity function lambda (x, y, \ldots) at spatial location (x, y) inside the window win. The function lambda must work correctly with vectors x and y.
If lmax is given, it must be an upper bound on the values of lambda (x, y, \ldots) for all locations (x, y) inside the window win. That is, we must have lambda $(x, y, \ldots)<=1$ max for all locations (x, y). If this is not true then the results of the algorithm will be incorrect.

If lmax is missing or NULL, an approximate upper bound is computed by finding the maximum value of lambda (x, y, \ldots) on a grid of locations (x, y) inside the window win, and adding a safety margin equal to 5 percent of the range of lambda values. This can be computationally intensive, so it is advisable to specify lmax if possible.
If lambda is a pixel image object of class "im" (see im. object), this algorithm generates a realisation of the inhomogeneous Poisson process with intensity equal to the pixel values of the image. (The value of the intensity function at an arbitrary location is the pixel value of the nearest pixel.) The argument win is ignored; the window of the pixel image is used instead. It will be converted to a rectangle if possible, using rescue. rectangle.
To generate an inhomogeneous Poisson process the algorithm uses "thinning": it first generates a uniform Poisson process of intensity lmax, then randomly deletes or retains each point, independently of other points, with retention probability $p(x, y)=\lambda(x, y) /$ lmax.
For marked point patterns, use rmpoispp.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.

Warning

Note that lambda is the intensity, that is, the expected number of points per unit area. The total number of points in the simulated pattern will be random with expected value mu=lambda * a where a is the area of the window win.

Reproducibility

The simulation algorithm, for the case where lambda is a pixel image, was changed in spatstat version 1.42-3. Set spatstat.options(fastpois=FALSE) to use the previous, slower algorithm, if it is desired to reproduce results obtained with earlier versions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

rmpoispp for Poisson marked point patterns, runifpoint for a fixed number of independent uniform random points; rpoint, rmpoint for a fixed number of independent random points with any distribution; rMaternI, rMaternII, rSSI, rStrauss, rstrat for random point processes with spatial inhibition or regularity; rThomas, rGaussPoisson, rMatClust, rcell for random point processes exhibiting clustering; rmh. default for Gibbs processes. See also ppp. object, owin. object.

Examples

```
# uniform Poisson process with intensity 100 in the unit square
pp <- rpoispp(100)
# uniform Poisson process with intensity 1 in a 10 x 10 square
```

```
pp <- rpoispp(1, win=owin(c(0,10),c(0,10)))
# plots should look similar !
# inhomogeneous Poisson process in unit square
# with intensity lambda(x,y) = 100 * exp(-3*x)
# Intensity is bounded by 100
pp <- rpoispp(function(x,y) {100 * exp(-3*x)}, 100)
# How to tune the coefficient of x
lamb <- function(x,y,a) { 100 * exp( - a * x)}
pp <- rpoispp(lamb, 100, a=3)
# pixel image
Z <- as.im(function(x,y){100 * sqrt(x+y)}, unit.square())
pp <- rpoispp(Z)
# randomising an existing point pattern
rpoispp(intensity(cells), win=Window(cells))
rpoispp(ex=cells)
```

rpoispp3

Generate Poisson Point Pattern in Three Dimensions

Description

Generate a random three-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoispp3(lambda, domain = box3(), nsim=1, drop=TRUE)

Arguments

lambda	Intensity of the Poisson process. A single positive number.
domain	Three-dimensional box in which the process should be generated. An object of class "box3".
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in three dimensions, with intensity lambda (points per unit volume).

The realisation is generated inside the three-dimensional region domain which currently must be a rectangular box (object of class "box3").

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim >1, a list of such point patterns.

Note
The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

runifpoint3, pp3, box3

Examples

$$
X<- \text { rpoispp3(50) }
$$

rpoisppOnLines Generate Poisson Point Pattern on Line Segments

Description

Given a line segment pattern, generate a Poisson random point pattern on the line segments.

Usage

rpoisppOnLines(lambda, L, lmax = NULL, ..., nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single number, a function (x, y), a pixel image (object of class "im"), or a vector of numbers, a list of functions, or a list of images.
$\mathrm{L} \quad$ Line segment pattern (object of class "psp") on which the points should be generated.
lmax Optional upper bound (for increased computational efficiency). A known upper bound for the values of lambda, if lambda is a function or a pixel image. That is, Imax should be a number which is known to be greater than or equal to all values of lambda.
... Additional arguments passed to lambda if it is a function.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This command generates a Poisson point process on the one-dimensional system of line segments in L. The result is a point pattern consisting of points lying on the line segments in L. The number of random points falling on any given line segment follows a Poisson distribution. The patterns of points on different segments are independent.
The intensity lambda is the expected number of points per unit length of line segment. It may be constant, or it may depend on spatial location.
In order to generate an unmarked Poisson process, the argument lambda may be a single number, or a function (x, y), or a pixel image (object of class "im").
In order to generate a marked Poisson process, lambda may be a numeric vector, a list of functions, or a list of images, each entry giving the intensity for a different mark value.

If lambda is not numeric, then the (Lewis-Shedler) rejection method is used. The rejection method requires knowledge of 1 max, the maximum possible value of lambda. This should be either a single number, or a numeric vector of the same length as lambda. If lmax is not given, it will be computed approximately, by sampling many values of lambda.
If lmax is given, then it must be larger than any possible value of lambda, otherwise the results of the algorithm will be incorrect.

Value

If nsim $=1$, a point pattern (object of class "ppp") in the same window as L. If nsim >1, a list of such point patterns.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Rolf Turner < r.turner@auckland.ac.nz>

See Also

```
psp, ppp,runifpointOnLines, rpoispp
```


Examples

```
live <- interactive()
    L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
    if(live) plot(L, main="")
    # uniform intensity
    Y <- rpoisppOnLines(4, L)
    if(live) plot(Y, add=TRUE, pch="+")
    # uniform MARKED process with types 'a' and 'b'
    Y <- rpoisppOnLines(c(a=4, b=5), L)
    if(live) {
        plot(L, main="")
        plot(Y, add=TRUE, pch="+")
    }
```

```
# intensity is a function
Y <- rpoisppOnLines(function(x,y){ 10 * x^2}, L, 10)
if(live) {
    plot(L, main="")
    plot(Y, add=TRUE, pch="+")
}
# intensity is an image
Z <- as.im(function(x,y){10 * sqrt(x+y)}, unit.square())
Y <- rpoisppOnLines(Z, L, 15)
if(live) {
    plot(L, main="")
    plot(Y, add=TRUE, pch="+")
}
```

```
rpoisppx Generate Poisson Point Pattern in Any Dimensions
```


Description

Generate a random multi-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoisppx(lambda, domain, nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single positive number.
domain Multi-dimensional box in which the process should be generated. An object of class "boxx".
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a single point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in multi dimensions, with intensity lambda (points per unit volume).
The realisation is generated inside the multi-dimensional region domain which currently must be a rectangular box (object of class "boxx").

Value

If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim>1 or drop=FALSE, a list of such point patterns.

Note

The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

runifpointx, ppx, boxx

Examples

```
w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- rpoisppx(10, w)
```

```
rPoissonCluster Simulate Poisson Cluster Process
```


Description

Generate a random point pattern, a realisation of the general Poisson cluster process.

Usage

$$
\text { rPoissonCluster(kappa, expand, rcluster, win }=\text { owin }(c(0,1), c(0,1)) \text {, }
$$

$$
\ldots \text {, lmax=NULL, nsim=1, drop=TRUE, saveparents=TRUE) }
$$

Arguments

kappa	Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
expand	Size of the expansion of the simulation window for generating parent points. A single non-negative number.
rcluster	A function which generates random clusters. win Window in which to simulate the pattern. An object of class "owin" or some- thing acceptable to as . owin.
\ldots	Arguments passed to rcluster Optional. Upper bound on the values of kappa when kappa is a function or pixel image.
nsim	Number of simulated realisations to be generated. drop
Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-	
tern, rather than a list containing a point pattern.	

Details

This algorithm generates a realisation of the general Poisson cluster process, with the cluster mechanism given by the function rcluster.
First, the algorithm generates a Poisson point process of "parent" points with intensity kappa in an expanded window as explained below.. Here kappa may be a single positive number, a function kappa (x, y), or a pixel image object of class "im" (see im. object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points, created by calling the function rcluster. These clusters are combined together to yield a single point pattern, and the restriction of this pattern to the window win is then returned as the result of rPoissonCluster.
The expanded window consists of as.rectangle(win) extended by the amount expand in each direction. The size of the expansion is saved in the attribute "expand" and may be extracted by attr (X , "expand") where X is the generated point pattern.
The function rcluster should expect to be called as rcluster (xp[i],yp[i],...) for each parent point at a location ($x p[i], y p[i]$). The return value of rcluster should be a list with elements x, y which are vectors of equal length giving the absolute x and y coordinates of the points in the cluster.

If the return value of rcluster is a point pattern (object of class "ppp") then it may have marks. The result of rPoissonCluster will then be a marked point pattern.
If required, the intermediate stages of the simulation (the parents and the individual clusters) can also be extracted from the return value of rPoissonCluster through the attributes "parents" and "parentid". The attribute "parents" is the point pattern of parent points. The attribute "parentid" is an integer vector specifying the parent for each of the points in the simulated pattern. (If these data are not required, it is more efficient to set saveparents=FALSE.)

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of the point pattern: see Details.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner r.turner@auckland.ac.nz

See Also

rpoispp, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

Examples

```
    # each cluster consist of 10 points in a disc of radius 0.2
    nclust <- function(x0, y0, radius, n) {
            return(runifdisc(n, radius, centre=c(x0, y0)))
        }
    plot(rPoissonCluster(10, 0.2, nclust, radius=0.2, n=5))
```

```
# multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {
    X <- runifdisc(n, radius, centre=c(x0, y0))
    M <- sample(types, n, replace=TRUE)
    marks(X) <- M
    return(X)
}
plot(rPoissonCluster(15,0.1,nclust2, radius=0.1, n=5))
```

rPSNCP Simulate Product Shot-noise Cox Process

Description

Generate a random multitype point pattern, a realisation of the product shot-noise Cox process.

Usage

```
rPSNCP(lambda=rep(100, 4), kappa=rep(25, 4), omega=rep(0.03, 4),
    alpha=matrix(runif(16, -1, 3), nrow=4, ncol=4),
    kernels=NULL, nu.ker=NULL, win=owin(), nsim=1, drop=TRUE,
    cnames=NULL, epsth=0.001)
```


Arguments

lambda	List of intensities of component processes. Either a numberic vector determin- ing the constant (homogeneous) intensities or a list of pixel images (objects of class "im") determining the (inhomogeneous) intensity functions of component processes. The length of lambda determines the number of component pro- cesses.
kappa	Numeric vector of intensities of the Poisson process of cluster centres for com- ponent processes. Must have the same size as lambda.
omega	Numeric vector of bandwidths of cluster dispersal kernels for component pro- cesses. Must have the same size as lambda and kappa.
kernels	Matrix of interaction parameters. Square numeric matrix with the same number of rows and columns as the length of lambda, kappa and omega. All entries of alpha must be greater than -1.
nu.ker	Vector of character string determining the cluster dispersal kernels of component processes. Impleneted kernels are Gaussian kernel ("Thomas") with bandwidth omega, Variance-Gamma (Bessel) kernel ("VarGamma") with bandwidth omega and shape parameter nu.ker and Cauchy kernel ("Cauchy") with bandwidth omega. Must have the same length as lambda, kappa and omega.
	Numeric vector of bandwidths of shape parameters for Varaince-Gamma ker- nels.

win	Window in which to simulate the pattern. An object of class "owin".
nsim	Number of simulated realisations to be generated.
cnames	Optional vector of character strings giving the names of the component pro- cesses.
\ldots	Optional arguments passed to as.mask to determine the pixel array geometry. See as.mask.
epsth	Numerical threshold to determine the maximum interaction range for cluster kernels.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This function generates a realisation of a product shot-noise Cox process (PSNCP). This is a multitype (multivariate) Cox point process in which each element of the multivariate random intensity $\Lambda(u)$ of the process is obtained by

$$
\Lambda_{i}(u)=\lambda_{i}(u) S_{i}(u) \prod_{j \neq i} E_{j i}(u)
$$

where $\lambda_{i}(u)$ is the intensity of component i of the process,

$$
S_{i}(u)=\frac{1}{\kappa_{i}} \sum_{v \in \Phi_{i}} k_{i}(u-v)
$$

is the shot-noise random feild for component i and

$$
E_{j i}(u)=\exp \left(-\kappa_{j} \alpha_{j i} / k_{j}(0)\right) \prod_{v \in \Phi_{j}} 1+\alpha_{j i} \frac{k_{j}(u-v)}{k_{j}(0)}
$$

is a product field controlling impulses from the parent Poisson process Φ_{j} with constant intensity κ_{j} of component process j on $\Lambda_{i}(u)$. Here $k_{i}(u)$ is an isotropic kernel (probability density) function on R^{2} with bandwidth ω_{i} and shape parameter ν_{i}, and $\alpha_{j i}>-1$ is the interaction parameter.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is multitype (it carries a vector of marks which is a factor).

Author(s)

Abdollah Jalilian. Modified by Adrian Baddeley <Adrian. Baddeley@curtin. edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

References

Jalilian, A., Guan, Y., Mateu, J. and Waagepetersen, R. (2015) Multivariate product-shot-noise Cox point process models. Biometrics 71(4), 1022-1033.
rshift

See Also

rmpoispp, rThomas, rVarGamma, rCauchy, rNeymanScott

Examples

```
    online <- interactive()
    # Example 1: homogeneous components
    lambda <- c(250, 300, 180, 400)
    kappa <- c(30, 25, 20, 25)
    omega <- c(0.02, 0.025, 0.03, 0.02)
    alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
    if(!online) lambda <- lambda/10
    X <- rPSNCP(lambda, kappa, omega, alpha)
    if(online) {
        plot(X)
        plot(split(X))
    }
    #Example 2: inhomogeneous components
    z1 <- scaletointerval.im(bei.extra$elev, from=0, to=1)
    z2 <- scaletointerval.im(bei.extra$grad, from=0, to=1)
    if(!online) {
        ## reduce resolution to reduce check time
        z1 <- as.im(z1, dimyx=c(40,80))
        z2 <- as.im(z2, dimyx=c(40,80))
}
    lambda <- list(
            exp(-8 + 1.5 * z1 + 0.5 * z2),
            exp(-7.25 + 1 * z1 - 1.5 * z2),
            exp(-6 - 1.5 * z1 + 0.5 * z2),
            exp(-7.5 + 2 * z1 - 3 * z2))
    kappa <- c(35, 30, 20, 25) / (1000 * 500)
    omega <- c(15, 35, 40, 25)
    alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
    if(!online) lambda <- lapply(lambda, "/", e2=10)
    sapply(lambda, integral)
    X <- rPSNCP(lambda, kappa, omega, alpha, win = bei$window, dimyx=dim(z1))
    if(online) {
        plot(X)
        plot(split(X), cex=0.5)
    }
```

 rshift Random Shift

Description

Randomly shifts the points of a point pattern or line segment pattern. Generic.

Usage

rshift(X, ...)

Arguments

X Pattern to be subjected to a random shift. A point pattern (class "ppp"), a line segment pattern (class "psp") or an object of class "splitppp".
$\ldots \quad$ Arguments controlling the generation of the random shift vector, or specifying which parts of the pattern will be shifted.

Details

This operation applies a random shift (vector displacement) to the points in a point pattern, or to the segments in a line segment pattern.

The argument X may be

- a point pattern (an object of class "ppp")
- a line segment pattern (an object of class "psp")
- an object of class "splitppp" (basically a list of point patterns, obtained from split.ppp).

The function rshift is generic, with methods for the three classes "ppp", "psp" and "splitppp". See the help pages for these methods, rshift.ppp, rshift.psp and rshift.splitppp, for further information.

Value

An object of the same type as X.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Rolf Turner r.turner@auckland.ac.nz

See Also

rshift.ppp, rshift.psp, rshift.splitppp

Description

Randomly shifts the points of a point pattern.

Usage

\#\# S3 method for class 'ppp'
rshift(X, ..., which=NULL, group, nsim=1, drop=TRUE)

Arguments

X
... Arguments that determine the random shift. See Details.
group Optional. Factor specifying a grouping of the points of X, or NULL indicating that all points belong to the same group. Each group will be shifted together, and separately from other groups. By default, points in a marked point pattern are grouped according to their mark values, while points in an unmarked point pattern are treated as a single group.
which Optional. Identifies which groups of the pattern will be shifted, while other groups are not shifted. A vector of levels of group.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This operation randomly shifts the locations of the points in a point pattern.
The function rshift is generic. This function rshift.ppp is the method for point patterns.
The most common use of this function is to shift the points in a multitype point pattern. By default, points of the same type are shifted in parallel (i.e. points of a common type are shifted by a common displacement vector), and independently of other types. This is useful for testing the hypothesis of independence of types (the null hypothesis that the sub-patterns of points of each type are independent point processes).
In general the points of X are divided into groups, then the points within a group are shifted by a common random displacement vector. Different groups of points are shifted independently. The grouping is determined as follows:

- If the argument group is present, then this determines the grouping.
- Otherwise, if X is a multitype point pattern, the marks determine the grouping.
- Otherwise, all points belong to a single group.

The argument group should be a factor, of length equal to the number of points in X. Alternatively group may be NULL, which specifies that all points of X belong to a single group.
By default, every group of points will be shifted. The argument which indicates that only some of the groups should be shifted, while other groups should be left unchanged. which must be a vector of levels of group (for example, a vector of types in a multitype pattern) indicating which groups are to be shifted.

The displacement vector, i.e. the vector by which the data points are shifted, is generated at random. Parameters that control the randomisation and the handling of edge effects are passed through the . . . argument. They are
radius,width,height Parameters of the random shift vector.
edge String indicating how to deal with edges of the pattern. Options are "torus", "erode" and "none".
clip Optional. Window to which the final point pattern should be clipped.
If the window is a rectangle, the default behaviour is to generate a displacement vector at random with equal probability for all possible displacements. This means that the x and y coordinates of the displacement vector are independent random variables, uniformly distributed over the range of possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled by the arguments radius, width and height.
rectangular: if width and height are given, then the displacement vector is uniformly distributed in a rectangle of these dimensions, centred at the origin. The maximum possible displacement in the x direction is width/2. The maximum possible displacement in the y direction is height/2. The x and y displacements are independent. (If width and height are actually equal to the dimensions of the observation window, then this is equivalent to the default.)
radial: if radius is given, then the displacement vector is generated by choosing a random point inside a disc of the given radius, centred at the origin, with uniform probability density over the disc. Thus the argument radius determines the maximum possible displacement distance. The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted point lies outside the window of X . Options are:
"none": Points shifted outside the window of X simply disappear.
"torus": Toroidal or periodic boundary. Treat opposite edges of the window as identical, so that a point which disappears off the right-hand edge will re-appear at the left-hand edge. This is called a "toroidal shift" because it makes the rectangle topologically equivalent to the surface of a torus (doughnut).
The window must be a rectangle. Toroidal shifts are undefined if the window is non-rectangular.
"erode": Clip the point pattern to a smaller window.
If the random displacements are generated by a radial mechanism (see above), then the window of X is eroded by a distance equal to the value of the argument radius, using erosion. If the random displacements are generated by a rectangular mechanism, then the window of X is (if it is not rectangular) eroded by a distance max (height, width) using erosion; or (if it is rectangular) trimmed by a margin of width width at the left and right sides and trimmed by a margin of height height at the top and bottom.

The rationale for this is that the clipping window is the largest window for which edge effects can be ignored.

The optional argument clip specifies a smaller window to which the pattern should be restricted.
If $n s i m>1$, then the simulation procedure is performed nsim times; the result is a list of nsim point patterns.

Value

A point pattern (object of class "ppp") or a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

rshift, rshift.psp

Examples

\# random toroidal shift
\# shift "on" and "off" points separately
X <- rshift(amacrine)
\# shift "on" points and leave "off" points fixed
X <- rshift(amacrine, which="on")
\# shift all points simultaneously
X <- rshift(amacrine, group=NULL)
\# maximum displacement distance 0.1 units
X <- rshift(amacrine, radius=0.1, nsim=2)
\# shift with erosion
X <- rshift(amacrine, radius=0.1, edge="erode")

Description

Randomly shifts the segments in a line segment pattern.

Usage

\#\# S3 method for class 'psp'
rshift(X, ..., group=NULL, which=NULL)

Arguments

$$
\begin{array}{ll}
\text { X } & \text { Line segment pattern to be subjected to a random shift. An object of class "psp". } \\
\ldots & \begin{array}{l}
\text { Arguments controlling the randomisation and the handling of edge effects. See } \\
\text { rshift. ppp. }
\end{array} \\
\text { group } & \begin{array}{l}
\text { Optional. Factor specifying a grouping of the line segments of X, or NULL in- } \\
\text { dicating that all line segments belong to the same group. Each group will be } \\
\text { shifted together, and separately from other groups. }
\end{array} \\
\text { which } & \begin{array}{l}
\text { Optional. Identifies which groups of the pattern will be shifted, while other } \\
\text { groups are not shifted. A vector of levels of group. }
\end{array}
\end{array}
$$

Details

This operation randomly shifts the locations of the line segments in a line segment pattern.
The function rshift is generic. This function rshift.psp is the method for line segment patterns.
The line segments of X are first divided into groups, then the line segments within a group are shifted by a common random displacement vector. Different groups of line segments are shifted independently. If the argument group is present, then this determines the grouping. Otherwise, all line segments belong to a single group.
The argument group should be a factor, of length equal to the number of line segments in X. Alternatively group may be NULL, which specifies that all line segments of X belong to a single group.

By default, every group of line segments will be shifted. The argument which indicates that only some of the groups should be shifted, while other groups should be left unchanged. which must be a vector of levels of group indicating which groups are to be shifted.
The displacement vector, i.e. the vector by which the data line segments are shifted, is generated at random. The default behaviour is to generate a displacement vector at random with equal probability for all possible displacements. This means that the x and y coordinates of the displacement vector are independent random variables, uniformly distributed over the range of possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled by the arguments radius, width and height.
rectangular: if width and height are given, then the displacement vector is uniformly distributed in a rectangle of these dimensions, centred at the origin. The maximum possible displacement in the x direction is width/2. The maximum possible displacement in the y direction is height/2. The x and y displacements are independent. (If width and height are actually equal to the dimensions of the observation window, then this is equivalent to the default.)
radial: if radius is given, then the displacement vector is generated by choosing a random line segment inside a disc of the given radius, centred at the origin, with uniform probability density over the disc. Thus the argument radius determines the maximum possible displacement distance. The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted line segment lies partially or completely outside the window of X. Currently the only option is "erode" which specifies that the segments will be clipped to a smaller window.
The optional argument clip specifies a smaller window to which the pattern should be restricted.
rshift.splitppp

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner r.turner@auckland.ac.nz

See Also

rshift, rshift.ppp

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- rshift(X, radius=0.1)

```
rshift.splitppp Randomly Shift a List of Point Patterns
```


Description

Randomly shifts each point pattern in a list of point patterns.

Usage

```
    ## S3 method for class 'splitppp'
    rshift(X, ..., which=seq_along(X), nsim=1, drop=TRUE)
```


Arguments

X
... Parameters controlling the generation of the random shift vector and the handling of edge effects. See rshift.ppp.
which Optional. Identifies which patterns will be shifted, while other patterns are not shifted. Any valid subset index for X.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a split point pattern object, rather than a list containing the split point pattern.

Details

This operation applies a random shift to each of the point patterns in the list X .
The function rshift is generic. This function rshift.splitppp is the method for objects of class "splitppp", which are essentially lists of point patterns, created by the function split.ppp.

By default, every pattern in the list X will be shifted. The argument which indicates that only some of the patterns should be shifted, while other groups should be left unchanged. which can be any valid subset index for X .

Each point pattern in the list X (or each pattern in X [which]) is shifted by a random displacement vector. The shifting is performed by rshift.ppp.

See the help page for rshift.ppp for details of the other arguments.
If n sim >1, then the simulation procedure is performed nsim times; the result is a list of split point patterns.

Value

Another object of class "splitppp", or a list of such objects.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

```
rshift,rshift.ppp
```


Examples

```
    data(amacrine)
    Y <- split(amacrine)
    # random toroidal shift
    # shift "on" and "off" points separately
    X <- rshift(Y)
    # shift "on" points and leave "off" points fixed
    X <- rshift(Y, which="on")
    # maximum displacement distance 0.1 units
    X <- rshift(Y, radius=0.1)
    # shift with erosion
    X <- rshift(Y, radius=0.1, edge="erode")
```


Description

Generate a random point pattern, a realisation of the Simple Sequential Inhibition (SSI) process.

Usage

$r S S I(r, n=I n f$, win $=$ square (1), giveup $=1000$, x. init=NULL,..., $\mathrm{f}=\mathrm{NULL}, \mathrm{fmax}=\mathrm{NULL}, \mathrm{nsim}=1$, drop=TRUE)

Arguments

$r \quad$ Inhibition distance.
$\mathrm{n} \quad$ Maximum number of points allowed. If n is finite, stop when the total number of points in the point pattern reaches n. If n is infinite (the default), stop only when it is apparently impossible to add any more points. See Details.
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. The default window is the unit square, unless x.init is specified, when the default window is the window of x.init.
giveup Number of rejected proposals after which the algorithm should terminate.
x.init Optional. Initial configuration of points. A point pattern (object of class "ppp"). The pattern returned by rSSI consists of this pattern together with the points added via simple sequential inhibition. See Details.
... Ignored.
$\mathrm{f}, \mathrm{fmax} \quad$ Optional arguments passed to rpoint to specify a non-uniform probability density for the random points.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of the Simple Sequential Inhibition point process inside the window win.
Starting with an empty window (or with the point pattern x . init if specified), the algorithm adds points one-by-one. Each new point is generated uniformly in the window and independently of preceding points. If the new point lies closer than r units from an existing point, then it is rejected and another random point is generated. The algorithm terminates when either
(a) the desired number n of points is reached, or
(b) the current point configuration has not changed for giveup iterations, suggesting that it is no longer possible to add new points.

If n is infinite (the default) then the algorithm terminates only when (b) occurs. The result is sometimes called a Random Sequential Packing.

Note that argument n specifies the maximum permitted total number of points in the pattern returned by $\operatorname{rSSI}()$. If x.init is not NULL then the number of points that are added is at most n -npoints(x.init) if n is finite.
Thus if x. init is not NULL then argument n must be at least as large as npoints (x.init), otherwise an error is given. If $n==n p o i n t s(x . i n i t)$ then a warning is given and the call to rSSI() has no real effect; x.init is returned.

There is no requirement that the points of x. init be at a distance at least r from each other. All of the added points will be at a distance at least r from each other and from any point of x. init.
The points will be generated inside the window win and the result will be a point pattern in the same window.

The default window is the unit square, win = square (1), unless x.init is specified, when the default is win=Window(x.init), the window of x.init.

If both win and x.init are specified, and if the two windows are different, then a warning will be issued. Any points of x.init lying outside win will be removed, with a warning.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

See Also

rpoispp, rMaternI, rMaternII.

Examples

```
Vinf <- rSSI(0.07)
V100 <- rSSI(0.07, 100)
X <- runifpoint(100)
Y <- rSSI(0.03,142,x.init=X) # Y consists of X together with
                # 42 added points.
plot(Y, main="rSSI")
plot(X,add=TRUE,chars=20,cols="red")
## inhomogeneous
Z <- rSSI(0.07, 50, f=function(x,y){x})
plot(Z)
```


rstrat Simulate Stratified Random Point Pattern

Description

Generates a "stratified random" pattern of points in a window, by dividing the window into rectangular tiles and placing k random points independently in each tile.

Usage

```
rstrat(win=square(1), nx, ny=nx, k = 1, nsim=1, drop=TRUE)
```


Arguments

win A window. An object of class owin, or data in any format acceptable to as . owin().
nx Number of tiles in each column.
ny Number of tiles in each row.
$k \quad$ Number of random points to generate in each tile.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a random pattern of points in a "stratified random" sampling design. It can be useful for generating random spatial sampling points.

The bounding rectangle of win is divided into a regular $n x \times n y$ grid of rectangular tiles. In each tile, k random points are generated independently with a uniform distribution in that tile.
Some of these grid points may lie outside the window win: if they do, they are deleted.
The result is a point pattern inside the window win.
This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1 .

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also
rsyst, runifpoint, quadscheme

Examples

```
X <- rstrat(nx=10)
plot(X)
# polygonal boundary
X <- rstrat(letterR, 5, 10, k=3)
plot(X)
```

rStrauss Perfect Simulation of the Strauss Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss process, using a perfect simulation algorithm.

Usage

```
rStrauss(beta, gamma = 1, R = 0, W = owin(), expand=TRUE, nsim=1, drop=TRUE)
```


Arguments

beta
gamma interaction parameter (a number between 0 and 1, inclusive).
R
W window (object of class "owin") in which to generate the random pattern.
expand Logical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss point process in the window W using a 'perfect simulation' algorithm.

The Strauss process (Strauss, 1975; Kelly and Ripley, 1976) is a model for spatial inhibition, ranging from a strong 'hard core' inhibition to a completely random pattern according to the value of gamma.
The Strauss process with interaction radius R and parameters β and γ is the pairwise interaction point process with probability density

$$
f\left(x_{1}, \ldots, x_{n}\right)=\alpha \beta^{n(x)} \gamma^{s(x)}
$$

where x_{1}, \ldots, x_{n} represent the points of the pattern, $n(x)$ is the number of points in the pattern, $s(x)$ is the number of distinct unordered pairs of points that are closer than R units apart, and α is the normalising constant. Intuitively, each point of the pattern contributes a factor β to the probability density, and each pair of points closer than r units apart contributes a factor γ to the density.
The interaction parameter γ must be less than or equal to 1 in order that the process be well-defined (Kelly and Ripley, 1976). This model describes an "ordered" or "inhibitive" pattern. If $\gamma=1$ it reduces to a Poisson process (complete spatial randomness) with intensity β. If $\gamma=0$ it is called a "hard core process" with hard core radius $R / 2$, since no pair of points is permitted to lie closer than R units apart.

The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).
There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If $n s i m=1$, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen, adapted for spatstat by Adrian Baddeley Adrian.Baddeley@curtin.edu.au

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Kelly, F.P. and Ripley, B.D. (1976) On Strauss's model for clustering. Biometrika 63, 357-360.
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467-475.

See Also

rmh, Strauss, rHardcore, rStraussHard, rDiggleGratton, rDGS, rPenttinen.

Examples

$X<-r \operatorname{Strauss}(0.05,0.2,1.5$, square (50))

rStraussHard Perfect Simulation of the Strauss-Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss-Hardcore process, using a perfect simulation algorithm.

Usage

```
rStraussHard(beta, gamma = 1, R = 0, H = 0, W = owin(),
```

 expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).
gamma interaction parameter (a number between 0 and 1 , inclusive).
$\mathrm{R} \quad$ interaction radius (a non-negative number).
H hard core distance (a non-negative number smaller than R).
W window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
expand Logical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss-Hardcore point process in the window W using a 'perfect simulation' algorithm.
The Strauss-Hardcore process is described in StraussHard.
The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).
A limitation of the perfect simulation algorithm is that the interaction parameter γ must be less than or equal to 1 . To simulate a Strauss-hardcore process with $\gamma>1$, use rmh.
There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If $n s i m=1$, a point pattern (object of class "ppp"). If nsim >1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen and Adrian Baddeley Adrian.Baddeley@curtin.edu.au

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.

See Also

rmh, StraussHard.
rHardcore, rStrauss, rDiggleGratton, rDGS, rPenttinen.

Examples

```
Z <- rStraussHard(100,0.7,0.05,0.02)
    Y <- rStraussHard(100,0.7,0.05,0.01, nsim=2)
```

rtemper | Simulated Annealing or Simulated Tempering for Gibbs Point Pro- |
| :--- |
| cesses |

Description

Performs simulated annealing or simulated tempering for a Gibbs point process model using a specified annealing schedule.

Usage

rtemper(model, invtemp, nrep, ..., track=FALSE, start = NULL, verbose = FALSE)

Arguments

model A Gibbs point process model: a fitted Gibbs point process model (object of class "ppm"), or any data acceptable to rmhmodel.
invtemp A numeric vector of positive numbers. The sequence of values of inverse temperature that will be used.
nrep An integer vector of the same length as invtemp. The value nrep[i] specifies the number of steps of the Metropolis-Hastings algorithm that will be performed at inverse temperature invtemp[i].
start Initial starting state for the simulation. Any data acceptable to rmhstart.
track Logical flag indicating whether to save the transition history of the simulations.
... Additional arguments passed to rmh. default.
verbose Logical value indicating whether to print progress reports.

Details

The Metropolis-Hastings simulation algorithm rmh is run for nrep[1] steps at inverse temperature invtemp[1], then for nrep[2] steps at inverse temperature invtemp[2], and so on.
Setting the inverse temperature to a value α means that the probability density of the Gibbs model, $f(x)$, is replaced by $g(x)=C f(x)^{\alpha}$ where C is a normalising constant depending on α. Larger values of α exaggerate the high and low values of probability density, while smaller values of α flatten out the probability density.
For example if the original model is a Strauss process, the modified model is close to a hard core process for large values of inverse temperature, and close to a Poisson process for small values of inverse temperature.

Value

A point pattern (object of class "ppp").
If track=TRUE, the result also has an attribute "history" which is a data frame with columns proposaltype, accepted, numerator and denominator, as described in rmh. default.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak <rubak@math. aau.dk>.

See Also

rmh. default, rmh.

Examples

```
stra <- rmhmodel(cif="strauss",
    par=list(beta=2,gamma=0.2,r=0.7),
    w=square(10))
nr <- if(interactive()) 1e5 else 1e4
Y <- rtemper(stra, c(1, 2, 4, 8), nr * (1:4), verbose=TRUE, track=TRUE)
```


rthin

Random Thinning

Description

Applies independent random thinning to a point pattern or segment pattern.

Usage

rthin(X, P, ..., nsim=1, drop=TRUE)

Arguments

X A point pattern (object of class "ppp" or "lpp" or "pp3" or "ppx") or line segment pattern (object of class "psp") that will be thinned.
$P \quad$ Data giving the retention probabilities, i.e. the probability that each point or line in X will be retained. Either a single number, or a vector of numbers, or a function(x, y) in the R language, or a function object (class "funxy" or "linfun"), or a pixel image (object of class "im" or "linim").
... Additional arguments passed to P, if it is a function.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

In a random thinning operation, each point of the point pattern X is randomly either deleted or retained (i.e. not deleted). The result is a point pattern, consisting of those points of X that were retained.
Independent random thinning means that the retention/deletion of each point is independent of other points.
The argument P determines the probability of retaining each point. It may be
a single number, so that each point will be retained with the same probability P;
a vector of numbers, so that the i th point of X will be retained with probability $P[i]$;
a function $P(x, y)$, so that a point at a location (x, y) will be retained with probability $P(x, y)$;
an object of class "funxy" or "linfun", so that points in the pattern X will be retained with probabilities $\mathrm{P}(\mathrm{X})$;
a pixel image, containing values of the retention probability for all locations in a region encompassing the point pattern.

If P is a function $P(x, y)$, it should be 'vectorised', that is, it should accept vector arguments x, y and should yield a numeric vector of the same length. The function may have extra arguments which are passed through the . . . argument.

Value

An object of the same kind as X if n sim=1, or a list of such objects if nsim >1.

Reproducibility

The algorithm for random thinning was changed in spatstat version 1.42-3. Set spatstat.options(fastthin=FALSE) to use the previous, slower algorithm, if it is desired to reproduce results obtained with earlier versions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

Examples

```
plot(redwood, main="thinning")
# delete 20% of points
Y <- rthin(redwood, 0.8)
points(Y, col="green", cex=1.4)
# function
f <- function(x,y) { ifelse(x < 0.4, 1, 0.5) }
Y <- rthin(redwood, f)
# pixel image
Z <- as.im(f, Window(redwood))
Y <- rthin(redwood, Z)
# thin other kinds of patterns
E <- rthin(osteo$pts[[1]], 0.6)
L <- rthin(copper$Lines, 0.5)
```


Description

Finds the topologically-connected clumps of a spatial region and randomly deletes some of the clumps.

Usage

rthinclumps(W, p, ...)

Arguments

W Window (object of class "owin" or pixel image (object of class "im").
p Probability of retaining each clump. A single number between 0 and 1.
Additional arguments passed to connected.im or connected. owin to determine the connected clumps.

Details

The argument W specifies a region of space, typically consisting of several clumps that are not connected to each other. The algorithm randomly deletes or retains each clump. The fate of each clump is independent of other clumps.

If W is a spatial window (class "owin") then it will be divided into clumps using connected. owin. Each clump will either be retained (with probability p) or deleted in its entirety (with probability $1-p$).

If W is a pixel image (class " im ") then its domain will be divided into clumps using connected.im. The default behaviour depends on the type of pixel values. If the pixel values are logical, then the spatial region will be taken to consist of all pixels whose value is TRUE. Otherwise, the spatial region is taken to consist of all pixels whose value is defined (i.e. not equal to NA). This behaviour can be changed using the argument background passed to connected.im.

The result is a window comprising all the clumps that were retained.

Value

Window (object of class "owin").

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au.

See Also

r thin for thinning other kinds of objects.

Examples

```
    A <- (distmap(cells) < 0.06)
    opa <- par(mfrow=c(1,2))
    plot(A)
    plot(rthinclumps(A, 0.5))
    par(opa)
```

rThomas Simulate Thomas Process

Description

Generate a random point pattern, a realisation of the Thomas cluster process.

Usage

```
rThomas(kappa, scale, mu, win = owin(c(0,1),c(0,1)),
    nsim=1, drop=TRUE,
    saveLambda=FALSE, expand = 4*scale, ...,
    poisthresh=1e-6, nonempty=TRUE, saveparents=TRUE)
```


Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
scale Standard deviation of random displacement (along each coordinate axis) of a point from its cluster centre.
mu Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as. owin.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
expand Numeric. Size of window expansion for generation of parent points. Has a sensible default.
... Passed to clusterfield to control the image resolution when saveLambda=TRUE and to clusterradius when expand is missing.
poisthresh Numerical threshold below which the model will be treated as a Poisson process. See Details.
nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which parents are generated conditionally on having at least one offspring point. If FALSE, parents are generated even if they have no offspring. Both choices are valid; the default is recommended unless you need to simulate all the parent points for some other purpose.
saveparents Logical value indicating whether to save the locations of the parent points as an attribute.

Details

This algorithm generates a realisation of the ('modified') Thomas process, a special case of the Neyman-Scott process, inside the window win.

In the simplest case, where kappa and mu are single numbers, the algorithm generates a uniform Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of "offspring" points, the number of points per cluster being Poisson (mu) distributed, and their positions being isotropic Gaussian displacements from the cluster parent location. The resulting point pattern is a realisation of the classical "stationary Thomas process" generated inside the window win. This point process has intensity kappa * mu.

The algorithm can also generate spatially inhomogeneous versions of the Thomas process:

- The parent points can be spatially inhomogeneous. If the argument kappa is a function (x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument mu is a function (x, y) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to $m u * f$, where f is the Gaussian probability density centred at the parent point. Equivalently we first generate, for each parent point, a Poisson (mumax) random number of offspring (where M is the maximum value of mu) with independent Gaussian displacements from the parent location, and then randomly thin the offspring points, with retention probability mu / M.
- Both the parent points and the offspring points can be spatially inhomogeneous, as described above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because an offspring point inside win could have its parent point lying outside win. In order to allow this, the simulation algorithm first expands the original window win by a distance expand and generates the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain must contain this larger window.

The intensity of the Thomas process is kappa * mu if either kappa or mu is a single number. In the general case the intensity is an integral involving kappa, mu and f.

The Thomas process with homogeneous parents (i.e. where kappa is a single number) can be fitted to data using kppm. Currently it is not possible to fit the Thomas model with inhomogeneous parents.
If the pair correlation function of the model is very close to that of a Poisson process, deviating by less than poisthresh, then the model is approximately a Poisson process, and will be simulated as a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner < r . turner@auckland. ac.nz>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32 659-667.

Thomas, M. (1949) A generalisation of Poisson's binomial limit for use in ecology. Biometrika 36, 18-25.
Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous NeymanScott processes. Biometrics 63, 252-258.

See Also

rpoispp, rMatClust, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson, kppm, clusterfit.

Examples

```
    #homogeneous
    X <- rThomas(10, 0.2, 5)
    #inhomogeneous
    Z <- as.im(function(x,y){ 5 * exp(2 * x - 1) }, owin())
    Y <- rThomas(10, 0.2, Z)
```

 runifdisc Generate \(N\) Uniform Random Points in a Disc

Description

Generate a random point pattern containing n independent uniform random points in a circular disc.

Usage

runifdisc(n, radius=1, centre $=c(0,0), \ldots$, nsim=1, drop=TRUE)

Arguments

n	Number of points.
radius	Radius of the circle.
centre	Coordinates of the centre of the circle.
\ldots	Arguments passed to disc controlling the accuracy of approximation to the cir- cle.
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This function generates n independent random points, uniformly distributed in a circular disc.
It is faster (for a circular window) than the general code used in runifpoint.
To generate random points in an ellipse, first generate points in a circle using runifdisc, then transform to an ellipse using affine, as shown in the examples.

To generate random points in other windows, use runifpoint. To generate non-uniform random points, use rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1 .

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner r.turner@auckland.ac.nz

See Also

disc, runifpoint, rpoint

Examples

```
# 100 random points in the unit disc
plot(runifdisc(100))
# 42 random points in the ellipse with major axis 3 and minor axis 1
X<- runifdisc(42)
Y <- affine(X, mat=diag(c(3,1)))
plot(Y)
```

runifpoint Generate N Uniform Random Points

Description

Generate a random point pattern containing n independent uniform random points.

Usage

```
runifpoint(n, win=owin(c(0,1),c(0,1)), giveup=1000, warn=TRUE, ...,
    nsim=1, drop=TRUE, ex=NULL)
```


Arguments

n	Number of points.
win	Window in which to simulate the pattern. An object of class "owin" or some- thing acceptable to as. owin.
giveup	Number of attempts in the rejection method after which the algorithm should stop trying to generate new points.
warn	Logical. Whether to issue a warning if n is very large. See Details.
\ldots	Ignored.
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern. Optional. A point pattern to use as the example. If ex is given and n and win are missing, then n and win will be calculated from the point pattern ex.

Details

This function generates n independent random points, uniformly distributed in the window win. (For nonuniform distributions, see rpoint.)
The algorithm depends on the type of window, as follows:

- If win is a rectangle then n independent random points, uniformly distributed in the rectangle, are generated by assigning uniform random values to their cartesian coordinates.
- If win is a binary image mask, then a random sequence of pixels is selected (using sample) with equal probabilities. Then for each pixel in the sequence we generate a uniformly distributed random point in that pixel.
- If win is a polygonal window, the algorithm uses the rejection method. It finds a rectangle enclosing the window, generates points in this rectangle, and tests whether they fall in the desired window. It gives up when giveup $* \mathrm{n}$ tests have been performed without yielding n successes.

The algorithm for binary image masks is faster than the rejection method but involves discretisation.
If warn=TRUE, then a warning will be issued if n is very large. The threshold is spatstat. options("huge.npoints"). This warning has no consequences, but it helps to trap a number of common errors.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu. au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object, rpoispp, rpoint

Examples

```
# 100 random points in the unit square
pp <- runifpoint(100)
# irregular window
data(letterR)
# polygonal
pp <- runifpoint(100, letterR)
# binary image mask
pp <- runifpoint(100, as.mask(letterR))
##
# randomising an existing point pattern
runifpoint(npoints(cells), win=Window(cells))
runifpoint(ex=cells)
```

```
runifpoint3 Generate N Uniform Random Points in Three Dimensions
```


Description

Generate a random point pattern containing n independent, uniform random points in three dimensions.

Usage

runifpoint3(n, domain = box3(), nsim=1, drop=TRUE)

Arguments

n	Number of points to be generated.
domain	Three-dimensional box in which the process should be generated. An object of class "box3".
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.

Details

This function generates n independent random points, uniformly distributed in the three-dimensional box domain.

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim >1, a list of such point patterns.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner r.turner@auckland.ac.nz

See Also

rpoispp3, pp3, box3

Examples

```
    X <- runifpoint3(50)
```

runifpointOnLines Generate N Uniform Random Points On Line Segments

Description

Given a line segment pattern, generate a random point pattern consisting of n points uniformly distributed on the line segments.

Usage

runifpointOnLines(n, L, nsim=1, drop=TRUE)

Arguments

$\mathrm{n} \quad$ Number of points to generate.
$\mathrm{L} \quad$ Line segment pattern (object of class "psp") on which the points should lie.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This command generates a point pattern consisting of n independent random points, each point uniformly distributed on the line segment pattern. This means that, for each random point,

- the probability of falling on a particular segment is proportional to the length of the segment; and
- given that the point falls on a particular segment, it has uniform probability density along that segment.

If n is a single integer, the result is an unmarked point pattern containing n points. If n is a vector of integers, the result is a marked point pattern, with m different types of points, where $m=$ length (n), in which there are $n[j]$ points of type j.

Value

If n sim $=1$, a point pattern (object of class "ppp") with the same window as L. If nsim >1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au> and Rolf Turner <r.turner@auckland. ac.nz>

See Also

psp, ppp, pointsOnLines, runifpoint

Examples

```
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- runifpointOnLines(20, X)
plot(X, main="")
plot(Y, add=TRUE)
Z <- runifpointOnLines(c(5,5), X)
```

runifpointx

Generate N Uniform Random Points in Any Dimensions

Description

Generate a random point pattern containing n independent, uniform random points in any number of spatial dimensions.

Usage

runifpointx(n, domain, nsim=1, drop=TRUE)

Arguments

n
domain Multi-dimensional box in which the process should be generated. An object of class "boxx".
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a single point pattern.

Details

This function generates a pattern of n independent random points, uniformly distributed in the multi-dimensional box domain.

Value
If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim>1 or drop=FALSE, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner < r.turner@auckland.ac.nz>

See Also

rpoisppx, ppx, boxx

Examples

$w<-\operatorname{boxx}(x=c(0,1), y=c(0,1), \quad z=c(0,1), \quad t=c(0,3))$
$X<-$ runifpointx $(50, w)$

rVarGamma | Simulate Neyman-Scott Point Process with Variance Gamma cluster |
| :--- |
| kernel |

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Variance Gamma (Bessel) cluster kernel.

Usage

rVarGamma(kappa, nu, scale, mu, win = owin(),
thresh $=0.001$, nsim=1, drop=TRUE,
saveLambda=FALSE, expand $=$ NULL, ...,
poisthresh=1e-6, nonempty=TRUE, saveparents=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
nu \quad Shape parameter for the cluster kernel. A number greater than -1.
scale Scale parameter for cluster kernel. Determines the size of clusters. A positive number in the same units as the spatial coordinates.
mu Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as .owin.

thresh	Threshold relative to the cluster kernel value at the origin (parent location) deter- mining when the cluster kernel will be treated as zero for simulation purposes. Will be overridden by argument expand if that is given.
nsim	Number of simulated realisations to be generated.
drop	Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat- tern, rather than a list containing a point pattern.
saveLambda	
Logical. If TRUE then the random intensity corresponding to the simulated parent	
points will also be calculated and saved, and returns as an attribute of the point	
pattern.	

Details

This algorithm generates a realisation of the Neyman-Scott process with Variance Gamma (Bessel) cluster kernel, inside the window win.
The process is constructed by first generating a Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of points, the number of points in each cluster being random with a Poisson (mu) distribution, and the points being placed independently and uniformly according to a Variance Gamma kernel.
The shape of the kernel is determined by the dimensionless index nu. This is the parameter $n u^{\prime}$ (nu-prime) $\nu^{\prime}=\alpha / 2-1$ appearing in equation (12) on page 126 of Jalilian et al (2013).

The scale of the kernel is determined by the argument scale, which is the parameter η appearing in equations (12) and (13) of Jalilian et al (2013). It is expressed in units of length (the same as the unit of length for the window win).
In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.
This model can be fitted to data by the method of minimum contrast, maximum composite likelihood or Palm likelihood using kppm.
The algorithm can also generate spatially inhomogeneous versions of the cluster process:

- The parent points can be spatially inhomogeneous. If the argument kappa is a function (x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument mu is a function (x, y) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomogeneous (mu is a function or pixel image), the model can be fitted to data using kppm, or using vargamma.estK or vargamma.estpcf applied to the inhomogeneous K function.
If the pair correlation function of the model is very close to that of a Poisson process, deviating by less than poisthresh, then the model is approximately a Poisson process, and will be simulated as a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim >1.
Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Warning

The argument nu is the parameter ν^{\prime} (nu-prime) $\nu^{\prime}=\alpha / 2-1$ appearing in equation (12) on page 126 of Jalilian et al (2013). This is different from the parameter called ν appearing in equation(14) on page 127 of Jalilian et al (2013), defined by $\nu=\alpha-1$. This has been a frequent source of confusion.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian. Baddeley@curtin. edu. a

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox processes. Scandinavian Journal of Statistics 40, 119-137.
Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous NeymanScott processes. Biometrics 63, 252-258.

See Also

rpoispp, rNeymanScott, kppm.
vargamma.estK, vargamma.estpcf.

Examples

```
# homogeneous
X <- rVarGamma(30, 2, 0.02, 5)
# inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
Z <- as.im(ff, W= owin())
```

$Y<-r V a r G a m m a(30,2,0.02, Z)$
YY <- rVarGamma(ff, 2, 0.02, 3)
update.rmhcontrol Update Control Parameters of Metropolis-Hastings Algorithm

Description

update method for class "rmhcontrol".

Usage

\#\# S3 method for class 'rmhcontrol'
update(object, ...)

Arguments

object Object of class "rmhcontrol" containing control parameters for a MetropolisHastings algorithm.
... Arguments to be updated in the new call to rmhcontrol.

Details

This is a method for the generic function update for the class "rmhcontrol". An object of class "rmhcontrol" describes a set of control parameters for the Metropolis-Hastings simulation algorithm. See rmhcontrol).
update. rmhcontrol will modify the parameters specified by object according to the new arguments given.

Value

Another object of class "rmhcontrol".

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner < r.turner@auckland.ac.nz>

Examples

```
    a <- rmhcontrol(expand=1)
    update(a, expand=2)
```

```
    will.expand Test Expansion Rule
```


Description

Determines whether an expansion rule will actually expand the window or not.

Usage

will.expand(x)

Arguments

x
Expansion rule. An object of class "rmhexpand".

Details

An object of class "rmhexpand" describes a rule for expanding a simulation window. See rmhexpand for details.

One possible expansion rule is to do nothing, i.e. not to expand the window.
This command inspects the expansion rule x and determines whether it will or will not actually expand the window. It returns TRUE if the window will be expanded.

Value

Logical value.

Author(s)

Adrian Baddeley <Adrian. Baddeley@curtin.edu.au>
and Rolf Turner r.turner@auckland.ac.nz

See Also

rmhexpand, expand.owin

Examples

```
    x <- rmhexpand(distance=0.2)
    y <- rmhexpand(area=1)
    will.expand(x)
    will.expand(y)
```


Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions extract the window in which the object is defined.

Usage

```
    ## S3 method for class 'rmhmodel'
Window(X, ...)
```


Arguments

X
A spatial object.
... Ignored.

Details

These are methods for the generic function Window which extract the spatial window in which the object X is defined.

Value

An object of class "owin" (see owin. object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu. au>, Rolf Turner <r.turner@auckland. ac.nz> and Ege Rubak <rubak@math. aau.dk>.

See Also

Window, Window.ppp, Window.psp.
owin.object

Examples

```
    A <- rmhmodel(cif='poisson', par=list(beta=10), w=square(2))
    Window(A)
```


Index

```
* datagen
    default.expand, 16
    default.rmhcontrol, 17
    quadratresample, 25
    rags,27
    ragsAreaInter,28
    ragsMultiHard,29
    rCauchy, 30
    rcell,33
    rcellnumber, 34
    rDGS, 36
    rDiggleGratton, 37
    rGaussPoisson,41
    rHardcore, 42
    rjitter.psp,44
    rlabel,46
    rLGCP,48
    rMatClust,50
    rMaternI, 52
    rMaternII, 54
    rmh, 55
    rmh.default, 56
    rmhcontrol,}6
    rmhexpand, 71
    rmhmodel,}7
    rmhmodel.default, 75
    rmhmodel.list, }8
    rmhstart, 84
    rMosaicField, 86
    rMosaicSet, 87
    rmpoint, 88
    rmpoispp,92
    rNeymanScott,95
    rnoise, }9
    rPenttinen,99
    rpoint, 101
    rpoisline,103
    rpoislinetess,104
    rpoispp,105
```

rpoispp3, 107
rpoisppOnLines, 108
rpoisppx, 110
rPoissonCluster, 111
rPSNCP, 113
rshift, 115
rshift.ppp, 117
rshift.psp, 119
rshift.splitppp, 121
rSSI, 123
rstrat, 125
rStrauss, 126
rStraussHard, 128
rtemper, 129
rthin, 131
rthinclumps, 132
rThomas, 134
runifdisc, 136
runifpoint, 137
runifpoint3, 139
runifpointOnLines, 140
runifpointx, 141
rVarGamma, 142

* distribution
dmixpois, 18
rknn, 45
* manip
as.owin.rmhmodel, 9
domain.rmhmodel, 20
expand.owin, 21
rthin, 131
rthinclumps, 132
will.expand, 146
Window.rmhmodel, 147
* math
gauss.hermite, 22
indefinteg, 23
* methods
update.rmhcontrol, 145

```
* models
    is.stationary, 24
    reach, }3
    update.rmhcontrol, 145
* package
    spatstat.random-package, 4
* spatial
    as.owin.rmhmodel,}
    clusterfield,12
    clusterkernel, 13
    clusterradius, }1
    default.expand, 16
    default.rmhcontrol, 17
    domain.rmhmodel, 20
    expand.owin, 21
    is.stationary, 24
    quadratresample, 25
    rags,27
    ragsAreaInter,28
    ragsMultiHard,29
    rCauchy, 30
    rcell,33
    rDGS,36
    rDiggleGratton,37
    reach, 39
    rGaussPoisson,41
    rHardcore,42
    rjitter.psp,44
    rknn,45
    rlabel,46
    rLGCP,48
    rMatClust,50
    rMaternI, 52
    rMaternII, 54
    rmh, 55
    rmh.default,56
    rmhcontrol,}6
    rmhexpand, }7
    rmhmodel,}7
    rmhmodel.default, 75
    rmhmodel.list, 82
    rmhstart, 84
    rMosaicField,86
    rMosaicSet, 87
    rmpoint,88
    rmpoispp,92
    rNeymanScott, }9
    rnoise,98
```

rPenttinen, 99
rpoint, 101
rpoisline, 103
rpoislinetess, 104
rpoispp, 105
rpoispp3, 107
rpoisppOnLines, 108
rpoisppx, 110
rPoissonCluster, 111
rPSNCP, 113
rshift, 115
rshift.ppp, 117
rshift.psp, 119
rshift.splitppp, 121
rSSI, 123
rstrat, 125
rStrauss, 126
rStraussHard, 128
rtemper, 129
rthin, 131
rthinclumps, 132
rThomas, 134
runifdisc, 136
runifpoint, 137
runifpoint3, 139
runifpointOnLines, 140
runifpointx, 141
rVarGamma, 142
spatstat.random-package, 4
update.rmhcontrol, 145
will.expand, 146
Window.rmhmodel, 147
.Random. seed, 59, 61
affine, 21, 22, 137
AreaInter, 28, 29, 61, 80
as.im, 99
as.mask, 12, 48, 86, 98, 99, 114
as.owin, $11,31,33,41,50,52,54,57,79,92$, 95, 103-105, 111, 123, 125, 134, 138, 142
as.owin.lpp, 11
as.owin.ppm, 11
as.owin.rmhmodel, 9
as.ppp, 58, 85
as.rectangle, 96, 112
BadGey, 61, 80
box3, 108, 140
boxx, 111, 142
clusterfield, 12, 14, 31, 50, 134, 143
clusterfit, 32, 52, 136
clusterkernel, 13, 15
clusterradius, 14, 31, 134, 143
connected.im, 133
connected. owin, 133
cut.ppp, 46, 47
default.expand, 16, 18
default.rmhcontrol, 17
density.ppp, 12, 13
DiggleGatesStibbard, 37, 61, 80
DiggleGratton, 39, 61, 74, 80, 83
dilation, 17
dilation.owin, 72
disc, 136, 137
Distributions, 99
dknn (rknn), 45
dmixpois, 7,18
domain, 20, 21
domain.lpp, 21
domain.ppm, 21
domain.rmhmodel, 20
dpois, 19
envelope, 16, 17
erosion, 118
expand.owin, 21, 73, 146
Fiksel, 61, 80
Frame, 21
gauss.hermite, 19, 22
Geyer, 61, 80
Hardcore, 43, 61, 80
Hybrid, 61, 80
im. object, $79,90,93,96,102,106,112$
indefinteg, 23
integrate, 24
is.marked, 25
is. poisson (is.stationary), 24
is.stationary, 24
Kest, 34
kppm, 13-15, 32, 49, 51, 52, 96, 135, 136, 143, 144
layered, 11
LennardJones, 61, 77, 80
lgcp.estK, 49
MultiHard, 27, 30
MultiStrauss, 61, 74, 80, 83
MultiStraussHard, 61, 74, 80, 83
OrdThresh, 40
owin, 11, 33, 125
owin. object, 10, 11, 90, 94, 102, 106, 138, 147

PairPiece, 61, 74, 80, 83
Penttinen, 61, 74, 77, 80, 100
pixellate.ppp, 12
pknn (rknn), 45
pmixpois(dmixpois), 18
pointsOnLines, 141
Poisson, 61, 80
pp3, 108, 140
ppm, 18, 40, 61, 74, 80, 83
ppois, 19
ppp, 61, 109, 141
ppp.object, 59, 90, 94, 102, 106, 138
ppx, 111, 142
psp, 103, 109, 141
qknn (rknn), 45
qmixpois (dmixpois), 18
qpois, 19
qqplot.ppm, 16, 17
quadratcount, 26
quadratresample, 6, 8, 25
quadrats, 26
quadscheme, 125
rags, 27, 28-30
ragsAreaInter, 27, 28, 30
ragsMultiHard, 27, 29, 29
rCauchy, 6, 7, 13, 15, 30, 52, 98, 112, 115, 136
rcell, 6, 7, 33, 35, 106
rcellnumber, 33, 34, 34
rDGS, 6, 7, 36, 39, 43, 100, 127, 129
rDiggleGratton, 6, 7, 37, 37, 43, 100, 127, 129
reach, $16,17,39$
reach.dppm, 40
reach.kppm, 40
reach.ppm, 40
rescue. rectangle, 106
RFsimulate, 49
rGaussPoisson, 6, 7, 32, 41, 49, 52, 98, 106, 112, 136
rHardcore, 6, 7, 37, 39, 42, 100, 127, 129
rjitter, 44, 45
rjitter.psp, 44
rknn, 7, 45
rlabel, 6, 46
rLGCP, 7, 48
rMatClust, $6,7,13,15,32,42,49,50,53,55$, 98, 106, 112, 136
rMaternI, 5, 7, 52, 55, 106, 124
rMaternII, 5, 7, 54, 106, 124
rmh, $6,11,16,17,36-39,43,55,57,61,68$, $69,71-75,79,80,82-85,100$, 127-130
rmh.default, 55, 56, 56, 106, 130
rmh.ppm, 55, 61
rmhcontrol, 16-18, 57-59, 67, 73, 74, 80, 83, 85, 145
rmhcontrol.default, 18
rmhexpand, 17, 21, 22, 36, 38, 42, 68, 69, 71, $71,99,126,128,146$
rmhmodel, 40, 68, 71, 73, 74, 75, 82, 83, 85, 130
rmhmodel.default, 57, 74, 75, 82, 83
rmhmodel.list, 74, 81
rmhmodel.ppm, 74, 83
rmhstart, 58, 68-71, 74, 80, 83, 84, 130
rmixpois (dmixpois), 18
RMmodel, 48
rMosaicField, $8,86,88$
rMosaicSet, 8, 86, 87
rmpoint, 5, 7, 88, 94, 106
rmpoispp, 5, 7, 29, 55, 90, 92, 106, 115
rNeymanScott, 6, 7, 15, 32, 42, 49, 51, 52, 95, $112,115,135,136,144$
rnoise, 6, 98
rnorm, 98
rotate, 21,22
rPenttinen, 6, 7, 37, 39, 43, 77, 99, 127, 129
rpoint, 5, 7, 90, 101, 106, 123, 137, 138
rpois, 19
rpoisline, 6, 8, 103, 104
rpoislinetess, 6, 8, 86-88, 104
rpoispp, 5, 7, 32, 42, 49, 51-53, 55, 94, 96,

98, 105, 109, 112, 124, 135, 136, 138, 144
rpoispp3, 6, 107, 140
rpoisppOnLines, 6, 7, 108
rpoisppx, 7, 110, 142
rPoissonCluster, 6, 111
rPSNCP, 113
rshift, $6,8,115,119,121,122$
rshift.ppp, 116, 117, 120-122
rshift.psp, 116, 119, 119
rshift.splitppp, 116, 121
rSSI, 5, 7, 106, 123
rstrat, 5, 7, 34, 106, 125
rStrauss, 5, 7, 37, 39, 40, 43, 61, 77, 100, 106, 126, 129
rStraussHard, 6, 7, 37, 39, 43, 100, 127, 128
rsyst, 34, 125
rtemper, 129
rthin, 6, 8, 97, 131, 133
rthinclumps, 132
rThomas, 6, 7, 13, 15, 32, 42, 52, 98, 106, 112, 115,134
runif, 98
runifdisc, 5, 7, 136
runifpoint, 5, 7, 34, 102, 106, 125, 137, 137, 141
runifpoint3, 6, 108, 139
runifpointOnLines, 6, 7, 109, 140
runifpointx, 7, 111, 141
rVarGamma, $6,7,13,15,32,52,98,112,115$, 136, 142
sample, 102, 138
set. seed, 61
shift, 21, 22
simulate.ppm, 16
Softcore, 61, 74, 80, 83
spatstat.options, 68, 69, 71, 138
spatstat.random
(spatstat.random-package), 4
spatstat.random-package, 4
split.ppp, 116, 122
stepfun, 78, 79
Strauss, 40, 61, 74, 80, 83, 127
StraussHard, 61, 74, 80, 83, 128, 129
summary.ppp, 59
Triplets, 61, 74, 80
update, 145
update.rmhcontrol, 18, 145
varblock, 26
vargamma.estK, 144
vargamma.estpcf, 144
will.expand, 73, 146
Window, 21, 147
Window.ppp, 147
Window. psp, 147
Window.rmhmodel, 147
xy.coords, 96

