Introduction to spectrolab

Jose Eduardo Meireles, Anna K. Schweiger, and Jeannine Cavender-Bares

July 2022

spectrolab provides methods to read, process, and visualize data from portable spectroradiometers. The
package also establishes a common interface for spectra by introducing a spectra S3 class.

spectrolab packs a ton of functionality:

e Read spectra from raw spectral files or matrices

o Access, aggregate, subset, split or combine spectra

o Seamlessly link and manipulate metadata (such as chemistry or insrument metadata)

« Plot spectra or spectral quantiles, shade spectral regions (e.g. SWIR)

e Interactively scroll through and zoom in spectra.

e Perform tasks such as vector normalization, smoothing, resampling, and sensor overlap matching.

The source code can be found on our GitHub repository. Please report any bugs and ask us your questions
through the issue tracker.

0.1 Installing and loading spectrolab
The latest stable version of spectrolab is on CRAN. Install it with:

install.packages("spectrolab")

You can also install it directly from GitHub using the devtools package.

library("devtools")
install_github("meireles/spectrolab")

Assuming that everything went smoothly, you should be able to load spectrolab like any other package.

library("spectrolab")

0.2 Reading spectra

There are two ways to get spectra into R using spectrolab:

1. Reading spectra from raw data files (formats: SVC’s sig, Spectral Evolution’s sed and ASD’s asd).
2. Converting a matrix or data.frame to spectra.

https://github.com/meireles/spectrolab
https://github.com/meireles/spectrolab/issues
https://cran.r-project.org/package=spectrolab

0.2.1 Reading spectra from raw data files: Example with SVC’s .sig

Use the function read_spectra() to read your spectroradiometer’s files. You can pass a vector of file names
to read_spectra() but it is usually easier to pass the path to the folder where your data are. Note that
spectrolab cannot read nested folders or read a mix of file types at once (i.e. having .sig and .sed files in
the same folder will produce an error).

“dir_path’ is the directory where our example datasets live
dir_path = system.file("extdata/Acer_example", "spectrolab")

Read spectra from .sig files inside the "extdata/Acer_ezample"” folder
acer_spectra = read_spectra(dir_path)

spectrolab guesses the file format automatically (but you can provide the format using the format argument
if needed). The package reads the target’s relative reflectance — the ratio between the target’s radiance and
the reference’s radiance — by default. However, you can read the target’s or reference’s radiances using the
argument type.

Reading the target's radiance
acer_spectra_rad = read_spectra(dir_path, "sig", "target_radiance")

And the white reference's radiance
acer_white_ref = read_spectra(dir_path, "reference_radiance")

You can avoid importing undesirable spectra if those were flagged in the field. For example, we usually add
the suffixes “_ WR” to denote white reference and “_ BAD” to denote bad measurements, so we can pass
those flags to the argument exclude_if_matches in read_spectra().

Use the “exclude_tf_matches’™ argument to excluded flagged files
acer_spectra = read_spectra(dir_path, c("BAD","WR"))

Finally, spectrolab lets you read the metadata from sig and sed files if you need to. Simply set
extract_metadata to TRUE.

Use the “exclude_tf_matches ™ argument to excluded flagged files
acer_spectra_with_meta = read_spectra(dir_path,
C(HBADH s HWRH) s
TRUE)

Here are fields 2 to 6 of the metadata for the first 3 scans.
More on the “meta” function later.

meta(acer_spectra_with_meta) [1:3, 2:6]

#i# instrument integrationl integration2 integration3 scan method
1 HI: 1152050 (HR-10241i) 200 30 7 Time-based
#i# 2 HI: 1152050 (HR-10241i) 200 30 7 Time-based
3 HI: 1152050 (HR-10241i) 150 30 7 Time-based

0.2.2 Create spectra from a matrix or data.frame

If you already have your spectra in a matrix or data frame (e.g. when you read your data from a .csv file),
you can use the function as_spectra() to convert it to a spectra object. The matrix must have samples

in rows and bands in columns. The header of the bands columns must be (numeric) band labels. You also
should declare which column has the sample names (which are mandatory) using the name_idx argument. If
other columns are present (other than sample name and values), their indices must be passed to as_spectra
as the meta_idxs argument.

Here is an example using a dataset matrix named spec_matrix_meta.csv provided by the package.
dir_path = system.file("extdata/spec_matrix_meta.csv", "spectrolab")

Read data from the CSV file. If you don't use ‘check.names’ = FALSE when reading
the csv, R will usually add a letter to the column names (e.g. 'X650') which will
cause problems when converting the matriz to spectra.

spec_csv = read.csv(dir_path, FALSE)

The sample names are in column 3. Columns 1 and 2 are metadata
achillea_spec = as_spectra(spec_csv, 3, c(1,2))

And now you have a spectira object with sample names and metadata. ..
achillea_spec

spectra object

number of samples: 10

bands: 400 to 2400 (2001 bands)

metadata (2): ident, ssp

##

#it 400 401 402 403 404 405 ...
ACHMI_1 0.03734791 0.03698631 0.03804012 0.03948724 0.03952211 0.03847400

ACHMI_2 0.04608409 0.04536371 0.04436544 0.04355212 0.04415447 0.04424556

ACHMI_3 0.04058113 0.04025678 0.03958125 0.03969706 0.03978786 0.03818825

0.3 Inspecting and querying spectra

You can check out your spectra object in several ways. For instance, You may want to know how many
spectra and how many bands are in there, retrieve the file names, etc. Of course you will need to plot the
data, but that topic gets its own section further down.

Simply print the object
acer_spectra

spectra object

number of samples: 7

bands: 340.5 to 2522.8 (1024 bands, **overlap not matched*x*)
metadata: none

##

340.5 342 343.4 344.9 346.3 347.8 ...
ACPL_D2_P1_B_1_001.sig 0.0613 0.0750 0.1011 0.1000 0.0660 0.0614

ACPL_D2_P1_B_2_001.sig 0.0613 0.0833 0.1167 0.1143 0.0991 0.0737

ACPL_D2_P1_M_1_000.sig 0.0700 0.0889 0.0830 0.0762 0.0616 0.0655

Get the dataset's dimensions
dim(acer_spectra)

n_samples n_bands
7 1024

spectrolab also lets you access the individual components of the spectra. This is done with the functions
names () for sample names, bands() for band labels, value() for the value matrix, and meta() for the
associated metadata (in case you have any).

Vector of all sample names. Note: Duplicated sample names are permitted
n = names(achillea_spec)

Vector of bands
w = bands(achillea_spec)

value matriz
r = value(achillea_spec)

Metadata. Use stmplify = TRUE to get a vector instead of a data.frame
m = meta(achillea_spec, "ssp", TRUE)

0.4 Subsetting spectra

You can subset the spectra using a notation similar to the [i, j] function used in matrices and data.frames.
The first argument in [i,] matches sample names, whereas the second argument [, j] matches the band
names. Here are some examples of how [works in spectra:

e x[1:3, 1 will keep the first three samples of x, i.e. 1:3 are indexes.

e x["sp_1",] keeps all entries in x where sample names match "sp_1"

e x[, 800:900] will keep bands labeled 800, 801, 802, ..., 900.

e x[, bands(x, 800, 900)] will keep bands between 800 and 900, including those with non-integer
labels, e.g. 876.32.

e x[, 1:5] will faill. bands cannot be subset by indexes!

Subsetting lets you, for instance, exclude noisy regions at the beginning and end of the spectrum or limit
the data to specific entries.

Subset band regions. Here we know that bands are integers (e.g. 400, 401, ...)
spec_sub_vis = achillea_spec[, 400:700]

Subset spectra to all entries where sample_name matches "ACHMI_7" or
get the first three samples

spec_sub_byname = achillea_spec["ACHMI_7",]

spec_sub_byidx achillea_spec[1:3,]

The resolution of some spectra may be different from Inm. In those cases, the best way to subset spectra is
using the min and max arguments for bands:

acer_spectra_trim = acer_spectral , bands(acer_spectra, 400, 2400)]

Note that you can (1) subset samples using indexes and (2) use characters or numerics to subset bands. As
said before, you cannot use indexes to subset bands though.

Subsetting samples by indexes works and so does subsetting bands by numerics or characters.
spec_sub_byidx[1, "405"] == spec_sub_byidx[1, 405]

ACHMI_1
TRUE

But remember that you CANNOT use indezes to subset bands!

Something that is obuioulsy an index, like using 2 instead of 401 (the 2nd band
in our case), will fatil.
spec_sub_byidx[, 2]

Error: 1 labels not found: 2

“Error in i_match_ij_spectra(this = this, i = i, j = j) : band subscript out of bounds. Use band labels

Error in eval(expr, envir, enclos): object ’Error in i_match_ij_spectra(this = this, i = i, j = j)

0.5 Plotting

The workhorse function for statically plotting spectra is plot (). It will jointly plot each spectrum in the
spectra object. You should be able to pass the usual plot arguments to it, such as col, ylab, 1wd, etc.

You can also plot the quantiles of a spectra object with plot_quantile(). It’s second argument,
total_prob, is the total “mass” that the quantile encompasses. For instance, a total_prob = 0.95 covers
95% of the variation in the spectra object, i.e. it is the 0.025 to 0.975 quantile. The quantile plot can
stand alone or be added to a current plot if add = TRUE.

The function plot_regions() helps shading different spectral regions. spectrolab provides a
default_spec_regions() matrix as an example, but you obviously can customize it for your needs
(see the help page for plot_regions for details).

Simple spectra plot
par(nfrow = c(1, 3))
plot(achillea_spec, lwd = 0.75, 1ty = 1, col = "grey25", main = "All Spectra")

Stand along quantile plot
plot_quantile(achillea_spec, total prob = 0.8, col = rgb(l, 0, 0, 0.5), lwd = 0.5, border = TRUE)
title("80% spectral quantile")

Combined individual spectra, quantiles and shade spectral Tegions

plot(achillea_spec, lwd = 0.25, 1ty = 1, col = "greyb50", main="Spectra, quantile and regions")
plot_quantile(achillea_spec, total prob = 0.8, col = rgb(1, 0, 0, 0.25), border = FALSE, add = TRUE)
plot_regions(achillea_spec, regions = default_spec_regions(), add = TRUE)

All Spectra 80% spectral quantile Spectra, quantile and regions
VIS NIR__SWIR1SWIR2

[Te) [Te) [Te)
o 7] o 7] o 7]
2 @ 2 @ 2 @
= o = o = o
> > >
— — —
o 7] ' o 7] o 7])
T T T T T T T T T T T T
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
band band band

Last but not least, spectrolab also allows you to interactively explore spectra through a shiny app with the
plot_interactive() function.

0.6 Manipulating samples names, band labels, metadata and value

You may want to edit certain simple attributes of spectra, such as making all sample names lowercase This
is easily attainable in spectrolab.

spec_new = achillea_spec

Replace names with a lowercase wversion
names (spec_new) = tolower (names(achillea_spec))

Check the results

names (spec_new) [1:5]

[1] "achmi_1" "achmi_2" "achmi_3" "achmi_4" "achmi_5"

If you want to fiddle with the value itself, this is easy, too.

Scale wvalue by 0.75
spec_new = spec_new * 0.75

Plot the results
plot(achillea_spec, "blue", 0.75, 0.75)
plot(spec_new, "orange", 0.75, TRUE)

0.5
I

value
0.3

0.1

500 1000 1500 2000

band

Or you can also edit or add new metadata to the spectra object.

Adding metadata to a spectra object: a dummy N content
n_content = rnorm(nrow(achillea_spec), 2, 0.5)
meta(achillea_spec, "N_percent") = n_content

0.6.1 Converting a spectra object into a matrix or data.frame

It is also possible to convert a spectra object to a matrix or data.frame using the as.matrix() or
as.data.frame() functions. This is useful if you want to export your data in a particular format, such as
CSV.

If you’re converting spectra to a matrix, spectrolab will (1) place bands in columns, assigning band labels
to colnames, and (2) samples in rows, assigning sample names to rownames. Since R imposes strict rules on
column name formats and sometimes on row names, as.matrix () will try to fix potential dimname issues
if fix_names !'= "none". Note that as.matrix () will not keep metadata.

Conversion to data.frame is similar, but keeps the metadata by default (unless you set the metadata argument
to FALSE).

Make a matriz from a “spectra’ object
spec_as_mat = as.matrix(achillea_spec, "none")
spec_as_mat[1:4, 1:3]

#i# 400 401 402
ACHMI_1 0.03734791 0.03698631 0.03804012
ACHMI_2 0.04608409 0.04536371 0.04436544
ACHMI_3 0.04058113 0.04025678 0.03958125
ACHMI_4 0.04063730 0.03993420 0.03793455

Make a matriz from a ‘spectra’ object
spec_as_df = as.data.frame(achillea_spec, "none", TRUE)
spec_as_df[1:4, 1:5]

sample_name ident ssp N_percent 400

1 ACHMI_1 10526 Achillea millefolium
2 ACHMI_2 10527 Achillea millefolium
3 ACHMI_3 10528 Achillea millefolium

4 ACHMI_4 10529 Achillea millefolium

1.910341 0.03734791
2.641069 0.04608409
2.627395 0.04058113
2.123879 0.04063730

	Installing and loading spectrolab
	Reading spectra
	Reading spectra from raw data files: Example with SVC's .sig
	Create spectra from a matrix or data.frame

	Inspecting and querying spectra
	Subsetting spectra
	Plotting
	Manipulating samples names, band labels, metadata and value
	Converting a spectra object into a matrix or data.frame

