Package 'sphunif'

September 2, 2021

Type Package

Title Uniformity Tests on the Circle, Sphere, and Hypersphere
Version 1.0.1
Date 2021-09-01
Description Implementation of uniformity tests on the circle and (hyper)sphere. The main function of the package is unif_test(), which conveniently collects more than 30 tests for assessing uniformity on $S^{\wedge}\{p-1\}=\left\{x\right.$ in $\left.R^{\wedge} p:\|x\|=1\right\}, p>=2$. The test statistics are implemented in the unif_stat() function, which allows computing several statistics to several samples within a single call, thus facilitating Monte Carlo experiments. Furthermore, the unif_stat_MC() function allows parallelizing them in a simple way. The asymptotic null distributions of the statistics are available through the function unif_stat_distr(). The core of 'sphunif' is coded in C++ by relying on the 'Rcpp' package. The package also provides several novel datasets and gives the reproducibility for the data application in García-Portugués, Navarro-Esteban and Cuesta-Albertos (2020) arXiv:2008.09897.

License GPL-3
LazyData true
Depends R (>=3.5.0), Rcpp
Imports doFuture, foreach, future, gsl, rotasym
Suggests CompQuadForm, dgof, goftest, knitr, markdown, mvtnorm, numDeriv, progress, progressr, rmarkdown, scatterplot3d, testthat, viridisLite

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/egarpor/sphunif
BugReports https://github.com/egarpor/sphunif
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Author Eduardo García-Portugués [aut, cre]
(https://orcid.org/0000-0002-9224-4111),Thomas Verdebout [aut] (https://orcid.org/0000-0002-3277-9587),Paula Navarro [ctb]
Maintainer Eduardo García-Portugués edgarcia@est-econ.uc3m.es
Repository CRAN
Date/Publication 2021-09-02 07:40:02 UTC
R topics documented:
sphunif-package 3
angles_to_sphere 3
avail_tests 4
A_theta_x 5
cir_coord_conv 7
cir_gaps 8
cir_stat_Kuiper 9
comets 15
craters 17
F_from_f 18
Gauss_Legen 19
Gegenbauer 21
harmonics 26
int_sph_MC 27
locdev 29
planets 32
Pn 33
proj_unif 37
Psi 38
p_Kolmogorov 40
p_sph_stat_Bingham 46
rhea 49
r_alt 50
r_unif 53
Sobolev 54
Sobolev_coefs 57
sph_stat_Rayleigh 59
unif_stat 62
unif_stat_distr 64
unif_stat_MC 67
unif_test 72
venus 76
wschisq 77
Index 83

Description

Implementation of uniformity tests on the circle and (hyper)sphere. The main function of the package is unif_test, which conveniently collects more than 30 tests for assessing uniformity on $S^{p-1}=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$. The test statistics are implemented in the unif_stat function, which allows computing several statistics to different samples within a single call, thus facilitating Monte Carlo experiments. Furthermore, the unif_stat_MC function allows parallelizing them in a simple way. The asymptotic null distributions of the statistics are available through the function unif_stat_distr. The core of sphunif-package is coded in C++ by relying on the Rcpp-package. The package also provides several novel datasets and gives the reproducibility for the data application in García-Portugués, Navarro-Esteban and Cuesta-Albertos (2020) arXiv:2008.09897.

Author(s)

Eduardo García-Portugués and Thomas Verdebout.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2020) On a projection-based class of uniformity tests on the hypersphere. arXiv:2008.09897. https://arxiv.org/abs/2008. 09897
García-Portugués, E., Navarro-Esteban, P., and Cuesta-Albertos, J. A. (2021). A Cramér-von Mises test of uniformity on the hypersphere. In Balzano, S., Porzio, G. C., Salvatore, R., Vistocco, D., and Vichi, M. (Eds.), Statistical Learning and Modeling in Data Analysis, Studies in Classification, Data Analysis and Knowledge Organization, pp. 107-116. Springer, Cham. doi: 10.1007/9783030699444_12.
García-Portugués, E., Paindaveine, D., and Verdebout, T. (2021). On the power of Sobolev tests for isotropy under local rotationally symmetric alternatives. arXiv:2108.09874. https://arxiv.org/ abs/2108. 09874

$$
\begin{array}{ll}
\text { angles_to_sphere } & \begin{array}{l}
\text { Conversion between angular and Cartesian coordinates of the (hy- } \\
\text { per)sphere }
\end{array}
\end{array}
$$

Description

Transforms the angles $\left(\theta_{1}, \ldots, \theta_{p-1}\right)^{\prime}$ in $[0, \pi)^{p-2} \times[-\pi, \pi)$ into the Cartesian coordinates
$\left(\cos \left(x_{1}\right), \sin \left(x_{1}\right) \cos \left(x_{2}\right), \ldots, \sin \left(x_{1}\right) \cdots \sin \left(x_{p-2}\right) \cos \left(x_{p-1}\right), \sin \left(x_{1}\right) \cdots \sin \left(x_{p-2}\right) \sin \left(x_{p-1}\right)\right)^{\prime}$
of S^{p-1}, and vice versa.

Usage

angles_to_sphere(theta)
sphere_to_angles(x)

Arguments

theta matrix of size $c(n, p-1)$ with the angles.
x
matrix of size $c(n, p)$ with the Cartesian coordinates. Assumed to be of unit norm by rows.

Value

For angles_to_sphere, the matrix x. For sphere_to_angles, the matrix theta.

Examples

```
# Check changes of coordinates
sphere_to_angles(angles_to_sphere(c(pi / 2, 0, pi)))
sphere_to_angles(angles_to_sphere(rbind(c(pi / 2, 0, pi), c(pi, pi / 2, 0))))
angles_to_sphere(sphere_to_angles(c(0, sqrt(0.5), sqrt(0.1), sqrt(0.4))))
angles_to_sphere(sphere_to_angles(
    rbind(c(0, sqrt(0.5), sqrt(0.1), sqrt(0.4)),
        c(0, sqrt(0.5), sqrt(0.5), 0),
        c(0, 1, 0, 0),
        c(0, 0, 0, -1),
        c(0, 0, 1, 0))))
    # Circle
    sphere_to_angles(angles_to_sphere(0))
    sphere_to_angles(angles_to_sphere(cbind(0:3)))
    angles_to_sphere(cbind(sphere_to_angles(rbind(c(0, 1), c(1, 0)))))
    angles_to_sphere(cbind(sphere_to_angles(rbind(c(0, 1)))))
```

 avail_tests
 Available circular and (hyper)spherical uniformity tests

Description

Listing of the tests implemented in the sphunif package.

Usage

avail_cir_tests
avail_sph_tests

Format

An object of class character of length 30 .
An object of class character of length 14.

Value

A character vector whose elements are valid inputs for the type argument in unif_test, unif_stat, unif_stat_distr, and unif_stat_MC. avail_cir_tests provides the available circular tests and avail_sph_tests the (hyper)spherical tests.

Examples

```
# Circular tests
avail_cir_tests
    # Spherical tests
    avail_sph_tests
```

A_theta_x Surface area of the intersection of two hyperspherical caps

Description

Computation of

$$
A_{x}\left(\theta_{i j}\right):=\frac{1}{\omega_{p}} \int_{S^{p-1}} 1_{\left\{\mathbf{X}_{i}^{\prime} \boldsymbol{\gamma} \leq x, \mathbf{X}_{j}^{\prime} \boldsymbol{\gamma} \leq x\right\}} \mathrm{d} \boldsymbol{\gamma}
$$

where $\theta_{i j}:=\cos ^{-1}\left(\mathbf{X}_{i}^{\prime} \mathbf{X}_{j}\right) \in[0, \pi], x \in[-1,1]$, and ω_{p} is the surface area of $S^{p-1} . A_{x}\left(\theta_{i j}\right)$ is the proportion of surface area of S^{p-1} covered by the intersection of two hyperspherical caps centered at \mathbf{X}_{i} and \mathbf{X}_{j} and with common solid angle $\pi-\cos ^{-1}(x)$.

Usage

A_theta_x(theta, $x, p, N=160 L$, as_matrix $=$ TRUE)

Arguments

theta vectors with values in $[0, \pi]$.
$x \quad$ vector with values in $[-1,1]$.
$\mathrm{p} \quad$ integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
$N \quad$ number of points used in the Gauss-Legendre quadrature. Defaults to 160.
as_matrix return a matrix with the values of $A_{x}(\theta)$ on the grid formed by theta and x? If FALSE, $A_{x}(\theta)$ is evaluated on theta and x if they equal in size. Defaults to TRUE.

Details

See García-Portugués et al. (2020) for more details about the $A_{x}(\theta)$ function.

Value

A matrix of size c (length(theta), length (x)) containing the evaluation of $A_{x}(\theta)$ if as_matrix $=$ TRUE. Otherwise, a vector of size c (length(theta) if theta and x equal in size.

References

García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2020) On a projection-based class of uniformity tests on the hypersphere. arXiv:2008.09897. https://arxiv.org/abs/2008. 09897

Examples

```
# Plot A_x(theta) for several dimensions and x's
A_lines <- function(x, th = seq(0, pi, l = 200)) {
    plot(th, A_theta_x(theta = th, x = x, p = 2), type = "l",
            col = 1, ylim = c(0, 1.25), main = paste("x =", x),
            ylab = expression(A[x](theta)),
            xlab = expression(theta), axes = FALSE)
    axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
    axis(2); box()
    abline(h = c(0, 1), lty = 2)
    lines(th, A_theta_x(theta = th, x = x, p = 3), col = 2)
    lines(th, A_theta_x(theta = th, x = x, p = 4), col = 3)
    lines(th, A_theta_x(theta = th, x = x, p = 5), col = 4)
    legend("top", lwd = 2, legend = paste("p =", 2:5),
                col = 1:4, cex = 0.75, horiz = TRUE)
}
old_par <- par(mfrow = c(2, 3))
A_lines(x = -0.75)
A_lines(x = -0.25)
A_lines(x = 0)
A_lines(x = 0.25)
A_lines(x = 0.5)
A_lines(x = 0.75)
par(old_par)
# As surface of (theta, x) for several dimensions
A_surf <- function(p, x = seq(-1, 1, l = 201), th = seq(0, pi, l = 201)) {
    col <- c("white", viridisLite::viridis(20))
    breaks <- c(-1, seq(1e-15, 1, l = 21))
    A <- A_theta_x(theta = th, x = x, p = p)
    image(th, x, A, main = paste("p =", p), col = col, breaks = breaks,
            xlab = expression(theta), axes = FALSE)
    axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
```

```
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
        axis(2); box()
        contour(th, x, A, levels = breaks, add = TRUE)
    }
    old_par <- par(mfrow = c(2, 2))
    A_surf(p = 2)
    A_surf(p = 3)
    A_surf(p = 4)
    A_surf(p = 5)
    par(old_par)
    # No matrix return
    th <- seq(0, pi, l = 5)
    x <- seq(-1, 1, l = 5)
    diag(A_theta_x(theta = th, x = x, p = 2))
    A_theta_x(theta = th, x = x, p = 2, as_matrix = FALSE)
```

 cir_coord_conv

Description

Transformation between a matrix Theta containing M circular samples of size n on $[0,2 \pi)$ and an array X containing the associated Cartesian coordinates on $S^{1}:=\left\{\mathbf{x} \in R^{2}:\|\mathbf{x}\|=1\right\}$.

Usage

Theta_to_X(Theta)
X_to_Theta(X)

Arguments

Theta a matrix of size $c(n, M)$ with M samples of size n of circular data on $[0,2 \pi)$. Must not contain NA's.

X
an array of size $c(n, 2, M)$ containing the Cartesian coordinates of M samples of size n of directions on S^{1}. Must not contain NA's.

Value

- Theta_to_X: the corresponding X.
- X_to_Theta: the corresponding Theta.

Examples

\# Sample
Theta <- r_unif_cir(n = 10, M = 2)
$X<-r _u n i f _s p h(n=10, p=2, M=2)$
\# Check equality
sum(abs(X - Theta_to_X(X_to_Theta(X))))
$\operatorname{sum}(a b s($ Theta - X_to_Theta(Theta_to_X(Theta))))

```
cir_gaps Circular gaps
```


Description

Computation of the circular gaps of an angular sample $\Theta_{1}, \ldots, \Theta_{n}$ on $[0,2 \pi)$, defined as

$$
\Theta_{(2)}-\Theta_{(1)}, \ldots, \Theta_{(n)}-\Theta_{(n-1)}, 2 \pi-\Theta_{(n)}-\Theta_{(1)}
$$

where

$$
0 \leq \Theta_{(1)} \leq \Theta_{(2)} \leq \ldots \leq \Theta_{(n)} \leq 2 \pi
$$

Usage

cir_gaps(Theta, sorted $=$ FALSE)

Arguments

Theta a matrix of size $c(n, M)$ with M samples of size n of circular data on $[0,2 \pi)$. Must not contain NA's.
sorted are the columns of Theta sorted increasingly? If TRUE, performance is improved. If FALSE (default), each column of Theta is sorted internally.

Value

A matrix of size $c(n, M)$ containing the n circular gaps for each of the M circular samples.

Warning

Be careful on avoiding the next bad usages of cir_gaps, which will produce spurious results:

- The entries of Theta are not in $[0,2 \pi)$.
- Theta is not sorted increasingly when data_sorted = TRUE.

Examples

```
Theta <- cbind(c(pi, 0, 3 * pi / 2), c(0, 3 * pi / 2, pi), c(5, 3, 1))
cir_gaps(Theta)
```


cir_stat_Kuiper Statistics for testing circular uniformity

Description

Low-level implementation of several statistics for assessing circular uniformity on $[0,2 \pi)$ or, equivalently, $S^{1}:=\left\{\mathbf{x} \in R^{2}:\|\mathbf{x}\|=1\right\}$.

Usage

cir_stat_Kuiper(Theta, sorted = FALSE, KS = FALSE, Stephens = FALSE)
cir_stat_Watson(Theta, sorted $=$ FALSE, CVM $=$ FALSE, Stephens = FALSE)
cir_stat_Watson_1976(Theta, sorted = FALSE, minus = FALSE)
cir_stat_Range(Theta, sorted = FALSE, gaps_in_Theta = FALSE, max_gap = TRUE)
cir_stat_Rao(Theta, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Greenwood(Theta, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Log_gaps(Theta, sorted = FALSE, gaps_in_Theta = FALSE, abs_val = TRUE)
cir_stat_Vacancy(Theta, $a=2$ * pi, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Max_uncover(Theta, $a=2$ * pi, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Num_uncover(Theta, $a=2$ * pi, sorted = FALSE, gaps_in_Theta = FALSE, minus_val = TRUE)
cir_stat_Gini(Theta, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Gini_squared(Theta, sorted = FALSE, gaps_in_Theta = FALSE)
cir_stat_Ajne(Theta, Psi_in_Theta = FALSE)
cir_stat_Rothman(Theta, $\mathrm{t}=1 / 3$, Psi_in_Theta $=$ FALSE)
cir_stat_Hodges_Ajne(Theta, asymp_std = FALSE, sorted = FALSE, use_Cressie = TRUE)
cir_stat_Cressie(Theta, $t=1 / 3$, sorted $=$ FALSE)
cir_stat_FG01 (Theta, sorted = FALSE)
cir_stat_Rayleigh(Theta, m = 1L)

```
cir_stat_Bingham(Theta)
cir_stat_Hermans_Rasson(Theta, Psi_in_Theta = FALSE)
cir_stat_Gine_Gn(Theta, Psi_in_Theta = FALSE)
cir_stat_Gine_Fn(Theta, Psi_in_Theta = FALSE)
cir_stat_Pycke(Theta, Psi_in_Theta = FALSE)
cir_stat_Pycke_q(Theta, Psi_in_Theta = FALSE, q = 0.5)
cir_stat_Bakshaev(Theta, Psi_in_Theta = FALSE)
cir_stat_Riesz(Theta, Psi_in_Theta = FALSE, s = 1)
cir_stat_PCvM(Theta, Psi_in_Theta = FALSE)
cir_stat_PRt(Theta, t = 1/3, Psi_in_Theta = FALSE)
cir_stat_PAD(Theta, Psi_in_Theta = FALSE, AD = FALSE, sorted = FALSE)
cir_stat_CCF09(Theta, dirs, K_CCF09 = 25L, original = FALSE)
```


Arguments

Theta a matrix of size $c(n, M)$ with M samples of size n of circular data on $[0,2 \pi)$. Must not contain NA's.
sorted are the columns of Theta sorted increasingly? If TRUE, performance is improved. If FALSE (default), each column of Theta is sorted internally.
KS compute the Kolmogorov-Smirnov statistic (which is not invariant under origin shifts) instead of the Kuiper statistic? Defaults to FALSE.
Stephens compute Stephens (1970) modification so that the null distribution of the is less dependent on the sample size? The modification does not alter the test decision.
CvM compute the Cramér-von Mises statistic (which is not invariant under origin shifts) instead of the Watson statistic? Defaults to FALSE.
minus compute the invariant D_{n}^{-}instead of D_{n}^{+}? Defaults to FALSE.
gaps_in_Theta does Theta contain the matrix of circular gaps that is obtained with cir_gaps(Theta)? If FALSE (default), the circular gaps are computed internally.
max_gap compute the maximum gap for the range statistic? If TRUE (default), rejection happens for large values of the statistic, which is consistent with the rest of tests. Otherwise, the minimum gap is computed and rejection happens for low values.
abs_val return the absolute value of the Darling's log gaps statistic? If TRUE (default), rejection happens for large values of the statistic, which is consistent with the
rest of tests. Otherwise, the signed statistic is computed and rejection happens for large absolute values.
a
$a_{n}=a / n$ parameter used in the length of the arcs of the coverage-based tests. Must be positive. Defaults to 2 * pi.
minus_val return the negative value of the (standardized) number of uncovered spacings? If TRUE (default), rejection happens for large values of the statistic, which is consistent with the rest of tests. Otherwise, rejection happens for low values.

Psi_in_Theta does Theta contain the shortest angles matrix Ψ that is obtained with Psi_mat (array (Theta, $\operatorname{dim}=c(n, 1, M))$)? If FALSE (default), $\boldsymbol{\Psi}$ is computed internally.
t
asymp_std
t parameter for the Rothman and Cressie tests, a real in $(0,1)$. Defaults to $1 / 3$. normalize the Hodges-Ajne statistic in terms of its asymptotic distribution? Defaults to FALSE.
use_Cressie compute the Hodges-Ajne statistic as a particular case of the Cressie statistic? Defaults to TRUE as it is more efficient. If FALSE, the geometric construction in Ajne (1968) is employed.
$\mathrm{m} \quad$ integer m for the m-modal Rayleigh test. Defaults to $m=1$ (the standard Rayleigh test).
q $\quad q$ parameter for the Pycke " q-test", a real in $(0,1)$. Defaults to $1 / 2$.
s
s parameter for the s-Riesz test, a real in $(0,2)$. Defaults to 1 .
AD
compute the Anderson-Darling statistic (which is not invariant under origin shifts) instead of the Projected Anderson-Darling statistic? Defaults to FALSE.
dirs a matrix of size $c\left(n _p r o j, 2\right)$ containing n_proj random directions (in Cartesian coordinates) on S^{1} to perform the CCF09 test.
K_CCF09 integer giving the truncation of the series present in the asymptotic distribution of the Kolmogorov-Smirnov statistic. Defaults to 25.
original return the CCF09 statistic as originally defined? If FALSE (default), a faster and equivalent statistic is computed, and rejection happens for large values of the statistic, which is consistent with the rest of tests. Otherwise, rejection happens for low values.

Details

Descriptions and references for most of the statistics are available in García-Portugués and Verdebout (2018).

The statistics cir_stat_PCVM and cir_stat_PRt are provided for the sake of completion, but they equal the more efficiently-implemented statistics 2 * cir_stat_Watson and cir_stat_Rothman, respectively.

Value

A matrix of size $c(M, 1)$ containing the statistics for each of the M samples.

Warning

Be careful on avoiding the next bad usages of the functions, which will produce spurious results:

- The entries of Theta are not in $[0,2 \pi)$.
- Theta does not contain the circular gaps when gaps_in_Theta = TRUE.
- Theta is not sorted increasingly when data_sorted = TRUE.
- Theta does not contain Psi_mat (array (Theta, $\operatorname{dim}=c(n, 1, M)))$ when Psi_in_Theta = TRUE.
- The directions in dirs do not have unit norm.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
## Sample uniform circular data
M <- 2
n <- 100
set.seed(987202226)
Theta <- r_unif_cir(n = n, M = M)
## Tests based on the empirical cumulative distribution function
# Kuiper
cir_stat_Kuiper(Theta)
cir_stat_Kuiper(Theta, Stephens = TRUE)
# Watson
cir_stat_Watson(Theta)
cir_stat_Watson(Theta, Stephens = TRUE)
# Watson (1976)
cir_stat_Watson_1976(Theta)
## Partition-based tests
# Ajne
Theta_array <- Theta
dim(Theta_array) <- c(nrow(Theta), 1, ncol(Theta))
Psi <- Psi_mat(Theta_array)
cir_stat_Ajne(Theta)
cir_stat_Ajne(Psi, Psi_in_Theta = TRUE)
# Rothman
cir_stat_Rothman(Theta, t = 0.5)
cir_stat_Rothman(Theta)
cir_stat_Rothman(Psi, Psi_in_Theta = TRUE)
```

```
# Hodges-Ajne
cir_stat_Hodges_Ajne(Theta)
cir_stat_Hodges_Ajne(Theta, use_Cressie = FALSE)
# Cressie
cir_stat_Cressie(Theta, t = 0.5)
cir_stat_Cressie(Theta)
# FG01
cir_stat_FG01(Theta)
## Spacings-based tests
# Range
cir_stat_Range(Theta)
# Rao
cir_stat_Rao(Theta)
# Greenwood
cir_stat_Greenwood(Theta)
# Log gaps
cir_stat_Log_gaps(Theta)
# Vacancy
cir_stat_Vacancy(Theta)
# Maximum uncovered spacing
cir_stat_Max_uncover(Theta)
# Number of uncovered spacings
cir_stat_Num_uncover(Theta)
# Gini mean difference
cir_stat_Gini(Theta)
# Gini mean squared difference
cir_stat_Gini_squared(Theta)
## Sobolev tests
# Rayleigh
cir_stat_Rayleigh(Theta)
cir_stat_Rayleigh(Theta, m = 2)
# Bingham
cir_stat_Bingham(Theta)
# Hermans-Rasson
cir_stat_Hermans_Rasson(Theta)
cir_stat_Hermans_Rasson(Psi, Psi_in_Theta = TRUE)
```

```
# Gine Fn
cir_stat_Gine_Fn(Theta)
cir_stat_Gine_Fn(Psi, Psi_in_Theta = TRUE)
# Gine Gn
cir_stat_Gine_Gn(Theta)
cir_stat_Gine_Gn(Psi, Psi_in_Theta = TRUE)
# Pycke
cir_stat_Pycke(Theta)
cir_stat_Pycke(Psi, Psi_in_Theta = TRUE)
# Pycke q
cir_stat_Pycke_q(Theta)
cir_stat_Pycke_q(Psi, Psi_in_Theta = TRUE)
# Bakshaev
cir_stat_Bakshaev(Theta)
cir_stat_Bakshaev(Psi, Psi_in_Theta = TRUE)
# Riesz
cir_stat_Riesz(Theta, s = 1)
cir_stat_Riesz(Psi, Psi_in_Theta = TRUE, s = 1)
# Projected Cramér-von Mises
cir_stat_PCvM(Theta)
cir_stat_PCvM(Psi, Psi_in_Theta = TRUE)
# Projected Rothman
cir_stat_PRt(Theta, t = 0.5)
cir_stat_PRt(Theta)
cir_stat_PRt(Psi, Psi_in_Theta = TRUE)
# Projected Anderson-Darling
cir_stat_PAD(Theta)
cir_stat_PAD(Psi, Psi_in_Theta = TRUE)
## Other tests
# CCF09
dirs <- r_unif_sph(n = 3, p = 2, M = 1)[, , 1]
cir_stat_CCF09(Theta, dirs = dirs)
## Connection of Kuiper and Watson statistics with KS and CVM, respectively
# Rotate sample for KS and CvM
alpha <- seq(0, 2 * pi, l = 1e4)
KS_alpha <- sapply(alpha, function(a) {
    cir_stat_Kuiper((Theta[, 2, drop = FALSE] + a) %% (2 * pi), KS = TRUE)
})
CvM_alpha <- sapply(alpha, function(a) {
    cir_stat_Watson((Theta[, 2, drop = FALSE] + a) %% (2 * pi), CvM = TRUE)
})
```

```
AD_alpha <- sapply(alpha, function(a) {
    cir_stat_PAD((Theta[, 2, drop = FALSE] + a) %% (2 * pi), AD = TRUE)
})
# Kuiper is the maximum rotated KS
plot(alpha, KS_alpha, type = "l")
abline(h = cir_stat_Kuiper(Theta[, 2, drop = FALSE]), col = 2)
points(alpha[which.max(KS_alpha)], max(KS_alpha), col = 2, pch = 16)
# Watson is the minimum rotated CvM
plot(alpha, CvM_alpha, type = "l")
abline(h = cir_stat_Watson(Theta[, 2, drop = FALSE]), col = 2)
points(alpha[which.min(CVM_alpha)], min(CVM_alpha), col = 2, pch = 16)
# Anderson-Darling is the average rotated AD?
plot(alpha, AD_alpha, type = "l")
abline(h = cir_stat_PAD(Theta[, 2, drop = FALSE]), col = 2)
abline(h = mean(AD_alpha), col = 3)
```


comets Comet orbits

Description

Comet orbits data from the JPL Small-Body Database Search Engine. The normal vector of a comet orbit represents is a vector on S^{2}.

Usage

comets

Format

A data frame with 3633 rows and 8 variables:
id database ID.
full_name full name/designation following the IUA naming convention.
i inclination; the orbit angle with respect to the ecliptic plane, in radians in $[0, \pi]$.
om longitude of the ascending node; the angle between the normal vector of the orbit and the normal vector of the ecliptic plane, in radians in $[0,2 \pi)$.
per_y sidereal orbital period (in years).
class orbit classification. A factor with levels given below.
diameter diameter from equivalent sphere (in km).
ccf2009 flag indicating if the comet was considered in the data application in Cuesta-Albertos et al. (2009); see details below.

Details

The normal vector to the ecliptic plane of the comet with inclination i and longitude of the ascending node ω is

$$
(\sin (i) \sin (\omega),-\sin (i) \cos (\omega), \cos (i))^{\prime}
$$

A prograde comet has positive $\cos (i)$, negative $\cos (i)$ represents a retrograde comet.
class has the following levels:

- COM: comet orbit not matching any defined orbit class.
- CTc: Chiron-type comet, as defined by Levison and Duncan (T_Jupiter > 3; a > a_Jupiter).
- ETc: Encke-type comet, as defined by Levison and Duncan (T_Jupiter > 3; a < a_Jupiter).
- HTC: Halley-type comet, classical definition ($20 \mathrm{y}<\mathrm{P}<200 \mathrm{y}$).
- HYP: comets on hyperbolic orbits.
- JFc: Jupiter-family comet, as defined by Levison and Duncan ($2<\mathrm{T}_{-}$Jupiter <3).
- JFC: Jupiter-family comet, classical definition ($\mathrm{P}<20 \mathrm{y}$).
- PAR: comets on parabolic orbits.

Hyperbolic and parabolic comets are not periodic; only elliptical comets are periodic.
The ccf2009 variable gives the observations considered in Cuesta-Albertos et al. (2009) after fetching in the database in 2007-12-14 for the comets such that ! (class \%in\% c("HYP", "PAR")) \& per_y >= 200 \& ! numbered. A periodic comet is numbered by the IUA only after its second perihelion passage, and then its id starts with c. Due to the dynamic nature of the data, more comets were added to the database since 2007 and also some observations were updated.
The script performing the data preprocessing is available at comets.R. The data was retrieved on 2020-05-07.

Source

https://ssd.jpl.nasa.gov/sbdb_query.cgi

References

Cuesta-Albertos, J. A., Cuevas, A., Fraiman, R. (2009) On projection-based tests for directional and compositional data. Statistics and Computing, 19:367-380. doi: 10.1007/s1122200890983

Examples

```
# Load data
data("comets")
# Add normal vectors
comets$normal <- cbind(sin(comets$i) * sin(comets$om),
    -sin(comets$i) * cos(comets$om),
    cos(comets$i))
# Add numbered information
comets$numbered <- substr(comets$id, 1, 1) == "c"
```

```
# Tests to be performed
type_tests <- c("PCVM", "PAD", "PRt")
# Excluding the C/1882 R1-X (Great September comet) records with X = B, C, D
comets_ccf2009 <- comets[comets$ccf2009, ][-c(13:15), ]
# Sample size
nrow(comets_ccf2009)
# Tests for the data in Cuesta-Albertos et al. (2009)
tests_ccf2009 <- unif_test(data = comets_ccf2009$normal, type = type_tests,
    p_value = "asymp")
tests_ccf2009
```

craters

Craters named by the IUA

Description

Named craters of the Solar System by the Gazetteer of Planetary Nomenclature of the International Astronomical Union (IUA).

Usage

craters

Format

A data frame with 5235 rows and 7 variables:
ID database ID.
name name of the crater.
target name of the celestial body. A factor with 43 levels, such as "Moon", "Venus", or "Europa".
target_type type of celestial body. A factor with 3 levels: "Planet", "Moon", "Dwarf planet", or "Asteroid".
diameter diameter of the crater (in km).
theta longitude angle $\theta \in[0,2 \pi)$ of the crater center.
phi latitude angle $\phi \in[-\pi / 2, \pi / 2]$ of the crater center.

Details

"Craters" are understood in the Gazetteer of Planetary Nomenclature as roughly circular depressions resulting from impact or volcanic activity (the geological origin is unspecified).

Be aware that the dataset only contains named craters by the IUA. Therefore, there is likely a high uniform bias on the distribution of craters. Presumably the naming process attempts to cover the planet in a somehow uniform fashion (distant craters are more likely to be named than neighboring
craters). Also, there are substantially more craters in the listed bodies than those named by the IUA. See venus and rhea for more detailed and specific crater datasets.
The (θ, ϕ) angles are such their associated planetocentric coordinates are:

$$
(\cos (\phi) \cos (\theta), \cos (\phi) \sin (\theta), \sin (\phi))^{\prime}
$$

with $(0,0,1)^{\prime}$ denoting the north pole.
The script performing the data preprocessing is available at craters.R. The data was retrieved on 2020-05-31.

Source

https://planetarynames.wr.usgs.gov/AdvancedSearch

Examples

```
# Load data
data("craters")
# Add Cartesian coordinates
craters$X <- cbind(cos(craters$theta) * cos(craters$phi),
                    sin(craters$theta) * cos(craters$phi),
                        sin(craters$phi))
# Tests to be performed
type_tests <- c("PCvM", "PAD", "PRt")
# Tests for Venus and Rhea
unif_test(data = craters$X[craters$target == "Venus", ], type = type_tests,
        p_value = "asymp")
unif_test(data = craters$X[craters$target == "Rhea", ], type = type_tests,
        p_value = "asymp")
```

 F_from_f Distribution and quantile functions from angular function

Description

Numerical computation of the distribution function F and the quantile function F^{-1} for an angular function f in a tangent-normal decomposition. $F^{-1}(x)$ results from the inversion of

$$
F(x)=\int_{-1}^{x} \omega_{p-1} c_{f} f(z)\left(1-z^{2}\right)^{(p-3) / 2} \mathrm{~d} z
$$

for $x \in[-1,1]$, where c_{f} is a normalizing constant and ω_{p-1} is the surface area of S^{p-2}.

Usage

F_from_f(f, p, Gauss = TRUE, $N=320, K=1000$, tol $=1 \mathrm{e}-06, \ldots)$
F_inv_from_f(f, p, Gauss = TRUE, $N=320, K=1000$, tol $=1 e-06, \ldots)$

Arguments

f
p
Gauss

N
K number of equispaced points on $[-1,1]$ used for evaluating F^{-1} and then interpolating. Defaults to 1 e 3 .
tol tolerance passed to uniroot for the inversion of F. Also, passed to integrate's rel.tol and abs.tol if Gauss $=$ FALSE. Defaults to $1 \mathrm{e}-6$.
... further parameters passed to f.

Details

The normalizing constant c_{f} is such that $F(1)=1$. It does not need to be part of f as it is computed internally.
Interpolation is performed by a monotone cubic spline. Gauss = TRUE yields more accurate results, at expenses of a heavier computation.

If f yields negative values, these are silently truncated to zero.

Value

A splinefun object ready to evaluate F or F^{-1}, as specified.

Examples

$\mathrm{f}<-$ function(x) rep(1, length(x))
plot(F_from_f(f = f, p = 4, Gauss = TRUE), ylab = "F(x)", xlim = c(-1, 1))
plot(F_from_f(f = f, p = 4, Gauss = FALSE), col = 2, add = TRUE,
$x \lim =c(-1,1))$
curve(p_proj_unif(x = x, p = 4), col = 3, add = TRUE, $\mathrm{n}=300$)
plot(F_inv_from_f(f = f, p = 4, Gauss = TRUE), ylab = "F^\{-1\}(x)")
plot(F_inv_from_f(f = f, p = 4, Gauss = FALSE), col = 2, add = TRUE)
curve(q_proj_unif($u=x, p=4$), col = 3, add = TRUE, $n=300$)

Gauss_Legen Gauss-Legendre quadrature

Description

Convenience for computing the nodes x_{k} and weights w_{k} of the Gauss-Legendre quadrature formula in (a, b) :

$$
\int_{a}^{b} f(x) w(x) \mathrm{d} x \approx \sum_{k=1}^{N} w_{k} f\left(x_{k}\right)
$$

Usage

Gauss_Legen_nodes(a = $-1, \mathrm{~b}=1, \mathrm{~N}=40 \mathrm{~L})$
Gauss_Legen_weights($a=-1, \quad b=1, N=40 L$)

Arguments

$\mathrm{a}, \mathrm{b} \quad$ scalars giving the interval (a, b). Defaults to $(-1,1)$.
N number of points used in the Gauss-Legendre quadrature. The following choices are supported: $5,10,20,40,80,160,320,640,1280,2560$, and 5120 . Defaults to 40 .

Details

For C^{∞} functions, Gauss-Legendre quadrature can be very efficient. It is exact for polynomials up to degree $2 N-1$.
The nodes and weights up to $N=80$ were retrieved from NIST and have 10^{-21} precision. For $N=160$ onwards, the nodes and weights were computed with the gauss. quad function from the statmod package (Smyth, 1998), and have 10^{-15} precision.

Value

A matrix of size $\mathrm{c}(\mathrm{N}, 1)$ with the nodes x_{k} (Gauss_Legen_nodes) or the corresponding weights w_{k} (Gauss_Legen_weights).

References

NIST Digital Library of Mathematical Functions. Release 1.0.20 of 2018-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds. https://dlmf.nist.gov/
Smyth, G. K. (1998). Numerical integration. In: Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds.), Wiley, London, pp. 3088-3095.

Examples

```
\#\# Integration of a smooth function in (1, 10)
\# Weights and nodes for integrating
x_k <- Gauss_Legen_nodes(a = 1, b = 10, N = 40)
w_k <- Gauss_Legen_weights(a = 1, b = 10, \(\mathrm{N}=40\) )
\# Check quadrature
f <- function(x) \(\sin (\mathrm{x})\) * \(\mathrm{x}^{\wedge} 2-\log (x+1)\)
integrate(f, lower \(=1\), upper \(=10\), rel.tol \(=1 \mathrm{e}-12\) )
sum(w_k * f(x_k))
\# Exact for polynomials up to degree 2 * N - 1
\(\mathrm{f}<-\) function \((x)\left(((x+0.5) / 1 e 3)^{\wedge} 5-((x-0.5) / 5)^{\wedge} 4+\right.\)
    \(\left.((x-0.25) / 10)^{\wedge} 2+1\right)^{\wedge} 20\)
```

```
sum(w_k * f(x_k))
integrate(f, lower = -1, upper = 1, rel.tol = 1e-12)
## Integration on (0, pi)
# Weights and nodes for integrating
th_k <- Gauss_Legen_nodes(a = 0, b = pi, N = 40)
w_k <- Gauss_Legen_weights(a = 0, b = pi, N = 40)
# Check quadrature
p <- 4
psi <- function(th) -sin(th / 2)
w <- function(th) sin(th)^(p - 2)
integrate(function(th) psi(th) * w(th), lower = 0, upper = pi,
    rel.tol = 1e-12)
sum(w_k * psi(th_k) * w(th_k))
# Integral with Gegenbauer polynomial
k <- 3
C_k <- function(th) drop(Gegen_polyn(theta = th, k = k, p = p))
integrate(function(th) psi(th) * C_k(th) * w(th), lower = 0, upper = pi,
    rel.tol = 1e-12)
th_k <- drop(Gauss_Legen_nodes(a = 0, b = pi, N = 80))
w_k <- drop(Gauss_Legen_weights(a = 0, b = pi, N = 80))
sum(w_k * psi(th_k) * C_k(th_k) * w(th_k))
```


Description

The Gegenbauer polynomials $\left\{C_{k}^{(\lambda)}(x)\right\}_{k=0}^{\infty}$ form a family of orthogonal polynomials on the interval $[-1,1]$ with respect to the weight function $\left(1-x^{2}\right)^{\lambda-1 / 2}$, for $\lambda>-1 / 2, \lambda \neq 0$. They usually appear when dealing with functions defined on $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}$ with index $\lambda=p / 2-1$.
The Gegenbauer polynomials are somehow simpler to evaluate for $x=\cos (\theta)$, with $\theta \in[0, \pi]$. This simplifies also the connection with the Chebyshev polynomials $\left\{T_{k}(x)\right\}_{k=0}^{\infty}$, which admit the explicit expression $T_{k}(\cos (\theta))=\cos (k \theta)$. The Chebyshev polynomials appear as the limit of the Gegenbauer polynomials (divided by λ) when λ goes to 0 , so they can be regarded as the extension by continuity of $\left\{C_{k}^{(p / 2-1)}(x)\right\}_{k=0}^{\infty}$ to the case $p=2$.
For a reasonably smooth function ψ defined on $[0, \pi]$,

$$
\psi(\theta)=\sum_{k=0}^{\infty} b_{k, p} C_{k}^{(p / 2-1)}(\cos (\theta))
$$

provided that the coefficients

$$
b_{k, p}:=\frac{1}{c_{k, p}} \int_{0}^{\pi} \psi(\theta) C_{k}^{(p / 2-1)}(\cos (\theta))(\sin (\theta))^{p-2} \mathrm{~d} \theta
$$

are finite, where the normalizing constants are

$$
c_{k, p}:=\int_{0}^{\pi}\left(C_{k}^{(p / 2-1)}(\cos (\theta))\right)^{2}(\sin (\theta))^{p-2} \mathrm{~d} \theta
$$

The (squared) "Gegenbauer norm" of ψ is

$$
\|\psi\|_{G, p}^{2}:=\int_{0}^{\pi} \psi(\theta)^{2} C_{k}^{(p / 2-1)}(\cos (\theta))(\sin (\theta))^{p-2} \mathrm{~d} \theta
$$

The previous expansion can be generalized for a 2-dimensional function ψ defined on $[0, \pi] \times[0, \pi]$:

$$
\psi\left(\theta_{1}, \theta_{2}\right)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} b_{k, m, p} C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{1}\right)\right) C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{2}\right)\right)
$$

with coefficients
$b_{k, m, p}:=\frac{1}{c_{k, p} c_{m, p}} \int_{0}^{\pi} \int_{0}^{\pi} \psi\left(\theta_{1}, \theta_{2}\right) C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{1}\right)\right) C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{2}\right)\right)\left(\sin \left(\theta_{1}\right)\right)^{p-2}\left(\sin \left(\theta_{2}\right)\right)^{p-2} \mathrm{~d} \theta_{1} \mathrm{~d} \theta_{2}$.
The (squared) "Gegenbauer norm" of ψ is
$\|\psi\|_{G, p}^{2}:=\int_{0}^{\pi} \int_{0}^{\pi} \psi\left(\theta_{1}, \theta_{2}\right)^{2} C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{1}\right)\right) C_{k}^{(p / 2-1)}\left(\cos \left(\theta_{2}\right)\right)\left(\sin \left(\theta_{1}\right)\right)^{p-2}\left(\sin \left(\theta_{2}\right)\right)^{p-2} \mathrm{~d} \theta_{1} \mathrm{~d} \theta_{2}$.

Usage

```
Gegen_polyn(theta, k, p)
Gegen_coefs(k, p, psi, Gauss = TRUE, N = 320, normalize = TRUE,
        only_const = FALSE, tol = 1e-06, ...)
Gegen_series(theta, coefs, k, p, normalize = TRUE)
Gegen_norm(coefs, k, p, normalize = TRUE, cumulative = FALSE)
Gegen_polyn_2d(theta_1, theta_2, k, m, p)
Gegen_coefs_2d(k, m, p, psi, Gauss = TRUE, N = 320, normalize = TRUE,
    only_const = FALSE, tol = 1e-06, ...)
Gegen_series_2d(theta_1, theta_2, coefs, k, m, p, normalize = TRUE)
Gegen_norm_2d(coefs, k, m, p, normalize = TRUE)
```


Arguments

theta, theta_1, theta_2
vectors with values in $[0, \pi]$.
$k, m \quad$ vectors with the orders of the Gegenbauer polynomials. Must be integers larger or equal than 0 .

p	integer giving the dimension of the ambient space R^{p} that contains S^{p}
psi	function defined in $[0, \pi]$ and whose Gegenbauer coefficients are to be computed. Must be vectorized. For Gegen_coefs_2d, it must return a matrix of size c(length(theta_1), length (theta_2)).
Gauss	use a Gauss-Legendre quadrature rule of N nodes in the computation of the Gegenbauer coefficients? Otherwise, call integrate. Defaults to TRUE.
N	number of points used in the Gauss-Legendre quadrature for computing the Gegenbauer coefficients. Defaults to 320.
normalize	consider normalized coefficients (divided by $c_{k, p}$)? Defaults to TRUE.
only_const	return only the normalizing constants $c_{k, p}$? Defaults to FALSE.
tol	tolerance passed to integrate's rel.tol and abs.tol if Gauss = FALSE. Defaults to $1 \mathrm{e}-6$.
	further arguments to be passed to psi.
coefs	for Gegen_series and Gegen_norm, a vector of coefficients $b_{k, p}$ with length length(k). For Gegen_series_2d and Gegen_norm_2d, a matrix of coefficients $b_{k, m, p}$ with size c (length (k), length (m)). The order of the coefficients is given by k and m .
cumulative	return the cumulative norm for increasing truncation of the series? Defaults to FALSE.

Details

The Gegen_polyn function is a wrapper to the functions gegenpoly_n and gegenpoly_array in the gsl-package, which they interface the functions defined in the header file gsl_sf_gegenbauer.h (documented here) of the GNU Scientific Library.
Note that the function Gegen_polyn computes the regular unnormalized Gegenbauer polynomials. For the case $p=2$, the Chebyshev polynomials are considered.

Value

- Gegen_polyn: a matrix of size c(length(theta), length(k)) containing the evaluation of the length(k) Gegenbauer polynomials at theta.
- Gegen_coefs: a vector of size length(k) containing the coefficients $b_{k, p}$.
- Gegen_series: the evaluation of the truncated series expansion, a vector of size length(theta).
- Gegen_norm: the Gegenbauer norm of the truncated series, a scalar if cumulative = FALSE, otherwise a vector of size length (k).
- Gegen_polyn_2d: a 4-dimensional array of size c(length(theta_1), length(theta_2), length(k), length(m)) containing the evaluation of the length $(k) *$ length (m) 2-dimensional Gegenbauer polynomials at the bivariate grid spanned by theta_1 and theta_2.
- Gegen_coefs_2d: a matrix of size $c(l e n g t h(k)$,length (m)) containing the coefficients $b_{k, m, p}$.
- Gegen_series_2d: the evaluation of the truncated series expansion, a matrix of size c(length(theta_1), length(the
- Gegen_norm_2d: the 2-dimensional Gegenbauer norm of the truncated series, a scalar.

References

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. (2009) GNU Scientific Library Reference Manual. Network Theory Ltd. http://www.gnu.org/ software/gsl/

NIST Digital Library of Mathematical Functions. Release 1.0.20 of 2018-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds. https://dlmf.nist.gov/

Examples

```
## Representation of Gegenbauer polynomials (Chebyshev polynomials for p = 2)
th <- seq(0, pi, l = 500)
k <- 0:3
old_par <- par(mfrow = c(2, 2))
for (p in 2:5) {
    matplot(th, t(Gegen_polyn(theta = th, k = k, p = p)), lty = 1,
            type = "l", main = substitute(p == d, list(d = p)),
            axes = FALSE, xlab = expression(theta), ylab = "")
        axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
        axis(2); box()
        mtext(text = expression({C[k]^{p/2 - 1}}(cos(theta))), side = 2,
            line = 2, cex = 0.75)
        legend("bottomleft", legend = paste("k =", k), lwd = 2, col = seq_along(k))
}
par(old_par)
## Coefficients and series in p = 2
# Function in [0, pi] to be projected in Chebyshev polynomials
psi <- function(th) -sin(th / 2)
# Coefficients
p <- 2
k <- 0:4
(coefs <- Gegen_coefs(k = k, p = p, psi = psi))
# Series
plot(th, psi(th), type = "l", axes = FALSE, xlab = expression(theta),
    ylab = "", ylim = c(-1.25, 0))
axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
    labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
axis(2); box()
col <- viridisLite::viridis(length(coefs))
for (i in seq_along(coefs)) {
    lines(th, Gegen_series(theta = th, coefs = coefs[1:(i + 1)], k = 0:i,
                    p = p), col = col[i])
}
lines(th, psi(th), lwd = 2)
```

```
## Coefficients and series in p = 3
# Function in [0, pi] to be projected in Gegenbauer polynomials
psi <- function(th) tan(th / 3)
# Coefficients
p <- 3
k <- 0:10
(coefs <- Gegen_coefs(k = k, p = p, psi = psi))
# Series
plot(th, psi(th), type = "l", axes = FALSE, xlab = expression(theta),
    ylab = "", ylim = c(0, 2))
axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
    labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
axis(2); box()
col <- viridisLite::viridis(length(coefs))
for (i in seq_along(coefs)) {
    lines(th, Gegen_series(theta = th, coefs = coefs[1:(i + 1)], k = 0:i,
                    p = p), col = col[i])
}
lines(th, psi(th), lwd = 2)
## Surface representation
# Surface in [0, pi]^2 to be projected in Gegenbauer polynomials
p <- 3
psi <- function(th_1, th_2) A_theta_x(theta = th_1, x = cos(th_2),
                    p = p, as_matrix = TRUE)
# Coefficients
k <- 0:20
m<- 0:10
coefs <- Gegen_coefs_2d(k = k, m = m, p = p, psi = psi)
# Series
th <- seq(0, pi, l = 100)
col <- viridisLite::viridis(20)
old_par <- par(mfrow = c(2, 2))
image(th, th, A_theta_x(theta = th, x = cos(th), p = p), axes = FALSE,
    col = col, zlim = c(0, 1), xlab = expression(theta[1]),
    ylab = expression(theta[2]), main = "Original")
axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
    labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
axis(2, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
    labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
box()
for(K in c(5, 10, 20)) {
    A <- Gegen_series_2d(theta_1 = th, theta_2 = th,
                                    coefs = coefs[1:(K + 1), ], k = 0:K, m = m, p = p)
    image(th, th, A, axes = FALSE, col = col, zlim = c(0, 1),
            xlab = expression(theta[1]), ylab = expression(theta[2]),
            main = paste(K, "x", m[length(m)], "coefficients"))
```

```
        axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
        axis(2, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
        box()
}
par(old_par)
```

harmonics
(Hyper)spherical harmonics

Description

Computation of a certain explicit representation of (hyper)spherical harmonics on $S^{p-1}:=\{\mathrm{x} \in$ $\left.R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$. Details are available in García-Portugués et al. (2021).

Usage

g_i_k(x, i $\left.=1, k=1, m=N U L L, ~ s h o w _m=F A L S E\right)$

Arguments

x
locations in S^{p-1} to evaluate $g_{i, k}$. Either a matrix of size $\mathrm{c}(\mathrm{nx}, \mathrm{p})$ or a vector of size p. Normalized internally if required (with a warning message).
i, k alternative indexing to refer to the i-th (hyper)spherical harmonic of order k. i is a positive integer smaller than $\mathrm{d} _\mathrm{p} _\mathrm{k}$ and k is a non-negative integer.
m (hyper)spherical harmonic index, as used in Proposition 2.1. The index is computed internally from i and k. Defaults to NULL.
show_m flag to print m if computed internally when $m=$ NULL.

Details

The implementation uses Proposition 2.1 in García-Portugués et al. (2021), which adapts Theorem 1.5.1 in Dai and Xu (2013) with the correction of typos in the normalizing constant h_{α} and in the definition of the function g_{α} of the latter theorem.

Value

A vector of size nrow (x).

References

Dai, F. and Xu, Y. (2013). Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York. doi: 10.1007/9781461466604
García-Portugués, E., Paindaveine, D., and Verdebout, T. (2021). On the power of Sobolev tests for isotropy under local rotationally symmetric alternatives. arXiv:2108.09874. https://arxiv.org/ abs/2108. 09874

Examples

```
n <- 3e3
old_par <- par(mfrow \(=c(2,3))\)
k <- 2
for (i in 1:d_p_k(p = 3, k = k)) \{
    \(X<-r \_u n i f \_s p h(n=n, p=3, M=1)[, ~, 1]\)
    col <- \(\operatorname{rainbow(n)[rank(g\_ i\_ k(x=X,k=k,i=i,~show\_ m=TRUE))]~}\)
    scatterplot3d::scatterplot3d(X[, 1], X[, 2], X[, 3], color = col,
                                    axis = FALSE, pch = 19)
\}
for (k in 0:5) \{
    \(X<-\quad\) _unif_sph(n \(=n, p=3, M=1)[, ~, 1]\)
    col <- \(\operatorname{rainbow(n)[rank(g\_ i\_ k(x~=~X,~k~=~k,~i~=~1,~show\_ m~=~TRUE))~]~}\)
    scatterplot3d::scatterplot3d(X[, 1], X[, 2], X[, 3], color = col,
                axis = FALSE, pch = 19)
\}
par(old_par)
```

```
int_sph_MC
```

Monte Carlo integration of functions on the (hyper)sphere

Description

Monte Carlo approximation of the integral

$$
\int_{S^{p-1}} f(x) \mathrm{d} x
$$

of a function $f: S^{p-1} \rightarrow R$ defined on the (hyper)sphere $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$.

Usage

```
int_sph_MC(f, p, M = 10000, cores = 1, chunks = ceiling(M/1000),
    seeds \(=\) NULL, ...)
```


Arguments

f function to be integrated. Its first argument must be the (hyper)sphere position. Must be vectorized and return a vector of size $\operatorname{nrow}(x)$ for a matrix input x. See examples.
$\mathrm{p} \quad$ integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
M number of Monte Carlo samples. Defaults to 1e4.
cores number of cores to perform the integration. Defaults to 1.
chunks number of chunks to split the M Monte Carlo samples. Useful for parallelizing the integration in chunks tasks containing ceiling(M/chunks) replications. Useful also for avoiding memory bottlenecks when M is large. Defaults to ceiling(M/1e3).
seeds if provided, a vector of size chunks for fixing the seeds on each of the simulation chunks (useful for reproducing parallel simulations). Specifically, for k in 1 : chunks, seeds are set as set. seed (seeds[k], kind = "Mersenne-Twister") in each chunk. Defaults to NULL (no seed setting is done).
... optional arguments to be passed to f or to foreach (for example, . export to export global variables or other functions to the foreach environment).

Details

It is possible to have a progress bar if int_sph_MC is wrapped with progressr: : with_progress or if progressr: : handlers (global = TRUE) is invoked (once) by the user. See the examples below. The progress bar is updated with the number of finished chunks.

Value

A scalar with the approximate integral.

Examples

```
## Sequential simulation
# Vectorized functions to be integrated
x1 <- function(x) x[, 1]
quad <- function(x, a = 0) a + rowSums(x^4)
# Approximate \int_{S^{p-1}} x_1 dx = 0
int_sph_MC(f = x1, p = 3, M = 1e4, chunks = 2)
# Approximate \int_{S^{p-1}} (a + \sum_i x_i^4) dx
int_sph_MC(f = quad, p = 2, M = 1e4, a = 0, chunks = 2)
# Compare with Gauss--Legendre integration on S^2
th_k <- Gauss_Legen_nodes(a = 0, b = 2 * pi, N = 40)
w_k <- Gauss_Legen_weights(a = 0, b = 2 * pi, N = 40)
sum(w_k * quad(cbind(cos(th_k), sin(th_k)), a = 1))
## Parallel simulation with a progress bar
# Define a progress bar
require(progress)
require(progressr)
handlers(handler_progress(
    format = ":spin [:bar] :percent Total: :elapsedfull End \u2248 :eta",
    clear = FALSE))
# Call int_sph_MC() within with_progress()
with_progress(int_sph_MC(f = x1, p = 3, cores = 2, M = 1e5, chunks = 100))
# Instead of using with_progress() each time, it is more practical to run
# handlers(global = TRUE)
# once to activate progress bars in your R session
```


locdev
 Local projected alternatives to uniformity

Description

Density and random generation for local projected alternatives to uniformity with densities

$$
f_{\kappa, \boldsymbol{\mu}}(\mathbf{x}):=\frac{1-\kappa}{\omega_{p}}+\kappa f\left(\mathbf{x}^{\prime} \boldsymbol{\mu}\right)
$$

where

$$
f(z)=\frac{1}{\omega_{p}}\left\{1+\sum_{k=1}^{\infty} u_{k, p} C_{k}^{p / 2-1}(z)\right\}
$$

is the angular function controlling the local alternative in a Gegenbauer series, $0 \leq \kappa \leq 1, \boldsymbol{\mu}$ is a direction on S^{p-1}, and ω_{p} is the surface area of S^{p-1}. The sequence $\left\{u_{k, p}\right\}$ is typically such that $u_{k, p}=\left(1+\frac{2 k}{p-2}\right) b_{k, p}$ for the Gegenbauer coefficients $\left\{b_{k, p}\right\}$ of the kernel function of a Sobolev statistic (see the transformation between the coefficients $u_{k, p}$ and $b_{k, p}$).
Also, automatic truncation of the series $\sum_{k=1}^{\infty} u_{k, p} C_{k}^{p / 2-1}(z)$ according to the proportion of "Gegenbauer norm" explained.

Usage

f_locdev(z, p, uk)
con_f(f, p, N = 320)
d_locdev(x, mu, f, kappa)
r_locdev(n, mu, f, kappa, F_inv = NULL, ...)
cutoff_locdev(p, K_max $=10000$, thre $=0.001$, type, Rothman_t $=1 / 3$, Pycke_q $=0.5$, verbose $=$ FALSE, Gauss $=$ TRUE, $N=320$, tol $=1 \mathrm{e}-06$)

Arguments

z
p
uk
f
N
x
mu
projected evaluation points for f, a vector with entries on $[-1,1]$. integer giving the dimension of the ambient space R^{p} that contains S^{p-1}. coefficients $u_{k, p}$ associated to the indexes 1 :length(uk), a vector. angular function defined on $[-1,1]$. Must be vectorized.
number of points used in the Gauss-Legendre quadrature for computing the Gegenbauer coefficients. Defaults to 320 .
locations in S^{p-1} to evaluate the density. Either a matrix of size $\mathrm{c}(\mathrm{nx}, \mathrm{p})$ or a vector of length p. Normalized internally if required (with a warning message). a unit norm vector of size p giving the axis of rotational symmetry.

kappa	the strength of the local alternative, between 0 and 1.
n	sample size, a positive integer.
F_inv	quantile function associated to f. Computed by F_inv_from_f if NULL (default). further parameters passed to F_inv_from_f.
K_max	integer giving the truncation of the series. Defaults to 1e4.
thre	proportion of norm not explained by the first terms of the truncated series. Defaults to $1 \mathrm{e}-3$.
type	Sobolev statistic. For $p=2$, either "Watson", "Rothman", "Pycke_q", or "Hermans_Rasson". For $p \geq 2$, "Ajne", "Gine_Gn", "Gine_Fn", "Bakshaev", "Riesz", "PCVM", "PAD", or "PRt".
Rothman_t	t parameter for the Rothman test, a real in (0,1). Defaults to $1 / 3$.
Pycke_q	q parameter for the Pycke " q-test", a real in (0,1$)$. Defaults to $1 / 2$.
verbose	output information about the truncation (TRUE or 1) and a diagnostic plot (2)? Defaults to FALSE.
Gauss	use a Gauss-Legendre quadrature rule of N nodes in the computation of the Gegenbauer coefficients? Otherwise, call integrate. Defaults to TRUE.
tol	tolerance passed to integrate's rel.tol and abs.tol if Gauss = FALSE. Defaults to $1 \mathrm{e}-6$.

Details

See the definitions of local alternatives in Prentice (1978) and in García-Portugués et al. (2020).
The truncation of $\sum_{k=1}^{\infty} u_{k, p} C_{k}^{p / 2-1}(z)$ is done to the first K_max terms and then up to the index such that the first terms leave unexplained the proportion thre of the norm of the whole series. Setting thre $=0$ truncates to K_max terms exactly. If the series only contains odd or even non-zero terms, then only K_max / 2 addends are effectively taken into account in the first truncation.

Value

- f_locdev: angular function evaluated at x , a vector.
- con_f: normalizing constant c_{f} of f, a scalar.
- d_locdev: density function evaluated at x , a vector.
- $r_{\text {_locdev: }}$ a matrix of size $\mathrm{c}(\mathrm{n}, \mathrm{p})$ containing a random sample from the density $f_{\kappa, \mu}$.
- cutoff_locdev: vector of coefficients $\left\{u_{k, p}\right\}$ automatically truncated according to K_max and thre (see details).

References

García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2020) On a projection-based class of uniformity tests on the hypersphere. arXiv:2008.09897. https://arxiv.org/abs/2008. 09897

Prentice, M. J. (1978). On invariant tests of uniformity for directions and orientations. The Annals of Statistics, 6(1):169-176. doi: 10.1214/aos/1176344075

Examples

```
## Local alternatives diagnostics
loc_alt_diagnostic <- function(p, type, thre = 1e-3, K_max = 1e3) {
    # Coefficients of the alternative
    uk <- cutoff_locdev(K_max = K_max, p = p, type = type, thre = thre,
                        N = 640)
    old_par <- par(mfrow = c(2, 2))
    # Construction of f
    z<- seq(-1, 1, l = 1e3)
    f <- function(z) f_locdev(z = z, p = p, uk = uk)
    plot(z, f(z), type = "l", xlab = expression(z), ylab = expression(f(z)),
        main = paste0("Local alternative f, ", type, ", p = ", p), log = "y")
    # Projected density on [-1, 1]
    f_proj <- function(z) rotasym::w_p(p = p - 1) * f(z) *
        (1 - z^2)^((p - 3) / 2)
    plot(z, f_proj(z), type = "l", xlab = expression(z),
        ylab = expression(omega[p - 1] * f(z) * (1 - z^2)^{(p - 3) / 2}),
        main = paste0("Projected density, ", type, ", p = ", p), log = "y",
        sub = paste("Integral:", round(con_f(f= f, p = p), 4)))
    # Quantile function for projected density
    mu <- c(rep(0, p - 1), 1)
    F_inv <- F_inv_from_f(f = f, p = p, K = 5e2)
    plot(F_inv, xlab = expression(x), ylab = expression( }\mp@subsup{F}{}{\wedge}{-1}*(x))
        main = paste0("Quantile function, ", type, ", p = ", p))
    # Sample from the alternative and plot the projected sample
    n <- 5e4
    samp <- r_locdev(n = n, mu = mu, f = f, kappa = 1, F_inv = F_inv)
    plot(z, f_proj(z), col = 2, type = "l",
        main = paste0("Simulated projected data, ", type, ", p = ", p),
        ylim = c(0, 1.75))
    hist(samp %*% mu, freq = FALSE, breaks = seq(-1, 1, l = 50), add = TRUE)
    par(old_par)
}
## Local alternatives for the PCvM test
loc_alt_diagnostic(p = 2, type = "PCvM")
loc_alt_diagnostic(p = 3, type = "PCvM")
loc_alt_diagnostic(p = 4, type = "PCvM")
loc_alt_diagnostic(p = 5, type = "PCvM")
loc_alt_diagnostic(p = 11, type = "PCVM")
## Local alternatives for the PAD test
```

```
loc_alt_diagnostic(p = 2, type = "PAD")
loc_alt_diagnostic(p = 3, type = "PAD")
loc_alt_diagnostic(p = 4, type = "PAD")
loc_alt_diagnostic(p = 5, type = "PAD")
loc_alt_diagnostic(p = 11, type = "PAD")
## Local alternatives for the PRt test
loc_alt_diagnostic(p = 2, type = "PRt")
loc_alt_diagnostic(p = 3, type = "PRt")
loc_alt_diagnostic(p = 4, type = "PRt")
loc_alt_diagnostic(p = 5, type = "PRt")
loc_alt_diagnostic(p = 11, type = "PRt")
```

planets
Planet orbits

Description

Planet orbits data from the JPL Keplerian Elements for Approximate Positions of the Major Planets. The normal vector of a planet orbit represents is a vector on S^{2}.

Usage

planets

Format

A data frame with 9 rows and 3 variables:
planet names of the planets and Pluto.
i inclination; the orbit angle with respect to the ecliptic plane, in radians in $[0, \pi]$.
om longitude of the ascending node; the angle between the normal vector of the orbit and the normal vector of the ecliptic plane, in radians in $[0,2 \pi)$.

Details

The normal vector to the ecliptic plane of the planet with inclination i and longitude of the ascending node ω is

$$
(\sin (i) \sin (\omega),-\sin (i) \cos (\omega), \cos (i))^{\prime}
$$

The script performing the data preprocessing is available at planets.R. The data was retrieved on 2020-05-16.

Source

Table 2b in https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf

Examples

```
# Load data
data("planets")
# Add normal vectors
planets$normal <- cbind(sin(planets$i) * sin(planets$om),
                                    -sin(planets$i) * cos(planets$om),
                                    cos(planets$i))
# Tests to be performed
type_tests <- c("PCVM", "PAD", "PRt")
# Tests with Pluto
unif_test(data = planets$normal, type = type_tests, p_value = "MC")
# Tests without Pluto
unif_test(data = planets$normal[-9, ], type = type_tests, p_value = "MC")
```


Description

Computation of the kernels

$$
\psi_{p}^{W}(\theta):=\int_{-1}^{1} A_{x}(\theta) \mathrm{d} W\left(F_{p}(x)\right)
$$

where $A_{x}(\theta)$ is the proportion of area surface of S^{p-1} covered by the intersection of two hyperspherical caps with common solid angle $\pi-\cos ^{-1}(x)$ and centers separated by an angle $\theta \in[0, \pi]$, F_{p} is the distribution function of the projected spherical uniform distribution, and W is a measure on $[0,1]$.

Also, computation of the Gegenbauer coefficients of ψ_{p}^{W} :

$$
b_{k, p}^{W}:=\frac{1}{c_{k, p}} \int_{0}^{\pi} \psi_{p}^{W}(\theta) C_{k}^{p / 2-1}(\cos \theta) \mathrm{d} \theta
$$

These coefficients can also be computed via

$$
b_{k, p}^{W}=\int_{-1}^{1} a_{k, p}^{x} \mathrm{~d} W\left(F_{p}(x)\right)
$$

for a certain function $x \rightarrow a_{k, p}^{x}$. They serve to define projected alternatives to uniformity.

Usage

```
psi_Pn(theta, q, type, Rothman_t = 1/3, tilde = FALSE, psi_Gauss = TRUE,
    psi_N = 320, tol = 1e-06)
    Gegen_coefs_Pn(k, p, type, Rothman_t = 1/3, Gauss = TRUE, \(N=320\),
        tol \(=1 \mathrm{e}-06\), verbose \(=\) FALSE)
    \(\operatorname{akx}(\mathrm{x}, \mathrm{p}, \mathrm{k}, \mathrm{sqr}=\mathrm{FALSE})\)
    f_locdev_Pn(p, type, K = 1000, \(N=320\), K_max \(=10000\), thre \(=0.001\),
        Rothman_t \(=1 / 3\), verbose \(=\) FALSE)
```


Arguments

theta
q
type

Rothman_t $\quad t$ parameter for the Rothman test, a real in $(0,1)$. Defaults to $1 / 3$.

tilde

psi_Gauss use a Gauss-Legendre quadrature rule with psi_N nodes in the computation of
psi_N number of points used in the Gauss-Legendre quadrature for computing the kernel function. Defaults to 320.
tol tolerance passed to integrate's rel.tol and abs.tol if Gauss = FALSE. Defaults to $1 \mathrm{e}-6$.
k
p
Gauss

N
verbose flag to print informative messages. Defaults to FALSE.
x
sqr
K

K_max
thre
vectors with values in $[0, \pi]$.
integer giving the dimension of the sphere S^{q}.
type of projected-ecdf test statistic. Must be either "PCvM" (Cramér-von Mises), "PAD" (Anderson-Darling), or "PRt" (Rothman). the kernel function? Defaults to TRUE.
k vectors with the orders of the Gegenbauer polynomials. Must be integers larger or equal than 0 .
integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
use a Gauss-Legendre quadrature rule of N nodes in the computation of the Gegenbauer coefficients? Otherwise, call integrate. Defaults to TRUE.
$v \quad$ number of points used in the Gauss-Legendre quadrature for computing the Gegenbauer coefficients. Defaults to 320.
evaluation points for $a_{k, p}^{x}$, a vector with values in $[-1,1]$.
return the signed square root of $a_{k, p}^{x}$? Defaults to FALSE.
number of equispaced points on $[-1,1]$ used for evaluating f and then interpolating. Defaults to 1 e 3.
integer giving the truncation of the series. Defaults to 1 e 4 .
proportion of norm not explained by the first terms of the truncated series. De- faults to $1 \mathrm{e}-3$.

Details

The evaluation of ψ_{p}^{W} and $b_{k, p}^{W}$ depends on the type of projected-ecdf statistic:

- PCvM: closed-form expressions for ψ_{p}^{W} and $b_{k, p}^{W}$ with $p=2,3,4$, numerical integration required for $p \geq 5$.
- PAD: closed-form expressions for ψ_{2}^{W} and $b_{k, 3}^{W}$, numerical integration required for ψ_{p}^{W} with $p \geq 3$ and $b_{k, p}^{W}$ with $p=2$ and $p \geq 4$.
- PRt: closed-form expressions for ψ_{p}^{W} and $b_{k, p}^{W}$ for any $p \geq 2$.

See García-Portugués et al. (2020) for more details.

Value

- psi_Pn: a vector of size length(theta) with the evaluation of ψ.
- Gegen_coefs_Pn: a vector of size length(k) containing the coefficients $b_{k, p}^{W}$.
- akx: a matrix of size $\mathrm{c}\left(\right.$ length (x), length (k)) containing the coefficients $a_{k, p}^{x}$.
- $\mathrm{f} _l o c d e v _\mathrm{Pn}$: the projected alternative f as a function ready to be evaluated.

Author(s)

Eduardo García-Portugués and Paula Navarro-Esteban.

References

García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2020) On a projection-based class of uniformity tests on the hypersphere. arXiv:2008.09897. https://arxiv.org/abs/2008. 09897

Examples

```
# Kernels in the projected-ecdf test statistics
k <- 0:10
coefs <- list()
(coefs$PCvM <- t(sapply(2:5, function(p)
    Gegen_coefs_Pn(k = k, p = p, type = "PCvM"))))
(coefs$PAD <- t(sapply(2:5, function(p)
    Gegen_coefs_Pn(k = k, p = p, type = "PAD"))))
(coefs$PRt <- t(sapply(2:5, function(p)
    Gegen_coefs_Pn(k = k, p = p, type = "PRt"))))
# Gegenbauer expansion
th <- seq(0, pi, length.out = 501)[-501]
old_par <- par(mfrow = c(3, 4))
for (type in c("PCvM", "PAD", "PRt")) {
    for (p in 2:5) {
        plot(th, psi_Pn(theta = th, q = p - 1, type = type), type = "l",
            main = paste0(type, ", p = ", p), xlab = expression(theta),
```

```
            ylab = expression(psi(theta)), axes = FALSE, ylim = c(-1.5, 1))
        axis(1, at = c(0, pi / 4, pi / 2, 3 * pi / 4, pi),
            labels = expression(0, pi / 4, pi / 2, 3 * pi / 4, pi))
        axis(2); box()
        lines(th, Gegen_series(theta = th, coefs = coefs[[type]][p - 1, ],
                        k = k, p = p), col = 2)
    }
}
par(old_par)
# Analytical coefficients vs. numerical integration
test_coef <- function(type, p, k = 0:20) {
    plot(k, log1p(abs(Gegen_coefs_Pn(k = k, p = p, type = type))),
        ylab = "Coefficients", main = paste0(type, ", p = ", p))
    points(k, log1p(abs(Gegen_coefs(k = k, p = p, psi = psi_Pn, type = type,
            q = p - 1))), col = 2)
    legend("topright", legend = c("log(1 + Gegen_coefs_Pn))",
                                    "log(1 + Gegen_coefs(psi_Pn))"),
            lwd = 2, col = 1:2)
}
# PCvM statistic
old_par <- par(mfrow = c(2, 2))
for (p in 2:5) test_coef(type = "PCvM", p = p)
par(old_par)
# PAD statistic
old_par <- par(mfrow = c(2, 2))
for (p in 2:5) test_coef(type = "PAD", p = p)
par(old_par)
# PRt statistic
old_par <- par(mfrow = c(2, 2))
for (p in 2:5) test_coef(type = "PRt", p = p)
par(old_par)
# akx
akx(x = seq(-1, 1, l = 5), k = 1:4, p = 2)
akx(x = 0, k = 1:4, p = 3)
# PRt alternative to uniformity
z <- seq(-1, 1, l = 1e3)
p<- c(2:5, 10, 15, 17)
col <- viridisLite::viridis(length(p))
plot(z, f_locdev_Pn(p = p[1], type = "PRt")(z), type = "s",
        col = col[1], ylim = c(0, 0.6), ylab = expression(f[Rt](z)))
for (k in 2:length(p)) {
    lines(z, f_locdev_Pn(p = p[k], type = "PRt")(z), type = "s", col = col[k])
}
```

legend("topleft", legend = paste("p =", p), col = col, lwd = 2)

$$
\text { proj_unif } \quad \text { Projection of the spherical uniform distribution }
$$

Description

Density, distribution, and quantile functions of the projection of the spherical uniform random variable on an arbitrary direction, that is, the random variable $\gamma^{\prime} \mathbf{X}$, where \mathbf{X} is uniformly distributed on the (hyper)sphere $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$, and $\gamma \in S^{p-1}$ is an arbitrary projection direction. Note that the distribution is invariant to the choice of γ. Also, efficient simulation of $\gamma^{\prime} \mathbf{X}$.

Usage

d_proj_unif(x, p, log = FALSE)
p_proj_unif(x, p, log = FALSE)
q_proj_unif(u, p)
r_proj_unif(n, p)

Arguments

X
p
log
u
n
a vector of size $n x$ or a matrix of size $c(n x, 1)$.
integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
compute the logarithm of the density or distribution?
vector of probabilities.
sample size employed for computing the statistic.

Value

A matrix of size $c(n x, 1)$ with the evaluation of the density, distribution, or quantile function at x or u. For r_proj_unif, a random vector of size n.

Author(s)

Eduardo García-Portugués and Paula Navarro-Esteban.

Examples

```
# Density function
curve(d_proj_unif(x, p = 2), from = -2, to = 2, n = 2e2, ylim = c(0, 2))
curve(d_proj_unif(x, p = 3), n = 2e2, col = 2, add = TRUE)
curve(d_proj_unif(x, p = 4), n = 2e2, col = 3, add = TRUE)
curve(d_proj_unif(x, p = 5), n = 2e2, col = 4, add = TRUE)
curve(d_proj_unif(x, p = 6), n = 2e2, col = 5, add = TRUE)
# Distribution function
curve(p_proj_unif(x, p = 2), from = -2, to = 2, n = 2e2, ylim = c(0, 1))
curve(p_proj_unif(x, p = 3), n = 2e2, col = 2, add = TRUE)
curve(p_proj_unif(x, p = 4), n = 2e2, col = 3, add = TRUE)
curve(p_proj_unif(x, p = 5), n = 2e2, col = 4, add = TRUE)
curve(p_proj_unif(x, p = 6), n = 2e2, col = 5, add = TRUE)
# Quantile function
curve(q_proj_unif(u = x, p = 2), from = 0, to = 1, n = 2e2, ylim = c(-1, 1))
curve(q_proj_unif(u = x, p = 3), n = 2e2, col = 2, add = TRUE)
curve(q_proj_unif(u = x, p = 4), n = 2e2, col = 3, add = TRUE)
curve(q_proj_unif(u = x, p = 5), n = 2e2, col = 4, add = TRUE)
curve(q_proj_unif(u = x, p = 6), n = 2e2, col = 5, add = TRUE)
    # Sampling
    hist(r_proj_unif(n = 1e4, p = 4), freq = FALSE, breaks = 50)
    curve(d_proj_unif(x, p = 4), n = 2e2, col = 3, add = TRUE)
```

Psi Shortest angles matrix

Description

Efficient computation of the shortest angles matrix $\boldsymbol{\Psi}$, defined as

$$
\Psi_{i j}:=\cos ^{-1}\left(\mathbf{X}_{i}^{\prime} \mathbf{X}_{j}\right), \quad i, j=1, \ldots, n
$$

for a sample $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$.
For a circular sample $\Theta_{1}, \ldots, \Theta_{n} \in[0,2 \pi), \Psi$ can be expressed as

$$
\Psi_{i j}=\pi-\left|\pi-\left|\Theta_{i}-\Theta_{j}\right|\right|, \quad i, j=1, \ldots, n
$$

Usage

```
Psi_mat(data, ind_tri = 0L, use_ind_tri = FALSE, scalar_prod = FALSE,
    angles_diff = FALSE)
```

upper_tri_ind(n)

Arguments

data	an array of size $\mathrm{c}(\mathrm{n}, \mathrm{p}, \mathrm{M})$ containing the Cartesian coordinates of M samples of size n of directions on S^{p-1}. Alternatively if $\mathrm{p}=2$, an array of size $\mathrm{c}(\mathrm{n}, 1, \mathrm{M})$ containing the angles on $[0,2 \pi)$ of the M circular samples of size n on S^{1}. Must not contain NA's.
ind_tri	if use_ind_tri = TRUE, the vector of 0-based indexes provided by upper_tri_ind(n), which allows to extract the upper triangular part of the matrix Ψ. See the exam- ples.
use_ind_tri	use the already computed vector index ind_tri? If FALSE (default), ind_tri is computed internally.
scalar_prod	return the scalar products $\mathbf{X}_{i}^{\prime} \mathbf{X}$ instead of the shortest angles? Only taken into account for data in Cartesian form. Defaults to FALSE.
angles_diff	return the (unwrapped) angles difference $\Theta_{i}-\Theta_{j}$ instead of the shortest angles? Only taken into account for data in angular form. Defaults to FALSE.
n	sample size, used to determine the index vector that gives the upper triangular part of Ψ.

Value

- Psi_mat: a matrix of size $c(n *(n-1) / 2, M)$ containing, for each column, the vector half of Ψ for each of the M samples.
- upper_tri_ind: a matrix of size $n *(n-1) / 2$ containing the 0 -based linear indexes for extracting the upper triangular matrix of a matrix of $\operatorname{size} c(n, n)$, diagonal excluded, assuming column-major order.

Warning

Be careful on avoiding the next bad usages of Psi_mat, which will produce spurious results:

- The directions in data do not have unit norm when Cartesian coordinates are employed.
- The entries of data are not in $[0,2 \pi)$ when polar coordinates are employed.
- ind_tri is a vector of size $n *(n-1) / 2$ that does not contain the indexes produced by upper_tri_ind(n).

Examples

```
# Shortest angles
n <- 5
X <- r_unif_sph(n = n, p = 2, M = 2)
Theta <- X_to_Theta(X)
dim(Theta) <- c(n, 1, 2)
Psi_mat(X)
Psi_mat(Theta)
# Precompute ind_tri
ind_tri <- upper_tri_ind(n)
Psi_mat(X, ind_tri = ind_tri, use_ind_tri = TRUE)
```

\# Compare with R
A <- $\operatorname{acos(tcrossprod(X[,~,~1]))~}$
ind <- upper.tri(A)
A[ind]
\# Reconstruct matrix
Psi_vec <- Psi_mat(Theta[, , 1, drop = FALSE])
Psi <- matrix(0, nrow $=\mathrm{n}$, $\mathrm{ncol}=\mathrm{n}$)
Psi[upper.tri(Psi)] <- Psi_vec
Psi <- Psi + t(Psi)
p_Kolmogorov Asymptotic distributions for circular uniformity statistics

Description

Computation of the asymptotic null distributions of circular uniformity statistics.

Usage

p_Kolmogorov(x, K_Kolmogorov = 25L, alternating = TRUE)
d_Kolmogorov(x, K_Kolmogorov = 25L, alternating = TRUE)
p_cir_stat_Ajne(x, K_Ajne = 15L)
d_cir_stat_Ajne(x, K_Ajne = 15L)
p_cir_stat_Bingham(x)
d_cir_stat_Bingham(x)
p_cir_stat_Greenwood(x)
d_cir_stat_Greenwood(x)
p_cir_stat_Gini(x)
d_cir_stat_Gini(x)
p_cir_stat_Gini_squared(x)
d_cir_stat_Gini_squared(x)
p_cir_stat_Hodges_Ajne2(x, n, asymp_std = FALSE)
p_cir_stat_Hodges_Ajne(x, n, exact = TRUE, asymp_std = FALSE)

```
d_cir_stat_Hodges_Ajne(x, n, exact = TRUE, asymp_std = FALSE)
p_cir_stat_Kuiper(x, n, K_Kuiper = 12L, second_term = TRUE, Stephens = FALSE)
d_cir_stat_Kuiper(x, n, K_Kuiper = 12L, second_term = TRUE, Stephens = FALSE)
p_cir_stat_Log_gaps(x, abs_val = TRUE)
d_cir_stat_Log_gaps(x, abs_val = TRUE)
p_cir_stat_Max_uncover(x)
d_cir_stat_Max_uncover(x)
p_cir_stat_Num_uncover(x)
d_cir_stat_Num_uncover(x)
p_cir_stat_Pycke(x)
d_cir_stat_Pycke(x)
p_cir_stat_Vacancy(x)
d_cir_stat_Vacancy(x)
p_cir_stat_Watson(x, n = 0L, K_Watson = 25L, Stephens = FALSE)
d_cir_stat_Watson(x, n = 0L, K_Watson = 25L, Stephens = FALSE)
p_cir_stat_Watson_1976(x, K_Watson_1976 = 8L, N = 40L)
d_cir_stat_Watson_1976(x, K_Watson_1976 = 8L)
p_cir_stat_Range(x, n, max_gap = TRUE)
d_cir_stat_Range(x, n, max_gap = TRUE)
p_cir_stat_Rao(x)
d_cir_stat_Rao(x)
p_cir_stat_Rayleigh(x)
d_cir_stat_Rayleigh(x)
p_cir_stat_Bakshaev(x, K_max = 1000, thre = 0, ...)
```

```
d_cir_stat_Bakshaev(x, K_max = 1000, thre = 0, ...)
p_cir_stat_Gine_Fn(x, K_max = 1000, thre = 0, ...)
d_cir_stat_Gine_Fn(x, K_max = 1000, thre = 0, ...)
p_cir_stat_Gine_Gn(x, K_max = 1000, thre = 0, ...)
d_cir_stat_Gine_Gn(x, K_max = 1000, thre = 0, ...)
p_cir_stat_Hermans_Rasson(x, K_max = 1000, thre = 0, ...)
d_cir_stat_Hermans_Rasson(x, K_max = 1000, thre = 0, ...)
p_cir_stat_PAD(x, K_max = 1000, thre = 0, ...)
d_cir_stat_PAD(x, K_max = 1000, thre = 0, ...)
p_cir_stat_PCvM(x, K_max = 1000, thre = 0, ...)
d_cir_stat_PCvM(x, K_max = 1000, thre = 0, ...)
p_cir_stat_PRt(x, t = 1/3, K_max = 1000, thre = 0, ...)
d_cir_stat_PRt(x, t = 1/3, K_max = 1000, thre = 0, ...)
p_cir_stat_Pycke_q(x, q = 0.5, K_max = 1000, thre = 0, ...)
d_cir_stat_Pycke_q(x, q = 0.5, K_max = 1000, thre = 0, ...)
p_cir_stat_Rothman(x, t = 1/3, K_max = 1000, thre = 0, ...)
d_cir_stat_Rothman(x, t = 1/3, K_max = 1000, thre = 0, ...)
p_cir_stat_Riesz(x, s = 1, K_max = 1000, thre = 0, ...)
d_cir_stat_Riesz(x, s = 1, K_max = 1000, thre = 0, ...)
```


Arguments

$x \quad a$ vector of size $n x$ or a matrix of size $c(n x, 1)$.
K_Kolmogorov, K_Kuiper, K_Watson, K_Watson_1976, K_Ajne
integer giving the truncation of the series present in the null asymptotic distributions. For the Kolmogorov-Smirnov-related series defaults to 25 ; for the others series defaults to a smaller number.
alternating use the alternating series expansion for the distribution of the KolmogorovSmirnov statistic? Defaults to TRUE.

n	sample size employed for computing the statistic.
asymp_std	compute the distribution associated to the normalized Hodges-Ajne statistic? Defaults to FALSE.
exact	use the exact distribution for the Hodges-Ajne statistic? Defaults to TRUE.
second_term	use the second-order series expansion for the distribution of the Kuiper statistic? Defaults to TRUE.
Stephens	compute Stephens (1970) modification so that the null distribution of the is less dependent on the sample size? The modification does not alter the test decision.
abs_val	compute the distribution associated to the absolute value of the Darling's log gaps statistic? Defaults to TRUE.
N	number of points used in the Gauss-Legendre quadrature. Defaults to 40.
max_gap	compute the distribution associated to the maximum gap for the range statistic? Defaults to TRUE.
K_max	integer giving the truncation of the series that compute the asymptotic p -value of a Sobolev test. Defaults to 1e3.
thre	error threshold for the tail probability given by the the first terms of the truncated series of a Sobolev test. Defaults to 0 (no further truncation).
	further parameters passed to p_Sobolev or d_Sobolev (such as x_tail).
t	t parameter for the Rothman and Cressie tests, a real in $(0,1)$. Defaults to $1 / 3$.
q	q parameter for the Pycke " q-test", a real in (0,1). Defaults to $1 / 2$.
s	s parameter for the s-Riesz test, a real in $(0,2)$. Defaults to 1 .

Details

Descriptions and references for most of the tests are available in García-Portugués and Verdebout (2018).

Value

A matrix of size $c(n x, 1)$ with the evaluation of the distribution or density function at x.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
\# Ajne
curve(d_cir_stat_Ajne(x), to = 1.5, n = 2e2, ylim = c(0, 4))
curve(p_cir_stat_Ajne(x), n = 2e2, col = 2, add = TRUE)
\# Bakshaev
curve(d_cir_stat_Bakshaev(x, method = "HBE"), to = 6, n = 2e2,
    ylim = c(0, 1))
curve(p_cir_stat_Bakshaev(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
```

```
# Bingham
curve(d_cir_stat_Bingham(x), to = 12, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Bingham(x), n = 2e2, col = 2, add = TRUE)
# Greenwood
curve(d_cir_stat_Greenwood(x), from = -6, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Greenwood(x), n = 2e2, col = 2, add = TRUE)
# Hermans-Rasson
curve(p_cir_stat_Hermans_Rasson(x, method = "HBE"), to = 10, n = 2e2,
    ylim = c(0, 1))
curve(d_cir_stat_Hermans_Rasson(x, method = "HBE"), n = 2e2, add = TRUE,
    col = 2)
# Hodges-Ajne
plot(25:45, d_cir_stat_Hodges_Ajne(cbind(25:45), n = 50), type = "h",
    lwd = 2, ylim = c(0, 1))
lines(25:45, p_cir_stat_Hodges_Ajne(cbind(25:45), n = 50), type = "s",
    col = 2)
# Kolmogorov-Smirnov
curve(d_Kolmogorov(x), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_Kolmogorov(x), n = 2e2, col = 2, add = TRUE)
# Kuiper
curve(d_cir_stat_Kuiper(x, n = 50), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_Kuiper(x, n = 50), n = 2e2, col = 2, add = TRUE)
# Kuiper and Watson with Stephens modification
curve(d_cir_stat_Kuiper(x, n = 8, Stephens = TRUE), to = 2.5, n = 2e2,
    ylim = c(0, 10))
curve(d_cir_stat_Watson(x, n = 8, Stephens = TRUE), n = 2e2, lty = 2,
    add = TRUE)
n <- c(10, 20, 30, 40, 50, 100, 500)
col <- rainbow(length(n))
for (i in seq_along(n)) {
    curve(d_cir_stat_Kuiper(x, n = n[i], Stephens = TRUE), n = 2e2,
            col = col[i], add = TRUE)
    curve(d_cir_stat_Watson(x, n = n[i], Stephens = TRUE), n = 2e2,
        col = col[i], lty = 2, add = TRUE)
}
# Maximum uncovered spacing
curve(d_cir_stat_Max_uncover(x), from = -3, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Max_uncover(x), n = 2e2, col = 2, add = TRUE)
# Number of uncovered spacing
curve(d_cir_stat_Num_uncover (x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Num_uncover(x), n = 2e2, col = 2, add = TRUE)
# Log gaps
curve(d_cir_stat_Log_gaps(x), from = -1, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Log_gaps(x), n = 2e2, col = 2, add = TRUE)
```

```
# Gine Fn
curve(d_cir_stat_Gine_Fn(x, method = "HBE"), to = 2.5, n = 2e2,
    ylim = c(0, 2))
curve(p_cir_stat_Gine_Fn(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Gine Gn
curve(d_cir_stat_Gine_Gn(x, method = "HBE"), to = 2.5, n = 2e2,
    ylim = c(0, 2))
curve(p_cir_stat_Gine_Gn(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Gini mean difference
curve(d_cir_stat_Gini(x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Gini(x), n = 2e2, col = 2, add = TRUE)
# Gini mean squared difference
curve(d_cir_stat_Gini_squared(x), from = -10, to = 10, n = 2e2,
    ylim = c(0, 1))
curve(p_cir_stat_Gini_squared(x), n = 2e2, col = 2, add = TRUE)
# PAD
curve(d_cir_stat_PAD(x, method = "HBE"), to = 3, n = 2e2, ylim = c(0, 1.5))
curve(p_cir_stat_PAD(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# PCvM
curve(d_cir_stat_PCvM(x, method = "HBE"), to = 4, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_PCvM(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# PRt
curve(d_cir_stat_PRt(x, method = "HBE"), n = 2e2, ylim = c(0, 5))
curve(p_cir_stat_PRt(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Pycke
curve(d_cir_stat_Pycke(x), from = -5, to = 10, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Pycke(x), n = 2e2, col = 2, add = TRUE)
# Pycke q
curve(d_cir_stat_Pycke_q(x, method = "HBE"), to = 15, n = 2e2,
    ylim = c(0, 1))
curve(p_cir_stat_Pycke_q(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Range
curve(d_cir_stat_Range(x, n = 50), to = 2, n = 2e2, ylim = c(0, 4))
curve(p_cir_stat_Range(x, n = 50), n = 2e2, col = 2, add = TRUE)
# Rao
curve(d_cir_stat_Rao(x), from = -6, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Rao(x), n = 2e2, col = 2, add = TRUE)
# Rayleigh
curve(d_cir_stat_Rayleigh(x), to = 12, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Rayleigh(x), n = 2e2, col = 2, add = TRUE)
```

```
# Riesz
curve(d_cir_stat_Riesz(x, method = "HBE"), to = 6, n = 2e2,
    ylim = c(0, 1))
curve(p_cir_stat_Riesz(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Rothman
curve(d_cir_stat_Rothman(x, method = "HBE"), n = 2e2, ylim = c(0, 5))
curve(p_cir_stat_Rothman(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Vacancy
curve(d_cir_stat_Vacancy(x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Vacancy(x), n = 2e2, col = 2, add = TRUE)
# Watson
curve(d_cir_stat_Watson(x), to = 0.5, n = 2e2, ylim = c(0, 15))
curve(p_cir_stat_Watson(x), n = 2e2, col = 2, add = TRUE)
# Watson (1976)
curve(d_cir_stat_Watson_1976(x), to = 1.5, n = 2e2, ylim = c(0, 3))
curve(p_cir_stat_Watson_1976(x), n = 2e2, col = 2, add = TRUE)
```

p_sph_stat_Bingham Asymptotic distributions for spherical uniformity statistics

Description

Computation of the asymptotic null distributions of spherical uniformity statistics.

Usage

p_sph_stat_Bingham(x, p)
d_sph_stat_Bingham(x, p)
p_sph_stat_CJ12(x, regime = 1L, beta = 0)
d_sph_stat_CJ12(x, regime = 3L, beta = 0)
p_sph_stat_Rayleigh(x, p)
d_sph_stat_Rayleigh(x, p)
p_sph_stat_Rayleigh_HD(x, p)
d_sph_stat_Rayleigh_HD(x, p)
p_sph_stat_Ajne(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_Ajne(x, p, K_max = 1000, thre = 0, ...)

```
p_sph_stat_Bakshaev(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_Bakshaev(x, p, K_max = 1000, thre = 0, ...)
p_sph_stat_Gine_Fn(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_Gine_Fn(x, p, K_max = 1000, thre = 0, ...)
p_sph_stat_Gine_Gn(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_Gine_Gn(x, p, K_max = 1000, thre = 0, ...)
p_sph_stat_PAD(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_PAD(x, p, K_max = 1000, thre = 0, ...)
p_sph_stat_PCvM(x, p, K_max = 1000, thre = 0, ...)
d_sph_stat_PCvM(x, p, K_max = 1000, thre = 0, ...)
p_sph_stat_PRt(x, p, t = 1/3, K_max = 1000, thre = 0, ...)
d_sph_stat_PRt(x, p, t = 1/3, K_max = 1000, thre = 0, ...)
p_sph_stat_Riesz(x, p, s = 1, K_max = 1000, thre = 0, ...)
d_sph_stat_Riesz(x, p, s = 1, K_max = 1000, thre = 0, ...)
```


Arguments

X
p
regime
beta $\quad \beta$ parameter in the exponential regime of the CJ12 test, a nonnegative real. Defaults to 0 .

K_max integer giving the truncation of the series that compute the asymptotic p-value of a Sobolev test. Defaults to 1e3.
thre error threshold for the tail probability given by the the first terms of the truncated series of a Sobolev test. Defaults to 0 (no further truncation).
... further parameters passed to p_Sobolev or d_Sobolev (such as x_tail).
t
s
a vector of size $n x$ or a matrix of size $c(n x, 1)$.
integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
type of asymptotic regime for the CJ12 test, either 1 (sub-exponential regime), 2 (exponential), or 3 (super-exponential; default). .
s parameter for the s-Riesz test, a real in $(0,2)$. Defaults to 1 .

Details

Descriptions and references on most of the asymptotic distributions are available in García-Portugués and Verdebout (2018).

Value

- r_sph_stat_*: a matrix of size $c(n, 1)$ containing the sample.
- p_sph_stat_*, d_sph_stat_*: a matrix of size $c(n x, 1)$ with the evaluation of the distribution or density functions at x .

Examples

```
\# Ajne
curve(d_sph_stat_Ajne(x, p = 3, method = "HBE"), n = 2e2, ylim = c(0, 4))
curve(p_sph_stat_Ajne (x, p = 3, method = "HBE"), \(n=2 e 2\), col = 2 ,
    add \(=\) TRUE)
\# Bakshaev
curve(d_sph_stat_Bakshaev(x, p = 3, method = "HBE"), to = 5, n = 2e2,
    ylim \(=c(0,2)\) )
curve(p_sph_stat_Bakshaev(x, p = 3, method = "HBE"), \(\mathrm{n}=2 \mathrm{e} 2\), col = 2,
    add = TRUE)
\# Bingham
curve(d_sph_stat_Bingham(x, p = 3), to = 20, n = 2e2, ylim = c(0, 1))
curve(p_sph_stat_Bingham(x, p = 3), n = 2e2, col = 2, add = TRUE)
\# CJ12
curve(d_sph_stat_CJ12(x, regime \(=1\) ), from \(=-10\), to \(=10, \mathrm{n}=2 \mathrm{e} 2\),
    ylim \(=c(0,1)\) )
curve(d_sph_stat_CJ12 \((x\), regime \(=2\), beta \(=0.1), n=2 e 2\), col \(=2\),
    add \(=\) TRUE)
curve(d_sph_stat_CJ12(x, regime = 3), n = 2e2, col = 3, add = TRUE)
curve(p_sph_stat_CJ12(x, regime = 1), n = 2e2, col = 1, add = TRUE)
curve(p_sph_stat_CJ12(x, regime \(=2\), beta \(=0.1\) ), \(n=2 e 2\), col \(=2\),
    add \(=\) TRUE)
curve (p_sph_stat_CJ12 (x, regime = 3), col = 3, add = TRUE)
\# Gine Fn
curve(d_sph_stat_Gine_Fn(x, p = 3, method = "HBE"), to = 2 , \(n=2 e 2\),
    ylim = c(0, 2))
curve(p_sph_stat_Gine_Fn(x, p = 3, method = "HBE"), \(n=2 e 2\), col = 2,
    add \(=\) TRUE)
\# Gine Gn
curve(d_sph_stat_Gine_Gn(x, p = 3, method = "HBE"), to = 1.5, n = 2e2,
    ylim \(=c(0,2.5))\)
curve(p_sph_stat_Gine_Gn(x, p = 3, method = "HBE"), \(n=2 e 2\), col = 2 ,
    add \(=\) TRUE)
\# PAD
```

```
curve(d_sph_stat_PAD(x, p = 3, method = "HBE"), to = 3, n = 2e2,
    ylim = c(0, 1.5))
curve(p_sph_stat_PAD(x, p = 3, method = "HBE"), n = 2e2, col = 2,
    add = TRUE)
# PCvM
curve(d_sph_stat_PCvM(x, p = 3, method = "HBE"), to = 0.6, n = 2e2,
        ylim = c(0, 7))
    curve(p_sph_stat_PCVM(x, p = 3, method = "HBE"), n = 2e2, col = 2,
        add = TRUE)
    # PRt
    curve(d_sph_stat_PRt(x, p = 3, method = "HBE"), n = 2e2, ylim = c(0, 5))
    curve(p_sph_stat_PRt(x, p = 3, method = "HBE"), n = 2e2, col = 2, add = TRUE)
    # Rayleigh
    curve(d_sph_stat_Rayleigh(x, p = 3), to = 15, n = 2e2, ylim = c(0, 1))
    curve(p_sph_stat_Rayleigh(x, p = 3), n = 2e2, col = 2, add = TRUE)
    # HD-standardized Rayleigh
    curve(d_sph_stat_Rayleigh_HD(x, p = 3), from = -4, to = 4, n = 2e2,
        ylim = c(0, 1))
    curve(p_sph_stat_Rayleigh_HD(x, p = 3), n = 2e2, col = 2, add = TRUE)
    # Riesz
    curve(d_sph_stat_Riesz(x, p = 3, method = "HBE"), n = 2e2, from = 0, to = 5,
        ylim = c(0, 2))
    curve(p_sph_stat_Riesz(x, p = 3, method = "HBE"), n = 2e2, col = 2,
        add = TRUE)
```

 rhea
 Rhea craters from Hirata (2016)

Description

Craters on Rhea from Hirata (2016).

Usage

rhea

Format

A data frame with 3596 rows and 4 variables:
name name of the crater (if named).
diameter diameter of the crater (in km).
theta longitude angle $\theta \in[0,2 \pi)$ of the crater center.
phi latitude angle $\phi \in[-\pi / 2, \pi / 2]$ of the crater center.

Details

The (θ, ϕ) angles are such their associated planetocentric coordinates are:

$$
(\cos (\phi) \cos (\theta), \cos (\phi) \sin (\theta), \sin (\phi))^{\prime}
$$

with $(0,0,1)^{\prime}$ denoting the north pole.
The script performing the data preprocessing is available at rhea.R.

Source

https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002\%2F2015JE004940\& file=jgre20485-sup-0002-TableS1.txt

References

Hirata, N. (2016) Differential impact cratering of Saturn's satellites by heliocentric impactors. Journal of Geophysical Research: Planets, 121:111-117. doi: 10.1002/2015JE004940

Examples

```
# Load data
data("rhea")
# Add Cartesian coordinates
rhea$X <- cbind(cos(rhea$theta) * cos(rhea$phi),
            sin(rhea$theta) * cos(rhea$phi),
            sin(rhea$phi))
# Tests
unif_test(data = rhea$X[rhea$diam > 15 & rhea$diam < 20, ],
            type = c("PCvM", "PAD", "PRt"), p_value = "asymp")
```

 r_alt Sample non-uniformly distributed spherical data

Description

Simple simulation of prespecified non-uniform spherical distributions: von Mises-Fisher (vMF), Mixture of vMF (MvMF), Angular Central Gaussian (ACG), Small Circle (SC), Watson (W), or Cauchy-like (C).

Usage

```
\(r_{\_}\)alt(n, p, M = 1, alt = "vMF", kappa = 1, nu = 0.5, F_inv = NULL,
    K = 1000, axial_MvMF = TRUE)
```


Arguments

n
p
M
alt
kappa
nu

F_inv

K
axial_MvMF
sample size.
integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
number of samples of size n. Defaults to 1 .
alternative, must be "VMF", "MvMF", "ACG", "SC", "W", or "C". See details below.
non-negative parameter measuring the strength of the deviation with respect to uniformity (obtained with $\kappa=0$).
projection along \mathbf{e}_{p} controlling the modal strip of the small circle distribution. Must be in $(-1,1)$. Defaults to 0.5.
quantile function returned by $F_{-} i n v _f r o m _f$. Used for "SC", "W", and "C". Computed by internally if NULL (default).
number of equispaced points on $[-1,1]$ used for evaluating F^{-1} and then interpolating. Defaults to 1 e 3 . use a mixture of vMF that is axial (i.e., symmetrically distributed about the origin)? Defaults to TRUE.

Details

The parameter kappa is used as κ in the following distributions:

- "VMF": von Mises-Fisher distribution with concentration κ and directional mean $\mathbf{e}_{p}=(0,0, \ldots, 1)$.
- "MvMF": equally-weighted mixture of p von Mises-Fisher distributions with common concentration κ and directional means $\pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{p}$ if axial_MvMF $=$ TRUE. If axial_MvMF $=$ FALSE, then only means with positive signs are considered.
- "ACG": Angular Central Gaussian distribution with diagonal shape matrix with diagonal given by

$$
(1, \ldots, 1,1+\kappa) /(p+\kappa)
$$

- "SC": Small Circle distribution with axis mean $\mathbf{e}_{p}=(0,0, \ldots, 1)$ and concentration κ about the projection along the mean, ν.
- "W": Watson distribution with axis mean $\mathbf{e}_{p}=(0,0, \ldots, 1)$ and concentration κ. The Watson distribution is a particular case of the Bingham distribution.
- "C": Cauchy-like distribution with directional mode $\mathbf{e}_{p}=(0,0, \ldots, 1)$ and concentration $\kappa=\rho /\left(1-\rho^{2}\right)$. The circular Wrapped Cauchy distribution is a particular case of this Cauchylike distribution.

Much faster sampling for "SC", "W", and " C " is achieved providing F_inv, see examples.

Value

An array of size $c(n, p, M)$ with M random samples of size n of non-uniformly-generated directions on S^{p-1}.

Examples

```
## Simulation with p = 2
p <- 2
n <- 200
kappa <- 20
nu <- 0.5
rho <- ((2 * kappa + 1) - sqrt(4 * kappa + 1)) / (2 * kappa)
F_inv_SC_2 <- F_inv_from_f(f = function(z) exp(-kappa * (z - nu)^2), p = 2)
F_inv_W_2 <- F_inv_from_f(f = function(z) exp(kappa * z^2), p = 2)
F_inv_C_2 <- F_inv_from_f(f = function(z) (1 - rho^2) /
                    (1 + rho^2 - 2 * rho * z)^(p / 2), p = 2)
x1 <- r_alt(n = n, p = p, alt = "vMF", kappa = kappa)[, , 1]
x2 <- r_alt(n = n, p = p, alt = "MvMF", kappa = kappa)[, , 1]
x3 <- r_alt(n = n, p = p, alt = "ACG", kappa = kappa)[, , 1]
x4 <- r_alt(n = n, p = p, alt = "SC", F_inv = F_inv_SC_2)[, , 1]
x5 <- r_alt(n = n, p = p, alt = "W", F_inv = F_inv_W_2)[, , 1]
x6 <- r_alt(n = n, p = p, alt = "C", F_inv = F_inv_C_2)[, , 1]
r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
plot(r * x1, pch = 16, xlim = c(-1.1, 1.1), ylim = c(-1.1, 1.1), col = 1)
points(r * x2, pch = 16, col = 2)
points(r * x3, pch = 16, col = 3)
points(r* x4, pch = 16, col = 4)
points(r * x5, pch = 16, col = 5)
points(r * x6, pch = 16, col = 6)
## Simulation with p = 3
n <- 200
p <- 3
kappa <- 20
nu <- 0.5
rho <- ((2 * kappa + 1) - sqrt(4 * kappa + 1)) / (2 * kappa)
F_inv_SC_3 <- F_inv_from_f(f = function(z) exp(-kappa * (z - nu)^2), p = 3)
F_inv_W_3 <- F_inv_from_f(f = function(z) exp(kappa * z^2), p = 3)
F_inv_C_3 <- F_inv_from_f(f = function(z) (1 - rho^2) /
                            (1 + rho^2 - 2 * rho * z)^(p / 2), p = 3)
x1 <- r_alt(n = n, p = p, alt = "vMF", kappa = kappa)[, , 1]
x2 <- r_alt(n = n, p = p, alt = "MvMF", kappa = kappa)[, , 1]
x3 <- r_alt(n = n, p = p, alt = "ACG", kappa = kappa)[, , 1]
x4 <- r_alt(n = n, p = p, alt = "SC", F_inv = F_inv_SC_3)[, , 1]
x5 <- r_alt(n = n, p = p, alt = "W", F_inv = F_inv_W_3)[, , 1]
x6 <- r_alt(n = n, p = p, alt = "C", F_inv = F_inv_C_3)[, , 1]
s3d <- scatterplot3d::scatterplot3d(x1, pch = 16, xlim = c(-1.1, 1.1),
ylim = c(-1.1, 1.1), zlim = c(-1.1, 1.1))
s3d$points3d(x2, pch = 16, col = 2)
s3d$points3d(x3, pch = 16, col = 3)
s3d$points3d(x4, pch = 16, col = 4)
s3d$points3d(x5, pch = 16, col = 5)
s3d$points3d(x6, pch = 16, col = 6)
```


Description

Simulation of the uniform distribution on $[0,2 \pi)$ and $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$.

Usage

r_unif_cir(n, M = 1L, sorted = FALSE)
$r_{\text {_unif_sph }}(\mathrm{n}, \mathrm{p}, \mathrm{M}=1 \mathrm{~L})$

Arguments

n

M number of samples of size n. Defaults to 1 .
sorted return each circular sample sorted? Defaults to FALSE.
$\mathrm{p} \quad$ integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
sample size.

Value

- $r_{\text {_unif_cir: }}$ a matrix of size $c(n, M)$ with M random samples of size n of uniformly-generated circular data on $[0,2 \pi)$.
- $r_{\text {_unif_sph }}$ an array of size $c(n, p, M)$ with M random samples of size n of uniformlygenerated directions on S^{p-1}.

Examples

```
# A sample on [0, 2*pi)
n <- 5
r_unif_cir(n = n)
# A sample on S^1
p <- 2
samp <- r_unif_sph(n = n, p = p)
samp
rowSums(samp^2)
# A sample on S^2
p <- 3
samp <- r_unif_sph(n = n, p = p)
samp
rowSums(samp^2)
```


Description

Approximated density, distribution, and quantile functions for the asymptotic null distributions of Sobolev statistics of uniformity on $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}$. These asymptotic distributions are infinite weighted sums of (central) chi squared random variables:

$$
\sum_{k=1}^{\infty} v_{k}^{2} \chi_{d_{p, k}}^{2}
$$

where

$$
d_{p, k}:=\binom{p+k-3}{p-2}+\binom{p+k-2}{p-2}
$$

is the dimension of the space of eigenfunctions of the Laplacian on $S^{p-1}, p \geq 2$, associated to the k-th eigenvalue, $k \geq 1$.

Usage

```
d_p_k(p, k, log = FALSE)
weights_dfs_Sobolev(p, K_max = 1000, thre = 0.001, type, Rothman_t = 1/3,
    Pycke_q = 0.5, Riesz_s = 1, log = FALSE, verbose = TRUE,
    Gauss = TRUE, N = 320, tol = 1e-06, force_positive = TRUE,
    x_tail = NULL)
    d_Sobolev(x, p, type, method = c("I", "SW", "HBE")[1], K_max = 1000,
    thre = 0.001, Rothman_t = 1/3, Pycke_q = 0.5, Riesz_s = 1,
    ncps = 0, verbose = TRUE, N = 320, x_tail = NULL, ...)
    p_Sobolev(x, p, type, method = c("I", "SW", "HBE", "MC")[1], K_max = 1000,
    thre = 0.001, Rothman_t = 1/3, Pycke_q = 0.5, Riesz_s = 1,
    ncps = 0, verbose = TRUE, N = 320, x_tail = NULL, ...)
    q_Sobolev(u, p, type, method = c("I", "SW", "HBE", "MC")[1], K_max = 1000,
    thre = 0.001, Rothman_t = 1/3, Pycke_q = 0.5, Riesz_s = 1,
    ncps = 0, verbose = TRUE, N = 320, x_tail = NULL, ...)
```


Arguments

p
$k \quad$ sequence of integer indexes.
log
K_max integer giving the truncation of the series that compute the asymptotic p-value of a Sobolev test. Defaults to 1e3.

thre	error threshold for the tail probability given by the the first terms of the truncated series of a Sobolev test. Defaults to $1 \mathrm{e}-3$.
type	Sobolev statistic. For $p=2$, either "Watson", "Rothman", "Pycke_q", or "Hermans_Rasson". For $p \geq 2$, "Ajne", "Gine_Gn", "Gine_Fn", "Bakshaev", "Riesz", "PCVM", "PAD", or "PRt".
Rothman_t	t parameter for the Rothman test, a real in (0,1). Defaults to $1 / 3$.
Pycke_q	q parameter for the Pycke " q-test", a real in (0,1). Defaults to $1 / 2$.
Riesz_s	s parameter for the s-Riesz test, a real in (0,2$)$. Default
verbose	output information about the truncation? Defaults to TRUE.
Gauss	use a Gauss-Legendre quadrature rule of N nodes in the computation of the Gegenbauer coefficients? Otherwise, call integrate. Defaults to TRUE.
N	number of points used in the Gauss-Legendre quadrature for computing the Gegenbauer coefficients. Defaults to 320.
tol	tolerance passed to integrate's rel.tol and abs.tol if Gauss = FALSE. Defaults to $1 \mathrm{e}-6$.
force_positive	set negative
x_tail	scalar evaluation point for determining the upper tail probability. If NULL, set to the 0.90 quantile of the whole series, computed by the "HBE" approximation.
X	vector of quantiles.
method	method for approximating the density, distribution, or quantile function. Must be "I" (Imhof), "SW" (Satterthwaite-Welch), "HBE" (Hall-Buckley-Eagleson), or "MC" (Monte Carlo; only for distribution or quantile functions). Defaults to "I".
ncps	non-centrality parameters. Either 0 (default) or a vector with the same length as weights.
	further parameters passed to *_wschisq.
u	vector of probabilities.

Details

The truncation of $\sum_{k=1}^{\infty} v_{k}^{2} \chi_{d_{p, k}}^{2}$ is done to the first K_max terms and then up to the index such that the first terms explain the tail probability at the x_tail with an absolute error smaller than thre (see details in cutoff_wschisq). This automatic truncation takes place when calling *_Sobolev. Setting thre $=0$ truncates to K_max terms exactly. If the series only contains odd or even non-zero terms, then only K_max / 2 addends are effectively taken into account in the first truncation.

Value

- d_p_k: a vector of size length(k) with the evaluation of $d_{p, k}$.
- weights_dfs_Sobolev: a list with entries weights and dfs, automatically truncated according to K_max and thre (see details).
- d_Sobolev: density function evaluated at x, a vector.
- p_Sobolev: distribution function evaluated at x, a vector.
- q_Sobolev: quantile function evaluated at u, a vector.

Author(s)

Eduardo García-Portugués and Paula Navarro-Esteban.

Examples

```
# Circular-specific statistics
curve(p_Sobolev(x = x, p = 2, type = "Watson", method = "HBE"),
    n = 2e2, ylab = "Distribution", main = "Watson")
curve(p_Sobolev(x = x, p = 2, type = "Rothman", method = "HBE"),
    n = 2e2, ylab = "Distribution", main = "Rothman")
curve(p_Sobolev(x = x, p = 2, type = "Pycke_q", method = "HBE"), to = 10,
    n = 2e2, ylab = "Distribution", main = "Pycke_q")
curve(p_Sobolev(x = x, p = 2, type = "Hermans_Rasson", method = "HBE"),
            to = 10, n = 2e2, ylab = "Distribution", main = "Hermans_Rasson")
# Statistics for arbitrary dimensions
test_statistic <- function(type, to = 1, pmax = 5, M = 1e3, ...) {
    col <- viridisLite::viridis(pmax - 1)
    curve(p_Sobolev(x = x, p = 2, type = type, method = "MC", M = M,
                    ...), to = to, n = 2e2, col = col[pmax - 1],
                    ylab = "Distribution", main = type, ylim = c(0, 1))
    for (p in 3:pmax) {
        curve(p_Sobolev(x = x, p = p, type = type, method = "MC", M = M,
                                    ...), add = TRUE, n = 2e2, col = col[pmax - p + 1])
    }
    legend("bottomright", legend = paste("p =", 2:pmax), col = rev(col),
                lwd = 2)
}
# Ajne
test_statistic(type = "Ajne")
# Gine_Gn
test_statistic(type = "Gine_Gn", to = 1.5)
# Gine_Fn
test_statistic(type = "Gine_Fn", to = 2)
# Bakshaev
test_statistic(type = "Bakshaev", to = 3)
# Riesz
test_statistic(type = "Riesz", Riesz_s = 0.5, to = 3)
# PCvM
test_statistic(type = "PCvM", to = 0.6)
# PAD
test_statistic(type = "PAD", to = 3)
```

```
# PRt
test_statistic(type = "PRt", Rothman_t = 0.5)
# Quantiles
p <- c(2, 3, 4, 11)
t(sapply(p, function(p) q_Sobolev(u = c(0.10, 0.05, 0.01), p = p,
    type = "PCVM")))
t(sapply(p, function(p) q_Sobolev(u = c(0.10, 0.05, 0.01), p = p,
    type = "PAD")))
t(sapply(p, function(p) q_Sobolev(u = c(0.10, 0.05, 0.01), p = p,
    type = "PRt")))
# Series truncation for thre = 1e-5
sapply(p, function(p) length(weights_dfs_Sobolev(p = p, type = "PCvM")$dfs))
sapply(p, function(p) length(weights_dfs_Sobolev(p = p, type = "PRt")$dfs))
sapply(p, function(p) length(weights_dfs_Sobolev(p = p, type = "PAD")$dfs))
```


Description

Given a Sobolev statistic

$$
S_{n, p}=\sum_{i, j=1}^{n} \psi\left(\cos ^{-1}\left(\mathbf{X}_{i}^{\prime} \mathbf{X}_{j}\right)\right)
$$

for a sample $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$, three important sequences are related to $S_{n, p}$.

- Gegenbauer coefficients $\left\{b_{k, p}\right\}$ of ψ_{p} (see, e.g., the projected-ecdf statistics), given by

$$
b_{k, p}:=\frac{1}{c_{k, p}} \int_{0}^{\pi} \psi_{p}(\theta) C_{k}^{p / 2-1}(\cos \theta) \mathrm{d} \theta
$$

- Weights $\left\{v_{k, p}^{2}\right\}$ of the asymptotic distribution of the Sobolev statistic, $\sum_{k=1}^{\infty} v_{k}^{2} \chi_{d_{p, k}}^{2}$, given by

$$
v_{k, p}^{2}=\left(1+\frac{2 k}{p-2}\right)^{-1} b_{k, p}, \quad p \geq 3
$$

- Gegenbauer coefficients $\left\{u_{k, p}\right\}$ of the local projected alternative associated to $S_{n, p}$, given by

$$
u_{k, p}=\left(1+\frac{2 k}{p-2}\right) v_{k, p}, \quad p \geq 3 .
$$

For $p=2$, the factor $(1+2 k /(p-2))$ is replaced by 2 .

Usage

```
bk_to_vk2(bk, p)
    bk_to_uk(bk, p, signs = 1)
    vk2_to_bk(vk2, p)
    vk2_to_uk(vk2, p, signs = 1)
    uk_to_vk2(uk, p)
    uk_to_bk(uk, p)
```


Arguments

bk coefficients $b_{k, p}$ associated to the indexes 1 : length(bk), a vector.
$\mathrm{p} \quad$ integer giving the dimension of the ambient space R^{p} that contains S^{p-1}.
signs signs of the coefficients $u_{k, p}$, a vector of the same size as vk2 or bk, or a scalar. Defaults to 1.
vk2 squared coefficients $v_{k, p}^{2}$ associated to the indexes 1 : length(vk2), a vector.
uk coefficients $u_{k, p}$ associated to the indexes $1:$ length(uk), a vector.

Details

See more details in Prentice (1978) and García-Portugués et al. (2020). The adequate signs of uk for the "PRt" Rothman test can be retrieved with akx and sqr = TRUE, see the examples.

Value

The corresponding vectors of coefficients $\mathrm{vk} 2, \mathrm{bk}$, or $u k$, depending on the call.

References

García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2020) On a projection-based class of uniformity tests on the hypersphere. arXiv:2008.09897. https://arxiv.org/abs/2008. 09897
Prentice, M. J. (1978). On invariant tests of uniformity for directions and orientations. The Annals of Statistics, 6(1):169-176. doi: 10.1214/aos/1176344075

Examples

```
# bk, vk2, and uk for the PCvM test in p = 3
(bk <- Gegen_coefs_Pn(k = 1:5, type = "PCvM", p = 3))
(vk2 <- bk_to_vk2(bk = bk, p = 3))
(uk <- bk_to_uk(bk = bk, p = 3))
# vk2 is the same as
weights_dfs_Sobolev(K_max = 10, thre = 0, p = 3, type = "PCvM")$weights
```

```
# bk and uk for the Rothman test in p = 3, with adequate signs
t <- 1 / 3
(bk <- Gegen_coefs_Pn(k = 1:5, type = "PRt", p = 3, Rothman_t = t))
(ak <- akx(x = drop(q_proj_unif(t, p = 3)), p = 3, k = 1:5, sqr = TRUE))
(uk <- bk_to_uk(bk = bk, p = 3, signs = ak))
```

sph_stat_Rayleigh Statistics for testing (hyper)spherical uniformity

Description

Low-level implementation of several statistics for assessing uniformity on the (hyper)sphere $S^{p-1}:=$ $\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$.

Usage

```
    sph_stat_Rayleigh(X)
    sph_stat_Bingham(X)
    sph_stat_Ajne(X, Psi_in_X = FALSE)
    sph_stat_Gine_Gn(X, Psi_in_X = FALSE, p = 0L)
    sph_stat_Gine_Fn(X, Psi_in_X = FALSE, p = 0L)
    sph_stat_Pycke(X, Psi_in_X = FALSE, p = 0L)
    sph_stat_Bakshaev(X, Psi_in_X = FALSE, p = 0L)
    sph_stat_Riesz(X, Psi_in_X = FALSE, p = 0L, s = 1)
    sph_stat_PCVM(X, Psi_in_X = FALSE, p = 0L, N = 160L, L = 1000L)
    sph_stat_PRt(X, t = 1/3, Psi_in_X = FALSE, p = 0L, N = 160L, L = 1000L)
    sph_stat_PAD(X, Psi_in_X = FALSE, p = 0L, N = 160L, L = 1000L)
    sph_stat_CCF09(X, dirs, K_CCF09 = 25L, original = FALSE)
    sph_stat_Rayleigh_HD(X)
    sph_stat_CJ12(X, regime = 3L, Psi_in_X = FALSE, p = 0L)
```


Arguments

X

Psi_in_X does X contain the shortest angles matrix Ψ that is obtained with Psi_mat(X)? If FALSE (default), $\boldsymbol{\Psi}$ is computed internally.
p

S
N

L
t
dirs

K_CCF09 integer giving the truncation of the series present in the asymptotic distribution of the Kolmogorov-Smirnov statistic. Defaults to 5e2.
original return the CCF09 statistic as originally defined? If FALSE (default), a faster and equivalent statistic is computed, and rejection happens for large values of the statistic, which is consistent with the rest of tests. Otherwise, rejection happens for low values.
regime type of asymptotic regime for the CJ12 test, either 1 (sub-exponential regime), 2 (exponential), or 3 (super-exponential; default).

Details

Detailed descriptions and references of the statistics are available in García-Portugués and Verdebout (2018).

The Pycke and CJ12 statistics employ the scalar products matrix, rather than the shortest angles matrix, when Psi_in_X = TRUE. This matrix is obtained by setting scalar_prod = TRUE in Psi_mat.

Value

A matrix of size $c(M, 1)$ containing the statistics for each of the M samples.

Warning

Be careful on avoiding the next bad usages of the functions, which will produce spurious results:

- The directions in X do not have unit norm.
- X does not contain Psi_mat (X) when X_in_Theta $=$ TRUE.
- The parameter p does not match with the dimension of R^{p}.
- Not passing the scalar products matrix to sph_stat_CJ12 when Psi_in_X = TRUE.
- The directions in dirs do not have unit norm.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
## Sample uniform spherical data
M <- 2
n <- 100
p <- 3
set.seed(123456789)
X <- r_unif_sph(n = n, p = p, M = M)
## Sobolev tests
# Rayleigh
sph_stat_Rayleigh(X)
# Bingham
sph_stat_Bingham(X)
# Ajne
Psi <- Psi_mat(X)
dim(Psi) <- c(dim(Psi), 1)
sph_stat_Ajne(X)
sph_stat_Ajne(Psi, Psi_in_X = TRUE)
# Gine Gn
sph_stat_Gine_Gn(X)
sph_stat_Gine_Gn(Psi, Psi_in_X = TRUE, p = p)
# Gine Fn
sph_stat_Gine_Fn(X)
sph_stat_Gine_Fn(Psi, Psi_in_X = TRUE, p = p)
# Pycke
sph_stat_Pycke(X)
sph_stat_Pycke(Psi, Psi_in_X = TRUE, p = p)
# Bakshaev
sph_stat_Bakshaev(X)
sph_stat_Bakshaev(Psi, Psi_in_X = TRUE, p = p)
# Riesz
sph_stat_Riesz(X, s = 1)
sph_stat_Riesz(Psi, Psi_in_X = TRUE, p = p, s = 1)
# Projected Cramér-von Mises
sph_stat_PCvM(X)
sph_stat_PCvM(Psi, Psi_in_X = TRUE, p = p)
```

```
# Projected Rothman
sph_stat_PRt(X)
sph_stat_PRt(Psi, Psi_in_X = TRUE, p = p)
# Projected Anderson-Darling
sph_stat_PAD(X)
sph_stat_PAD(Psi, Psi_in_X = TRUE, p = p)
## Other tests
# CCF09
dirs <- r_unif_sph(n = 3, p = p, M = 1)[, , 1]
sph_stat_CCF09(X, dirs = dirs)
## High-dimensional tests
# Rayleigh HD-Standardized
sph_stat_Rayleigh_HD(X)
# CJ12
sph_stat_CJ12(X, regime = 1)
sph_stat_CJ12(Psi, regime = 1, Psi_in_X = TRUE, p = p)
sph_stat_CJ12(X, regime = 2)
sph_stat_CJ12(Psi, regime = 2, Psi_in_X = TRUE, p = p)
sph_stat_CJ12(X, regime = 3)
sph_stat_CJ12(Psi, regime = 3, Psi_in_X = TRUE, p = p)
```

unif_stat Circular and (hyper)spherical uniformity statistics

Description

Implementation of several statistics for assessing uniformity on the (hyper)sphere $S^{p-1}:=\{\mathbf{x} \in$ $\left.R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$, for a sample $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in S^{p-1}$.
unif_stat receives a (several) sample(s) of directions in Cartesian coordinates, except for the circular case $(p=2)$ in which the sample(s) can be angles $\Theta_{1}, \ldots, \Theta_{n} \in[0,2 \pi)$.
unif_stat allows to compute several statistics to several samples within a single call, facilitating thus Monte Carlo experiments.

Usage

unif_stat(data, type = "all", data_sorted = FALSE, Rayleigh_m = 1, cov_a $=2 *$ pi, Rothman_t $=1 / 3$, Cressie_t $=1 / 3$, Pycke_q $=0.5$, Riesz_s = 1, CCF09_dirs = NULL, K_CCF09 = 25, CJ12_reg = 3)

Arguments

data
sample to compute the test statistic. An array of size $c(n, p, M)$ containing M samples of size n of directions (in Cartesian coordinates) on S^{p-1}. Alternatively, a matrix of size $c(n, M)$ with the angles on $[0,2 \pi)$ of the M circular samples of size n on S^{1}. Other objects accepted are an array of size c $(\mathrm{n}, 1, \mathrm{M})$ or a vector of size n with angular data. Must not contain NA's.
type type of test to be applied. A character vector containing any of the following types of tests, depending on the dimension p :

- Circular data: any of the names available at object avail_cir_tests.
- (Hyper)spherical data: any of the names available at object avail_sph_tests.

If type = "all" (default), then type is set as avail_cir_tests or avail_sph_tests, depending on the value of p.
data_sorted is the circular data sorted? If TRUE, certain statistics are faster to compute. Defaults to FALSE.
Rayleigh_m integer m for the m-modal Rayleigh test. Defaults to $m=1$ (the standard Rayleigh test).
cov_a $\quad a_{n}=a / n$ parameter used in the length of the arcs of the coverage-based tests. Must be positive. Defaults to 2 * pi.
Rothman_t $\quad t$ parameter for the Rothman test, a real in $(0,1)$. Defaults to $1 / 3$.
Cressie_t $\quad t$ parameter for the Cressie test, a real in $(0,1)$. Defaults to $1 / 3$.
Pycke_q $\quad q$ parameter for the Pycke " q-test", a real in $(0,1)$. Defaults to $1 / 2$.
Riesz_s $\quad s$ parameter for the s-Riesz test, a real in $(0,2)$. Defaults to 1 .
CCF09_dirs a matrix of size $c\left(n _p r o j, p\right)$ containing $n _p r o j$ random directions (in Cartesian coordinates) on S^{p-1} to perform the CCF09 test. If NULL (default), a sample of size n_proj = 50 directions is computed internally.
K_CCF09 integer giving the truncation of the series present in the asymptotic distribution of the Kolmogorov-Smirnov statistic. Defaults to 5e2.

CJ12_reg type of asymptotic regime for CJ12 test, either 1 (sub-exponential regime), 2 (exponential), or 3 (super-exponential; default).

Details

Descriptions and references for most of the statistics are available in García-Portugués and Verdebout (2018).

Value

A data frame of size $c(M$, length(type)), with column names given by type, that contains the values of the test statistics.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
## Circular data
# Sample
n <- 10
M<- 2
Theta <- r_unif_cir(n = n, M = M)
# Matrix
unif_stat(data = Theta, type = "all")
# Array
unif_stat(data = array(Theta, dim = c(n, 1, M)), type = "all")
# Vector
unif_stat(data = Theta[, 1], type = "all")
## Spherical data
# Circular sample in Cartesian coordinates
n <- 10
M<- 2
X <- array(dim = c(n, 2, M))
for (i in 1:M) X[, , i] <- cbind(cos(Theta[, i]), sin(Theta[, i]))
# Array
unif_stat(data = X, type = "all")
# High-dimensional data
X <- r_unif_sph(n = n, p = 3, M = M)
unif_stat(data = X, type = "all")
## Specific arguments
# Rothman
unif_stat(data = Theta, type = "Rothman", Rothman_t = 0.5)
# CCF09
unif_stat(data = X, type = "CCF09", CCF09_dirs = X[, , 1])
unif_stat(data = X, type = "CCF09", CCF09_dirs = X[, , 1], K_CCF09 = 1)
# CJ12
unif_stat(data = X, type = "CJ12", CJ12_reg = 3)
unif_stat(data = X, type = "CJ12", CJ12_reg = 1)
```

unif_stat_distr Null distributions for circular and (hyper)spherical uniformity statis-
tics

Description

Approximate computation of the null distributions of several statistics for assessing uniformity on the (hyper)sphere $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$. The approximation is done either by means of the asymptotic distribution or by Monte Carlo.

Usage

```
unif_stat_distr(x, type, p, n, approx = "asymp", M = 10000,
    stats_MC = NULL, Rothman_t = 1/3, Pycke_q = 0.5, Riesz_s = 1,
    CCF09_dirs = NULL, CJ12_reg = 3, CJ12_beta = 0, Stephens = FALSE,
    K_Kuiper = 25, K_Watson = 25, K_Watson_1976 = 5, K_Ajne = 500,
    K_CCF09 = 25, K_max = 10000, ...)
```


Arguments

x
type
p
n
approx

M number of Monte Carlo replications for approximating the null distribution when approx = "MC". Also, number of Monte Carlo samples for approximating the asymptotic distributions based on weighted sums of chi squared random variables. Defaults to 1 e 4 .
stats_MC a data frame of size c(M, length(type)), with column names containing the character vector type, that results from extracting \$stats_MC from a call to unif_stat_MC. If provided, the computation of Monte Carlo statistics when approx = "MC" is skipped. stats_MC is checked internally to see if it is sorted. Internally computed if NULL (default).
Rothman_t $\quad t$ parameter for the Rothman test, a real in $(0,1)$. Defaults to $1 / 3$.
Pycke_q q parameter for the Pycke " q-test", a real in $(0,1)$. Defaults to $1 / 2$.
Riesz_s $\quad s$ parameter for the s-Riesz test, a real in $(0,2)$. Defaults to 1 .
CCF09_dirs a matrix of size $c\left(n _p r o j, p\right)$ containing $n _p r o j$ random directions (in Cartesian coordinates) on S^{p-1} to perform the CCF09 test. If NULL (default), a sample of size n_proj $=50$ directions is computed internally.

CJ12_reg	type of asymptotic regime for CJ12 test, either 1 (sub-exponential regime), 2 (exponential), or 3 (super-exponential; default).
CJ12_beta	parameter in the exponential regime of CJ12 test, a positive real. compute Stephens (1970) modification so that the null distribution of the is less dependent on the sample size? The modification does not alter the test decision.
K_Kuiper, K_Watson, K_Watson_1976, K_Ajne	
integer giving the truncation of the series present in the null asymptotic distri-	
butions. For the Kolmogorov-Smirnov-related series defaults to 25.	
integer giving the truncation of the series present in the asymptotic distribution	
of the Kolmogorov-Smirnov statistic. Defaults to 5e2.	

Details

When approx = "asymp", statistics that do not have an implemented or known asymptotic are omitted, and a warning is generated.
For Sobolev tests, K_max $=1 \mathrm{e} 4$ produces probabilities uniformly accurate with three digits for the "PCVM", "PAD", and "PRt" tests, for dimensions $p \leq 11$. With K_max $=5 \mathrm{e} 4$, these probabilities are uniformly accurate in the fourth digit. With K_max $=1 \mathrm{e} 3$, only two-digit uniform accuracy is obtained. Uniform accuracy deteriorates when p increases, e.g., a digit accuracy is lost when $p=51$.
Descriptions and references on most of the asymptotic distributions are available in García-Portugués and Verdebout (2018).

Value

A data frame of size $c(n x$, length(type)), with column names given by type, that contains the values of the null distributions of the statistics evaluated at x.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
## Asymptotic distribution
# Circular statistics
x <- seq(0, 1, l = 5)
unif_stat_distr(x = x, type = "Kuiper", p = 2, n = 10)
unif_stat_distr(x = x, type = c("Ajne", "Kuiper"), p = 2, n = 10)
unif_stat_distr(x = x, type = c("Ajne", "Kuiper"), p = 2, n = 10, K_Ajne = 5)
# All circular statistics
```

```
unif_stat_distr(x = x, type = avail_cir_tests, p = 2, n = 10, K_max = 1e3)
# Spherical statistics
unif_stat_distr(x = cbind(x, x + 1), type = c("Rayleigh", "Bingham"),
    p = 3, n = 10)
unif_stat_distr(x = cbind(x, x + 1), type = c("Rayleigh", "Bingham"),
    p = 3, n = 10, M = 100)
# All spherical statistics
unif_stat_distr(x = x, type = avail_sph_tests, p = 3, n = 10, K_max = 1e3)
## Monte Carlo distribution
# Circular statistics
x <- seq(0, 5, l = 10)
unif_stat_distr(x = x, type = avail_cir_tests, p = 2, n = 10, approx = "MC")
unif_stat_distr(x = x, type = "Kuiper", p = 2, n = 10, approx = "MC")
unif_stat_distr(x = x, type = c("Ajne", "Kuiper"), p = 2, n = 10,
    approx = "MC")
# Spherical statistics
unif_stat_distr(x = x, type = avail_sph_tests, p = 3, n = 10,
    approx = "MC")
unif_stat_distr(x = cbind(x, x + 1), type = c("Rayleigh", "Bingham"),
    p = 3, n = 10, approx = "MC")
unif_stat_distr(x = cbind(x, x + 1), type = c("Rayleigh", "Bingham"),
    p = 3, n = 10, approx = "MC")
## Specific arguments
# Rothman
unif_stat_distr(x = x, type = "Rothman", p = 2, n = 10, Rothman_t = 0.5,
    approx = "MC")
# CCF09
dirs <- r_unif_sph(n = 5, p = 3, M = 1)[, , 1]
x <- seq(0, 1, l = 10)
unif_stat_distr(x = x, type = "CCF09", p = 3, n = 10, approx = "MC",
    CCF09_dirs = dirs)
unif_stat_distr(x = x, type = "CCF09", p = 3, n = 10, approx = "MC")
# CJ12
unif_stat_distr(x = x, type = "CJ12", p = 3, n = 100, CJ12_reg = 3)
unif_stat_distr(x = x, type = "CJ12", p = 3, n = 100, CJ12_reg = 2,
    CJ12_beta = 0.01)
unif_stat_distr(x = x, type = "CJ12", p = 3, n = 100, CJ12_reg = 1)
```

unif_stat_MC

Monte Carlo simulation of circular and (hyper)spherical uniformity statistics

Description

Utility for performing Monte Carlo simulation of several statistics for assessing uniformity on the (hyper)sphere $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}, p \geq 2$.
unif_stat_MC provides a convenient wrapper for parallel evaluation of unif_stat, the estimation of critical values under the null distribution, and the computation of empirical powers under the alternative.

Usage

```
unif_stat_MC(n, type = "all", p, M = 10000, r_H1 = NULL,
    crit_val = NULL, alpha = c(0.1, 0.05, 0.01), return_stats = TRUE,
    stats_sorted = FALSE, chunks = ceiling((n * M)/1e+05), cores = 1,
    seeds = NULL, Rayleigh_m = 1, cov_a = 2 * pi, Rothman_t = 1/3,
    Cressie_t = 1/3, Pycke_q = 0.5, Riesz_s = 1, CCF09_dirs = NULL,
    K_CCF09 = 25, CJ12_reg = 3, ...)
```


Arguments

n
type
p
M
r_H1 if provided, the computation of empirical powers is carried out for the alternative hypothesis sampled with $r_{_} H 1$. This must be a function with the same arguments and value as $r_{\text {_ }}$ unif_sph (see examples). Defaults to NULL, indicating that the critical values are estimated from samples of r_unif_sph.
crit_val if provided, must be the critical values as returned by \$stats_MC in a call to unif_stat_MC. They are used for computing the empirical powers of the tests present in type. Defaults to NULL, which means that no power computation is done.
alpha vector with significance levels. Defaults to $c(0.10,0.05,0.01)$.
return_stats return the Monte Carlo statistics? If only the critical values or powers are desired, FALSE saves memory in the returned object. Defaults to TRUE.
stats_sorted sort the returned Monte Carlo statistics? If TRUE, this is useful for evaluating faster the empirical cumulative distribution function when approximating the distribution in unif_stat_distr. Defaults to FALSE.
chunks number of chunks to split the M Monte Carlo replications. Useful for parallelizing the simulation study in chunks tasks containing ceiling (M / chunks) replications. Useful also for avoiding memory bottlenecks when M is large. Defaults to
ceiling($(n * M) / 1 e 5)$.

```
cores number of cores to perform the simulation. Defaults to 1.
seeds if provided, a vector of size chunks for fixing the seeds on each of the simula-
    tion chunks (useful for reproducing parallel simulations). Specifically, for k in
    1: chunks, seeds are set as set.seed(seeds[k],kind = "Mersenne-Twister")
    in each chunk. Defaults to NULL (no seed setting is done).
Rayleigh_m integer m}\mathrm{ for the m-modal Rayleigh test. Defaults to m=1 (the standard Rayleigh
    test).
cov_a }\quad\mp@subsup{a}{n}{}=a/n parameter used in the length of the arcs of the coverage-based tests
        Must be positive. Defaults to 2* pi.
Rothman_t t parameter for the Rothman test, a real in (0,1). Defaults to 1/ 3.
Cressie_t t parameter for the Cressie test, a real in (0,1). Defaults to 1/ 3.
Pycke_q q parameter for the Pycke "q-test", a real in (0,1). Defaults to 1/2.
Riesz_s s parameter for the s-Riesz test, a real in (0,2). Defaults to 1.
CCF09_dirs a matrix of size c(n_proj,p) containing n_proj random directions (in Carte-
    sian coordinates) on S}\mp@subsup{S}{}{p-1}\mathrm{ to perform the CCF09 test. If NULL (default), a sample
    of size n_proj = 50 directions is computed internally.
K_CCF09 integer giving the truncation of the series present in the asymptotic distribution
    of the Kolmogorov-Smirnov statistic. Defaults to 5e2.
CJ12_reg type of asymptotic regime for CJ12 test, either 1 (sub-exponential regime), 2
    (exponential), or 3 (super-exponential; default).
    optional arguments to be passed to the r_H1 sampler or to foreach (for ex-
    ample, .export to export global variables or other functions to the foreach
    environment).
```


Details

It is possible to have a progress bar if unif_stat_MC is wrapped with progressr: : with_progress or if progressr: : handlers (global = TRUE) is invoked (once) by the user. See the examples below. The progress bar is updated with the number of finished chunks.
All the tests reject for large values of the test statistic (max_gap = TRUE is assumed for the Range test), so the critical values for the significance levels alpha correspond to the alpha-upper quantiles of the null distribution of the test statistic.
The Monte Carlo simulation for the CCF09 test is made conditionally on the choice of CCF09_dirs. That is, all the Monte Carlo statistics share the same random directions.

Value

A list with the following entries:

- crit_val_MC: a data frame of size c(length(alpha), length(type)), with column names given by type and rows corresponding to the significance levels alpha, that contains the estimated critical values of the tests.
- power_MC: a data frame of size c(nrow(crit_val), length(type)), with column names given by type and rows corresponding to the significance levels of crit_val, that contains the empirical powers of the tests. NA if crit_val = NULL.
- stats_MC: a data frame of size c(M, length(type)), with column names given by type, that contains the Monte Carlo statistics.

Examples

```
## Critical values
# Single statistic, specific alpha
cir <- unif_stat_MC(n = 10, M = 1e2, type = "Ajne", p = 2, alpha = 0.15)
summary(cir$stats_MC)
cir$crit_val_MC
# All circular statistics
cir <- unif_stat_MC(n = 10, M = 1e2, p = 2)
head(cir$stats_MC)
cir$crit_val_MC
# All spherical statistics
sph <- unif_stat_MC(n = 10, M = 1e2, p = 3)
head(sph$stats_MC)
sph$crit_val_MC
## Using a progress bar
# Define a progress bar
require(progress)
require(progressr)
handlers(handler_progress(
    format = ":spin [:bar] :percent Total: :elapsedfull End \u2248 :eta",
    clear = FALSE))
# Call unif_stat_MC() within with_progress()
with_progress(unif_stat_MC(n = 10, M = 1e2, p = 3, chunks = 10))
# With several cores
with_progress(unif_stat_MC(n = 10, M = 1e2, p = 3, chunks = 10, cores = 2))
# Instead of using with_progress() each time, it is more practical to run
# handlers(global = TRUE)
# once to activate progress bars in your R session
## Power computation
# Single statistic
cir_pow <- unif_stat_MC(n = 10, M = 1e2, type = "Ajne", p = 2,
                        crit_val = cir$crit_val_MC)
cir_pow$crit_val_MC
cir_pow$power_MC
# All circular statistics
cir_pow <- unif_stat_MC(n = 10, M = 1e2, p = 2, crit_val = cir$crit_val_MC)
cir_pow$crit_val_MC
cir_pow$power_MC
# All spherical statistics
sph_pow <- unif_stat_MC(n = 10, M = 1e2, p = 3, crit_val = sph$crit_val_MC)
```

```
sph_pow$crit_val_MC
sph_pow$power_MC
## Custom r_H1
# Circular
r_H1 <- function(n, p, M, l = 0.05) {
    stopifnot(p == 2)
    Theta_to_X(matrix(runif(n * M, 0, (2 - l) * pi), n, M))
}
dirs <- r_unif_sph(n = 5, p = 2, M = 1)[, , 1]
cir <- unif_stat_MC(n = 50, M = 1e2, p = 2, CCF09_dirs = dirs)
cir_pow <- unif_stat_MC(n = 50, M = 1e2, p = 2, r_H1 = r_H1, l = 0.10,
                                    crit_val = cir$crit_val_MC, CCF09_dirs = dirs)
cir_pow$crit_val_MC
cir_pow$power_MC
# Spherical
r_H1 <- function(n, p, M, l = 0.5) {
    samp <- array(dim = c(n, p, M))
    for (j in 1:M) {
        samp[, , j] <- mvtnorm::rmvnorm(n = n, mean = c(l, rep(0, p - 1)),
                                    sigma = diag(rep(1, p)))
        samp[, , j] <- samp[, , j] / sqrt(rowSums(samp[, , j]^2))
    }
    return(samp)
}
dirs <- r_unif_sph(n = 5, p = 3, M = 1)[, , 1]
sph <- unif_stat_MC(n = 50, M = 1e2, p = 3, CCF09_dirs = dirs)
sph_pow <- unif_stat_MC(n = 50, M = 1e2, p = 3, r_H1 = r_H1, l = 0.5,
                crit_val = sph$crit_val_MC, CCF09_dirs = dirs)
sph_pow$power_MC
## Pre-built r_H1
# Circular
dirs <- r_unif_sph(n = 5, p = 2, M = 1)[, , 1]
cir_pow <- unif_stat_MC(n = 50, M = 1e2, p = 2, r_H1 = r_alt, alt = "vMF",
                        kappa = 1, crit_val = cir$crit_val_MC,
                        CCF09_dirs = dirs)
cir_pow$power_MC
# Spherical
dirs <- r_unif_sph(n = 5, p = 3, M = 1)[, , 1]
sph_pow <- unif_stat_MC(n = 50, M = 1e2, p = 3, r_H1 = r_alt, alt = "vMF",
    kappa = 1, crit_val = sph$crit_val_MC,
    CCF09_dirs = dirs)
```

sph_pow\$power_MC
unif_test Circular and (hyper)spherical uniformity tests

Description

Implementation of several uniformity tests on the (hyper)sphere $S^{p-1}:=\left\{\mathbf{x} \in R^{p}:\|\mathbf{x}\|=1\right\}$, $p \geq 2$, with calibration either in terms of their asymptotic/exact distributions, if available, or Monte Carlo.
unif_test receives a sample of directions $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in S^{p-1}$ in Cartesian coordinates, except for the circular case $(p=2)$ in which the sample can be represented in terms of angles $\Theta_{1}, \ldots, \Theta_{n} \in[0,2 \pi)$.
unif_test allows to perform several tests within a single call, facilitating thus the exploration of a dataset by applying several tests.

Usage

unif_test(data, type = "all", p_value = "asymp", alpha = c(0.1, 0.05, 0.01), $M=10000$, stats_MC = NULL, crit_val = NULL, data_sorted = FALSE, Rayleigh_m = 1, cov_a = 2 * pi, Rothman_t = 1/3, Cressie_t = 1/3, Pycke_q = 0.5, Riesz_s = 1, CCF09_dirs = NULL, K_CCF09 = 25, CJ12_reg = 3, CJ12_beta $=0$, K_max $=10000, \ldots$)

Arguments

type type of test to be applied. A character vector containing any of the following
p_value type of p-value computation. Either "MC" for employing the approximation by
data
alpha

alpa

sample to perform the test. A matrix of size $c(n, p)$ containing a sample of size n of directions (in Cartesian coordinates) on S^{p-1}. Alternatively if $\mathrm{p}=2$, a matrix of size $c(n, 1)$ containing the n angles on $[0,2 \pi)$ of the circular sample on S^{1}. Other objects accepted are an array of size c $(\mathrm{n}, \mathrm{p}, 1)$ with directions (in Cartesian coordinates), or a vector of size n or an array of size $c(n, 1,1)$ with angular data. Must not contain NA's. types of tests, depending on the dimension p :

- Circular data: any of the names available at object avail_cir_tests.
- (Hyper)spherical data: any of the names available at object avail_sph_tests.

If type = "all" (default), then type is set as avail_cir_tests or avail_sph_tests, depending on the value of p. Monte Carlo of the exact null distribution, "asymp" (default) for the use of the asymptotic/exact null distribution (if available), or "crit_val" for approximation by means of the table of critical values crit_val. vector with significance levels. Defaults to c $(0.10,0.05,0.01)$.

M	number of Monte Carlo replications for approximating the null distribution when approx = "MC". Also, number of Monte Carlo samples for approximating the asymptotic distributions based on weighted sums of chi squared random variables. Defaults to 1 e 4 .
stats_MC	a data frame of size $c(M$, length(type)), with column names containing the character vector type, that results from extracting \$stats_MC from a call to unif_stat_MC. If provided, the computation of Monte Carlo statistics when approx = "MC" is skipped. stats_MC is checked internally to see if it is sorted. Internally computed if NULL (default).
crit_val	table with critical values for the tests, to be used if p_value = "crit_val". A data frame, with column names containing the character vector type and rows corresponding to the significance levels alpha, that results from extracting \$crit_val_MC from a call to unif_stat_MC. Internally computed if NULL (default).
data_sorted	is the circular data sorted? If TRUE, certain statistics are faster to compute. Defaults to FALSE.
Rayleigh_m	integer m for the m-modal Rayleigh test. Defaults to $m=1$ (the standard Rayleigh test).
cov_a	$a_{n}=a / n$ parameter used in the length of the arcs of the coverage-based tests. Must be positive. Defaults to 2 * pi.
Rothman_t	t parameter for the Rothman test, a real in (0,1$)$. Defaults to $1 / 3$.
Cressie_t	t parameter for the Cressie test, a real in (0,1). Defaults to $1 / 3$.
Pycke_q	q parameter for the Pycke " q-test", a real in (0,1). Defaults to $1 / 2$.
Riesz_s	s parameter for the s-Riesz test, a real in (0,2$)$. Defaults to 1 .
CCF09_dirs	a matrix of size $c\left(n_{-} p r o j, p\right)$ containing $n _p r o j$ random directions (in Cartesian coordinates) on S^{p-1} to perform the CCF09 test. If NULL (default), a sample of size n_proj $=50$ directions is computed internally.
K_CCF09	integer giving the truncation of the series present in the asymptotic distribution of the Kolmogorov-Smirnov statistic. Defaults to 5e2.
CJ12_reg	type of asymptotic regime for CJ12 test, either 1 (sub-exponential regime), 2 (exponential), or 3 (super-exponential; default).
CJ12_beta	β parameter in the exponential regime of CJ12 test, a positive real.
K_max	integer giving the truncation of the series that compute the asymptotic p -value of a Sobolev test. Defaults to 1e4.
	If p_value = "MC" or p_value = "crit_val", optional performance parameters to be passed to unif_stat_MC: chunks, cores, and seed.

Details

All the tests reject for large values of the test statistic, so the critical values for the significance levels alpha correspond to the alpha-upper quantiles of the null distribution of the test statistic.
When p_value = "asymp", tests that do not have an implemented or known asymptotic are omitted, and a warning is generated.

When p_value = "MC", it is possible to have a progress bar indicating the Monte Carlo simulation progress if unif_test is wrapped with progressr: :with_progress or if progressr: :handlers(global $=$ TRUE) is invoked (once) by the user. See the examples below. The progress bar is updated with the number of finished chunks.
All the statistics are continuous random variables except the Hodges-Ajne statistic ("Hodges_Ajne"), the Cressie statistic ("Cressie"), and the number of (different) uncovered spacings ("Num_uncover"). These three statistics are discrete random variables.

The Monte Carlo calibration for the CCF09 test is made conditionally on the choice of CCF09_dirs. That is, all the Monte Carlo statistics share the same random directions.
Descriptions and references for most of the tests are available in García-Portugués and Verdebout (2018).

Value

If only a single test is performed, a list with class htest containing the following components:

- statistic: the value of the test statistic.
- p.value: the p-value of the test. If p_{-}value = "crit_val", an NA.
- alternative: a character string describing the alternative hypothesis.
- method: a character string indicating what type of test was performed.
- data. name: a character string giving the name of the data.
- reject: the rejection decision for the levels of significance alpha.
- crit_val: a vector with the critical values for the significance levels alpha used with p_value = "MC" or p_value = "asymp".

If several tests are performed, a type-named list with entries for each test given by the above list.

References

García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. https://arxiv.org/abs/1804.00286.

Examples

```
## Asymptotic distribution
# Circular data
n <- 10
samp_cir <- r_unif_cir(n = n)
# Matrix
unif_test(data = samp_cir, type = "Ajne", p_value = "asymp")
# Vector
unif_test(data = samp_cir[, 1], type = "Ajne", p_value = "asymp")
# Array
unif_test(data = array(samp_cir, dim = c(n, 1, 1)), type = "Ajne",
```

p_value = "asymp")
\# Several tests
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "asymp")
\# Spherical data
n <- 10
samp_sph <- r_unif_sph(n = n, p = 3)
\# Array
unif_test(data = samp_sph, type = "Bingham", p_value = "asymp")

\# Matrix

unif_test(data = samp_sph[, , 1], type = "Bingham", p_value = "asymp")
\# Several tests
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "asymp")
\#\# Monte Carlo
\# Circular data
unif_test(data = samp_cir, type = "Ajne", p_value = "MC")
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "MC")
\# Spherical data
unif_test(data = samp_sph, type = "Bingham", p_value = "MC")
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC")
\# Caching stats_MC
stats_MC_cir <- unif_stat_MC(n = nrow(samp_cir), p = 2)\$stats_MC
stats_MC_sph <- unif_stat_MC(n = nrow(samp_sph), $p=3$)\$stats_MC unif_test(data = samp_cir, type = avail_cir_tests,
p_value = "MC", stats_MC = stats_MC_cir)
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC", stats_MC = stats_MC_sph)
\#\# Critical values
\# Circular data
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "crit_val")
\# Spherical data
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "crit_val")
\# Caching crit_val
crit_val_cir <- unif_stat_MC(n = n, p = 2) \$crit_val_MC
crit_val_sph <- unif_stat_MC(n = n, $p=3) \$ c r i t _v a l _M C$
unif_test(data = samp_cir, type = avail_cir_tests,
p_value = "crit_val", crit_val = crit_val_cir)
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "crit_val",
crit_val = crit_val_sph)
\#\# Specific arguments

```
# Rothman
unif_test(data = samp_cir, type = "Rothman", Rothman_t = 0.5)
# CCF09
unif_test(data = samp_sph, type = "CCF09", p_value = "MC",
    CCF09_dirs = samp_sph[1:2, , 1])
unif_test(data = samp_sph, type = "CCF09", p_value = "MC",
            CCF09_dirs = samp_sph[3:4, , 1])
## Using a progress bar when p_value = "MC"
# Define a progress bar
require(progress)
require(progressr)
handlers(handler_progress(
    format = ":spin [:bar] :percent Total: :elapsedfull End \u2248 :eta",
    clear = FALSE))
# Call unif_test() within with_progress()
with_progress(
    unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC",
                chunks = 10, M = 1e3)
)
# With several cores
with_progress(
    unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC",
        cores = 2, chunks = 10, M = 1e3)
)
# Instead of using with_progress() each time, it is more practical to run
# handlers(global = TRUE)
# once to activate progress bars in your R session
```

venus Venus craters

Description

Craters on Venus from the USGS Astrogeology Science Center.

Usage

venus

Format

A data frame with 967 rows and 4 variables:
name name of the crater (if named).
diameter diameter of the crater (in km).
theta longitude angle $\theta \in[0,2 \pi)$ of the crater center.
phi latitude angle $\phi \in[-\pi / 2, \pi / 2]$ of the crater center.

Details

The (θ, ϕ) angles are such their associated planetocentric coordinates are:

$$
(\cos (\phi) \cos (\theta), \cos (\phi) \sin (\theta), \sin (\phi))^{\prime}
$$

with $(0,0,1)^{\prime}$ denoting the north pole.
The script performing the data preprocessing is available at venus.R.

Source

```
https://astrogeology.usgs.gov/search/map/Venus/venuscraters
```


Examples

```
    # Load data
    data("venus")
    # Add Cartesian coordinates
    venus$X <- cbind(cos(venus$theta) * cos(venus$phi),
        sin(venus$theta) * cos(venus$phi),
        sin(venus$phi))
    # Tests
    unif_test(data = venus$X, type = c("PCvM", "PAD", "PRt"), p_value = "asymp")
```

 wschisq Weighted sums of non-central chi squared random variables

Description

Approximated density, distribution, and quantile functions for weighted sums of non-central chi squared random variables:

$$
Q_{K}=\sum_{i=1}^{K} w_{i} \chi_{d_{i}}^{2}\left(\lambda_{i}\right)
$$

where w_{1}, \ldots, w_{n} are positive weights, d_{1}, \ldots, d_{n} are positive degrees of freedom, and $\lambda_{1}, \ldots, \lambda_{n}$ are non-negative non-centrality parameters. Also, simulation of Q_{K}.

Usage

```
d_wschisq(x, weights, dfs, ncps = 0, method = c("I", "SW", "HBE")[1],
    exact_chisq = TRUE, imhof_epsabs = 1e-06, imhof_epsrel = 1e-06,
    imhof_limit = 10000, grad_method = "simple",
    grad_method.args = list(eps = 1e-07))
p_wschisq(x, weights, dfs, ncps = 0, method = c("I", "SW", "HBE", "MC")[1],
    exact_chisq = TRUE, imhof_epsabs = 1e-06, imhof_epsrel = 1e-06,
    imhof_limit \(=10000, M=10000, M C \_s a m p l e=\) NULL)
q_wschisq(u, weights, dfs, ncps = 0, method = c("I", "SW", "HBE", "MC")[1],
    exact_chisq = TRUE, imhof_epsabs = 1e-06, imhof_epsrel = 1e-06,
    imhof_limit = 10000, nlm_gradtol = 1e-06, nlm_iterlim = 1000,
    M = 10000, MC_sample = NULL)
r_wschisq(n, weights, dfs, ncps = 0)
cutoff_wschisq(thre \(=1 \mathrm{e}-04\), weights, dfs , ncps \(=0\), log = FALSE,
    x_tail = NULL)
```


Arguments

x
vector of quantiles.
weights vector with the positive weights of the sum. Must have the same length as dfs.
dfs vector with the positive degrees of freedom of the chi squared random variables. Must have the same length as weights.
ncps non-centrality parameters. Either 0 (default) or a vector with the same length as weights.
method method for approximating the density, distribution, or quantile function. Must be "I" (Imhof), "SW" (Satterthwaite-Welch), "HBE" (Hall-Buckley-Eagleson), or "MC" (Monte Carlo; only for distribution or quantile functions). Defaults to "I".
exact_chisq if weights and dfs have length one, shall the Chisquare functions be called? Otherwise, the approximations are computed for this exact case. Defaults to TRUE.
imhof_epsabs, imhof_epsrel, imhof_limit
precision parameters passed to imhof's epsabs, epsrel, and limit, respectively. They default to $1 e-6,1 e-6$, and $1 e 4$.
grad_method, grad_method.args
numerical differentiation parameters passed to grad's method and method. args, respectively. They default to "simple", and list (eps $=1 \mathrm{e}-7$) (better precision than imhof_epsabs to avoid numerical artifacts).
M number of Monte Carlo samples for approximating the distribution if method = "MC". Defaults to 1e4.
MC_sample if provided, it is employed when method = "MC". If not, it is computed internally.
u vector of probabilities.
nlm_gradtol, nlm_iterlim
convergence control parameters passed to nlm's gradtol and iterlim, respec-
tively. They default to $1 \mathrm{e}-6$ and 1 e 3. n sample size.

Details

Four methods are implemented for approximating the distribution of a weighted sum of chi squared random variables:

- "I": Imhof's approximation (Imhof, 1961) for the evaluation of the distribution function. If this method is selected, the function is simply a wrapper to imhof from the CompQuadForm package (Duchesne and Lafaye De Micheaux, 2010).
- "SW": Satterthwaite-Welch (Satterthwaite, 1946; Welch, 1938) approximation, consisting in matching the first two moments of Q_{K} with a gamma distribution.
- "HBE": Hall-Buckley-Eagleson (Hall, 1983; Buckley and Eagleson, 1988) approximation, consisting in matching the first three moments of Q_{K} with a gamma distribution.
- "MC": Monte Carlo approximation using the empirical cumulative distribution function with M simulated samples.

The Imhof method is exact up to the prescribed numerical accuracy. It is also the most timeconsuming method. The density and quantile functions for this approximation are obtained by numerical differentiation and inversion, respectively, of the approximated distribution.
For the methods based on gamma matching, the GammaDist density, distribution, and quantile functions are invoked. The Hall-Buckley-Eagleson approximation tends to overperform the SatterthwaiteWelch approximation.
The Monte Carlo method is relatively inaccurate and slow, but serves as an unbiased reference of the true distribution function. The inversion of the empirical cumulative distribution is done by quantile.
An empirical comparison of these and other approximation methods is given in Bodenham and Adams (2016).
cutoff_wschisq removes NAs/NaNs in weights or dfs with a message. The threshold thre ensures that the tail probability of the truncated and whole series differ less than thre at x_tail, or that thre is the proportion of the mean/variance of the whole series that is not retained. The (upper) tail probabilities for evaluating truncation are computed using the Hall-Buckley-Eagleson approximation at x_tail.

Value

- d_wschisq: density function evaluated at x , a vector.
- p_wschisq: distribution function evaluated at x , a vector.
- q_wschisq: quantile function evaluated at u, a vector.
- r_wschisq: a vector of size n containing a random sample.
- cutoff_wschisq: a data frame with the indexes up to which the truncated series explains the tail probability with absolute error thre, or the proportion of the mean/variance of the whole series that is not explained by the truncated series.

Author(s)

Eduardo García-Portugués and Paula Navarro-Esteban.

References

Bodenham, D. A. and Adams, N. M. (2016). A comparison of efficient approximations for a weighted sum of chi-squared random variables. Statistics and Computing, 26(4):917-928. doi: 10.1007/ s1122201595834

Buckley, M. J. and Eagleson, G. K. (1988). An approximation to the distribution of quadratic forms in normal random variables. Australian Journal of Statistics, 30(1):150-159. doi: 10.1111/j.1467842X.1988.tb00471.x
Duchesne, P. and Lafaye De Micheaux, P. (2010) Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data Analysis, 54(4):858-862. doi: 10.1016/j.csda.2009.11.025
Hall, P. (1983). Chi squared approximations to the distribution of a sum of independent random variables. Annals of Probability, 11(4):1028-1036. doi: 10.1214/aop/1176993451
Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48(3/4):419-426. doi: 10.2307/2332763
Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6):110-114. doi: 10.2307/3002019
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3/4):350-362. doi: 10.2307/2332010

Examples

```
# Plotting functions for the examples
add_approx_dens <- function(x, dfs, weights, ncps) {
    lines(x, d_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
                method = "SW", exact_chisq = FALSE), col = 3)
    lines(x, d_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
                method = "HBE", exact_chisq = FALSE), col = 4)
    lines(x, d_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
                method = "I", exact_chisq = TRUE), col = 2)
    legend("topright", legend = c("True", "SW", "HBE", "I"), lwd = 2,
        col = c(1, 3:4, 2))
}
add_approx_distr <- function(x, dfs, weights, ncps, ...) {
    lines(x, p_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
```

```
    method = "SW", exact_chisq = FALSE), col = 3)
    lines(x, p_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
    method = "HBE", exact_chisq = FALSE), col = 4)
    lines(x, p_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
    method = "MC", exact_chisq = FALSE), col = 5,
    type = "s")
    lines(x, p_wschisq(x, weights = weights, dfs = dfs, ncps = ncps,
            method = "I", exact_chisq = TRUE), col = 2)
    legend("bottomright", legend = c("True", "SW", "HBE", "MC", "I"), lwd = 2,
        col = c(1, 3:5, 2))
}
add_approx_quant <- function(u, dfs, weights, ncps, ...) {
    lines(u, q_wschisq(u, weights = weights, dfs = dfs, ncps = ncps,
    method = "SW", exact_chisq = FALSE), col = 3)
    lines(u, q_wschisq(u, weights = weights, dfs = dfs, ncps = ncps,
        method = "HBE", exact_chisq = FALSE), col = 4)
    lines(u, q_wschisq(u, weights = weights, dfs = dfs, ncps = ncps,
        method = "MC", exact_chisq = FALSE), col = 5,
        type = "s")
    lines(u, q_wschisq(u, weights = weights, dfs = dfs, ncps = ncps,
        method = "I", exact_chisq = TRUE), col = 2)
    legend("topleft", legend = c("True", "SW", "HBE", "MC", "I"), lwd = 2,
        col = c(1, 3:5, 2))
}
# Validation plots for density, distribution, and quantile functions
u <- seq(0.01, 0.99, l = 100)
old_par <- par(mfrow = c(1, 3))
# Case 1: 1 * ChiSq_3(0) + 1 * ChiSq_3(0) = ChiSq_6(0)
weights <- c(1, 1)
dfs <- c(3, 3)
ncps <- 0
x <- seq(-1, 30, l = 100)
main <- expression(1 * chi[3]^2 * (0) + 1 * chi[3]^2 * (0))
plot(x, dchisq(x, df = 6), type = "l", main = main, ylab = "Density")
add_approx_dens(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(x, pchisq(x, df = 6), type = "l", main = main, ylab = "Distribution")
add_approx_distr(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(u, qchisq(u, df = 6), type = "l", main = main, ylab = "Quantile")
add_approx_quant(u = u, weights = weights, dfs = dfs, ncps = ncps)
# Case 2: 2 * ChiSq_3(1) + 1 * ChiSq_6(0.5) + 0.5 * ChiSq_12(0.25)
weights <- c(2, 1, 0.5)
dfs <- c(3, 6, 12)
ncps <- c(1, 0.5, 0.25)
x <- seq(0, 70, l = 100)
main <- expression(2 * chi[3]^2 * (1)+ 1 * chi[6]^2 * (0.5) +
    0.5 * chi[12]^2 * (0.25))
samp <- r_wschisq(n = 1e4, weights = weights, dfs = dfs, ncps = ncps)
```

```
hist(samp, breaks = 50, freq = FALSE, main = main, ylab = "Density",
    xlim = range(x), xlab = "x"); box()
add_approx_dens(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(x, ecdf(samp)(x), main = main, ylab = "Distribution", type = "s")
add_approx_distr(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(u, quantile(samp, probs = u), type = "s", main = main,
    ylab = "Quantile")
add_approx_quant(u = u, weights = weights, dfs = dfs, ncps = ncps)
# Case 3: \sum_{k = 1}^K k^(-3) * ChiSq_{5k}(1 / k^2)
K <- 1e2
weights<- 1 / (1:K)^3
dfs <- 5 * 1:K
ncps <- 1 / (1:K)^2
x <- seq(0, 25, l = 100)
main <- substitute(sum(k^(-3) * chi[5 * k]^2 * (1 / k^2), k == 1, K),
                    list(K = K))
samp <- r_wschisq(n = 1e4, weights = weights, dfs = dfs, ncps = ncps)
hist(samp, breaks = 50, freq = FALSE, main = main, ylab = "Density",
    xlim = range(x), xlab = "x"); box()
add_approx_dens(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(x, ecdf(samp)(x), main = main, ylab = "Distribution", type = "s")
add_approx_distr(x = x, weights = weights, dfs = dfs, ncps = ncps)
plot(u, quantile(samp, probs = u), type = "s", main = main,
    ylab = "Quantile")
add_approx_quant(u = u, weights = weights, dfs = dfs, ncps = ncps)
par(old_par)
# Cutoffs for infinite series of the last example
K <- 1e7
log_weights<- -3 * log(1:K)
log_dfs <- log(5) + log(1:K)
(cutoff <- cutoff_wschisq(thre = 10^(-(1:4)), weights = log_weights,
                                    dfs = log_dfs, log = TRUE))
# Approximation
x <- seq(0, 25, l = 100)
l <- length(cutoff$mean)
main <- expression(sum(k^(-3) * chi[5 * k]^2, k == 1, K))
col <- viridisLite::viridis(l)
plot(x, d_wschisq(x, weights = exp(log_weights[1:cutoff$mean[l]]),
                dfs = exp(log_dfs[1:cutoff$mean[l]])), type = "l",
        ylab = "Density", col = col[l], lwd = 3)
for(i in rev(seq_along(cutoff$mean)[-l])) {
    lines(x, d_wschisq(x, weights = exp(log_weights[1:cutoff$mean[i]]),
                        dfs = exp(log_dfs[1:cutoff$mean[i]])), col = col[i])
}
legend("topright", legend = paste0(rownames(cutoff), " (", cutoff$mean, ")"),
        lwd = 2, col = col)
```


Index

```
* datasets
    avail_tests,4
    comets, 15
    craters,17
    planets, }3
    rhea,49
    venus,76
    Gauss--Legendre quadrature, 23, 29, 34,
        5 5
A_theta_x, 5
akx,58
akx (Pn), 33
angles_to_sphere, 3
angular function, 18
asymptotic distribution, 57
avail_cir_tests, 63, 65, 68,72
avail_cir_tests (avail_tests), 4
avail_sph_tests, 63, 65, 68, 72
avail_sph_tests (avail_tests), 4
avail_tests,4
bk_to_uk (Sobolev_coefs), 57
bk_to_vk2 (Sobolev_coefs), 57
Chisquare, }7
cir_coord_conv,7
cir_gaps, 8, 10
cir_stat(cir_stat_Kuiper), 9
cir_stat_Ajne (cir_stat_Kuiper), 9
cir_stat_Bakshaev (cir_stat_Kuiper), 9
cir_stat_Bingham(cir_stat_Kuiper), 9
cir_stat_CCF09 (cir_stat_Kuiper),9
cir_stat_Cressie(cir_stat_Kuiper), 9
cir_stat_distr(p_Kolmogorov),40
cir_stat_FG01 (cir_stat_Kuiper), 9
cir_stat_Gine_Fn(cir_stat_Kuiper), 9
cir_stat_Gine_Gn(cir_stat_Kuiper), 9
cir_stat_Gini (cir_stat_Kuiper),9
```

```
cir_stat_Gini_squared
    (cir_stat_Kuiper), 9
cir_stat_Greenwood (cir_stat_Kuiper), 9
cir_stat_Hermans_Rasson
    (cir_stat_Kuiper), 9
cir_stat_Hodges_Ajne(cir_stat_Kuiper),
    9
cir_stat_Kuiper,9
cir_stat_Log_gaps(cir_stat_Kuiper), 9
cir_stat_Max_uncover(cir_stat_Kuiper),
    9
cir_stat_Num_uncover(cir_stat_Kuiper),
    9
cir_stat_PAD(cir_stat_Kuiper), 9
cir_stat_PCvM(cir_stat_Kuiper),9
cir_stat_PRt(cir_stat_Kuiper), 9
cir_stat_Pycke(cir_stat_Kuiper), 9
cir_stat_Pycke_q(cir_stat_Kuiper), 9
cir_stat_Range (cir_stat_Kuiper), 9
cir_stat_Rao (cir_stat_Kuiper), 9
cir_stat_Rayleigh(cir_stat_Kuiper), 9
cir_stat_Riesz(cir_stat_Kuiper), }
cir_stat_Rothman (cir_stat_Kuiper), 9
cir_stat_Vacancy (cir_stat_Kuiper), 9
cir_stat_Watson(cir_stat_Kuiper), 9
cir_stat_Watson_1976(cir_stat_Kuiper),
    9
comets, 15
con_f(locdev), 29
craters,17
cutoff_locdev (locdev), 29
cutoff_wschisq, 55
cutoff_wschisq (wschisq), 77
d_cir_stat_Ajne (p_Kolmogorov),40
d_cir_stat_Bakshaev (p_Kolmogorov),40
d_cir_stat_Bingham (p_Kolmogorov), 40
d_cir_stat_Gine_Fn (p_Kolmogorov),40
d_cir_stat_Gine_Gn (p_Kolmogorov), 40
d_cir_stat_Gini (p_Kolmogorov),40
```

```
d_cir_stat_Gini_squared (p_Kolmogorov),
    4 0
d_cir_stat_Greenwood (p_Kolmogorov), 40
d_cir_stat_Hermans_Rasson
    (p_Kolmogorov),40
d_cir_stat_Hodges_Ajne (p_Kolmogorov),
    4 0
d_cir_stat_Kuiper (p_Kolmogorov),40
d_cir_stat_Log_gaps(p_Kolmogorov),40
d_cir_stat_Max_uncover(p_Kolmogorov),
    40
d_cir_stat_Num_uncover(p_Kolmogorov),
    4 0
d_cir_stat_PAD (p_Kolmogorov), 40
d_cir_stat_PCvM (p_Kolmogorov),40
d_cir_stat_PRt (p_Kolmogorov), 40
d_cir_stat_Pycke(p_Kolmogorov), 40
d_cir_stat_Pycke_q (p_Kolmogorov), 40
d_cir_stat_Range (p_Kolmogorov), 40
d_cir_stat_Rao(p_Kolmogorov), 40
d_cir_stat_Rayleigh (p_Kolmogorov),40
d_cir_stat_Riesz (p_Kolmogorov), 40
d_cir_stat_Rothman (p_Kolmogorov), 40
d_cir_stat_Vacancy (p_Kolmogorov), 40
d_cir_stat_Watson (p_Kolmogorov), 40
d_cir_stat_Watson_1976(p_Kolmogorov),
    4 0
d_Kolmogorov (p_Kolmogorov), 40
d_locdev (locdev), 29
d_p_k, 26
d_p_k (Sobolev), 54
d_proj_unif (proj_unif), 37
d_Sobolev, 43,47
d_Sobolev (Sobolev), 54
d_sph_stat_Ajne (p_sph_stat_Bingham),46
d_sph_stat_Bakshaev
    (p_sph_stat_Bingham),46
d_sph_stat_Bingham
    (p_sph_stat_Bingham), 46
d_sph_stat_CJ12(p_sph_stat_Bingham), 46
d_sph_stat_Gine_Fn
    (p_sph_stat_Bingham),46
d_sph_stat_Gine_Gn
    (p_sph_stat_Bingham), 46
d_sph_stat_PAD (p_sph_stat_Bingham), 46
d_sph_stat_PCvM (p_sph_stat_Bingham), 46
d_sph_stat_PRt (p_sph_stat_Bingham), 46
d_sph_stat_Rayleigh
```

(p_sph_stat_Bingham), 46
d_sph_stat_Rayleigh_HD
(p_sph_stat_Bingham), 46
d_sph_stat_Riesz (p_sph_stat_Bingham),
46
d_wschisq (wschisq), 77
F_from_f, 18
F_inv_from_f, 30, 51
F_inv_from_f (F_from_f), 18
f_locdev (locdev), 29
f_locdev_Pn (Pn), 33
foreach, 28, 69
g_i_k (harmonics), 26
GammaDist, 79
Gauss--Legendre quadrature, 19, 34
Gauss--Legendre quadrature, 19,34
Gauss-Legendre quadrature, $5,43,60$
Gauss_Legen, 19
Gauss_Legen_nodes (Gauss_Legen), 19
Gauss_Legen_weights (Gauss_Legen), 19
Gegen_coefs (Gegenbauer), 21
Gegen_coefs_2d (Gegenbauer), 21
Gegen_coefs_Pn (Pn), 33
Gegen_norm (Gegenbauer), 21
Gegen_norm_2d (Gegenbauer), 21
Gegen_polyn (Gegenbauer), 21
Gegen_polyn_2d (Gegenbauer), 21
Gegen_series (Gegenbauer), 21
Gegen_series_2d (Gegenbauer), 21
Gegenbauer, 21
Gegenbauer coefficients, 33, 57
Gegenbauer series, 29
gegenpoly_array, 23
gegenpoly_n, 23
grad, 78
harmonics, 26
imhof, 78, 79
int_sph_MC, 27
int_sph_MC, 27
integrate, 19, 23, 30, 34, 55
intersection of two hyperspherical
caps, 33
local projected alternative, 57
locdev, 29
nlm, 79

```
p_cir_stat_Ajne (p_Kolmogorov),40
p_cir_stat_Bakshaev (p_Kolmogorov),40
p_cir_stat_Bingham (p_Kolmogorov),40
p_cir_stat_Gine_Fn (p_Kolmogorov),40
p_cir_stat_Gine_Gn (p_Kolmogorov),40
p_cir_stat_Gini (p_Kolmogorov),40
p_cir_stat_Gini_squared (p_Kolmogorov),
    4 0
p_cir_stat_Greenwood (p_Kolmogorov),40
p_cir_stat_Hermans_Rasson
    (p_Kolmogorov),40
p_cir_stat_Hodges_Ajne (p_Kolmogorov),
    40
p_cir_stat_Hodges_Ajne2(p_Kolmogorov),
    4 0
p_cir_stat_Kuiper (p_Kolmogorov),40
p_cir_stat_Log_gaps (p_Kolmogorov),40
p_cir_stat_Max_uncover (p_Kolmogorov),
    40
p_cir_stat_Num_uncover(p_Kolmogorov),
    4 0
p_cir_stat_PAD (p_Kolmogorov),40
p_cir_stat_PCvM(p_Kolmogorov),40
p_cir_stat_PRt (p_Kolmogorov), 40
p_cir_stat_Pycke (p_Kolmogorov), 40
p_cir_stat_Pycke_q (p_Kolmogorov),40
p_cir_stat_Range (p_Kolmogorov),40
p_cir_stat_Rao (p_Kolmogorov), 40
p_cir_stat_Rayleigh(p_Kolmogorov),40
p_cir_stat_Riesz (p_Kolmogorov), 40
p_cir_stat_Rothman (p_Kolmogorov), 40
p_cir_stat_Vacancy (p_Kolmogorov), 40
p_cir_stat_Watson (p_Kolmogorov), 40
p_cir_stat_Watson_1976(p_Kolmogorov),
        40
p_Kolmogorov,40
p_proj_unif(proj_unif), 37
p_Sobolev, 43,47
p_Sobolev (Sobolev), 54
p_sph_stat_Ajne (p_sph_stat_Bingham), 46
p_sph_stat_Bakshaev
    (p_sph_stat_Bingham), 46
p_sph_stat_Bingham,46
p_sph_stat_CJ12(p_sph_stat_Bingham), 46
p_sph_stat_Gine_Fn
    (p_sph_stat_Bingham),46
p_sph_stat_Gine_Gn
        (p_sph_stat_Bingham),46
```

p_cir_stat_Ajne (p_Kolmogorov), 40
p_cir_stat_Bakshaev (p_Kolmogorov), 40
p_cir_stat_Bingham (p_Kolmogorov), 40
p_cir_stat_Gine_Fn (p_Kolmogorov), 40
p_cir_stat_Gine_Gn (p_Kolmogorov), 40
p_cir_stat_Gini (p_Kolmogorov), 40
p_cir_stat_Gini_squared (p_Kolmogorov), 40
p_cir_stat_Greenwood (p_Kolmogorov), 40
p_cir_stat_Hermans_Rasson
(p_Kolmogorov), 40
p_cir_stat_Hodges_Ajne (p_Kolmogorov), 40
p_cir_stat_Hodges_Ajne2 (p_Kolmogorov), 40
p_cir_stat_Kuiper (p_Kolmogorov), 40
p_cir_stat_Log_gaps (p_Kolmogorov), 40
p_cir_stat_Max_uncover (p_Kolmogorov), 40
p_cir_stat_Num_uncover (p_Kolmogorov), 40
p_cir_stat_PAD (p_Kolmogorov), 40
p_cir_stat_PCvM (p_Kolmogorov), 40
p_cir_stat_PRt (p_Kolmogorov), 40
p_cir_stat_Pycke (p_Kolmogorov), 40
p_cir_stat_Pycke_q (p_Kolmogorov), 40
p_cir_stat_Range (p_Kolmogorov), 40
p_cir_stat_Rayleigh (p_Kolmogorov), 40
p_cir_stat_Riesz (p_Kolmogorov), 40
p_cir_stat_Rothman (p_Kolmogorov), 40
p_cir_stat_Vacancy (p_Kolmogorov), 40
p_cir_stat_Watson (p_Kolmogorov), 40
p_cir_stat_Watson_1976 (p_Kolmogorov), 40
p_Kolmogorov, 40
p_proj_unif (proj_unif), 37
p_Sobolev, 43, 47
p_Sobolev (Sobolev), 54
p_sph_stat_Ajne (p_sph_stat_Bingham), 46
p_sph_stat_Bakshaev
(p_sph_stat_Bingham), 46
p_sph_stat_Bingham, 46
p_sph_stat_CJ12 (p_sph_stat_Bingham), 46
p_sph_stat_Gine_Fn
(p_sph_stat_Bingham), 46
p_sph_stat_Gine_Gn
(p_sph_stat_Bingham), 46
p_sph_stat_PAD (p_sph_stat_Bingham), 46
p_sph_stat_PCvM (p_sph_stat_Bingham), 46
p_sph_stat_PRt (p_sph_stat_Bingham), 46
p_sph_stat_Rayleigh
(p_sph_stat_Bingham), 46
p_sph_stat_Rayleigh_HD
(p_sph_stat_Bingham), 46
p_sph_stat_Riesz (p_sph_stat_Bingham), 46
p_wschisq (wschisq), 77
planets, 32
Pn, 33
progressr::with_progress, 28, 69, 74
proj_unif, 37
projected alternatives to uniformity, 33
projected spherical uniform
distribution, 33
projected-ecdf statistics, 57
Psi, 38
Psi_mat, 11, 12, 60
Psi_mat (Psi), 38
psi_Pn (Pn), 33
q_proj_unif (proj_unif), 37
q_Sobolev (Sobolev), 54
q_wschisq (wschisq), 77
quantile, 79
r_alt, 50
r_locdev (locdev), 29
r_proj_unif (proj_unif), 37
r_unif, 53
r_unif_cir(r_unif), 53
r_unif_sph, 68
r_unif_sph (r_unif), 53
r_wschisq (wschisq), 77
rhea, 18, 49
Rothman test, 58
Sobolev, 54
Sobolev_coefs, 57
sph_stat (sph_stat_Rayleigh), 59
sph_stat_Ajne (sph_stat_Rayleigh), 59
sph_stat_Bakshaev (sph_stat_Rayleigh), 59
sph_stat_Bingham (sph_stat_Rayleigh), 59
sph_stat_CCF09 (sph_stat_Rayleigh), 59
sph_stat_CJ12 (sph_stat_Rayleigh), 59

```
sph_stat_distr (p_sph_stat_Bingham), 46
sph_stat_Gine_Fn(sph_stat_Rayleigh), 59
sph_stat_Gine_Gn(sph_stat_Rayleigh),59
sph_stat_PAD (sph_stat_Rayleigh),59
sph_stat_PCvM(sph_stat_Rayleigh), 59
sph_stat_PRt (sph_stat_Rayleigh),59
sph_stat_Pycke(sph_stat_Rayleigh),59
sph_stat_Rayleigh, 59
sph_stat_Rayleigh_HD
        (sph_stat_Rayleigh), 59
sph_stat_Riesz(sph_stat_Rayleigh),59
sphere_to_angles (angles_to_sphere), 3
sphunif,4
sphunif(sphunif-package), 3
sphunif-package, 3
splinefun, 19
tangent-normal decomposition,18
Theta_to_X (cir_coord_conv), 7
transformation, 29
uk_to_bk (Sobolev_coefs), 57
uk_to_vk2 (Sobolev_coefs), 57
unif_stat, 3, 5,62
unif_stat_distr, 3, 5, 64, 68
unif_stat_MC, 3, 5, 65, 66, 67,73
unif_test, 3, 5,72
uniroot, 19
upper_tri_ind (Psi), 38
venus, 18,76
vk2_to_bk (Sobolev_coefs), 57
vk2_to_uk (Sobolev_coefs), 57
weights_dfs_Sobolev(Sobolev), 54
wschisq, 55,77
X_to_Theta(cir_coord_conv), 7
```

