Package 'spldv’

May 9, 2022
Type Package
Title Spatial Models for Limited Dependent Variables
Version 0.1.1
Date 2022-5-9
Description The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators. It supports one-
step (Pinkse and Slade, 1998) doi:10.1016/S0304-4076(97)00097-3 and two-step GMM estimator along with the linearized GMM estimator pro-
posed by Klier and McMillen (2008) doi:10.1198/073500107000000188. It also allows for either Probit or Logit model and compute the average marginal effects.

Encoding UTF-8

RoxygenNote 7.1.2
Depends R (>=4.0)
Imports Formula, Matrix, maxLik, stats, sphet, memisc, car, methods, numDeriv, MASS, spatialreg

Suggests spdep
License GPL (>= 2)
URL https://github.com/gpiras/spldv
BugReports https://github.com/gpiras/spldv/issues
LazyData no
NeedsCompilation no
Author Mauricio Sarrias [aut, cre] (https://orcid.org/0000-0001-5932-4817), Gianfranco Piras [aut] (https://orcid.org/0000-0003-0225-6061), Daniel McMillen [ctb]

Maintainer Mauricio Sarrias msarrias86@gmail.com
Repository CRAN
Date/Publication 2022-05-09 19:50:02 UTC

R topics documented:

getSummary.bingmm 2
getSummary.binlgmm 3
impacts 3
impacts.bingmm 4
sbinaryGMM 7
sbinaryLGMM 12
Index 15

getSummary.bingmm Get Model Summaries for use with "mtable" for objects of class

 bingmm

Description

A generic function to collect coefficients and summary statistics from a bingmm object. It is used in mtable

Usage

```
## S3 method for class 'bingmm'
getSummary(obj, alpha = 0.05, ...)
```


Arguments

obj
a bingmm object,
alpha
level of the confidence intervals, further arguments,

Details

For more details see package memisc.

Value

A list with an array with coefficient estimates and a vector containing the model summary statistics.
getSummary.binlgmm Get Model Summaries for use with "mtable" for objects of class binlgmm

Description

A generic function to collect coefficients and summary statistics from a binlgmm object. It is used in mtable

Usage

\#\# S3 method for class 'binlgmm'
getSummary (obj, alpha $=0.05, \ldots$)

Arguments

obj	a binlgmm object,
alpha	level of the confidence intervals,
\ldots.	further arguments,

Details

For more details see package memisc.

Value

A list with an array with coefficient estimates and a vector containing the model summary statistics.

```
impacts
```

Estimation of the average marginal effects for SARB models.

Description

Obtain the average marginal effects from bingmm or binlgmm class model.

Usage

impacts(object, ...)

Arguments

object an object of class bingmm or binlgmm
... Additional arguments to be passed.

Value

Estimates of the direct, indirect and total effect.

```
impacts.bingmm
Estimation of the average marginal effects for SARB model estimated
using GMM procedures.
```


Description

Obtain the average marginal effects from bingmm or binlgmm class model.

Usage

```
## S3 method for class 'bingmm'
impacts(
    object,
    vcov = NULL,
    vce = c("robust", "efficient", "ml"),
    het = TRUE,
    atmeans = FALSE,
    type = c("mc", "delta"),
    R = 100,
    approximation = FALSE,
    pw = 5,
    tol = 1e-06,
    empirical = FALSE,
    )
```

 \#\# S3 method for class 'binlgmm'
 impacts(
 object,
 vcov = NULL,
 het = TRUE,
 atmeans = FALSE,
 type = c("mc", "delta"),
 R = 100,
 approximation = FALSE,
 pw = 5,
 tol \(=1 \mathrm{e}-06\),
 empirical = FALSE,
)
 \#\# S3 method for class 'impacts.bingmm'
 print(x, ...)
 \#\# S3 method for class 'impacts.bingmm'
 summary (object, ...)
    ```
## S3 method for class 'summary.impacts.bingmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
```


Arguments

object an object of class bingmm, binlgmm, or impacts. bingmm for summary and print method.
vcov an estimate of the asymptotic variance-covariance matrix of the parameters for a bingmm or binlgmm object.
vce string indicating what kind of variance-covariance matrix of the estimate should be computed when using effect. bingmm. For the one-step GMM estimator, the options are "robust" and "ml". For the two-step GMM estimator, the options are "robust", "efficient" and "ml". The option "vce = ml" is an exploratory method that evaluates the VC of the RIS estimator using the GMM estimates.
het logical. If TRUE (the default), then the heteroskedasticity is taken into account when computing the average marginal effects.
atmeans logical. If FALSE (the default), then the average marginal effects are computed at the unit level.
type string indicating which method is used to compute the standard errors of the average marginal effects. If "mc", then the Monte Carlo approximation is used. If "delta", then the Delta Method is used.

R
numerical. Indicates the number of draws used in the Monte Carlo approximation if type = "mc".
approximation logical. If TRUE then $(I-\lambda W)^{-1}$ is approximated as $I+\lambda W+\lambda^{2} W^{2}+\lambda^{3} W^{3}+$ $\ldots+\lambda^{q} W^{q}$. The default is FALSE.
pw numeric. The power used for the approximation $I+\lambda W+\lambda^{2} W^{2}+\lambda^{3} W^{3}+$ $\ldots+\lambda^{q} W^{q}$. The default is 5 .
tol Argument passed to mvrnorm: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix.
empirical logical. Argument passed to mvrnorm (default FALSE): if TRUE, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix
... further arguments. Ignored.
$x \quad$ an object of class impacts. bingmm.
digits the number of digits.

Details

Let the model be:

$$
y^{*}=X \beta+W X \gamma+\lambda W y^{*}+\epsilon=Z \delta+\lambda W y^{*}+\epsilon
$$

where $y=1$ if $y^{*}>0$ and 0 otherwise; $\epsilon \sim N(0,1)$ if link = "probit" or $\epsilon \sim L\left(0, \pi^{2} / 3\right)$ if link = "logit".

The marginal effects respect to variable x_{r} can be computed as

$$
\operatorname{diag}(f(a)) D_{\lambda}^{-1} A_{\lambda}^{-1}\left(I_{n} \beta_{r}+W \gamma_{r}\right)=C_{r}(\theta)
$$

where $f()$ is the pdf, which depends on the assumption of the error terms; diag is the operator that creates a $n \times n$ diagonal matrix; $A_{\lambda}=(I-\lambda W)$; and D_{λ} is a diagonal matrix whose elements represent the square root of the diagonal elements of the variance-covariance matrix of $u=A_{\lambda}^{-1} \epsilon$. We implement these three summary measures: (1) The average total effects, $A T E_{r}=n^{-1} i_{n}^{\prime} C_{r} i_{n}$, (2) The average direct effects, $A D E_{r}=n^{-1} \operatorname{tr}\left(C_{r}\right)$, and (3) the average indirect effects, $A T E_{r}-$ $A D E_{r}$.
The standard errors of the average total, direct and indirect effects can be estimated using either Monte Carlo (MC) approximation, which takes into account the sampling distribution of θ, or Delta Method.

Value

An object of class impacts.bingmm.

Author(s)

Mauricio Sarrias and Gianfranco Piras.

See Also

sbinaryGMM, sbinaryLGMM.

Examples

```
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# Two-step (Probit) GMM estimator
ts <- sbinaryGMM(CRIMED ~ INC + HOVAL| HOVAL,
    link = "probit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    data = COL.OLD,
    type = "twostep")
# Marginal effects using Delta Method
summary(impacts(ts, type = "delta"))
# Marginal effects using MC with 100 draws
summary(impacts(ts, type = "mc", R = 100))
# Marginal effects using efficient VC matrix
summary(impacts(ts, type = "delta", vce = "efficient"))
```

```
# Marginal effects using efficient VC matrix and ignoring the heteroskedasticity
summary(impacts(ts, type = "delta", vce = "efficient", het = FALSE))
```


sbinaryGMM

Estimation of SAR for binary dependent models using GMM

Description

Estimation of SAR model for binary dependent variables (either Probit or Logit), using one- or two-step GMM estimator. The type of model supported has the following structure:

$$
y^{*}=X \beta+W X \gamma+\lambda W y^{*}+\epsilon=Z \delta+\lambda W y^{*}+\epsilon
$$

where $y=1$ if $y^{*}>0$ and 0 otherwise; $\epsilon \sim N(0,1)$ if link $=$ "probit" or $\epsilon \sim L\left(0, \pi^{2} / 3\right)$ if link $=" \operatorname{logit"}$.

Usage

sbinaryGMM(
formula,
data,
listw $=$ NULL,
nins $=2$,
link = c("probit", "logit"),
winitial = c("optimal", "identity"), s.matrix = c("robust", "iid"),
type = c("onestep", "twostep"), gradient = TRUE, start = NULL, cons.opt = FALSE, approximation = FALSE, verbose = TRUE, print.init $=$ FALSE, pw = 5, tol.solve = .Machine\$double.eps,
. . .
)

```
## S3 method for class 'bingmm'
coef(object, ...)
## S3 method for class 'bingmm'
vcov(
    object,
    vce = c("robust", "efficient", "ml"),
```

```
    method = "bhhh",
    R = 1000,
    tol.solve = .Machine$double.eps,
)
## S3 method for class 'bingmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'bingmm'
summary(
    object,
    vce = c("robust", "efficient", "ml"),
    method = "bhhh",
    R = 1000,
    tol.solve = .Machine$double.eps,
    )
## S3 method for class 'summary.bingmm'
print(x, digits = max(5, getOption("digits") - 3), ...)
```


Arguments

| formula | a symbolic description of the model of the form $y \sim x \mid w x$ where y is the binary dependent variable, x are the independent variables. The variables after \mid are those variables that enter spatially lagged: $W X$. The variables in the second part of formula must also appear in the first part. |
| :---: | :---: |
| data | the data of class data. frame. |
| listw | object. An object of class listw, matrix, or Matrix. |
| nins | numerical. Order of instrumental-variable approximation; as default nins $=2$, such that $H=\left(Z, W Z, W^{2} Z\right)$ are used as instruments. |
| link | string. The assumption of the distribution of the error term; it can be either link = "probit" (the default) or link = "logit". |
| winitial | string. A string indicating the initial moment-weighting matrix Ψ; it can be either winitial = "optimal" (the default) or winitial = "identity". |
| s.matrix | string. Only valid of type = "twostep" is used. This is a string indicating the type of variance-covariance matrix \hat{S} to be used in the second-step procedure; it can be s.matrix = "robust" (the default) or s.matrix = "iid". |
| type | string. A string indicating whether the one-step (type = "onestep"), or twostep GMM (type = "twostep") should be computed. |
| gradient | logical. Only for testing procedures. Should the analytic gradient be used in the GMM optimization procedure? TRUE as default. If FALSE, then the numerical gradient is used. |
| start | if not NULL, the user must provide a vector of initial parameters for the optimization procedure. When start = NULL, sbinaryGMM uses the traditional Probit or |

Logit estimates as initial values for the parameters, and the correlation between y and $W y$ as initial value for λ.
cons.opt logical. Should a constrained optimization procedure for λ be used? FALSE as default.
approximation logical. If TRUE then $(I-\lambda W)^{-1}$ is approximated as $I+\lambda W+\lambda^{2} W^{2}+\lambda^{3} W^{3}+$ $\ldots+\lambda^{q} W^{q}$. The default is FALSE.
verbose logical. If TRUE, the code reports messages and some values during optimization.
print.init logical. If TRUE the initial parameters used in the optimization of the first step are printed.
pw numeric. The power used for the approximation $I+\lambda W+\lambda^{2} W^{2}+\lambda^{3} W^{3}+$ $\ldots+\lambda^{q} W^{q}$. The default is 5 .
tol.solve Tolerance for solve().
... additional arguments passed to maxLik.
vce string. A string indicating what kind of standard errors should be computed when using summary. For the one-step GMM estimator, the options are "robust" and "ml". For the two-step GMM estimator, the options are "robust", "efficient" and " $m \mathrm{l}$ ". The option " $\mathrm{vce}=\mathrm{ml}$ " is an exploratory method that evaluates the VC of the RIS estimator using the GMM estimates.
method string. Only valid if vce $=$ " ml ". It indicates the algorithm used to compute the Hessian matrix of the RIS estimator. The defult is "bhhh".
R numeric. Only valid if vce = "ml". It indicates the number of draws used to compute the simulated probability in the RIS estimator.
x, object, an object of class bingmm
digits the number of digits

Details

The data generating process is:

$$
y^{*}=X \beta+W X \gamma+\lambda W y^{*}+\epsilon=Z \delta+\lambda W y^{*}+\epsilon
$$

where $y=1$ if $y^{*}>0$ and 0 otherwise; $\epsilon \sim N(0,1)$ if link $=$ "probit" or $\epsilon \sim L\left(0, \pi^{2} / 3\right)$ if link = "logit".. The general GMM estimator minimizes

$$
J(\theta)=g^{\prime}(\theta) \hat{\Psi} g(\theta)
$$

where $\theta=(\beta, \gamma, \lambda)$ and

$$
g=n^{-1} H^{\prime} v
$$

where v is the generalized residuals. Let $Z=(X, W X)$, then the instrument matrix H contains the linearly independent columns of $H=\left(Z, W Z, \ldots, W^{q} Z\right)$. The one-step GMM estimator minimizes $J(\theta)$ setting either $\hat{\Psi}=I_{p}$ if winitial = "identity" or $\hat{\Psi}=\left(H^{\prime} H / n\right)^{-1}$ if winitial = "optimal". The two-step GMM estimator uses an additional step to achieve higher efficiency by computing the variance-covariance matrix of the moments \hat{S} to weight the sample moments. This matrix is computed using the residuals or generalized residuals from the first-step, which are consistent. This matrix is computed as $\hat{S}=n^{-1} \sum_{i=1}^{n} h_{i}\left(f^{2} /(F(1-F))\right) h_{i}^{\prime}$ if s.matrix = "robust" or $\hat{S}=n^{-1} \sum_{i=1}^{n} \hat{v}_{i} h_{i} h_{i}^{\prime}$, where \hat{v} are the first-step generalized residuals.

Value

An object of class "bingmm", a list with elements:
coefficients the estimated coefficients,
call the matched call,
callF the full matched call,
X the X matrix, which contains also WX if the second part of the formula is used,
H the H matrix of instruments used,
y the dependent variable,
listw the spatial weight matrix,
link the string indicating the distribution of the error term,
Psi the moment-weighting matrix used in the last round,
type type of model that was fitted,
s.matrix the type of S matrix used in the second round,
winitial the moment-weighting matrix used for the first step procedure
opt object of class maxLik,
approximation a logical value indicating whether approximation was used to compute the inverse matrix,
pw the powers for the approximation,
formula the formula.

Author(s)

Mauricio Sarrias and Gianfranco Piras.

References

Pinkse, J., \& Slade, M. E. (1998). Contracting in space: An application of spatial statistics to discrete-choice models. Journal of Econometrics, 85(1), 125-154.
Fleming, M. M. (2004). Techniques for estimating spatially dependent discrete choice models. In Advances in spatial econometrics (pp. 145-168). Springer, Berlin, Heidelberg.

Klier, T., \& McMillen, D. P. (2008). Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples. Journal of Business \& Economic Statistics, 26(4), 460-471.
LeSage, J. P., Kelley Pace, R., Lam, N., Campanella, R., \& Liu, X. (2011). New Orleans business recovery in the aftermath of Hurricane Katrina. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(4), 1007-1027.
Piras, G., \& Sarrias, M. (2022). One or Two-Step? Evaluating GMM Efficiency for Spatial Binary Probit Models. Manuscript submitted for publication.

See Also

sbinaryLGMM, impacts.bingmm.

Examples

```
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# Two-step (Probit) GMM estimator
ts <- sbinaryGMM(CRIMED ~ INC + HOVAL,
    link = "probit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    data = COL.OLD,
    type = "twostep",
    verbose = TRUE)
# Robust standard errors
summary(ts)
# Efficient standard errors
summary(ts, vce = "efficient")
# One-step (Probit) GMM estimator
os <- sbinaryGMM(CRIMED ~ INC + HOVAL,
    link = "probit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    data = COL.OLD,
    type = "onestep",
    verbose = TRUE)
summary(os)
# One-step (Logit) GMM estimator with identity matrix as initial weight matrix
os_l <- sbinaryGMM(CRIMED ~ INC + HOVAL,
    link = "logit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    data = COL.OLD,
    type = "onestep",
    winitial = "identity",
    verbose = TRUE)
summary(os_l)
# Two-step (Probit) GMM estimator with WX
ts_wx <- sbinaryGMM(CRIMED ~ INC + HOVAL| INC + HOVAL,
    link = "probit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    data = COL.OLD,
    type = "twostep",
    verbose = FALSE)
summary(ts_wx)
# Constrained two-step (Probit) GMM estimator
ts_c <- sbinaryGMM(CRIMED ~ INC + HOVAL,
    link = "probit",
```

```
listw = spdep::nb2listw(COL.nb, style = "W"),
data = COL.OLD,
type = "twostep",
verbose = TRUE,
cons.opt = TRUE)
```

summary(ts_c)

Description

Estimation of SAR model for binary dependent variables (either Probit or Logit), using Linearized GMM estimator suggested by Klier and McMillen (2008). The model is:

$$
y^{*}=X \beta+W X \gamma+\lambda W y^{*}+\epsilon=Z \delta+\lambda W y^{*}+\epsilon
$$

where $y=1$ if $y^{*}>0$ and 0 otherwise; $\epsilon \sim N(0,1)$ if link = "probit" or $\epsilon \sim L\left(0, \pi^{2} / 3\right)$ link $=$ "logit".

Usage

```
sbinaryLGMM(
    formula,
    data,
    listw = NULL,
    nins = 2,
    link = c("logit", "probit"),
)
## S3 method for class 'binlgmm'
coef(object, ...)
## S3 method for class 'binlgmm'
vcov(object, ...)
## S3 method for class 'binlgmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'binlgmm'
summary(object, ...)
## S3 method for class 'summary.binlgmm'
print(x, digits = max(3, getOption("digits") - 2), ...)
```


Arguments

| formula | a symbolic description of the model of the form $y \sim x \mid w x$ where y is the binary dependent variable, x are the independent variables. The variables after \mid are those variables that enter spatially lagged: $W X$. The variables in the second part of formula must also appear in the first part. |
| :---: | :---: |
| data | the data of class data. frame. |
| listw | object. An object of class listw, matrix, or Matrix. |
| nins | numerical. Order of instrumental-variable approximation; as default nins $=2$, such that $H=\left(Z, W Z, W^{2} Z\right)$ are used as instruments. |
| link | string. The assumption of the distribution of the error term; it can be either link = "probit" (the default) or link = "logit". |
| | additional arguments. |
| x, object, | an object of class binlgmm. |
| digits | the number of digits |

Details

The steps for the linearized spatial Probit/Logit model are the following:

1. Estimate the model by standard Probit/Logit model, in which spatial autocorrelation and heteroskedasticity are ignored. The estimated values are β_{0}. Calculate the generalized residuals assuming that $\lambda=0$ and the gradient terms G_{β} and G_{λ}.
2. The second step is a two-stage least squares estimator of the linearized model. Thus regress G_{β} and G_{λ} on $H=\left(Z, W Z, W^{2} Z, \ldots ., W^{q} Z\right)$ and obtain the predicted values \hat{G}. Then regress $u_{0}+G_{\beta}^{\prime} \hat{\beta}_{0}$ on \hat{G}. The coefficients are the estimated values of β and λ.
The variance-covariance matrix can be computed using the traditional White-corrected coefficient covariance matrix from the last two-stage least squares estimator of the linearlized model.

Value

An object of class "bingmm", a list with elements:
coefficients the estimated coefficients,
call the matched call,
X the X matrix, which contains also WX if the second part of the formula is used,
H the H matrix of instruments used,
$y \quad$ the dependent variable,
listw the spatial weight matrix,
link the string indicating the distribution of the error term,
fit an object of 1 m representing the T2SLS,
formula the formula.

Author(s)

Mauricio Sarrias and Gianfranco Piras.

References

Klier, T., \& McMillen, D. P. (2008). Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples. Journal of Business \& Economic Statistics, 26(4), 460-471.

See Also

sbinaryGMM, impacts.bingmm.

Examples

```
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# LGMM for probit using q = 3 for instruments
lgmm <- sbinaryLGMM(CRIMED ~ INC + HOVAL | INC,
    link = "probit",
    listw = spdep::nb2listw(COL.nb, style = "W"),
    nins = 3,
    data = COL.OLD)
summary(lgmm)
```


Index

```
* models
    sbinaryGMM, 7
    sbinaryLGMM, 12
coef.bingmm(sbinaryGMM), 7
coef.binlgmm (sbinaryLGMM), 12
getSummary.bingmm, 2
getSummary.binlgmm, 3
impacts, }
impacts.bingmm, 4, 10,14
impacts.binlgmm(impacts.bingmm), 4
print.bingmm(sbinaryGMM),7
print.binlgmm (sbinaryLGMM), 12
print.impacts.bingmm(impacts.bingmm),4
print.summary.bingmm (sbinaryGMM), }
print.summary.binlgmm(sbinaryLGMM), 12
print.summary.impacts.bingmm
    (impacts.bingmm), 4
sbinaryGMM, 6, 7, 14
sbinaryLGMM, 6,10,12
summary.bingmm (sbinaryGMM), }
summary.binlgmm (sbinaryLGMM), 12
summary.impacts.bingmm
        (impacts.bingmm),4
vcov.bingmm(sbinaryGMM), }
vcov.binlgmm (sbinaryLGMM), 12
```

