Package ‘splines2’

September 19, 2021
Title Regression Spline Functions and Classes
Version 0.4.5

Description Constructs basis matrix of B-splines, M-splines,
I-splines, convex splines (C-splines), periodic M-splines,
natural cubic splines, generalized Bernstein polynomials,
and their integrals (except C-splines) and derivatives
of given order by close-form recursive formulas.
It also contains a C++ head-only library integrated with Rcpp.
See Wang and Yan (2021) <doi:10.6339/21-JDS1020> for details.

Imports Rcpp, stats

LinkingTo Rcpp, ReppArmadillo
Suggests knitr, rmarkdown, tinytest
Depends R (>=3.2.3)
VignetteBuilder knitr

License GPL (>=3)

URL https://wwenjie.org/splines2,
https://github.com/wenjie2wang/splines2

BugReports https://github.com/wenjie2wang/splines2/issues
Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation yes

Author Wenjie Wang [aut, cre] (<https://orcid.org/0000-0003-0363-3180>),
Jun Yan [aut] (<https://orcid.org/0000-0003-4401-7296>)

Maintainer Wenjie Wang <wang@wwenjie.org>
Repository CRAN
Date/Publication 2021-09-19 13:20:02 UTC

https://doi.org/10.6339/21-JDS1020
https://wwenjie.org/splines2
https://github.com/wenjie2wang/splines2
https://github.com/wenjie2wang/splines2/issues
https://orcid.org/0000-0003-0363-3180
https://orcid.org/0000-0003-4401-7296

2 bernsteinPoly

R topics documented:

bernsteinPoly L 2
bSpline 4
cSpline e 6
dbs . .. e 8
deriv e 10
DS . L e 12
iSpline L 13
knots L 15
mSpline e 16
naturalSpline 20
predict e e e e 22
SPHNES2 L e e e e e e 23

Index 25

bernsteinPoly Generalized Bernstein Polynomial Basis
Description

Returns a generalized Bernstein polynomial basis matrix of given degree over a specified range.

Usage

bernsteinPoly/(
X,
degree = 3,
intercept = FALSE,
Boundary.knots = NULL,
derivs = 0L,
integral = FALSE,

Arguments
X The predictor variable taking values inside of the specified boundary. Missing
values are allowed and will be returned as they are.
degree A nonnegative integer representing the degree of the polynomials.
intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis

will be excluded from the output.

Boundary.knots Boundary points at which to anchor the Bernstein polynomial basis. The default
value is NULL and the boundary knots is set internally to be range(x,na.rm=
TRUE).

bernsteinPoly 3

derivs A nonnegative integer specifying the order of derivatives. The default value is
oL for Bernstein polynomial basis functions.

integral A logical value. If TRUE, the integrals of the Bernstein polynomials will be
returned. The default value is FALSE.

Optional arguments that are not used.

Value

A numeric matrix of dimension length(x) by degree + as.integer(intercept).

Examples

library(splines2)

x1 <- seq.int(@, 1, 0.01)
x2 <- seq.int(- 2, 2, 0.01)

Bernstein polynomial basis matrix over [0, 1]
bMat1 <- bernsteinPoly(x1, degree = 4, intercept = TRUE)

generalized Bernstein polynomials basis over [- 2, 2]
bMat2 <- bernsteinPoly(x2, degree = 4, intercept = TRUE)

op <- par(mfrow = c(1, 2), mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
matplot(x1, bMat1, type = "1", ylab = "y")
matplot(x2, bMat2, type = "1", ylab = "y")

the first and second derivative matrix

diMat1 <- bernsteinPoly(x1, degree = 4, derivs =
d2Mat1 <- bernsteinPoly(x1, degree = 4, derivs =
diMat2 <- bernsteinPoly(x2, degree = 4, derivs =
d2Mat2 <- bernsteinPoly(x2, degree = 4, derivs =

intercept = TRUE)
, intercept = TRUE)
intercept = TRUE)
, intercept = TRUE)

N = N =

par(mfrow = c(2, 2))
matplot(x1, diMatl, type = "1", ylab = "y"
matplot(x2, diMat2, type = "1", ylab = "y"
matplot(x1, d2Matl, type = "1", ylab = "y
matplot(x2, d2Mat2, type = "1", ylab = "y

reset to previous plotting settings
par(op)

or use the deriv method
all.equal(diMatl1, deriv(bMat1))
all.equal(d2Mat1, deriv(bMatl, 2))

the integrals

iMat1 <- bernsteinPoly(x1, degree = 4, integral = TRUE, intercept = TRUE)
iMat2 <- bernsteinPoly(x2, degree = 4, integral = TRUE, intercept = TRUE)
all.equal(deriv(iMat1), bMatl1, check.attributes = FALSE)
all.equal(deriv(iMat2), bMat2, check.attributes = FALSE)

bSpline

bSpline

B-Spline Basis for Polynomial Splines

Description

Generates the B-spline basis matrix representing the family of piecewise polynomials with the spec-
ified interior knots, degree, and boundary knots, evaluated at the values of x.

Usage

bSpline(
X,
df = NULL,
knots = NULL,
degree = 3L,

intercept = FALSE,
Boundary.knots = NULL,

derivs = oL,

integral = FALSE,

Arguments

X

df

knots

degree

intercept

Boundary.knots

derivs

The predictor variable. Missing values are allowed and will be returned as they
are.

Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df -degree
-as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. If internal knots are speci-
fied via knots, the specified df will be ignored.

The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary . knots.

A nonnegative integer specifying the order of derivatives of B-splines. The de-
fault value is QL for B-spline basis functions.

bSpline 5

integral A logical value. If TRUE, the corresponding integrals of spline basis functions
will be returned. The default value is FALSE.

Optional arguments that are not used.

Details

This function extends the bs() function in the splines package for B-spline basis by allowing
piecewise constant (left-closed and right-open except on the right boundary) spline basis of degree
Zero.

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + degree
+as.integer(intercept) columns if knots are specified instead. Attributes that correspond to
the arguments specified are returned mainly for other functions in this package.

References

De Boor, Carl. (1978). A practical guide to splines. Vol. 27. New York: Springer-Verlag.

See Also

dbs for derivatives of B-splines; ibs for integrals of B-splines;

Examples

library(splines2)

X <- seq.int(@, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

cubic B-splines
bsMat <- bSpline(x, knots = knots, degree = 3, intercept = TRUE)

op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
matplot(x, bsMat, type = "1", ylab = "Cubic B-splines")
abline(v = knots, lty = 2, col = "gray")

reset to previous plotting settings
par(op)

the first derivaitves
diMat <- deriv(bsMat)

the second derivaitves
d2Mat <- deriv(bsMat, 2)

evaluate at new values
predict(bsMat, c(0.125, 0.801))

cSpline

cSpline

C-Spline Basis for Polynomial Splines

Description

Generates the convex regression spline (called C-spline) basis matrix by integrating I-spline basis
for a polynomial spline or the corresponding derivatives.

Usage
cSpline(
X’
df = NULL,
knots = NULL,
degree = 3L,

intercept = TRUE,
Boundary.knots = NULL,

derivs = 0oL,
scale = TRUE,

Arguments

X

df

knots

degree

intercept

Boundary.knots

derivs

The predictor variable. Missing values are allowed and will be returned as they
are.

Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df -degree
-as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. If internal knots are speci-
fied via knots, the specified df will be ignored.

The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

The degree of C-spline defined to be the degree of the associated M-spline in-
stead of actual polynomial degree. For example, C-spline basis of degree 2 is
defined as the scaled double integral of associated M-spline basis of degree 2.

If TRUE by default, all of the spline basis functions are returned. Notice that
when using C-Spline for shape-restricted regression, intercept = TRUE should
be set even when an intercept term is considered additional to the spline basis in
the model.

Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary . knots.

A nonnegative integer specifying the order of derivatives of C-splines. The de-
fault value is QL for C-spline basis functions.

cSpline 7

scale A logical value indicating if scaling C-splines is required. If TRUE by default,
each C-spline basis is scaled to have unit height at right boundary knot. The
corresponding I-spline and M-spline produced by deriv methods will be scaled
to the same extent.

Optional arguments that are not used.

Details
It is an implementation of the closed-form C-spline basis derived from the recursion formula of
I-splines and M-splines.

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + degree
+as.integer(intercept) columns if knots are specified instead. Attributes that correspond to
the arguments specified are returned mainly for other functions in this package.

References

Meyer, M. C. (2008). Inference using shape-restricted regression splines. The Annals of Applied
Statistics, 2(3), 1013-1033.

See Also

iSpline for I-splines; mSpline for M-splines.

Examples

library(splines?2)

x <- seq.int(oQ, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

when 'scale = TRUE' (by default)
csMat <- cSpline(x, knots = knots, degree = 2)

op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
matplot(x, csMat, type = "1", ylab = "C-spline basis")
abline(v = knots, 1ty = 2, col = "gray")

isMat <- deriv(csMat)

msMat <- deriv(csMat, derivs = 2)

matplot(x, isMat, type = "1"”, ylab = "scaled I-spline basis"”)
matplot(x, msMat, type = "1", ylab = "scaled M-spline basis")

reset to previous plotting settings
par(op)

when 'scale = FALSE'
csMat <- cSpline(x, knots = knots, degree = 2, scale = FALSE)

the corresponding I-splines and M-splines (with same arguments)

8 dbs
isMat <- iSpline(x, knots = knots, degree = 2)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)
or using deriv methods (more efficient)
isMat1 <- deriv(csMat)
msMat1 <- deriv(csMat, derivs = 2)
equivalent
stopifnot(all.equal(isMat, isMatl, check.attributes = FALSE))
stopifnot(all.equal(msMat, msMat1, check.attributes = FALSE))
dbs Derivatives of B-Splines
Description
Produces the derivatives of given order of B-splines.
Usage
dbs(
X7
derivs = 1L,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
)
Arguments
X The predictor variable. Missing values are allowed and will be returned as they
are.
derivs A positive integer specifying the order of derivative. The default value is 1L for
the first derivative.
df Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df -degree
-as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. If internal knots are speci-
fied via knots, the specified df will be ignored.
knots The internal breakpoints that define the splines. The default is NULL, which

results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

dbs 9

degree A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary . knots.

Optional arguments that are not used.

Details

This function provides a more user-friendly interface and a more consistent handling for NA’s than
splines::splineDesign() for derivatives of B-splines. The implementation is based on the
closed-form recursion formula. At knots, the derivative is defined to be the right derivative except
at the right boundary knot.

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + degree
+as.integer(intercept) columns if knots are specified instead. Attributes that correspond to
the arguments specified are returned mainly for other functions in this package.

References

De Boor, Carl. (1978). A practical guide to splines. Vol. 27. New York: Springer-Verlag.

See Also

bSpline for B-splines; ibs for integrals of B-splines.

Examples

library(splines2)

x <- seq.int(@, 1, 0.01)

knots <- c(0.2, 0.4, 0.7)

the second derivative of cubic B-splines with three internal knots
dMat <- dbs(x, derivs = 2L, knots = knots, intercept = TRUE)

compare with the results from splineDesign

ord <- attr(dMat, "degree"”) + 1L

bKnots <- attr(dMat, "Boundary.knots")

aKnots <- c(rep(bKnots[1L], ord), knots, rep(bKnots[2L], ord))
res <- splines::splineDesign(aKnots, x = x, derivs = 2L)
stopifnot(all.equal(res, dMat, check.attributes = FALSE))

10 deriv

deriv Derivatives of Spline Basis Functions

Description

Returns derivatives of given order for the given spline basis functions.

Usage

S3 method for class 'bSpline2'
deriv(expr, derivs = 1L, ...)

S3 method for class 'dbs'
deriv(expr, derivs = 1L, ...)

S3 method for class 'ibs'
deriv(expr, derivs = 1L, ...)

S3 method for class 'mSpline’
deriv(expr, derivs = 1L, ...)

S3 method for class 'iSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'cSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'bernsteinPoly'
deriv(expr, derivs = 1L, ...)

S3 method for class 'naturalSpline

deriv(expr, derivs = 1L, ...)
Arguments
expr Objects of class bSpline2, ibs, mSpline, iSpline, cSpline, bernsteinPoly

or naturalSpline with attributes describing knots, degree, etc.

derivs A positive integer specifying the order of derivatives. By default, it is 1L for the
first derivatives.

Optional arguments that are not used.

Details

At knots, the derivative is defined to be the right derivative except at the right boundary knot. By
default, the function returns the first derivatives. For derivatives of order greater than one, nested
function calls such as deriv(deriv(expr)) are supported but not reccommended. For a better
performance, argument derivs should be specified instead.

deriv 11

This function is designed for objects produced by this package. It internally extracts necessary
specification about the spline/polynomial basis matrix from its attributes. Therefore, the function
will not work if the key attributes are not available after some operations.

Value

A numeric matrix of the same dimension with the input expr.

Examples

library(splines2)

X <- c(seq.int(@, 1, 0.1), NA) # NA's will be kept.
knots <- c(0.3, 0.5, 0.6)

helper function

stopifnot_equivalent <- function(...) {
stopifnot(all.equal(..., check.attributes = FALSE))

3

integal of B-splines and the corresponding B-splines integrated
ibsMat <- ibs(x, knots = knots)
bsMat <- bSpline(x, knots = knots)

the first derivative
diMat <- deriv(ibsMat)
stopifnot_equivalent(bsMat, di1Mat)

the second derivative

d2Mat1 <- deriv(bsMat)

d2Mat2 <- deriv(ibsMat, derivs = 2L)
stopifnot_equivalent(d2Mat1, d2Mat2)

nested calls are supported
d2Mat3 <- deriv(deriv(ibsMat))
stopifnot_equivalent(d2Mat2, d2Mat3)

C-splines, I-splines, M-splines and the derivatives

csMat <- cSpline(x, knots = knots, intercept = TRUE, scale = FALSE)
isMat <- iSpline(x, knots = knots, intercept = TRUE)
stopifnot_equivalent(isMat, deriv(csMat))

msMat <- mSpline(x, knots = knots, intercept = TRUE)
stopifnot_equivalent(msMat, deriv(isMat))
stopifnot_equivalent(msMat, deriv(csMat, 2))
stopifnot_equivalent(msMat, deriv(deriv(csMat)))

dmsMat <- mSpline(x, knots = knots, intercept = TRUE, derivs = 1)
stopifnot_equivalent(dmsMat, deriv(msMat))
stopifnot_equivalent(dmsMat, deriv(isMat, 2))
stopifnot_equivalent(dmsMat, deriv(deriv(isMat)))
stopifnot_equivalent(dmsMat, deriv(csMat, 3))
stopifnot_equivalent(dmsMat, deriv(deriv(deriv(csMat))))

12

ibs

ibs

Integrals of B-Splines

Description

Generates basis matrix for integrals of B-splines.

Usage
ibs(
X’
df = NULL,
knots = NULL,
degree = 3,

intercept = FALSE,

Boundary.knots =

Arguments

X

df

knots

degree

intercept

Boundary.knots

Details

NULL,

The predictor variable. Missing values are allowed and will be returned as they
are.

Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df -degree
-as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. If internal knots are speci-
fied via knots, the specified df will be ignored.

The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary . knots.

Optional arguments that are not used.

The implementation is based on the closed-form recursion formula.

iSpline 13

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + degree
+as.integer(intercept) columns if knots are specified instead. Attributes that correspond to
the arguments specified are returned mainly for other functions in this package.

References

De Boor, Carl. (1978). A practical guide to splines. Vol. 27. New York: Springer-Verlag.

See Also

bSpline for B-splines; dbs for derivatives of B-splines;

Examples

library(splines2)

X <- seq.int(0Q, 1, 0.01)
knots <- c(0.2, 0.4, 0.7, 0.9)
ibsMat <- ibs(x, knots = knots, degree = 1, intercept = TRUE)

get the corresponding B-splines by bSpline()

bsMat@® <- bSpline(x, knots = knots, degree = 1, intercept = TRUE)
or by the deriv() method

bsMat <- deriv(ibsMat)

stopifnot(all.equal(bsMat@, bsMat, check.attributes = FALSE))

plot B-spline basis with their corresponding integrals

op <- par(mfrow = c(1, 2))

matplot(x, bsMat, type = "1"”, ylab = "B-spline basis"”)

abline(v = knots, lty = 2, col = "gray")

matplot(x, ibsMat, type = "1", ylab = "Integral of B-spline basis")
abline(v = knots, 1ty = 2, col = "gray")

reset to previous plotting settings
par(op)

iSpline I-Spline Basis for Polynomial Splines

Description

Generates the I-spline (integral of M-spline) basis matrix for a polynomial spline or the correspond-
ing derivatives of given order.

14

Usage
iSpline(
X7
df = NULL,
knots = NULL,
degree = 3L,

iSpline

intercept = TRUE,
Boundary.knots = NULL,

derivs = 0oL,

Arguments

X

df

knots

degree

intercept

Boundary.knots

derivs

Details

The predictor variable. Missing values are allowed and will be returned as they
are.

Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df -degree
-as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. If internal knots are speci-
fied via knots, the specified df will be ignored.

The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

The degree of I-spline defined to be the degree of the associated M-spline instead
of actual polynomial degree. For example, I-spline basis of degree 2 is defined
as the integral of associated M-spline basis of degree 2.

If TRUE by default, all of the spline basis functions are returned. Notice that when
using I-Spline for monotonic regression, intercept = TRUE should be set even
when an intercept term is considered additional to the spline basis functions.

Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary . knots.

A nonnegative integer specifying the order of derivatives of I-splines.

Optional arguments that are not used.

It is an implementation of the closed-form I-spline basis based on the recursion formula given by

Ramsay (1988).

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + degree
+as.integer(intercept) columns if knots are specified instead. Attributes that correspond to
the arguments specified are returned mainly for other functions in this package.

knots 15

References

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425-441.

See Also

mSpline for M-splines; cSpline for C-splines;

Examples

library(splines?2)

Example given in the reference paper by Ramsay (1988)
x <- seq.int(@, 1, by = 0.01)

knots <- c(0.3, 0.5, 0.6)

isMat <- iSpline(x, knots = knots, degree = 2)

op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
matplot(x, isMat, type = "1", ylab = "I-spline basis")
abline(v = knots, 1ty = 2, col = "gray")

reset to previous plotting settings
par (op)

the derivative of I-splines is M-spline

msMat1l <- iSpline(x, knots = knots, degree = 2, derivs = 1)
msMat2 <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)
stopifnot(all.equal(msMatl, msMat2))

knots Extract Knots from the Given Object

Description

Methods for the generic function knots from the stats package to obtain internal or boundary knots
from the objects produced by this package.

Usage

S3 method for class 'bSpline2'
knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'dbs'
knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'ibs'
knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'mSpline’

16 mSpline

knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'iSpline'
knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'cSpline'
knots(Fn, type = c("internal”, "boundary"”), ...)

S3 method for class 'bernsteinPoly'
knots(Fn, type = c("internal”, "boundary"), ...)

S3 method for class 'naturalSpline'

knots(Fn, type = c("internal”, "boundary"), ...)
Arguments
Fn An splines?2 object produced by this package.
type A character vector of length one indicating the type of knots to return. The avail-
able choices are "internal” for internal knots and "Boundary” for boundary
knots.

Optional arguments that are not used now.

Value

A numerical vector.

Examples

library(splines2)

set.seed(123)
x <= rnorm(100)

B-spline basis
bsMat <- bSpline(x, df = 8, degree = 3)

extract internal knots placed based on the quantile of x
(internal_knots <- knots(bsMat))

extract boundary knots placed based on the range of x
boundary_knots <- knots(bsMat, type = "boundary")
all.equal(boundary_knots, range(x))

mSpline M-Spline Basis for Polynomial Splines

mSpline

Description

17

Generates the basis matrix of regular M-spline, periodic M-spline, and the corresponding integrals

and derivatives.

Usage
mSpline(
X’
df = NULL,
knots = NULL,
degree = 3L,

intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,

derivs = oL,

integral = FALSE,

Arguments

X

df

knots

degree

intercept

Boundary.knots

The predictor variable. Missing values are allowed and will be returned as they
are.

Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots. For M-splines, the function chooses
df -degree -as.integer(intercept) internal knots at suitable quantiles of x
ignoring missing values and those x outside of the boundary. For periodic M-
spline (periodic = TRUE), df -as.integer(intercept) internal knots will be
chosen at suitable quantiles of x relative to the beginning of the cyclic intervals
they belong to (see Examples) and the number of internal knots must be greater
or equal to the specified degree -1. If internal knots are specified via knots,
the specified df will be ignored.

The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines
(periodic = TRUE), the number of knots must be greater or equal to the specified
degree -1.

A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the ba-
sis parameters do not depend on x. Data can extend beyond Boundary.knots.
For periodic splines (periodic = TRUE), the specified boundary knots define the
cyclic interval.

18 mSpline

periodic A logical value. If TRUE, the periodic splines will be returned instead of regular
M-splines. The default value is FALSE.
derivs A nonnegative integer specifying the order of derivatives of M-splines. The

default value is @L for M-spline basis functions.

integral A logical value. If TRUE, the corresponding integrals of spline basis functions
will be returned. The default value is FALSE. For periodic splines, the integral of
each basis is integrated from the left boundary knot.

Optional arguments that are not used.

Details

This function contains an implementation of the closed-form M-spline basis based on the recursion
formula given by Ramsay (1988) or periodic M-spline basis following the procedure producing
periodic B-splines given in Piegl and Tiller (1997). For monotone regression, one can use I-splines
(see iSpline) instead of M-splines.

Value

A numeric matrix of length(x) rows and df columns if df is specified. If knots are specified
instead, the output matrix will consist of length(knots) + degree + as.integer(intercept)
columns if periodic = FALSE, or length(knots) + as.integer(intercept) columns if periodic
= TRUE. Attributes that correspond to the arguments specified are returned for usage of other func-
tions in this package.

References

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical science, 3(4), 425-441.
Piegl, L., & Tiller, W. (1997). The NURBS book. Springer Science \& Business Media.

See Also

bSpline for B-splines; iSpline for I-splines; cSpline for C-splines.

Examples

library(splines2)

example given in the reference paper by Ramsay (1988)

x <- seq.int(0Q, 1, 0.01)

knots <- c(0.3, 0.5, 0.6)

msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)

op <- par(mar = c(2.5, 2.5, 0.2, @.1), mgp = c(1.5, 0.5, 9))
matplot(x, msMat, type = "1", ylab = "y")
abline(v = knots, 1ty = 2, col = "gray")

derivatives of M-splines
dmsMat <- mSpline(x, knots = knots, degree =
intercept = TRUE, derivs

|
N

D

mSpline 19

or using the deriv method
dmsMat1 <- deriv(msMat)
stopifnot(all.equal(dmsMat, dmsMat1, check.attributes = FALSE))

periodic M-splines

x <- seq.int(0, 3, 0.01)

bknots <- c(@, 1)

pMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE)

integrals

iMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, integral = TRUE)

first derivatives by "derivs = 1"

dMat1 <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, derivs = 1)

first derivatives by using the deriv() method

dMat2 <- deriv(pMat)

par(mfrow = c(2, 2))

matplot(x, pMat, type = "1", ylab = "Periodic Basis")

abline(v = seq.int(@, max(x)), 1lty = 2, col = "grey")

matplot(x, iMat, type = "1", ylab = "Integrals from 0")

abline(v = seq.int(@, max(x)), h = seq.int(@, max(x)), 1ty = 2, col = "grey")
matplot(x, dMatl, type = "1", ylab = "1st derivatives by 'derivs=1'")
abline(v = seq.int(@, max(x)), lty = 2, col = "grey")

matplot(x, dMat2, type = "1", ylab = "1st derivatives by 'deriv()'")
abline(v = seq.int(@, max(x)), 1lty = 2, col = "grey")

reset to previous plotting settings

par(op)

default placement of internal knots for periodic splines
default_knots <- function(x, df, intercept = FALSE,
Boundary.knots = range(x, na.rm = TRUE)) {
get x in the cyclic interval [0, 1)
x2 <- (x - Boundary.knots[1]) %% (Boundary.knots[2] - Boundary.knots[1])
knots <- quantile(x2, probs = seq(@, 1, length.out = df + 2 - intercept))
unname (knots[- c(1, length(knots))])
3

df <- 8

degree <- 3

intercept <- TRUE

internal_knots <- default_knots(x, df, intercept)

1. specify df

spline_basis1 = splines2::mSpline(x, degree = degree, df = df,
periodic = TRUE, intercept = intercept)

2. specify knots

spline_basis2 = splines2::mSpline(x, degree = degree, knots = internal_knots,
periodic = TRUE, intercept = intercept)

all.equal(internal_knots, knots(spline_basis1))
all.equal(spline_basis1l, spline_basis2)

20 naturalSpline

naturalSpline Natural Cubic Spline Basis for Polynomial Splines

Description

Generates the nonnegative natural cubic spline basis matrix, the corresponding integrals (from the
left boundary knot), or derivatives of given order. Each basis is assumed to follow a linear trend for
x outside of boundary.

Usage

naturalSpline(
X!
df = NULL,
knots = NULL,
intercept = FALSE,
Boundary.knots = NULL,
derivs = 0oL,
integral = FALSE,

Arguments

X The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of returned matrix. One
can specify df rather than knots, then the function chooses df -1 -as.integer(intercept)
internal knots at suitable quantiles of x ignoring missing values and those x out-
side of the boundary. Thus, df must be greater than or equal to 2. If internal
knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots.

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis

will be excluded from the output.

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots.

derivs A nonnegative integer specifying the order of derivatives of natural splines. The
default value is @L for the spline basis functions.

integral A logical value. The default value is FALSE. If TRUE, this function will return the
integrated natural splines from the left boundary knot.

Optional arguments that are not used.

naturalSpline

Details

21

It is an implementation of the natural spline basis based on B-spline basis, which utilizes the close-
form null space that can be derived from the recursive formula for the second derivatives of B-
splines. The constructed spline basis functions are intended to be nonnegative within boundary
with second derivatives being zeros at boundary knots.

A similar implementation is provided by splines: :ns, which uses QR decomposition to find the
null space of the second derivatives of B-spline basis at boundary knots. However, there is no
guarantee that the resulting basis functions are nonnegative within boundary.

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + 1 +
as.integer(intercept) columns if knots are specified instead. Attributes that correspond to the
arguments specified are returned for usage of other functions in this package.

See Also

bSpline for B-splines; mSpline for M-splines; iSpline for I-splines.

Examples

library(splines?2)

x <- seq.int(oQ, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

natural spline basis

nsMat@ <- naturalSpline(x, knots =
integrals

nsMat1l <- naturalSpline(x, knots =
first derivatives

nsMat2 <- naturalSpline(x, knots =
second derivatives

nsMat3 <- naturalSpline(x, knots =

op <- par(mfrow = c(2, 2), mar = c(2.5, 2.5, 0.2, 0.1), mgp

matplot(x, nsMat@, type = "1", ylab
matplot(x, nsMatl, type = "1", ylab
matplot(x, nsMat2, type = "1", ylab
matplot(x, nsMat3, type = "1", ylab
par(op) # reset to previous plottin

use the deriv method
all.equal(nsMat@, deriv(nsMat1), ch
all.equal(nsMat2, deriv(nsMat®))
all.equal(nsMat3, deriv(nsMat2))
all.equal(nsMat3, deriv(nsMato, 2))

knots, intercept = TRUE)

knots, intercept = TRUE,

knots, intercept = TRUE,

knots, intercept = TRUE,

= "basis")

= "integral")

= "1st derivative")
= "2nd derivative")
g settings

eck.attributes = FALSE)

integral = TRUE)
derivs = 1)
derivs = 2)

= ¢(1.5, 0.5, 0))

22 predict

predict Evaluate a Spline Basis at specified points

Description

This function evaluates a predefined spline basis at a (new) given x.

Usage

S3 method for class 'bSpline2'
predict(object, newx, ...)

S3 method for class 'dbs'
predict(object, newx, ...)

S3 method for class 'ibs'
predict(object, newx, ...)

S3 method for class 'mSpline’
predict(object, newx, ...)

S3 method for class 'iSpline'
predict(object, newx, ...)

S3 method for class 'cSpline'
predict(object, newx, ...)

S3 method for class 'bernsteinPoly'
predict(object, newx, ...)

S3 method for class 'naturalSpline'

predict(object, newx, ...)
Arguments
object Objects of class bSpline2, ibs, mSpline, iSpline, cSpline, bernsteinPoly

or naturalSpline with attributes describing knots, degree, etc.
newx The x values at which evaluations are required.

Optional arguments that are not used.

Details

These are methods for the generic function predict for objects inheriting from class bSpline2,
ibs, mSpline, iSpline, cSpline, naturalSpline, or bernsteinPoly. If newx is not given, the
function returns the input object.

splines2

Value

An object just like the object input, except evaluated at the new values of x.

Examples

library(splines?2)
x <- seq.int(eQ, 1, 0.2)
knots <- c(0.3, 0.5, 0.6)
newX <- seq.int(0.1, 0.9, 0.2)

for B-splines
bsMat <- bSpline(x, knots = knots, degree = 2)
predict(bsMat, newX)

for integral of B-splines
ibsMat <- ibs(x, knots
predict(ibsMat, newX)

= knots, degree

2)

for derivative of B-splines
dbsMat <- dbs(x, knots
predict(dbsMat, newX)

for M-spline
msMat <- mSpline(x, knots = knots, degree = 2)
predict(msMat, newX)

for I-spline

isMat <- iSpline(x, knots = knots, degree

predict(isMat, newX)

for C-spline

csMat <- cSpline(x, knots = knots, degree

predict(csMat, newX)

= knots, degree = 2)

2)

2)

23

splines2

splines2: Regression Spline Functions and Classes

Description

This package provides functions to construct basis matrices of

B-splines
M-splines

I-splines

convex splines (C-splines)

periodic M-splines

natural cubic splines

24 splines2

* generalized Bernstein polynomials

* along with their integrals (except C-splines) and derivatives of given order by closed-form
recursive formulas

Details

In addition to the R interface, it also provides a C++ header-only library integrated with Repp,
which allows the construction of spline basis functions directly in C++ with the help of Repp
and ReppArmadillo. Thus, it can also be treated as one of the Repp* packages. A toy example
package that uses the C++ interface is available at <https://github.com/wenjie2wang/example-pkg-
Repp-splines2>.

The package splines2 is intended to be a user-friendly supplement to the base package splines. The
trailing number two in the package name means "too" (and by no means refers to the generation
two). See Wang and Yan (2021) for details and illustrations of how the package can be applied to
shape-restricted regression.

References

Wang, W., & Yan, J. (2021). Shape-restricted regression splines with R package splines2. Journal
of Data Science, 19(3), 498-517.

Index

bernsteinPoly, 2
bSpline, 4,9, 13,18, 21

cSpline, 6, 15,18

dbs, 5,8, 13
deriv, 10

ibs, 5,9, 12
iSpline, 7, 13, 18, 21

knots, 15
mSpline, 7, 15, 16, 21
naturalSpline, 20
predict, 22

splines2, 23

25

	bernsteinPoly
	bSpline
	cSpline
	dbs
	deriv
	ibs
	iSpline
	knots
	mSpline
	naturalSpline
	predict
	splines2
	Index

