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1 Introduction
spmodel is an R package used to fit, summarize, and predict for a variety of spatial statistical models. In
Section 2, we give a brief theoretical introduction to spatial linear models. In Section 3, we outline the variety
of methods used to estimate the parameters of spatial linear models. In Section 4, we explain how to obtain
predictions at unobserved locations. In Section 5, we detail some advanced modeling features, including
random effects, partition factors, anisotropy, and big data approaches. In Section 6, we end with a short
discussion. Before proceeding, we load spmodel by running
library(spmodel)

If you use spmodel in a formal publication or report, please cite it. Citing spmodel lets us devote more
resources to it in the future. We view the spmodel citation by running
citation(package = "spmodel")

#>
#> To cite spmodel in publications use:
#>
#> Michael Dumelle, Matt Higham, and Jay M. Ver Hoef (2022). spmodel:
#> Spatial Statistical Modeling and Prediction. R package version 0.1.0.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {spmodel: Spatial Statistical Modeling and Prediction},
#> author = {Michael Dumelle and Matt Higham and Jay M. {Ver Hoef}},
#> year = {2022},
#> note = {R package version 0.1.0},
#> }

• An overview of basic features in spmodel: vignette("basics", "spmodel")
• Technical details regarding many functions: vignette("technical", "spmodel")

We will create visualizations using ggplot2 (Wickham 2016), which we load by running
library(ggplot2)

ggplot2 is only installed alongside spmodel when dependencies = TRUE in install.packages(), so check
that it is installed before reproducing any visualizations in this vignette.

2 The Spatial Linear Model
Statistical linear models are often parameterized as

y = Xβ + ϵ, (1)
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where for a sample size n, y is an n × 1 vector of response variables, X is an n × p design (model) matrix
of explanatory variables, β is an p × 1 vector of fixed effects controlling the impact of X on y, and ϵ is an
n × 1 vector of random errors. Typically, it is assumed that E(ϵ) = 0 and Cov(ϵ) = σ2

ϵ I, where E(·) denotes
expectation, Cov(·) denotes covariance, σ2

ϵ denotes a variance parameter, and I denotes the identity matrix.

The model in Equation 1 assumes the elements of y are uncorrelated. Typically for spatial data, elements of
y are correlated, as observations close together in space tend to be more similar than observations far apart
(Tobler 1970). Failing to properly accommodate the spatial dependence in y can cause researchers to draw
incorrect conclusions about their data. To accommodate spatial dependence in y, an n × 1 spatial random
effect, τ , is added to Equation 1, yielding the model

y = Xβ + τ + ϵ, (2)

where E(τ ) = 0, Cov(τ ) = σ2
τ R, and R is a matrix that determines the spatial dependence structure in y

and depends on a range parameter, ϕ. The parameter σ2
τ is called the spatially dependent random error

variance or partial sill. The parameter σ2
ϵ is called the spatially independent random error variance or nugget.

These two variance parameters are henceforth more intuitively written as σ2
de and σ2

ie, respectively. The
covariance of y is denoted Σ and given by σ2

deR + σ2
ieI. The parameters that compose this covariance are

typically referenced by the vector θ, which is called the covariance parameter vector.

Equation 2 is called the spatial linear model. The spatial linear model applies to both point-referenced
and areal data. Data are point-referenced when the elements in y are observed at point-locations indexed
by x-coordinates and y-coordinates on a spatially continuous surface with an infinite number of locations.
The splm() function is used to fit spatial linear models for point-referenced data (these are often called
geostatistical models). One spatial covariance function available in splm() is the exponential spatial covariance
function, which has an R matrix given by

R = exp(−h/ϕ),

where h is a matrix of Euclidean distances among observations. Recall ϕ is the range parameter, controlling
the behavior of R as a function of distance. Parameterizations for splm() spatial covariance types and their
R matrices can be seen by running help("splm", "spmodel") or vignette("technical", "spmodel").

Data are areal when the elements in y are observed as part of a finite network of polygons whose connections
are indexed by a neighborhood structure. For example, the polygons may represent counties in a state who
are neighbors if they share at least one boundary. The spautor() function is used to fit spatial linear models
for areal data (these are often called spatial autoregressive models). One spatial autoregressive covariance
function available in spautor() is the simultaneous autoregressive spatial covariance function, which has an
R matrix given by

R = [(I − ϕW)(I − ϕW)⊤]−1,

where W is a weight matrix describing the neighborhood structure in y. Paremertizations for spautor()
spatial covariance types and their R matrices can be seen by running help("spautor", "spmodel") or
vignette("technical", "spmodel").

3 Model Fitting
In this section, we show how to use the splm() and spautor() functions to estimate parameters of the
spatial linear model. We also explore diagnostic tools in spmodel that evaluate model fit. The splm() and
spautor() functions share similar syntactic structure with the lm() function used to fit non-spatial linear
models (linear models without spatial dependence) from Equation 1. splm() and spautor() generally require
at least three arguments:

• formula: a formula that describes the relationship between the response variable (y) and explanatory
variables (X)

– formula in splm() is the same as formula in lm()
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• data: a data.frame or sf object that contains the response variable, explanatory variables, and spatial
information

• spcov_type: the spatial covariance type ("exponential", "matern", "car", etc)

If data is an sf (Pebesma 2018) object, spatial information is stored in the object’s geometry. If data is a
data.frame, then for point-referenced data the x-coordinates and y-coordinates must be provided via the
xcoord and ycoord arguments, and for areal data, the weight matrix must be provided via the W argument.
Appendix A uses the caribou data, a tibble (a special data.frame), to show how to explicitly provide
spatial information via xcoord and ycoord (in splm()) or W (in spautor()).

In the following subsections, we use the point-referenced moss data, an sf object that contains data on heavy
metals in mosses near a mining road in Alaska. We view the first few rows of moss by running
moss

#> Simple feature collection with 365 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -445884.1 ymin: 1929616 xmax: -383656.8 ymax: 2061414
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 365 x 8
#> sample field_dup lab_rep year sideroad log_dist2road log_Zn
#> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 001PR 1 1 2001 N 2.68 7.33
#> 2 001PR 1 2 2001 N 2.68 7.38
#> 3 002PR 1 1 2001 N 2.54 7.58
#> 4 003PR 1 1 2001 N 2.97 7.63
#> 5 004PR 1 1 2001 N 2.72 7.26
#> 6 005PR 1 1 2001 N 2.76 7.65
#> 7 006PR 1 1 2001 S 2.30 7.59
#> 8 007PR 1 1 2001 N 2.78 7.16
#> 9 008PR 1 1 2001 N 2.93 7.19
#> 10 009PR 1 1 2001 N 2.79 8.07
#> # ... with 355 more rows, and 1 more variable: geometry <POINT [m]>

We can learn more about moss by running help("moss", "spmodel").

3.1 Estimation
Generally the covariance parameters (θ) and fixed effects (β) of the spatial linear model require estimation.
The default estimation method in spmodel is restricted maximum likelihood (Patterson and Thompson 1971;
Harville 1977; Wolfinger, Tobias, and Sall 1994). Maximum likelihood estimation is also available. For
point-referenced data, semivariogram weighted least squares (Cressie 1985) and semivariogram composite
likelihood (Curriero and Lele 1999) are additional estimation methods. The estimation method is controlled
using the estmethod argument.

To visualize the distribution of log zinc concentration in the moss data (Figure 1), run
ggplot(moss, aes(color = log_Zn)) +

geom_sf(size = 2) +
scale_color_viridis_c() +
theme_gray(base_size = 14)

We estimate parameters of a spatial linear model regressing log zinc concentration (log_Zn) on log distance
to a haul road (log_dist2road) using an exponential spatial covariance function by running
spmod <- splm(log_Zn ~ log_dist2road, moss, spcov_type = "exponential")

We summarize the model fit by running
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Figure 1: Distribution of log zinc concentration in the moss data.

summary(spmod)

#>
#> Call:
#> splm(formula = log_Zn ~ log_dist2road, data = moss, spcov_type = "exponential")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.6801 -1.3606 -0.8103 -0.2485 1.1298
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 9.76825 0.25216 38.74 <2e-16 ***
#> log_dist2road -0.56287 0.02013 -27.96 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Pseudo R-squared: 0.683
#>
#> Coefficients ( spatial covariance):
#> de ie range
#> 3.595e-01 7.897e-02 8.237e+03

The fixed effects coefficient table contains estimates, standard errors, z-statistics, and asymptotic p-values
for each fixed effect. From this table, we notice there is evidence that log zinc concentration significantly
decreases with distance from the haul road (p-value < 2e-16). We see the fixed effect estimates by running
coef(spmod)

#> (Intercept) log_dist2road
#> 9.7682525 -0.5628713

The model summary also contains the exponential spatial covariance parameter estimates, which we can view
by running
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coef(spmod, type = "spcov")

#> de ie range rotate scale
#> 3.595316e-01 7.896824e-02 8.236712e+03 0.000000e+00 1.000000e+00
#> attr(,"class")
#> [1] "exponential"

The dependent random error variance (σ2
de) is estimated to be approximately 0.36 and the independent

random error variance (σ2
ie) is estimated to be approximately 0.079. The range (ϕ) is estimated to be

approximately 8,237. The effective range is the distance at which the spatial covariance is approximately
zero. For the exponential covariance, the effective range is 3ϕ. This means that observations whose distance
is greater than 24,711 meters are approximately uncorrelated. The rotate and scale parameters affect the
modeling of anisotropy (Section 5.4). By default, they are assumed to be zero and one, respectively, which
means that anisotropy is not modeled (i.e., the spatial covariance is assumed isotropic, or independent of
direction). We plot the fitted spatial covariance function (Figure 2) by running
plot(spmod, which = 7)
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Figure 2: Empirical spatial covariance of fitted model.

We can learn more about the plots available for fitted models by running help("plot.spmod", "spmodel").

3.2 Model-Fit Statistics
The quality of model fit can be assessed using a variety of statistics readily available in spmodel. The first
model-fit statistic we consider is the pseudo R-squared. The pseudo R-squared is a generalization of the
classical R-squared from non-spatial linear models that quantifies the proportion of variability in the data
explained by the fixed effects. The pseudo R-squared is defined as

PR2 = 1 − D(Θ̂)
D(Θ̂0)

,

where D(Θ̂) is the deviance of the fitted model indexed by parameter vector Θ̂ and D(Θ̂0) is the deviance of
an intercept-only model indexed by parameter vector Θ̂0. We compute the pseudo R-squared by running
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pseudoR2(spmod)

#> [1] 0.6829687

Roughly 68% of the variability in log zinc is explained by log distance from the road. The pseudo R-squared
can be adjusted to account for the number of explanatory variables using the adjust argument. Pseudo
R-squared (and the adjusted version) is most helpful for comparing models that have the same covariance
structure.

The next two model-fit statistics we consider are the spatial AIC and AICc (Hoeting et al. 2006). The AIC
and AICc evaluate the fit of a model with a penalty for the number of parameters estimated. This penalty
balances model fit and model parsimony. The AICc is a correction to AIC for small sample sizes. As the
sample size increases, the AIC and AICc become closer to one another. The lower the AIC and AICc, the
better the balance of model fit and parsimony.

The spatial AIC and AICc are given by

AIC = −2ℓ(Θ̂) + 2(|Θ̂|)
AICc = −2ℓ(Θ̂) + 2n(|Θ̂|)/(n − |Θ̂| − 1),

where ℓ(Θ̂) is the log-likelihood of the data evaluated at the estimated parameter vector Θ̂ maximizing ℓ(Θ),
and n is the sample size. For maximum likelihood, Θ̂ = {θ̂, β̂}. For restricted maximum likelihood Θ̂ = {θ̂}.
AIC comparisons between a model fit using restricted maximum likelihood and a model fit using maximum
likelihood are meaningless, as the models are fit with different likelihoods. AIC comparisons between models
fit using restricted maximum likelihood are only valid when the models have the same fixed effect structure.
In contrast, AIC comparisons between models fit using maximum likelihood are valid when the models have
different fixed effect structures.

Suppose we want to quantify the difference in model quality between the spatial model and a non-spatial
model using the AIC and AICc criteria. We fit a non-spatial model (Equation 1) in spmodel by running
lmod <- splm(log_Zn ~ log_dist2road, moss, spcov_type = "none")

We compute the spatial AIC and AICc of the spatial model and non-spatial model by running
AIC(spmod, lmod)

#> df AIC
#> spmod 3 373.2089
#> lmod 1 636.0635
AICc(spmod, lmod)

#> df AICc
#> spmod 3 373.2754
#> lmod 1 636.0745

The noticeably lower AIC and AICc of of the spatial model indicate that it is a better fit to the data than
the non-spatial model.

Another approach to comparing the model fits is to perform leave-one-out cross validation. In leave-one-out
cross validation, a single observation is removed from the data, the model is re-fit, and a prediction is made
for the held-out observation. Then a loss metric like mean-squared-prediction error is computed and used to
evaluate model fit. The lower the mean-squared-prediction error, the better the model fit. For computational
efficiency, leave-one-out cross validation in spmodel is performed by first estimating θ using all the data and
then re-estimating β for each observation. We perform leave-one-out cross validation for the spatial and
non-spatial model by running
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loocv(spmod)

#> [1] 0.1110895
loocv(lmod)

#> [1] 0.3237897

The noticeably lower mean-squared-prediction error of the spatial model indicates that it is a better fit to the
data than the non-spatial model.

3.3 Diagnostics
An observation is said to have high leverage if its combination of explanatory variable values is far from the
mean vector of the explanatory variables. For a non-spatial model, the leverage of the ith observation is the
ith diagonal element of the hat matrix given by

H = X(X⊤X)−1X⊤.

For a spatial model, the leverage of the ith observation is the ith diagonal element of the spatial hat matrix
given by

H∗ = (X∗(X∗⊤X)−1X∗⊤),

where X∗ = Σ−1/2X and Σ−1/2 is the matrix square root of the covariance matrix, Σ (Montgomery, Peck,
and Vining 2021). The spatial hat matrix can be viewed as the non-spatial hat matrix applied to the
“whitened” X matrix, X∗. We compute the hat values (leverage) by running
hatvalues(spmod)

The larger the hat value, the larger the leverage.

The fitted value of an observation is the estimated mean response given the observation’s explanatory variable
values and the model fit:

ŷ = Xβ̂.

We compute the fitted values by running
fitted(spmod)

Fitted values for the spatially dependent random errors (τ ), spatially independent random errors (ϵ), and
random effects can also be obtained via fitted() by changing the type argument.

The residuals act as estimates of errors, measuring each response’s deviation from its fitted value. The raw
residuals are given by

er = y − ŷ.

We compute the raw residuals of the spatial model by running
residuals(spmod)

The raw residuals are typically not directly checked for linear model assumptions, as they have covariance
closely resembling the covariance of y. These residuals can be “whitened” by pre-multiplying by Σ̂−1/2,
yielding the Pearson residuals:

ep = Σ̂−1/2er.

When the model is correct, the Pearson residuals have mean zero, variance approximately one, and are
uncorrelated. We compute the Pearson residuals of the spatial model by running
residuals(spmod, type = "pearson")
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The covariance of ep is (I − H∗), which is approximately I for large sample sizes. Explicitly dividing ep by
the respective diagonal element of (I − H∗) yields the standardized residuals:

es = ep√
(1 − diag(H∗))

,

where diag(H∗) denotes the diagonal of H∗.

We compute the standardized residuals of the spatial model by running
residuals(spmod, type = "standardized")

or
rstandard(spmod)

When the model is correct, the standardized residuals have mean zero, variance one, and are uncorrelated. It
is common to check linear model assumptions through visualizations. We can plot the standardized residuals
vs fitted values by running
plot(spmod, which = 1) # figure omitted

When the model is correct, the standardized residuals should be evenly spread around zero with no discernible
pattern. We can plot a normal QQ-plot of the standardized residuals by running
plot(spmod, which = 2) # figure omitted

When the standardized residuals are normally distributed, they should closely follow the normal QQ-line.

An observation is said to be influential if its omission has a large impact on model fit. Typically this is
measured using Cook’s distance (Cook and Weisberg 1982). For the non-spatial model, the Cook’s distance
of the ith observation is denoted D and given by

D = e2
s

diag(H)
p(1 − diag(H)) .

For a spatial model, the Cook’s distance of the ith observation is denoted D∗ and given by

D∗ = e2
s

diag(H∗)
p(1 − diag(H∗)) .

The larger the Cook’s distance, the larger the influence. We compute Cook’s distance by running
cooks.distance(spmod)

We visualize the Cook’s distance versus leverage (hat values) by running
plot(spmod, which = 6) # figure omitted

3.4 The broom functions: tidy(), glance(), and augment()

The tidy(), glance(), and augment() functions from the broom R package (Robinson, Hayes, and Couch
2021) are defined for spmodel objects. The tidy() function returns a tidy tibble of the coefficient table from
summary():
tidy(spmod)

#> # A tibble: 2 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 9.77 0.252 38.7 0
#> 2 log_dist2road -0.563 0.0201 -28.0 0
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This tibble format makes it easy to pull out the coefficient names, estimates, standard errors, z-statistics, and
p-values from the summary() output. The glance() function returns a tidy tibble of model-fit statistics:
glance(spmod)

#> # A tibble: 1 x 9
#> n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 365 2 3 367. 373. 373. -184. 363 0.683

The glances() function can be used to look at many models simultaneously:
glances(spmod, lmod)

#> # A tibble: 2 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 spmod 365 2 3 367. 373. 373. -184. 363 0.683
#> 2 lmod 365 2 1 634. 636. 636. -317. 363. 0.671

The augment() function augments the original data with model diagnostics:
augment(spmod)

#> Simple feature collection with 365 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -445884.1 ymin: 1929616 xmax: -383656.8 ymax: 2061414
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 365 x 8
#> log_Zn log_dist2road .fitted .resid .hat .cooksd .std.resid
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 7.33 2.68 8.26 -0.928 0.102 0.112 -1.48
#> 2 7.38 2.68 8.26 -0.880 0.0101 0.000507 -0.316
#> 3 7.58 2.54 8.34 -0.755 0.0170 0.000475 -0.236
#> 4 7.63 2.97 8.09 -0.464 0.0137 0.000219 0.178
#> 5 7.26 2.72 8.24 -0.977 0.0177 0.00515 -0.762
#> 6 7.65 2.76 8.21 -0.568 0.0147 0.000929 -0.355
#> 7 7.59 2.30 8.47 -0.886 0.0170 0.00802 -0.971
#> 8 7.16 2.78 8.20 -1.05 0.0593 0.0492 -1.29
#> 9 7.19 2.93 8.12 -0.926 0.00793 0.000451 -0.337
#> 10 8.07 2.79 8.20 -0.123 0.0265 0.00396 0.547
#> # ... with 355 more rows, and 1 more variable: geometry <POINT [m]>

By default, only the columns of data used to fit the model are returned alongside the diagnostics. All original
columns of data are returned by setting drop to FALSE.

3.5 An Areal Data Example
Next we use the areal seal data, an sf object that contains the log of the estimated harbor-seal trends from
abundance data across polygons in Alaska. We view the first few rows of seal by running
seal

#> Simple feature collection with 62 features and 1 field
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 913618.8 ymin: 1007542 xmax: 1116002 ymax: 1145054
#> Projected CRS: NAD83 / Alaska Albers
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#> # A tibble: 62 x 2
#> log_trend geometry
#> <dbl> <POLYGON [m]>
#> 1 NA ((1035002 1054710, 1035002 1054542, 1035002 1053542, 1035002 10525~
#> 2 -0.282 ((1037002 1039492, 1037006 1039490, 1037017 1039492, 1037035 10394~
#> 3 -0.00121 ((1070158 1030216, 1070185 1030207, 1070187 1030207, 1070211 10302~
#> 4 0.0354 ((1054906 1034826, 1054931 1034821, 1054936 1034822, 1055001 10348~
#> 5 -0.0160 ((1025142 1056940, 1025184 1056889, 1025222 1056836, 1025256 10567~
#> 6 0.0872 ((1026035 1044623, 1026037 1044605, 1026072 1044610, 1026083 10446~
#> 7 -0.266 ((1100345 1060709, 1100287 1060706, 1100228 1060706, 1100170 10607~
#> 8 0.0743 ((1030247 1029637, 1030248 1029637, 1030265 1029642, 1030328 10296~
#> 9 NA ((1043093 1020553, 1043097 1020550, 1043101 1020550, 1043166 10205~
#> 10 -0.00961 ((1116002 1024542, 1116002 1023542, 1116002 1022542, 1116002 10215~
#> # ... with 52 more rows

We can learn more about the data by running help("seal", "spmodel").

To visualize the distribution of log seal trends in the seal data (Figure 3), run
ggplot(seal, aes(fill = log_trend)) +

geom_sf(size = 0.75) +
scale_fill_viridis_c() +
theme_gray(base_size = 14)
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Figure 3: Distribution of log seal trends in the seal data. Polygons are gray where seal trends were not
available.

Polygons are considered neighbors if they share at least one boundary. Polygons are gray if the log trend is
missing. It is important to keep these missing observations in the data while fitting the model to preserve the
neighborhood structure.

We estimate parameters of a spatial autoregressive model regressing log seal trends (log_trend) on an
intercept using a conditional autoregressive (CAR) spatial covariance by running
sealmod <- spautor(log_trend ~ 1, seal, spcov_type = "car")

By default, spautor() calculates the weight matrix internally by defining observations as neighbors if they
share at least one border (observations are not neighbors with themselves), uses row standardization, and
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assumes ie equals zero.

We tidy and glance at the fitted model and augment the data by running
tidy(sealmod)

#> # A tibble: 1 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -0.0710 0.0250 -2.85 0.00443
glance(sealmod)

#> # A tibble: 1 x 9
#> n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 34 1 3 -36.9 -30.9 -30.1 18.4 32.9 0
augment(sealmod)

#> Simple feature collection with 34 features and 6 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 980001.5 ymin: 1010815 xmax: 1116002 ymax: 1145054
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 34 x 7
#> log_trend .fitted .resid .hat .cooksd .std.resid geometry
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <POLYGON [m]>
#> 1 -0.282 -0.0710 -0.211 0.0179 0.0233 -1.14 ((1037002 1039492, 10370~
#> 2 -0.00121 -0.0710 0.0698 0.0699 0.0412 0.767 ((1070158 1030216, 10701~
#> 3 0.0354 -0.0710 0.106 0.0218 0.0109 0.705 ((1054906 1034826, 10549~
#> 4 -0.0160 -0.0710 0.0550 0.0343 0.00633 0.430 ((1025142 1056940, 10251~
#> 5 0.0872 -0.0710 0.158 0.0229 0.0299 1.14 ((1026035 1044623, 10260~
#> 6 -0.266 -0.0710 -0.195 0.0280 0.0493 -1.33 ((1100345 1060709, 11002~
#> 7 0.0743 -0.0710 0.145 0.0480 0.0818 1.30 ((1030247 1029637, 10302~
#> 8 -0.00961 -0.0710 0.0614 0.0143 0.00123 0.293 ((1116002 1024542, 11160~
#> 9 -0.182 -0.0710 -0.111 0.0131 0.0155 -1.09 ((1079864 1025088, 10798~
#> 10 0.00351 -0.0710 0.0745 0.0340 0.0107 0.561 ((1110363 1037056, 11103~
#> # ... with 24 more rows

4 Prediction
In this section, we show how to use predict() to perform spatial prediction (also called Kriging) in spmodel.
We fit a model using the point-referenced sulfate data, an sf object that contains sulfate measurements in
the conterminous United States. We make predictions for each location in the point-referenced sulfate_preds
data, an sf object that contains locations in the conterminous United States at which to predict sulfate. We
visualize the distribution of the sulfate data (Figure 4, left) by running
ggplot(sulfate, aes(color = sulfate)) +

geom_sf(size = 2.5) +
scale_color_viridis_c(limits = c(0, 45)) +
theme_gray(base_size = 18)

We fit a spatial linear model regressing sulfate on an intercept using a spherical spatial covariance function
by running
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sulfmod <- splm(sulfate ~ 1, sulfate, spcov_type = "spherical")

Then we obtain best linear unbiased predictions (Kriging predictions) using predict(), where the newdata
argument contains the locations at which to predict:
predict(sulfmod, newdata = sulfate_preds)

We make and predictions at the locations in sulfate_preds and store them as a new variable called preds
in the sulfate_preds data set and then visualize them (Figure 4, right) by running
sulfate_preds$preds <- predict(sulfmod, newdata = sulfate_preds)
ggplot(sulfate_preds, aes(color = preds)) +

geom_sf(size = 2.5) +
scale_color_viridis_c(limits = c(0, 45)) +
theme_gray(base_size = 18)

25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W  90°W  80°W

0
10
20
30
40

sulfate

25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W  90°W  80°W

0
10
20
30
40

preds

Figure 4: Distribution of observed sulfate (left) and sulfate predictions (right) in the conterminous United
States.

If explanatory variables were used to fit the model, the same explanatory variables must be included in
newdata with the same names they have in data. If data is a data.frame, coordinates must be included in
newdata with the same names as they have in data. If data is an sf object, coordinates must be included
in newdata with the same geometry name as they have in data. When using projected coordinates, the
projection for newdata should be the same as the projection for data.

Prediction standard errors are returned by setting the se.fit argument to TRUE:
predict(sulfmod, newdata = sulfate_preds, se.fit = TRUE)

The interval argument determines the type of interval returned. If interval is "none" (the default), no
interval is returned. If interval is "prediction", a 100 * level% prediction interval is returned (the
default is a 95% prediction interval):
predict(sulfmod, newdata = sulfate_preds, interval = "prediction")

If interval is "confidence", the predictions are instead the estimated mean given each observation’s
explanatory variable values. The corresponding 100 * level% confidence interval is returned:
predict(sulfmod, newdata = sulfate_preds, interval = "confidence")

Previously we used the augment() function to augment data with model diagnostics. We can also use
augment() to augment newdata with predictions, standard errors, and intervals. We remove the model
predictions from sulfate_preds before showing how augment() is used to obtain the same predictions by
running
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sulfate_preds$preds <- NULL

We then view the first few rows of sulfate_preds augmented with a 90% prediction interval by running
augment(sulfmod, newdata = sulfate_preds, interval = "prediction", level = 0.90)

#> Simple feature collection with 100 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> # A tibble: 100 x 4
#> .fitted .lower .upper geometry
#> * <dbl> <dbl> <dbl> <POINT [m]>
#> 1 1.40 -5.33 8.14 (-1771413 1752976)
#> 2 24.5 18.2 30.8 (1018112 1867127)
#> 3 8.99 2.36 15.6 (-291256.8 1553212)
#> 4 16.4 9.92 23.0 (1274293 1267835)
#> 5 4.91 -1.56 11.4 (-547437.6 1638825)
#> 6 26.7 20.4 33.0 (1445080 1981278)
#> 7 3.00 -3.65 9.66 (-1629090 3037173)
#> 8 14.3 7.97 20.6 (1302757 1039534)
#> 9 1.49 -5.08 8.06 (-1429838 2523494)
#> 10 14.4 7.97 20.8 (1131970 1096609)
#> # ... with 90 more rows

Here .fitted represents the predictions.

Alternatively, we can include missing responses (NA values) in the data used for model fitting. The missing
responses will be ignored for model fitting but stored in the fitted model object. We can add a column of
missing responses to sulfate_preds, bind it together with sulfate, and re-fit the model by running
sulfate_preds$sulfate <- NA
sulfate_with_NA <- rbind(sulfate, sulfate_preds)
sulfmod_with_NA <- splm(sulfate ~ 1, sulfate_with_NA, "spherical")

We can then make predictions at the observations with missing responses by running
predict(sulfmod_with_NA)

This call to predict() finds in sulfmod_with_NA the newdata object, which is a subset of data that contains
only the observations with missing responses:
sulfmod_with_NA$newdata

#> Simple feature collection with 100 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> First 10 features:
#> sulfate geometry
#> 198 NA POINT (-1771413 1752976)
#> 199 NA POINT (1018112 1867127)
#> 200 NA POINT (-291256.8 1553212)
#> 201 NA POINT (1274293 1267835)
#> 202 NA POINT (-547437.6 1638825)
#> 203 NA POINT (1445080 1981278)
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#> 204 NA POINT (-1629090 3037173)
#> 205 NA POINT (1302757 1039534)
#> 206 NA POINT (-1429838 2523494)
#> 207 NA POINT (1131970 1096609)

We can also use augment() to make the predictions by running
augment(sulfmod_with_NA, newdata = sulfmod_with_NA$newdata)

#> Simple feature collection with 100 features and 2 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> # A tibble: 100 x 3
#> sulfate .fitted geometry
#> * <dbl> <dbl> <POINT [m]>
#> 1 NA 1.40 (-1771413 1752976)
#> 2 NA 24.5 (1018112 1867127)
#> 3 NA 8.99 (-291256.8 1553212)
#> 4 NA 16.4 (1274293 1267835)
#> 5 NA 4.91 (-547437.6 1638825)
#> 6 NA 26.7 (1445080 1981278)
#> 7 NA 3.00 (-1629090 3037173)
#> 8 NA 14.3 (1302757 1039534)
#> 9 NA 1.49 (-1429838 2523494)
#> 10 NA 14.4 (1131970 1096609)
#> # ... with 90 more rows

Recall that omitting the newdata argument and running augment(sulfmod_with_NA) returns model diag-
nostics, not predictions.

For areal data, predictions cannot be computed at locations that were not incorporated in the neighborhood
structure used to fit the model. Thus predictions are only possible for observations in data whose response
values are missing (NA), as their locations are incorporated into the neighborhood structure. For example, we
make predictions of log seal trends at the missing polygons from Figure 3 by running
predict(sealmod)

We can also use augment() to make the predictions:
augment(sealmod, newdata = sealmod$newdata)

#> Simple feature collection with 28 features and 2 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 913618.8 ymin: 1007542 xmax: 1115097 ymax: 1132682
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 28 x 3
#> log_trend .fitted geometry
#> * <dbl> <dbl> <POLYGON [m]>
#> 1 NA -0.113 ((1035002 1054710, 1035002 1054542, 1035002 1053542, 10350~
#> 2 NA -0.0108 ((1043093 1020553, 1043097 1020550, 1043101 1020550, 10431~
#> 3 NA -0.0608 ((1099737 1054310, 1099752 1054262, 1099788 1054278, 10998~
#> 4 NA -0.0383 ((1099002 1036542, 1099134 1036462, 1099139 1036431, 10991~
#> 5 NA -0.0730 ((1076902 1053189, 1076912 1053179, 1076931 1053179, 10769~
#> 6 NA -0.0556 ((1070501 1046969, 1070317 1046598, 1070308 1046542, 10703~
#> 7 NA -0.0968 ((1072995 1054942, 1072996 1054910, 1072997 1054878, 10729~
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#> 8 NA -0.0716 ((960001.5 1127667, 960110.8 1127542, 960144.1 1127495, 96~
#> 9 NA -0.0776 ((1031308 1079817, 1031293 1079754, 1031289 1079741, 10312~
#> 10 NA -0.0647 ((998923.7 1053647, 998922.5 1053609, 998950 1053631, 9990~
#> # ... with 18 more rows

5 Advanced Features
spmodel offers several advanced features for fitting spatial linear models. We briefly discuss each next using
the moss data and simulated data, though technical details for each advanced feature can be seen by running
vignette("technical", "spmodel").

5.1 Fixing Spatial Covariance Parameters
We may desire to fix specific spatial covariance parameters at a particular value. Perhaps some parameter
value is known, for example. Or perhaps we want to compare nested models where a reduced model uses a
fixed parameter value while the full model estimates the parameter. Fixing spatial covariance parameters
while fitting a model is possible using the spcov_initial argument to spmod() and spautor(). The
spcov_initial argument takes an spcov_initial object (run help("spcov_initial", "spmodel") for
more). spcov_initial objects can also be used to specify initial values used during optimization, even if
they are not assumed to be fixed. By default, spmodel uses a grid search to find suitable initial values to use
during optimization.

Suppose the goal is to compare the full model to a model that assumes the independent random error variance
(nugget) is zero. First, the spcov_initial object is specified:
init <- spcov_initial("exponential", ie = 0, known = "ie")
print(init)

#> $initial
#> ie
#> 0
#>
#> $is_known
#> ie
#> TRUE
#>
#> attr(,"class")
#> [1] "exponential"

The init output shows that the ie parameter has an initial value of zero that is assumed to be known. Next
the model is fit:
spmod_red <- splm(log_Zn ~ log_dist2road, moss, spcov_initial = init)

Notice that because the spcov_initial object contains information about the spatial covariance type, the
spcov_type argument is not required when spcov_initial is provided. We can use glances() to glance at
both models:
glances(spmod, spmod_red)

#> # A tibble: 2 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 spmod 365 2 3 367. 373. 373. -184. 363 0.683
#> 2 spmod_red 365 2 2 378. 382. 382. -189. 374. 0.703
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The lower AIC and AICc of the full model compared to the reduced model indicates that the independent
random error variance is important to the model. A likelihood ratio test comparing the full and reduced
models is also possible using anova().

5.2 Random Effects
Random effects incorporate additional sources of variability into model fitting. They are accommodated in
spmodel using similar syntax as for random effects in the nlme (Pinheiro and Bates 2006) and lme4 (Bates et
al. 2015) R packages. Random effects are specified via a formula passed to the random argument. Next we
show two examples incorporating random effects into the spatial linear model using the moss data.

The first example explores random intercepts for the sample variable. The sample variable indexes each
unique location, which can have replicate observations due to field duplicates (field_dup) and lab replicates
(lab_rep). We create extra correlation for repeated observations from a sample by creating a random intercept
for each level of sample. We incorporate the random intercepts for sample by running
rand1 <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
random = ~ sample

)

Note that sample is shorthand for (1 | sample), which is more explicit notation that indicates random
intercepts for each level of sample.

The second example adds a random intercept for year, which creates extra correlation for observations within
a year. It also adds a random slope for log_dist2road within year, which lets the effect of log_dist2road
vary between years. We fit this model by running
rand2 <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
random = ~ sample + (log_dist2road | year)

)

Note that sample + (log_dist2road | year) is shorthand for (1 | sample) + (log_dist2road |
year). If only random slopes within year are desired (and no random intercepts), a - 1 is given to
the relevant portion of the formula: (log_dist2road - 1 | year). When there is more than one term
in random, each term must be surrounded by parentheses (recall that the random intercept shorthand
automatically includes relevant parentheses). More examples of random effect syntax are provided in
Appendix B.

We glance at all three models by running
glances(spmod, rand1, rand2)

#> # A tibble: 3 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 rand2 365 2 6 190. 202. 202. -94.9 363. 0.215
#> 2 rand1 365 2 4 335. 343. 343. -168. 363 0.661
#> 3 spmod 365 2 3 367. 373. 373. -184. 363 0.683

rand2 has the lowest AIC and AICc.

It is possible to fix random effect variances using the randcov_initial argument. randcov_initial can
also be used to set initial values for optimization.
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5.3 Partition Factors
A partition factor is a variable that assumes observations are uncorrelated when they are from different
levels of the partition factor. Partition factors are specified in spmodel by providing a formula with a single
variable to the partition_factor argument. Suppose that for the moss data, it is appropriate to assume
observations in different years (year) are uncorrelated. We fit a model that treats year as a partition factor
by running
part <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
partition_factor = ~ year

)

5.4 Anisotropy
A spatial covariance function for point-referenced data is isotropic if it behaves similarly in all directions
(i.e., is independent of direction) as a function of distance. An anisotropic covariance function does not
behave similarly in all directions as a function of distance. Consider the spatial covariance imposed by an
eastward-moving wind pattern. A one-unit distance in the x-direction likely means something different than
a one-unit distance in the y-direction. Figure 5 shows ellipses for an isotropic and anisotropic covariance
function centered at the origin (a distance of zero).
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Figure 5: Ellipses for an isotropic (left) and anisotropic (right) covariance function centered at the origin.
The black outline of each ellipse is a level curve of equal correlation.

The black outline of each ellipse is a level curve of equal correlation. The left ellipse (a circle) represents an
isotropic covariance function. The distance at which the correlation between two observations lays on the
level curve is the same in all directions. The right ellipse represents an anisotropic covariance function. The
distance at which the correlation between two observations lays on the level curve is different in different
directions.

Accounting for anisotropy involves a rotation and scaling of the x-coordinates and y-coordinates such that the
spatial covariance function that uses these transformed distances is isotropic. We fit a model with anisotropy
by running
spmod_anis <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
anisotropy = TRUE
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)
summary(spmod_anis)

#>
#> Call:
#> splm(formula = log_Zn ~ log_dist2road, data = moss, spcov_type = "exponential",
#> anisotropy = TRUE)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.5279 -1.2239 -0.7202 -0.1921 1.1659
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 9.54798 0.22291 42.83 <2e-16 ***
#> log_dist2road -0.54601 0.01855 -29.44 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Pseudo R-squared: 0.7048
#>
#> Coefficients ( spatial covariance):
#> de ie range rotate scale
#> 3.561e-01 6.812e-02 8.732e+03 2.435e+00 4.753e-01
#> attr(,"class")
#> [1] "exponential"

The rotate parameter is between zero and π radians and represents the angle of a clockwise rotation of the
ellipse. The scale parameter is between zero and one and represents the ratio of the distance between the
origin and the edge of the ellipse along the minor axis to the distance between the origin and the edge of
the ellipse along the major axis. Figure 6 shows the transformation that turns an anisotropic ellipse into an
isotropic one (i.e., a circle). This transformation requires rotating the the coordinates clockwise by rotate
and then scaling them the reciprocal of scale. The transformed coordinates are then used instead of the
original coordinates to compute distances and spatial covariances.

rotate 
1

scale

Figure 6: A visual representation of the anisotropy transformation. In the left figure, the first step is to
rotate the anisotropic ellipse clockwise by the rotate parameter. In the middle figure, the second step is to
scale the minor axis by the reciprocal of the scale parameter. In the right figure, the anisotropic ellipse has
been transformed into an isotropic one (i.e., a circle). The transformed coordinates are then used instead of
the original coordinates to compute distances and spatial covariances.

Note that specifying an initial value for rotate that is different from zero, specifying an initial value for
scale that is different from one, or assuming either rotate or scale are unknown in spcov_initial will
cause splm() to fit a model with anisotropy (and will override anisotropy = FALSE). Estimating anisotropy
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parameters is only possible for maximum likelihood and restricted maximum likelihood estimation, but fixed
anisotropy parameters can be accommodated for semivariogram weighted least squares or semivariogram
composite likelihood estimation. Also note that anisotropy is not relevant for areal data because the spatial
covariance function depends on a neighborhood structure instead of distances between points.

5.5 Simulating Spatial Data
The sprnorm() function is used to simulate normal (Gaussian) spatial data. To use sprnorm(), the
spcov_params() function is used to create an spcov_params object. The spcov_params() function requires
the spatial covariance type and and parameter values. We create an spcov_params object by running
sim_params <- spcov_params("exponential", de = 5, ie = 1, range = 0.5)

We set a reproducible seed and then simulate data at 3000 random locations in the unit square using the
spatial covariance parameters in sim_params by running
set.seed(0)
n <- 3000
x <- runif(n)
y <- runif(n)
sim_coords <- tibble::tibble(x, y)
sim_resp <- sprnorm(sim_params, data = sim_coords, xcoord = x, ycoord = y)
sim_data <- tibble::tibble(sim_coords, sim_resp)

We can visualize the simulated data (Figure 7, left) by running
ggplot(sim_data, aes(x = x, y = y, color = sim_resp)) +

geom_point(size = 1.5) +
scale_color_viridis_c(limits = c(-7, 7)) +
theme_gray(base_size = 18)

There is noticeable spatial patterning in the response variable (sim_resp). The default mean in sprnorm() is
zero for all observations, though a mean vector can be provided using the mean argument. The default number
of samples generated in sprnorm() is one, though this is changed using the samples argument. Because
dat is a tibble (data.frame) and not an sf object, the columns in dat representing the x-coordinates and
y-coordinates must be provided to sprnorm().

Note that the output from coef(object, type = "spcov") is a spcov_params object. This is useful if one
wants to simulate data given the estimated spatial covariance parameters from a fitted model. Random effects
are incorporated into simulation via the randcov_params argument.

5.6 Big Data
The computational cost associated with model fitting is exponential in the sample size for all estimation
methods. For maximum likelihood and restricted maximum likelihood, the computational cost of estimating θ
is cubic. For semivariogram weighted least squares and semivariogram composite likelihood, the computational
cost of estimating θ is quadratic. The computational cost associated with estimating β and prediction is
cubic in the model-fitting sample size, regardless of estimation method. Typically samples sizes approaching
10,000 make the computational cost of model fitting and prediction infeasible, which necessitates the use of
big data methods. spmodel offers big data methods for model fitting of point-referenced data via the local
argument to splm(), capable of fitting models with hundreds of thousands to millions of observations rather
quickly. Because of the neighborhood structure of areal data, the big data methods used for point-referenced
data do not apply to areal data. Thus there is no big data method for areal data or local argument to
spautor() and model fitting sample sizes cannot be too large.

spmodel offers big data methods for prediction of point-referenced data or areal data via the local argument
to predict(), capable of making predictions at hundreds of thousands to millions of locations rather quickly.
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To show how to use spmodel for big data estimation and prediction, we use the sim_data data from Section 5.5.
Because sim_data is a tibble (data.frame) and not an sf object, the column in data representing the
x-coordinates and y-coordinates must be explicitly provided to splm(). Though the sample sizes used next for
model fitting and prediction are relatively small, the purpose of the following examples is simply to illustrate
the big data approaches.

5.6.1 Model-fitting

spmodel uses a “local indexing” approximation for big data model fitting of point-referenced data. Observations
are first assigned an index. Then for the purposes of model fitting, observations with different indexes are
assumed uncorrelated. This approach has some connections to composite likelihood and to the partition
factors discussed earlier.

The local argument to splm() controls the big data options. local is a list with several arguments. The
arguments to the local list control the method used to assign the indexes, the number of observations with
the same index, the number of unique indexes, variance adjustments to the covariance matrix of β̂, whether
or not to use parallel processing, and if parallel processing is used, the number of cores.

The simplest way to accommodate big data is to set local to TRUE. This is shorthand for local =
list(method = "random", size = 50, var_adjust = "theoretical", parallel = FALSE), which cre-
ates groups with approximately 50 observations each using a random assignment of groups to indexes, uses
the theoretically-correct variance adjustment, and does not use parallel processing.
local1 <- splm(sim_resp ~ 1, sim_data, spcov_type = "exponential",

xcoord = x, ycoord = y, local = TRUE)
summary(local1)

#>
#> Call:
#> splm(formula = sim_resp ~ 1, data = sim_data, spcov_type = "exponential",
#> xcoord = x, ycoord = y, local = TRUE)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -5.0356 -1.3514 -0.1468 1.2842 6.5381
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.021 0.699 -1.46 0.144
#>
#> Coefficients ( spatial covariance):
#> de ie range
#> 2.8724 0.9735 0.2644

Instead of using local = TRUE, we can explicitly set local. For example, we fit a model using using k-means
clustering (MacQueen and others 1967) on the x-coordinates and y-coordinates to create 60 groups (clusters),
the pooled variance adjustment, and parallel processing with two cores by running
local2_list <- list(method = "kmeans", groups = 60, var_adjust = "pooled",

parallel = TRUE, ncores = 2)
local2 <- splm(sim_resp ~ 1, sim_data, spcov_type = "exponential",

xcoord = x, ycoord = y, local = local2_list)
summary(local2)

#>
#> Call:
#> splm(formula = sim_resp ~ 1, data = sim_data, spcov_type = "exponential",
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#> xcoord = x, ycoord = y, local = local2_list)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -4.98801 -1.30386 -0.09927 1.33176 6.58567
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.0683 0.1759 -6.073 1.25e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Coefficients ( spatial covariance):
#> de ie range
#> 2.5434 0.9907 0.2312

We can use loocv() to evaluate model fit. Note that loocv() has big data options that are passed to
predict(), which we discuss in Section 5.6.2.
loocv(local1, local = list(method = "distance", parallel = TRUE, ncores = 2))

#> [1] 1.243062
loocv(local2, local = list(method = "distance", parallel = TRUE, ncores = 2))

#> [1] 1.242925

Likelihood-based statistics like AIC(), AICc(), logLik(), and deviance() should not be used to compare
a model fit with a big data approximation to a model fit without a big data approximation, as the two
approaches maximize different likelihoods.

5.6.2 Prediction

For point-referenced data, spmodel uses a “local neighborhood” approximation for big data prediction. Each
prediction is computed using a subset of the observed data instead of all the observed data. Before further
discussing big data prediction, we simulate 1000 locations in the unit square requiring prediction:
n_pred <- 1000
x <- runif(n_pred)
y <- runif(n_pred)
sim_preds <- tibble::tibble(x = x, y = y)

The local argument to predict() controls the big data options. local is a list with several arguments. The
arguments to the local list control the method used to subset the observed data, the number of observations
in each subset, whether or not to use parallel processing, and if parallel processing is used, the number of
cores.

The simplest way to accommodate big data prediction is to set local to TRUE. This is shorthand for local
= list(method = "covariance", size = 50, parallel = FALSE), which implies that uniquely for each
location requiring prediction, only the 50 observations in the data most correlated with it are used in the
computation and parallel processing is not used. Using the local1 fitted model, we store these predictions as
a variable called preds in the sim_preds data by running
sim_preds$preds <- predict(local1, newdata = sim_preds, local = TRUE)

The predictions are visualized (Figure 7, right) by running
ggplot(sim_preds, aes(x = x, y = y, color = preds)) +

geom_point(size = 1.5) +
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scale_color_viridis_c(limits = c(-7, 7)) +
theme_gray(base_size = 18)

They display a similar pattern as the observed data.
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Figure 7: Observed data and big data predictions at unobserved locations. In the left figure, spatial data
are simulated in the unit square. A spatial linear model is fit using the default big data approximation
for model-fitting. In the right figure, predictions are made using the fitted model and the default big data
approximation for prediction.

Instead of using local = TRUE, we can explicitly set local. For example, we make predictions using the
distance method, subsets of 30 observations, and parallel processing with 2 cores by running
pred_list <- list(method = "distance", size = 30, parallel = TRUE, ncores = 2)
predict(local1, newdata = sim_preds, local = pred_list)

For areal data, no local neighborhood approximation exists because of the data’s underlying neighborhood
structure. Thus all of the data must be used to compute predictions and by consequence, method and
distance are not components of the local list. The only components of the local list for areal data are
parallel and ncores:
predict(sealmod, local = list(parallel = TRUE, ncores = 2))

6 Discussion
Throughout this vignette, we have shown how to use spmodel to fit, summarize, and predict for a variety of
spatial statistical models. Spatial linear models for point-referenced data (i.e., geostatistical models) are fit
using the splm() function. Spatial linear models for areal data (i.e., spatial autoregressive models) are fit
using the spautor() function. Several model-fit statistics and diagnostics are available. The broom functions
tidy() and glance() are used to tidy and glance at a fitted model. The broom function augment() is used
to augment data with model diagnostics and augment newdata with predictions. Several advanced features
are available to accommodate fixed covariance parameter values, random effects, partition factors, anisotropy,
simulated data, and big data approximations for model fitting and prediction.

We appreciate feedback from users regarding spmodel. To learn more about how to provide feedback or
contribute to spmodel, please visit our GitHub repository at https://github.com/USEPA/spmodel.
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Appendices
A An Additional Example Using caribou

The caribou data are observed on an equally spaced lattice and can be analyzed as point-referenced or areal
data. We view the first few rows of caribou by running
caribou

#> # A tibble: 30 x 5
#> water tarp z x y
#> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 Y clear 2.42 1 6
#> 2 Y shade 2.44 2 6
#> 3 Y none 1.81 3 6
#> 4 N clear 1.97 4 6
#> 5 N shade 2.38 5 6
#> 6 Y none 2.22 1 5
#> 7 N clear 2.10 2 5
#> 8 Y clear 1.80 3 5
#> 9 Y shade 1.96 4 5
#> 10 Y none 2.10 5 5
#> # ... with 20 more rows

First we analyze caribou as point-referenced data. Because caribou is not an sf object, we must provide
the columns in caribou that represent the x-coordinates and y-coordinates. We fit a spatial linear model
regressing nitrogen percentage (z) on water presence (water) and tarp cover (tarp) by running
cariboumod <- splm(z ~ water + tarp, data = caribou,

spcov_type = "exponential", xcoord = x, ycoord = y)

An analysis of variance can be conducted to assess the overall impact of the tarp variable, which has three
levels (clear, shade, and none), and the water variable, which has two levels (water and no water). We
perform an analysis of variance and tidy the results by running
tidy(anova(cariboumod))

#> # A tibble: 3 x 4
#> effects df statistic p.value
#> <chr> <int> <dbl> <dbl>
#> 1 (Intercept) 1 43.5 4.33e-11
#> 2 water 1 1.66 1.98e- 1
#> 3 tarp 2 15.4 4.51e- 4

There is significant evidence that at least one tarp cover impacts nitrogen. Note that, like in summary(),
these p-values are associated with an asymptotic hypothesis test (here, an asymptotic Chi-squared test).

Next we analyze caribou as areal data. Because caribou is not an sf object, we must create a weights
matrix. We define two observations as neighbors if they are adjacent (directly east, west, north, or south) to
one another. Two observations in caribou are adjacent if the distance between them equals one (recall that
observations are not neighbors with themselves):
coords <- cbind(caribou$x, caribou$y)
dists <- as.matrix(dist(coords))
W <- dists == 1

Currently, W is a logical matrix with TRUEs and FALSEs. We coerce it to a numeric matrix by running
W <- W * 1
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The ijth value in W is 1 if the observation in the ith row is neighbors with the observation in the jth row and
0 otherwise. We fit a spatial autoregressive model regressing the nitrogen percentage (z) on water presence
(water) and tarp cover (tarp) by running
cariboumod <- spautor(z ~ water + tarp, data = caribou,

spcov_type = "car", W = W)

We perform an analysis of variance and tidy the results by running
tidy(anova(cariboumod))

#> # A tibble: 3 x 4
#> effects df statistic p.value
#> <chr> <int> <dbl> <dbl>
#> 1 (Intercept) 1 714. 2.36e-157
#> 2 water 1 1.82 1.77e- 1
#> 3 tarp 2 15.1 5.17e- 4

There is significant evidence that at least one tarp cover impacts nitrogen. Note that, like in summary(),
these p-values are associated with an asymptotic hypothesis test (here, an asymptotic Chi-squared test).

B Random Effect Syntax
A couple of common ways to specify random effects in the random argument to splm() or spautor() include:

• ~ (1 | group) : Random intercepts for each level of group. ~ group is shorthand for ~ (1 | group).
• ~ (var | group): Random intercepts for each level of group and random slopes that depend on the

variable var for each level of group.

Some additional syntax for more complicated random effects structures include:

• ~ (var - 1 | group): Random slopes (without intercepts) that depend on the variable var for each
level of group.

• ~ (1 | group:subgroup): Random intercepts for each combination of levels in group and levels in
subgroup. ~ group:subgroup is shorthand for ~ (1 | group:subgroup).

• ~ (var | group:subgroup): Random intercepts for each combination of levels in group and levels in
subgroup and random slopes that depend on the variable var for each combination of levels in group
and levels in subgroup.

• ~ (var - 1 | group:subgroup): Random slopes (without intercepts) that depend on the variable
var for each combination of levels in group and levels in subgroup.

• ~ (1 | group/subgroup): Shorthand for ~ (1 | group) + (1 | group:subgroup). Commonly, the
group/subgroup notation implies subgroup is nested within group.

• ~ (var | group/subgroup): Shorthand for ~ (var | group) + (var | group:subgroup). Com-
monly, the group/subgroup notation implies subgroup is nested within group.

• ~ (var - 1 | group/subgroup): Shorthand for ~ (var - 1 | group) + (var - 1 | group:subgroup).
Commonly, the group/subgroup notation implies subgroup is nested within group.

Distinct random effects terms are separated in random by +. Each term must be wrapped in parentheses.
For example, to incorporate random intercepts for group and subgroup, random looks like ~ (1 | group)
+ (1 | subgroup). For random intercepts, recall that ~ group is shorthand for ~ (1 | group). Thus,
an equivalent representation of ~ (1 | group) + (1 | subgroup) is ~ group + subgroup. Note that for
both random intercepts and random slopes, the variable on the right-hand side of | (i.e., group, subgroup,
group:subgroup) must be a factor (or character) variable.
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