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1 Introduction
This vignette covers technical details regarding the functions in spmodel that perform computations. We
first provide a notation guide and then describe relevant details for each function.

If you use spmodel in a formal publication or report, please cite it. Citing spmodel lets us devote more
resources to it in the future. To view the spmodel citation, run
citation(package = "spmodel")

#>
#> To cite spmodel in publications use:
#>
#> Michael Dumelle, Matt Higham, and Jay M. Ver Hoef (2022). spmodel:
#> Spatial Statistical Modeling and Prediction. R package version 0.1.0.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {spmodel: Spatial Statistical Modeling and Prediction},
#> author = {Michael Dumelle and Matt Higham and Jay M. {Ver Hoef}},
#> year = {2022},
#> note = {R package version 0.1.0},
#> }

In addition to this document on the technical details of spmodel, there are three other vignettes:

• An overview of basic features in spmodel: vignette("basics", "spmodel")
• A detailed guide to spmodel: vignette("guide", "spmodel")
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2 Notation Guide
n = Sample size
y = Response vector
β = Fixed effect parameter vector
X = Design matrix of known explanatory variables (covariates)
p = The number of linearly independent columns in X
Z = Design matrix of known random effect variables
θ = Covariance parameter vector
Σ = Covariance matrix evaluated at θ

Σ−1 = The inverse of Σ
Σ1/2 = The square root of Σ

Σ−1/2 = The inverse of Σ1/2

Θ = General parameter vector
ℓ(Θ) = Log-likelihood evaluated at Θ

τ = Spatial (dependent) random error
A∗ = Σ−1/2A for a general matrix A (this is known as whitening A)

A hat indicates the parameters are estimated (i.e., β̂) or evaluated at a relevant estimated parameter vector
(e.g., Σ̂ is evaluated at θ̂). When ℓ(Θ̂) is written, it means the log-likelihood evaluated at its maximum, Θ̂.
When the covariance matrix of A is Σ, we say A∗ “whitens” A because

Cov(A∗) = Cov(Σ−1/2A) = Σ−1/2Cov(A)Σ−1/2 = Σ−1/2ΣΣ−1/2 = (Σ−1/2Σ1/2)(Σ1/2Σ−1/2) = I.

See Section 20 for a discussion on obtaining Σ1/2.

Additional notation is used in Section 14 (predict()):

yo = Observed response vector
yu = Unobserved response vector
Xo = Design matrix of known explanatory variables at observed response variable locations
Xu = Design matrix of known explanatory variables at unobserved response variable locations
Σo = Covariance matrix of yo evaluated at θ

Σu = Covariance matrix of yu evaluated at θ

Σuo = A matrix of covariances between yu and yo evaluated at θ

3 AIC() and AICc()

The AIC() and AICc() functions in spmodel are defined for restricted maximum likelihood and maximum
likelihood estimation, which maximize a likelihood. They follow Hoeting et al. (2006), defining spatial AIC
and AICc as

AIC = −2ℓ(Θ̂) + 2(|Θ̂|)
AICc = −2ℓ(Θ̂) + 2n(|Θ̂|)/(n − |Θ̂| − 1),

where |Θ̂| is the cardinality of Θ̂. For restricted maximum likelihood, Θ̂ ≡ {θ̂}. For maximum likelihood,
Θ̂ ≡ {θ̂, β̂} The discrepancy arises because restricted maximum likelihood integrates the fixed effects out of
the likelihood, and so the likelihood does not depend on β.

AIC comparisons between a model fit using restricted maximum likelihood and a model fit using maximum
likelihood are meaningless, as the models are fit with different likelihoods. AIC comparisons between models
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fit using restricted maximum likelihood are only valid when the models have the same fixed effect structure.
In contrast, AIC comparisons between models fit using maximum likelihood are valid when the models have
different fixed effect structures.

4 anova()

Test statistics from anova() are formed using the general linear hypothesis test. Let L be an l × p contrast
matrix and l0 be an l × 1 vector. The null hypothesis is that Lβ̂ = l0 and the alternative hypothesis is that
Lβ̂ ≠ l0. Usually, l0 is the zero vector (in spmodel, this is assumed). The test statistic is denoted Chi2 and
is given by

Chi2 = [(Lβ̂ − l0)⊤(L(X⊤Σ̂X)−1L⊤)−1(Lβ̂ − l0)]

By default, L is chosen such that each variable in the data used to fit the model is tested marginally (i.e.,
controlling for the other variables) against l0 = 0. If this default is not desired, the Terms and L arguments
can be used to pass user-defined L matrices to anova(). They must be constructed in such a way that l0 = 0.

It is notoriously difficult to determine appropriate p-values for linear mixed models based on the general
linear hypothesis test. lme4, for example, does not report p-values by default. A few reasons why obtaining
p-values is so challenging:

• The first (and often most important) challenge is that when estimating θ using a finite sample, it is
usually not clear what the null distribution of Chi2 is. In certain cases such as ordinary least squares
regression or some experimental designs (e.g., blocked design, split plot design, etc.), Chi2/rank(L)
is F-distributed with known numerator and denominator degrees of freedom. But outside of these
well-studied cases, no general results exist.

• The second challenge is that the standard error of Chi2 does not account for the uncertainty in θ̂. For
some approaches to addressing this problem, see Kackar and Harville (1984), Prasad and Rao (1990),
Harville and Jeske (1992), and Kenward and Roger (1997).

• The third challenge is in determining denominator degrees of freedom. Again, in some cases, these
are known – but this is not true in general. For some approaches to addressing this problem, see
Satterthwaite (1946), Schluchter and Elashoff (1990), Hrong-Tai Fai and Cornelius (1996), Kenward
and Roger (1997), Littell et al. (2006), Pinheiro and Bates (2006), and Kenward and Roger (2009).

For these reasons, spmodel uses an asymptotic (i.e., large sample) Chi-squared test when calculating p-values
using anova(). This approach addresses the three points above by assuming that with a large enough sample
size:

• Chi2 is asymptotically Chi-squared (under certain conditions) with rank(L) degrees of freedom when
the null hypothesis is true.

• The uncertainty from estimating θ̂ is small enough to be safely ignored.

Because the approximation is asymptotic, degree of freedom adjustments can be ignored (it is also worth
noting that an F distribution with infinite denominator degrees of freedom is a Chi-squared distribution
scaled by rank(L). This asymptotic approximation implies these p-values are likely unreliable with small
samples.

Note that when comparing full and reduced models, the general linear hypothesis test is analogous to an
extra sum of (whitened) squares approach (Myers et al. 2012).

A second approach to determining p-values is a likelihood ratio test. Let ℓ(Θ̂) be the log-likelihood for some
full model and ℓ(Θ̂0) be the log-likelihood for some reduced model. For the likelihood ratio test to be valid,
the reduced model must be nested in the full model, which means that ℓ(Θ̂0) is obtained by fixing some
parameters in Θ. When the likelihood ratio test is valid, X2 = 2ℓ(Θ̂) − 2ℓ(Θ̂0) is asymptotically Chi-squared
with degrees of freedom equal to the difference in estimated parameters between the full and reduced models.

For restricted maximum likelihood estimation, likelihood ratio tests can only be used to compare nested models
with the same explanatory variables. To use likelihood ratio tests for comparing different explanatory variable
structures, parameters must be estimated using maximum likelihood estimation. When using likelihood ratio
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tests to assess the importance of parameters on the boundary of a parameter space (e.g., a variance parameter
being zero), p-values tend to be too large (Self and Liang 1987; Stram and Lee 1994; Goldman and Whelan
2000; Pinheiro and Bates 2006).

5 coef()

coef() returns relevant coefficients based on the type argument. When type = "fixed" (the default),
coef() returns

β̂ = (X⊤Σ̂−1X)−1X⊤Σ̂−1y.

If the estimation method is restricted maximum likelihood or maximum likelihood, β̂ is known as the restricted
maximum likelihood or maximum likelihood estimator of β. If the estimation method is semivariogram
weighted least squares or semivariogram composite likelihood, β̂ is known as the empirical generalized least
squares estimator of β. When type = "spcov", the estimated spatial covariance parameters are returned
(available for all estimation methods). When type = "randcov", the estimated random effect variance
parameters are returned (available for restricted maximum likelihood and maximum likelihood estimation).

6 confint()

confint() returns confidence intervals for estimated parameters. Currently, confint() only returns confi-
dence intervals for β. The (1 − α)% confidence interval for βi is

β̂i ± z∗
√

(X⊤Σ̂−1X)−1
i,i ,

where (X⊤Σ̂−1X)−1
i,i is the ith diagonal element in (X⊤Σ̂−1X)−1, Φ(z∗) = 1 − α/2, Φ(·) is the standard

normal (Gaussian) cumulative distribution function, and α = 1− level, where level is an argument to
confint(). The default for level is 0.95, which corresponds to a z∗ of approximately 1.96.

7 cooks.distance()

Cook’s distance measures the influence of an observation (Cook 1979; Cook and Weisberg 1982). An influential
observation has a large impact on the model fit. The vector of Cook’s distances for the spatial linear model is
given by

e2
p

p

diag(Hs)
1 − diag(Hs) , (1)

where ep are the Pearson residuals and diag(Hs) is the diagonal of the spatial hat matrix,
Hs ≡ X∗(X∗⊤X∗)−1X∗⊤ (Montgomery, Peck, and Vining 2021). The larger the Cook’s distance,
the larger the influence.

To better understand the form in Equation 1, recall that the the non-spatial linear model y = Xβ + ϵ assumes
elements of ϵ are independent and identically distributed (iid) with constant variance. In this context the
vector of non-spatial Cook’s distances is given by

e2
p

p

diag(H)
1 − diag(H) ,

where diag(H) is the diagonal of the non-spatial hat matrix, H ≡ X(X⊤X)−1X⊤. When the elements of ϵ
are not iid or do not have constant variance or both, the spatial Cook’s distance cannot be calculated using
H. First the linear model must be whitened according to y∗ = X∗β + ϵ∗, where ϵ∗ is the whitened version
of the sum of all random errors in the model. Then the spatial Cook’s distance follows using the whitened
version of X, X∗.
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8 deviance()

The deviance of a fitted model is
DΘ = 2ℓ(Θs) − 2ℓ(Θ̂),

where ℓ(Θs) is the log-likelihood of a “saturated” model that fits every observation perfectly. For normal
(Gaussian) random errors,

DΘ = (y − Xβ̂)⊤Σ̂−1(y − Xβ̂)

9 esv()

The empirical semivariogram is a moment-based estimate of the theoretical semivariogram. The empirical
semivariogram quantifies half of the average squared difference in the response among observations in several
distance classes. More formally, the empirical semivariogram is defined as

γ̂(h) = 1
2|N(h)|

∑
N(h)

(yi − yj)2, (2)

where N(h) is the set of observations in y that are h distance units apart (distance classes) and |N(h)| is the
cardinality of N(h) (Cressie 1993). Often the set N(h) contains observations that are h ± c apart, where c is
some constant. This approach is known as “binning” the empirical semivariogram. The default in spmodel is
to construct the semivariogram using 15 equally spaced bins where h is contained in (0, hmax], and hmax is
known as a “distance cutoff”. Distance cutoffs are commonly used when constructing Equation 2 because
there tend to be few pairs with large distances. The default in spmodel is to use a cutoff of half the maximum
distance (hypotenuse) of the domain’s bounding box.

The main purpose of the empirical semivariogram is its use in semivariogram weighted least squares estimation,
though it can also be used as a visual diagnostic to assess the fit of a spatial covariance function.

10 fitted()

Fitted values can be obtained for the response, spatial random errors, and random effects. The fitted values
for the response (type = "fixed"), denoted ŷ, are given by

ŷ = Xβ̂.

They are the estimated mean response given the set of explanatory variables for each observation.

Fitted values for spatial random errors (type = "spcov") and random effects (type = "randcov") are linked
to best linear unbiased predictors from linear mixed model theory. Consider the standard random effects
parameterization

y = Xβ + Zu + ϵ,

where Z denotes the random effects design matrix, u denotes the random effects, and ϵ denotes independent
random error. Henderson (1975) states that the best linear unbiased predictor (BLUP) of a single random
effect u, denoted û, is given by

û = σ2
uZ⊤Σ−1(y − Xβ̂), (3)

where σ2
u is the variance of u.

Searle, Casella, and McCulloch (2009) generalize this idea by showing that for a random variable α in a
linear model, the best linear unbiased predictor (based on the response, y) of α, denoted α̂, is given by

α̂ = E(α) + ΣαΣ−1(y − Xβ̂), (4)

where Σα = Cov(α, y). Evaluating Equation 4 at the plug-in (empirical) estimates of the covariance
parameters yields the empirical best linear unbiased predictor (EBLUP) of α.
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Recall that the spatial linear model with random effects is

y = Xβ + Zu + τ + ϵ,

Building from the result in Equation 4, we can find BLUPs for each random term in the spatial linear model
(u, τ , and ϵ). For example, the BLUP of u is found by noting that E(u) = 0 and

Σu = Cov(u, y) = Cov(u, Xβ + Zu + τ + ϵ) = Cov(u, Zu) = Cov(u, u)Z⊤ = σ2
uZ⊤,

where the result follows because the random terms in y are independent and Cov(u, u) = σ2
uI. Then it follows

that
û = E(u) + ΣuΣ−1(y − Xβ̂) = σ2

uZ⊤Σ−1(y − Xβ̂),
which matches Equation 3. Similarly, the BLUP of τ is found by noting that E(τ ) = 0 and

Σde = Cov(τ , y) = Cov(τ , Xβ + Zτ + ϵ) = Cov(τ , τ ) = σ2
deR,

where the result follows because the random terms in y are independent and Cov(τ , τ ) = σ2
deR, and σ2

de is
the variance of τ . Then it follows that

τ̂ = E(τ ) + ΣdeΣ−1(y − Xβ̂) = σ2
deRΣ−1(y − Xβ̂). (5)

Fitted values for ϵ are obtained using similar arguments. Evaluating these equations at the plug-in (empirical)
estimates of the covariance parameters yields EBLUPs.

When partition factors are used, the covariance matrix of all random effects (spatial and non-spatial) can be
viewed as the interaction between the non-partitioned covariance matrix and the partition matrix, P. The
ijth entry in P equals one if observation i and observation j share the same level of the partition factor
and zero otherwise. For spatial random effects, an adjustment is straightforward, as each column in Σde

corresponds to a distinct spatial random effect. Thus with partition factors, Σ∗
de = Σde ⊙ P = σ2

deR ⊙ P,
where ⊙ denotes the Hadmart (element-wise) product, is used instead used of Σde in Equation 5. Note that
Σie is unchanged as it is proportional to the identity matrix. For non-spatial random effects, however, the
situation is more complicated. Applying Equation 3 directly yields BLUPs of random effects corresponding
to the interaction between random effect levels and partition levels. Thus a logical approach is to average the
non-zero BLUPs for each random effect level across partition levels, yielding a prediction for the random
effect level. This does not imply, however, that these estimates are BLUPs of the random effect.

For big data without partition factors, the local indexes act as partition factors. That is, the BLUPs
correspond to random effects interacted with each local index. For big data with partition factors, an adjusted
partition factor is created as the interaction between each local index and the partition factor. Then this
adjusted partition factor is applied to Equation 4.

11 hatvalues()

Hat values measure the leverage of an observation. An observation has high leverage if its combination of
explanatory variables is atypical (far from the mean explanatory vector). The spatial leverage (hat) matrix is
given by

Hs = X∗(X∗⊤X∗)−1X∗⊤. (6)
The diagonal of this matrix yields the leverage (hat) values for each observation (Montgomery, Peck, and
Vining 2021). The larger the hat value, the larger the leverage

To better understand the form in Equation 6, recall that the the non-spatial linear model y = Xβ + ϵ assumes
elements of ϵ are independent and identically distributed (iid) with constant variance. In this context, the
leverage (hat) matrix is given by

H ≡ X(X⊤X)−1X⊤,

When the elements of ϵ are not iid or do not have constant variance or both, the spatial leverage (hat) matrix
is not H. First the linear model must be whitened according to y∗ = X∗β + ϵ∗, where ϵ∗ is the whitened
version of the sum of all random errors in the model. Then the spatial leverage (hat) matrix follows using the
whitened version of X, X∗.
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12 logLik()

The log-likelihood is given by ℓ(Θ̂).

13 loocv()

k-fold cross validation is a useful tool for evaluating model fits using “hold-out” data. The data are split into
k sets. One-by-one, one of the k sets is held out, the model is fit to the remaining k − 1 sets, and predictions
at each observation in the hold-out set are compared to their true values. The closer the predictions are to
the true observations, the better the model fit. A special case where k = n is known as leave-one-out cross
validation (loocv), as each observation is left out one-by-one. Computationally efficient solutions exist for
leave-one-out cross validation in the non-spatial linear model (with iid, constant variance errors). Outside of
this case, however, fitting n separate models can be computationally infeasible. loocv() makes a compromise
that balances an approximation to the true solution with computational feasibility. First θ is estimated using
all of the data. Then for each of the n model fits, loocv() does not re-estimate θ but does re-estimate β. This
approach relies on the assumption that the covariance parameter estimates obtained using n − 1 observations
are approximately the same as the covariance parameter estimates obtained using all n observations. For a
large enough sample size, this is a reasonable assumption.

First define Σ−i,−i as Σ with the ith row and column deleted, Σi,−i as the ith row of Σ with the ith column
deleted, Σi,i as the ith row and column of Σ, X−i as X with the ith row deleted, Xi as the ith row of X,
y−i as y with the ith element deleted, and yi as the ith element of y. Wolf (1978) shows that given Σ−1, a
computationally efficient form for Σ−1

−i exists. First observe that Σ−1 can be represented blockwise as

Σ−1 =
[
Σ̃−i,−i Σ̃⊤

i,−i

Σ̃i,−i Σ̃i,i

]
,

where the dimensions of each Σ̃ match the respective dimensions of relevant blocks in Σ. Then it follows that

Σ−1
−i,−i = Σ̃−i,−i − Σ̃⊤

i,−iΣ̃−1
i,i Σ̃i,−i

and
β−i = (X⊤

−iΣ−1
−i,−iX−i)−1X⊤

−iΣ−1
−i,−iy−i,

where βi is the estimate of β constructed without the ith observation.

The loocv prediction of yi is then given by

ŷi = Xiβ̂−i + Σ̂i,−iΣ̂−i,−i(yi − X−iβ̂−i)

and the prediction variance of the loocv prediction of yi is given by

σ̇2
i = Σ̂i,i − Σ̂i,−iΣ̂−1

−i,−iΣ̂
⊤
i,−i + Qi(X⊤

−iΣ̂−1
−i,−iX−i)−1Q⊤

i ,

Qi = Xi − Σ̂i,−iΣ̂−1
−i,−iX−i. These formulas are analogous to the formulas used to obtain linear unbiased

predictions of unobserved data (Equation 7) and prediction variances (Equation 8) in Section 14. Model fits
are evaluated using mean squared prediction error (mspe), formally defined as

mspe = 1
n

n∑
i=1

(yi − ŷi)2.

Generally the lower the mspe, the better the model fit.
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13.1 Big Data
Options for big data leave-one-out cross validation rely on the local argument, which is passed to predict().
The local list for predict() is explained in detail in Section 14, but we provide a short summary of how
local interacts with loocv() here.

For splm() and spautor() objects, local can be "all". When local = "all", all of the data are used
for leave-one-out cross validation (i.e., it is implemented exactly as previously described). Parallelization is
implemented when setting parallel = TRUE in local, and the number of cores to use for parallelization is
specified via ncores.

For splm() objects, local can be "covariance" or "distance". When local = "covariance", then a
number of observations (specified via the size argument) having the highest covariance with the held-out
observation are used in the local neighborhood prediction approach. When local = "distance", then a
number of observations (specified via the size argument) closest to the held-out observation are used in the
local neighborhood prediction approach. When no random effects are used, no partition factor is used, and
the spatial covariance function is monotone decreasing, "covariance" and "distance" are equivalent. The
local neighborhood approach only uses the observations in the local neighborhood of the held-out observation
to perform prediction, and is thus an approximation to the true solution. Its computational efficiency derives
from using Σl,l (the covariance matrix of the observations in the local neighborhood) instead of Σ (the
covariance matrix of all the observations). Parallelization is implemented when setting parallel = TRUE in
local, and the number of cores to use for parallelization is specified via ncores.

14 predict()

14.1 interval = "none"

The empirical best linear unbiased predictions (i.e., empirical Kriging predictor) of yu are given by

ẏu = Xuβ̂ + Σ̂uoΣ̂−1
o (yo − Xoβ̂). (7)

Equation 7 is sometimes called an empirical universal Kriging predictor, a Kriging with external drift predictor,
or a regression Kriging predictor.

The covariance matrix of ẏu

Σ̇u = Σ̂u − Σ̂uoΣ̂−1
o Σ̂⊤

uo + Q(X⊤
o Σ̂−1

o Xo)−1Q⊤, (8)

where Q = Xu − Σ̂uoΣ̂−1
o Xo.

When se.fit = TRUE, standard errors are returned by taking the square root of the diagonal of Σ̇u in
Equation 8.

14.2 interval = "prediction"

The empirical best linear unbiased predictions are returned by evaluating Equation 7. The (100 × level)%
prediction interval for (yu)i is (ẏu)i ± z∗

√
(Σ̇u)i,i, where

√
(Σ̇u)i,i is the standard error of (ẏu)i obtained

from se.fit = TRUE, Φ(z∗) = 1 − α/2, Φ(·) is the standard normal (Gaussian) cumulative distribution
function, α = 1− level, and level is an argument to predict(). The default for level is 0.95, which
corresponds to a z∗ of approximately 1.96.

14.3 interval = "confidence"

The best linear unbiased estimates of E[(yu)i] (E(·) denotes expectation) are returned by evaluating (Xu)iβ̂

(i.e., fitted values corresponding to (Xu)i). The (100 × level)% confidence interval for E[(yu)i] is (Xu)iβ̂ ±
z∗

√
(Xu)i(X⊤

o Σ̂−1
o Xo)−1(Xu)⊤

i , where (Xu)i is the ith row of Xu,
√

(Xu)i(X⊤
o Σ̂−1

o Xo)−1(Xu)⊤
i is the
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standard error of (ẏu)i obtained from se.fit = TRUE, Φ(z∗) = 1 − α/2, Φ(·) is the standard normal
(Gaussian) cumulative distribution function, α = 1− level, and level is an argument to predict(). The
default for level is 0.95, which corresponds to a z∗ of approximately 1.96.

14.4 spautor() extra steps
For spatial autoregressive models, an extra step is required to obtain Σ̂−1

o , Σ̂u, and Σ̂uo as they depend on
one another through the neighborhood structure of yo and yu. Recall that for autoregressive models, it is
Σ−1 that is straightforward to obtain, not Σ.

Let Σ−1 be the inverse covariance matrix of the observed and unobserved data, yo and yu. One approach
to obtain Σo and Σuo is to directly invert Σ−1 and then subset Σ appropriately. This inversion can be
prohibitive when no + nu is large. A faster way to obtain Σo and Σuo exists. Represent Σ−1 blockwise as

Σ−1 =
[

Σ̃o Σ̃⊤
uo

Σ̃uo Σ̃u

]
,

where the dimensions of the blocks match the relevant dimensions of Σ. All of the terms required for
prediction can be obtained from this block representation. Wolf (1978) shows that

Σ−1
o = Σ̃o − Σ̃⊤

uo(Σ̃u)−1Σ̃uo

Σu = (Σ̃u − Σ̃uo(Σ̃o)−1Σ̃⊤
uo)−1

Σuo = −ΣuΣ̃uoΣ̃−1
o

Evaluating these expressions at θ̂ yields Σ̂−1
o , and Σ̂u, and Σ̂uo.

A similar result exists for the log determinant of Σo, which is not required for prediction but is required for
restricted maximum likelihood and maximum likelihood estimation.

14.5 Big Data
When the number of observations in the fitted model (observed data) are large or there are many locations to
predict at or both, it is often necessary to implement computationally efficient big data approximations. Big
data approximations are implemented in spmodel using the local argument to predict(). When the method
in local is "all", all of the fitted model data are used to make predictions. In this context, computational
efficiency is only gained by parallelizing each prediction. The only available method for spautor() fitted
models is "all". This is because the neighborhood structure of spautor() fitted models does not permit
the subsetting used by the "covariance" and "distance" methods that we discuss next.

When the local method is "covariance", Σ̂uo is computed between the observation being predicted (yu) and
the rest of the observed data. This vector is then ordered and a number of observations (specified via the size
argument) having the highest covariance with yu are subset, yielding Σ̌uo, which has dimension 1×size. Then
similarly Σ̂o, yo, and Xu are also subset by these size observations, yielding Σ̌o, y̌o, and X̌u, respectively.
Equations 7 and 8 can be evaluated at Σ̌uo, Σ̌o, y̌o, and X̌u. When the local method is "distance", a
similar approach is used except a number of observations (specified via the size argument) closest (in terms
of Euclidean distance) to yu are subset instead. When random effects are not used, partition factors are
not used, and the spatial covariance function is monotone decreasing, "covariance" and "distance" are
equivalent. This approach of subsetting the observed data by the set of locations closest in covariance or
proximity to yu is known as the local neighborhood approach. As long as size is relatively small (the default
is 50), the local neighborhood approach is very computationally efficient, mainly because Σ̌−1

o is easy to
compute. Additional computational efficiency is gained by parallelizing each prediction.

15 pseudoR2()

The pseudo R-squared is a generalization of the classical R-squared from non-spatial linear models. Like the
classical R-squared, the pseudo R-squared measures the proportion of variability in the response explained by
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the fixed effects in the fitted model. Unlike the classical R-squared, the pseudo R-squared can be applied to
models whose errors do not satisfy the iid and constant variance assumption. The pseudo R-squared is given
by

PR2 = 1 − D(Θ̂)
D(Θ̂0)

.

For normal (Gaussian) random errors, the pseudo R-squared is

PR2 = 1 − (y − Xβ̂)⊤Σ̂−1(y − Xβ̂)
(y − µ̂)⊤Σ̂−1(y − µ̂)

,

where µ̂ = (1⊤Σ̂−11)−11⊤Σ̂−1y. For the non-spatial model, the pseudo R-squared reduces to the classical
R-squared, as

PR2 = 1 − (y − Xβ̂)⊤Σ̂−1(y − Xβ̂)
(y − µ̂)⊤Σ̂−1(y − µ̂)

= 1 − (y − Xβ̂)⊤(y − Xβ̂)
(y − µ̂)⊤(y − µ̂) = 1 − SSE

SST = R2,

where SSE denotes the error sum of squares and SST denotes the total sum of squares. The result follows
because for a non-spatial model, Σ is proportional to the identity matrix.

The adjusted pseudo r-squared adjusts for additional explanatory variables and is given by

PR2adj = 1 − (1 − PR2)n − 1
n − p

.

If the fitted model does not have an intercept, the n − 1 term is instead n.

16 residuals()

Terminology regarding residual names if often conflicting and confusing. Because of this, next we explicitly
define the residual options in spmodel. These definitions may be different from others you may have seen in
the literature.

When type = "raw", raw residuals are returned:

er = y − Xβ̂.

When type = "pearson", pearson residuals are returned:

ep = Σ̂−1/2er,

If the errors are normal (Gaussian), the pearson residuals should be approximately normally distributed with
mean zero and variance one. The result follows when Σ̂−1/2 ≈ Σ−1/2 because

E(Σ−1/2er) = Σ−1/2E(er) = Σ−1/20 = 0

and

Cov(Σ−1/2er) = Σ−1/2Cov(er)Σ−1/2

≈ Σ−1/2ΣΣ−1/2

= (Σ−1/2Σ1/2)(Σ1/2Σ−1/2)
= I

When type = "standardized", standardized residuals are returned:

es = ep√
1 − diag(H∗)

,
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where diag(H∗) is the diagonal of the spatial hat matrix, Hs ≡ X∗(X∗⊤X∗)−1X∗⊤. This residual transfor-
mation “standardizes” the Pearson residuals. As such, the standardized residuals should also have mean zero
and variance

Cov(es) = Cov((I − H∗)Σ̂−1/2y)
≈ Cov((I − H∗)Σ−1/2y)
= (I − H∗)Σ−1/2Cov(y)Σ−1/2(I − H∗)⊤

= (I − H∗)Σ−1/2ΣΣ−1/2(I − H∗)⊤

= (I − H∗)I(I − H∗)⊤

= (I − H∗),
because (I−H∗) is symmetric and idempotent. Note that the average value of diag(H∗) is p/n, so (I−H∗) ≈ I
for large sample sizes.

17 spautor() and splm()

Next we discuss technical details for the spautor() and splm() functions. Many of the details for the two
functions are the same, though occasional differences are noted in the following subsection headers. Specifically,
spautor() and splm() are for different data types and use different covariance functions. spautor() is
for spatial linear models with areal data (i.e., spatial autoregressive models) and splm() is for spatial
linear models with point-referenced data (i.e., geostatistical models). There are also a few features splm()
has that spautor() does not: semivariogram-based estimation, random effects, anisotropy, and big data
approximations.

17.1 spautor() Spatial Covariance Functions
For areal data, the covariance matrix depends on the specification of a neighborhood structure among the
observations. Observations with at least one neighbor (not including itself) are called “connected” observations.
Observations with no neighbors are called “unconnected” observations. The autoregressive spatial covariance
matrix can be defined as

Σ =
[
σ2

deR 0
0 σ2

ξ I

]
+ σ2

ieI,

where σ2
de (≥ 0) is the spatially dependent (correlated) variance for the connected observations, R is a

matrix that describes the spatial dependence for the connected observations, σ2
ξ (≥ 0) is the independent

(not correlated) variance for the unconnected observations, and σ2
ie (≥ 0) is the independent (not correlated)

variance for all observations. As seen, the connected and unconnected observations are allowed different
variances. The total variance for connected observations is then σ2

de+σ2
ie and the total variance for unconnected

observations is σ2
ξ + σ2

ie. spmodel accommodates two spatial covariances: conditional autoregressive (CAR)
and simultaneous autoregressive (SAR), both of which have their R forms provided in Table 1. For both CAR
and SAR covariance functions, R depends on similar quantities: I, an identity matrix; ϕ, a range parameter,
and W, a matrix that defines the neighborhood structure. Often W is symmetric but it need not be. Valid
values for ϕ are in (1/λmax, 1/λmin), where λmin is the minimum eigenvalue of W and λmax is the maximum
eigenvalue of W. For SAR covariance functions, λmin must be negative and λmax must be positive. For
CAR covariances functions, a matrix M matrix must be provided that satisfies the CAR symmetry condition,
which enforces the symmetry of the covariance matrix. The CAR symmetry condition states

Wij

Mii
= Wji

Mjj

for all i and j, where i and j index rows or columns. When W is symmetric, M is often taken to be the
identity matrix.

The default in spmodel is to row-standardize W by dividing each element by its respective row sum, which
decreases variance. If row-standardization is not used for a CAR model, the default in spmodel for M is the
identity matrix.
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Spatial covariance type R functional form
"car" (I − ϕW)−1M
"sar" [(I − ϕW)(I − ϕW)⊤]−1

Table 1: The forms of R for each spatial covariance type available in spautor().

Spatial covariance type R functional form
"exponential" e−η

"spherical" (1 − 1.5η + 0.5η3)1{h ≤ ϕ}
"gaussian" e−η2

"triangular" (1 − η)1{h ≤ ϕ}
"circular" (1 − 2

π [m
√

1 − m2 + sin−1{m}])1{h ≤ ϕ}, m = min(η, 1)
"cubic" (1 − 7η2 + 8.75η3 − 3.5η5 + 0.75η7)1{h ≤ ϕ}

"pentaspherical" (1 − 1.875η + 1.250η3 − 0.375η5)1{h ≤ ϕ}
"cosine" cos(η)
"wave" sin(η)

η 1{h > 0} + 1{h = 0}
"jbessel" Bj(hϕ), Bj is Bessel-J
"gravity" (1 + η2)−1/2

"rquad" (1 + η2)−1

"magnetic" (1 + η2)−3/2

"matern" 2(1−ξ)

Γ(ξ) αξBk(α, ξ), α =
√

2ξη, Bk is Bessel-K with order ξ, ξ ∈ [1/5, 5]
"cauchy" (1 + η2)−ξ, ξ > 0

"pexponential" exp(−hξ/ϕ), ξ ∈ (0, 2]
"none" 0

Table 2: The forms of R for each spatial covariance type available in splm(). All spatial covariance functions
are valid in two dimensions except "triangular" and "cosine", which are only valid in one dimension.

17.2 splm() Spatial Covariance Functions
For point-referenced data, the spatial covariance is given by

σ2
deR + σ2

ieI,

where σ2
de (≥ 0) is the spatially dependent (correlated) variance, R is a spatial correlation matrix, σ2

ie (≥ 0)
is the spatially independent (not correlated) variance, and I is an identity matrix. The R matrix always
depends on a range parameter, ϕ (> 0), that controls the behavior of the covariance function with distance.
For some covariance functions, the R matrix depends on an additional parameter that we call the “extra”
parameter. Table 2 shows the parametric form for all R matrices available in splm(). In Table 2, the range
parameter is denoted as ϕ, the distance divided by the range parameter (h/ϕ) is denoted as η, 1{·} is an
indicator function equal to one when the argument occurs and zero otherwise, and the extra parameter is
denoted as ξ (when relevant).

17.3 Model-fitting
17.3.1 Likelihood-based Estimation (estmethod = "reml" or estmethod = "ml")

Minus twice a profiled (by β) Gaussian log-likelihood is given by

−2ℓp(θ) = ln |Σ| + (y − Xβ̃)⊤Σ−1(y − Xβ̃) + n ln 2π, (9)

where β̃ = (X⊤Σ−1X)−1X⊤Σ−1y. Minimizing Equation 9 yields θ̂ml, the maximum likelihood estimates for
θ. Then a closed form solution exists for β̂ml, the maximum likelihood estimates for β: β̂ml = β̃ml, where
β̃ml is β̃ evaluated at θ̂ml. Unfortunately θ̂ml can be badly biased for θ (especially for small sample sizes),
which impacts the estimation of β (Patterson and Thompson 1971). This bias occurs due to the simultaneous
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estimation of β and θ. To reduce this bias, restricted maximum likelihood estimation (REML) emerged
(Patterson and Thompson 1971; Harville 1977; Wolfinger, Tobias, and Sall 1994). Integrating β out of a
Gaussian likelihood yields the restricted Gaussian likelihood. Minus twice a restricted Gaussian log-likelihood
is given by

−2ℓR(θ) = −2ℓp(θ) + ln |X⊤Σ−1X| − p ln 2π, (10)

where p equals the dimension of β. Minimizing Equation 10 yields θ̂reml, the restricted maximum likelihood
estimates for θ. Then a closed for solution exists for β̂reml, the restricted maximum likelihood estimates for
β: β̂reml = β̃reml, where β̃reml is β̃ evaluated at θ̂reml.

The covariance matrix can often be written as Σ = σ2Σ∗, where σ2 is the overall variance and Σ∗ is a
covariance matrix that depends on parameter vector θ∗ with one less dimension than θ. Then the overall
variance, σ2, can be profiled out of Equation 9 and Equation 10. This reduces the number of parameters
requiring optimization by one, which can dramatically reduce estimation time. Profiling σ2 out of Equation 9
yields

−2ℓ∗
p(θ∗) = ln |Σ∗| + n ln[(y − Xβ̃)⊤Σ∗−1(y − Xβ̃)] + n + n ln 2π/n.

After finding θ̂∗
ml, a closed form solution for σ̂2

ml exists: σ̂2
ml = [(y − Xβ̃)⊤Σ∗−1(y − Xβ̃)]/n. Then θ̂∗

ml

is combined with σ̂2
ml to yield θ̂ml and subsequently β̂ml. A similar result holds for restricted maximum

likelihood estimation. Profiling σ2 out of Equation 10 yields

−2ℓ∗
R(Θ) = ln |Σ∗| + (n − p) ln[(y − Xβ̃)⊤Σ∗−1(y − Xβ̃)] + ln |X⊤Σ∗−1X| + (n − p) + (n − p) ln 2π/(n − p).

After finding θ̂∗
reml, a closed form solution for σ̂2

reml exists: σ̂2
reml = [(y − Xβ̃)⊤Σ∗−1(y − Xβ̃)]/(n − p).

Then θ̂∗
reml is combined with σ̂2

reml to yield θ̂reml and subsequently β̂reml. For more on profiling Gaussian
likelihoods, see Wolfinger, Tobias, and Sall (1994).

Both maximum likelihood and restricted maximum likelihood estimation rely on the n × n covariance matrix
inverse. Inverting an n×n matrix is an enormous computational demand that scales cubically with the sample
size. For this reason, maximum likelihood and restricted maximum likelihood estimation have historically
been infeasible to implement in their standard form with data larger than a few thousand observations. This
motivates the use for the big data approaches outlined in Section 17.9.

17.3.2 Semivariogram-based Estimation (splm() only)

An alternative approach to likelihood-based estimation is semivariogram-based estimation. The semivariogram
of a constant-mean process y is the expectation of half of the squared difference between two observations h
distance units apart. More formally, the semivariogram is denoted γ(h) and defined as

γ(h) = E[(yi − yj)2]/2,

where h is the Euclidean distance between the locations of yi and yj . When the process y is second-order
stationary, the semivariogram and covariance function are intimately connected: γ(h) = σ2 −Cov(h), where σ2

is the overall variance and Cov(h) is the covariance function evaluated at h. As such, the semivariogram and
covariance function rely on the same parameter vector θ. Both of the semivariogram approaches described next
are more computationally efficient than restricted maximum likelihood and maximum likelihood estimation
because the major computational burden of the semivariogram approaches (calculations based on squared
differences among pairs) scales quadratically with the sample size (i.e., not the cubed sample size like the
likelihood-based approaches).

17.3.2.1 Weighted Least Squares (estmethod = "sv-wls") The empirical semivariogram is a moment-
based estimate of the semivariogram denoted by γ̂(h). Recall it is defined in Equation 2 as

γ̂(h) = 1
2|N(h)|

∑
N(h)

(yi − yj)2,

where N(h) is the set of observations in y that are h distance units apart (distance classes) and |N(h)| is the
cardinality of N(h) (Cressie 1993). More computational details are provided in Section 9. One criticism of
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wi Name wi Form weight =
Cressie |N(h)|/γ(h)2

i "cressie"
Cressie (Denominator) Root |N(h)|/γ(h)i "cressie-dr"

Cressie No Pairs 1/γ(h)2
i "cressie-nopairs"

Cressie (Denominator) Root No Pairs 1/γ(h)i "cressie-dr-nopairs"
Pairs |N(h)| "pairs"

Pairs Inverse Distance |N(h)|/h2 "pairs-invd"
Pairs Inverse (Root) Distance |N(h)|/h "pairs-invrd"

Ordinary Least Squares 1 "ols"

Table 3: Table of values for the weights argument in splm() when estmethod = "sv-wls".

the empirical semivariogram is that distance bins and cutoffs tend to be arbitrarily chosen (i.e., not chosen
according to some statistical criteria).

Cressie (1985) proposed estimating θ by minimizing an objective function that involves γ(h) and γ̂(h) and is
based on a weighted least squares criterion. This criterion is defined as∑

i

wi[γ̂(h)i − γ(h)i]2, (11)

where wi, γ̂(h)i, and γ(h)i are the weights, empirical semivariogram, and semivariogram for the ith distance
class, respectively. Minimizing Equation 11 yields θ̂wls, the semivariogram weighted least squares estimate
of θ. After estimating θ, β estimates are constructed using (empirical) generalized least squares: β̂wls =
(X⊤Σ̂−1X)−1X⊤Σ̂−1y.

Cressie (1985) recommends setting the wi in Equation 11 as wi = |N(h)|/γ(h)2
i , which gives more weight to

distance classes with more observations (|N(h)|) and shorter distances (1/γ(h)2
i ). The default in spmodel is

to use these wi, known as Cressie weights, though several other options for wi exist and are available via the
weights argument. Table 3 contains all wi available via the weights argument.

The number of N(h) classes and the maximum distance for h are specified by passing the bins and cutoff
arguments to splm() (these arguments are passed via ... to esv()). The default value for bins is 15 and
the default value for cutoff is half the maximum distance of the spatial domain’s bounding box.

Recall that the semivariogram is defined for a constant-mean process. Generally, y does not necessarily have
a constant mean so the empirical semivariogram and θ̂wls are typically constructed using the residuals from
an ordinary least squares regression of y on X. These ordinary least squares residuals are assumed to have
mean zero.

17.3.2.2 Composite Likelihood (estmethod = "sv-cl") Composite likelihood approaches involve
constructing likelihoods based on conditional or marginal events for which likelihoods are available and then
adding together these individual components. Composite likelihoods are attractive because they behave very
similar to likelihoods but are easier to handle, both from a theoretical and from a computational perspective.
Curriero and Lele (1999) derive a particular composite likelihood for estimating semivariogram parameters.
The negative log of this composite likelihood, denoted CL(h), is given by

CL(h) =
n−1∑
i=1

∑
j>i

(
(yi − yj)2

2γ(h) + ln(γ(h))
)

(12)

where γ(h) is the semivariogram. Minimizing Equation 12 yields θ̂cl, the semivariogram composite likelihood
estimates of θ. After estimating θ, β estimates are constructed using (empirical) generalized least squares:
β̂cl = (X⊤Σ̂−1X)−1X⊤Σ̂−1y.

An advantage of the composite likelihood approach to semivariogram estimation is that it does not require
arbitrarily specifying empirical semivariogram bins and cutoffs. It does tend to be more computationally
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σ2
de σ2

ie ϕ α S
9 1 15 0 1
1 9 15 0 1
5 5 15 0 1
9 1 45 0 1
1 9 45 0 1
5 5 45 0 1

Table 4: Grid search parameter configurations for an isotropic exponential spatial covariance with inflated
sample variance 10.

demanding than weighted least squares, however. The composite likelihood is constructed from
(

n
2
)

pairs
for a sample size n, whereas the weighted least squares approach only requires calculating

(|N(h)|
2

)
pairs for

each distance bin N(h). As with the weighted least squares approach, Equation 12 requires a constant-mean
process, so typically the residuals from an ordinary least squares regression of y on X are used to estimate θ.

17.4 Optimization
Parameter estimation is performed using stats::optim(). The default estimation method is Nelder-Mead
(Nelder and Mead 1965) and the stopping criterion is a relative convergence tolerance (reltol) of .0001. If
only one parameter requires estimation (on the profiled scale if relevant), the Brent algorithm is instead
used (Brent 1971). Arguments to optim() are passed via ... to splm() and spautor(). For example,
the default estimation method and convergence criteria are overridden by passing method and control,
respectively, to splm() and spautor(). If the lower and upper arguments to optim() are specified in
splm() and spautor() to be passed to optim(), they are ignored, as optimization for all parameters is
generally unconstrained. Initial values for optim() are found using the grid search described next.

17.4.1 Grid Search

spmodel uses a grid search to find suitable initial values for use in optimization. For spatial linear models
without random effects, the spatially dependent variance (σ2

de) and spatially independent variance (σ2
ie)

parameters are given “low”, “medium”, and “high” values. The sample variance of a non-spatial linear model
is slightly inflated by a factor of 1.2 (non-spatial models can underestimate the variance when there is spatial
dependence) and these “low”, “medium”, and “high” values correspond to 10%, 50%, and 90% of the inflated
sample variance. Only combinations of σ2

de and σ2
ie whose proportions sum to 100% are considered. The range

(ϕ) and extra (ξ) parameters are given “low” and “high” values that are unique to each spatial covariance
function. The anisotropy (Section 17.7) rotation parameter (α) is given six values that correspond to 0, π/6,
2π/6, 4π/6, 5π/6, and π radians. The anisotropy scale parameter (S) is given “low”, “medium”, and “high”
values that correspond to scaling factors of 0.25, 0.75, and 1. Note that the anisotropy parameters are only
used during grid searches for point-referenced data.

The crossing of all appropriate parameter values is considered. If initial values are used for a parameter, the
initial value replaces all values of the parameter in this crossing. Duplicate crossings are then omitted. The
parameter configuration that yields the smallest value of the objective function is then used as an initial value
for optimization. Suppose the inflated sample variance is 10 and the exponential covariance is used assuming
isotropy. The parameter configurations evaluated are shown in Table 4.

For spatial linear models with random effects, the same approach is used to create a crossing of spatial
covariance parameters. A separate approach is used to create a set of random effect variances. The random
effect variances are similarly first grouped by proportions. The first combination is such that the first random
effect variance is given 90% of variance, and the remaining 10% is spread out evenly among the remaining
random effect variances. The second combination is such that the second random effect variance is given 90%
of the variance, and the remaining 10% is spread out evenly among the remaining random effect variances.
And so on and so forth. These combinations ascertain whether one random effect dominates variability. A
final grouping is lastly considered: all 100% of variance is spread out evenly among all random effects.
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σ2
de σ2

ie ϕ α S σ2
u1

σ2
u2

8.1 0.9 15 0 1 0.5 0.5
0.9 8.1 15 0 1 0.5 0.5
4.5 4.5 15 0 1 0.5 0.5
8.1 0.9 45 0 1 0.5 0.5
0.9 8.1 45 0 1 0.5 0.5
4.5 4.5 45 0 1 0.5 0.5
0.5 0.5 15 0 1 8.1 0.9
0.5 0.5 15 0 1 0.9 8.1
0.5 0.5 15 0 1 4.5 4.5
2.5 2.5 15 0 1 2.5 2.5
2.5 2.5 45 0 1 2.5 2.5

Table 5: Grid search parameter configurations for an isotropic exponential spatial covariance with two random
effects and inflated sample variance 10.

When finding parameter values σ2
de, σ2

ie, and the random effect variances (σ2
ui

for the ith random effect),
three scenarios are considered. In the first scenario, σ2

de and σ2
ie get 90% of the inflated sample variance and

the random effect variances get 10%. In this scenario, only the random effect grouping where the variance is
evenly spread out is considered. This is because the random effect variances are already contributing little to
the overall variability, so performing additional objective function evaluations is unnecessary. In the second
scenario, the random effects get 90% of the inflated sample variances and σ2

de and σ2
ie get 10%. Similarly

in this scenario, only the σ2
de and σ2

ie grouping where the variance is evenly spread out is considered. Also
in this scenario, only the lowest value for range and extra are used. In the third scenario, the 50% of the
inflated sample variance is given to σ2

de and σ2
ie and 50% to the random effects. In this scenario, the only

parameter combination considered is the case where variances are evenly spread out among σ2
de, σ2

ie, and the
random effect variances. Together, there are parameter configurations where the spatial variability dominates
(scenario 1), the random variability dominates (scenario 2), and where there is an even contribution from
spatial and random variability. The parameter configuration that minimizes the objective function is then
used as an initial value for optimization. Recall that random effects are only used with restricted maximum
likelihood or maximum likelihood estimation, so the objective function is always a likelihood.

Suppose the inflated sample variance is 10, the exponential covariance is used assuming isotropy, and there
are two random effects. The parameter configurations evaluated are shown in Table 5.

This grid search approach balances a thorough exploration of the parameter space with computational
efficiency, as each objective function evaluation can be computationally expensive.

17.5 Hypothesis Testing
The hypothesis tests for β̂ returned by summary() or tidy() of an splm or spautor object are asymptotic
z-tests based on the normal (Gaussian) distribution (Wald tests). The null hypothesis for the test associated
with each β̂i is that βi = 0. Then the test statistic is given by

z̃ = β̂i

SE(β̂i)
,

where SE(β̂i) is the standard error of β̂i, which equals the square root of the ith diagonal element of
(X⊤Σ̂−1X)−1. The p-value is given by 2 ∗ (1 − Φ(|z̃|)), which corresponds to an equal-tailed, two-sided
hypothesis test of level α where Φ(·) denotes the standard normal (Gaussian) cumulative distribution function
and | · | denotes the absolute value.

17.6 Random Effects (splm() only and "reml" or "ml" estmethod only)
The random effects contribute directly to the covariance through their design matrices. Let u be a mean-zero
random effect column vector of length nu, where nu is the number of levels of the random effect, with design
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matrix Zu. Then Cov(Zuu) = ZuCov(u)Z⊤
u . Because each element of u is independent of one another, this

reduces to Cov(Zuu) = σ2
uZuZ⊤

u , where σ2
u is the variance parameter corresponding to the random effect

(i.e., the random effect variance parameter).

The Z matrices index the levels of the random effect. Z has dimension n × nu, where n is the sample size.
Each row of Z corresponds to an observation and each column to a level of the random effect. For example,
suppose we have n = 4 observations, so y = {y1, y2, y3, y4}. Also suppose that the random effect u has two
levels and that y1 and y4 are in the first level and y2 and y3 are in the second level. For random intercepts,
each element of Z is one if the observation is in the appropriate level of the random effect and zero otherwise.
So it follows that

Zu =


1 0
0 1
0 1
1 0

 [
u1
u2

]
,

where u1 and u2 are the random intercepts for the first and second levels of u, respectively. For random
slopes, each element of Z equals the value of an auxiliary variable, k, if the observation is in the appropriate
level of the random effect and zero otherwise. So if k = {2, 7, 5, 4} it follows that

Zu =


2 0
0 7
0 5
4 0

 [
u1
u2

]
,

where u1 and u2 are the random slopes for the first and second levels of u, respectively. If a random slope is
included in the model, it is common for the auxiliary variable to be a column in X, the fixed effects design
matrix (i.e., also a fixed effect). Denote this column as x. Here β captures the average effect of x on y
(accounting for other explanatory variables) and u captures a subject-specific effect of x on y. So for a subject
in the ith level of u, the average increase in y associated with a one-unit increase x is β + ui.

The sv-wls and sv-cl estimation methods do not use a likelihood, and thus, they do not allow for the
estimation of random effects in spmodel.

17.7 Anisotropy (splm() only)
An isotropic spatial covariance function behaves similarly in all directions (i.e., is independent of direction) as
a function of distance. An anisotropic spatial covariance function does not behave similarly in all directions
as a function of distance.
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Figure 1: In the left figure, the ellipse of an isotropic spatial covariance function centered at the origin is
shown. In the right figure, the ellipse of an anisotropic spatial covariance function centered at the origin is
shown. The black outline of each ellipse is a level curve of equal correlation.
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Figure 1 shows ellipses for an isotropic and anisotropic spatial covariance function centered at the origin
(a distance of zero). The black outline of each ellipse is a level curve of equal correlation. The left ellipse
(a circle) represents an isotropic covariance function. The distance at which the correlation between two
observations lays on the level curve is the same in all directions. The right ellipse represents an anisotropic
covariance function. The distance at which the correlation between two observations lays on the level curve is
different in different directions.

To accommodate spatial anisotropy, the original coordinates must be transformed such that the transformed
coordinates yield an isotropic spatial covariance. This transformation involves a rotation and a scaling.
Consider a set of x and y coordinates that should be transformed into x∗ and y∗ coordinates. This
transformation is formally defined as[

x∗

y∗

]
=

[
1 0
0 1/S

] [
cos(α) sin(α)

− sin(α) cos(α)

] [
x
y

]
.

The original coordinates are first multiplied by the rotation matrix, which rotates the coordinates clockwise by
angle α. They are then multiplied by the scaling matrix, which scales the minor axis of the spatial covariance
ellipse by the reciprocal of S. The transformed coordinates are then used to compute distances and the
spatial covariances in Table 2. This type of anisotropy is more formally known as “geometric” anisotropy
because it involves a geometric transformation of the coordinates. Figure 2 shows this process step-by-step.

Figure 2: In the left figure, the ellipse of an anisotropic spatial covariance function centered at the origin is
shown. The blue lines represent the original axes and the red lines the transformed axes. The solid lines
represent the x-axes and the dotted lines the y-axes. Note that the solid, red line is the major axis of the
ellpise and the dashed, red line is the minor axis of the ellipse. In the center figure, the ellipse has been
rotated clockwise by the rotate parameter so the major axis is the transformed x-axis and the minor axis is
the transformed y-axis. In the right figure, the minor axis of the ellipse has been scaled by the reciprocal of
the scale parameter so that the ellipse becomes a circle, which corresponds to an isotropic spatial covariance
function. The transformed coordinates are then used to compute distances and spatial covariances.

Anisotropy parameters (α and S) can be estimated in spmodel using restricted maximum likelihood or
maximum likelihood. Estimating anisotropy can be challenging. First, we need to restrict the parameter
space so that the two parameters are identifiable (there is a unique parameter set for each possible outcome).
We restricted α to [0, π] radians due to symmetry of the covariance ellipse at rotations α and α + jπ, where j
is any integer. We also restricted S to occur on [0, 1] because we have defined S as the scaling factor for the
length of the minor axis relative to the major axis – otherwise it would not be clear whether S refers to the
minor or major axis. Given this restricted parameter space, there is still an issue of local maxima, particularly
at rotation parameters near zero, which have a rotation very close to rotation parameter π, but zero is far
from π in the parameter space. To address the local maxima problem, each optimization iteration actually
involves two likelihood evaluations – one for α and another for |π − α|, where | · | denotes absolute value.
Thus one likelihood evaluation is always in [0, π/2] radians and another in [π/2, π] radians, exploring different
quadrants of the parameter space and allowing optimization to test solutions near zero and π simultaneously.

Anisotropy parameters cannot be estimated in spmodel when estmethod is sv-wls or sv-cl. However, known
anisotropy parameters for these estimation methods can be specified via spcov_initial and incorporated
into estimation of θ and β. Anisotropy is not defined for areal data given its (binary) neighborhood structure.
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17.8 Partition Factors
A partition factor is a factor (or categorical) variable in which observations from different levels of the
partition factor are assumed uncorrelated. A partition matrix P of dimension n × n can be constructed to
represent the partition factor. The ijth element of P equals one if the observation in the ith row and jth
column are from the same level of the partition factor and zero otherwise. Then the initial covariance matrix
(ignoring the partition factor) is updated by taking the Hadmard (element-wise) product with the partition
matrix:

Σupdated = Σinitial ⊙ P,

where ⊙ indicates the Hadmard product. Partition factors impose a block structure in Σ, which allows for
efficient computation of Σ−1 used for estimation and prediction.

When computing the empirical semivariogram using esv(), semivariances are ignored when observations are
from different levels of the partition factor. For the sv-wls and sv-cl estimation methods, semivariances are
ignored when observations are from different levels of the partition factor.

17.9 Big Data (splm() only)
Big data model-fitting is accommodated in spmodel using a “local indexing” approach. Suppose there are m
unique indexes, and each observation is in one index. Then Σ can be represented blockwise as

Σ =



Σ1,1 Σ1,2 . . . . . . Σ1,m

Σ2,1 Σ2,2 Σ2,3 . . . Σ2,m

... Σ3,2
. . . Σ3,4

...
...

... Σ4,3
. . .

...
Σm,1 . . . . . . . . . Σm,m

 , (13)

To perform estimation for big data, observations with the same index value are assumed independent of
observations with different index values, yielding a “big-data” covariance matrix given by

Σbd =



Σ1,1 0 . . . . . . 0
0 Σ2,2 0 . . . 0
... 0

. . . 0
...

...
... 0

. . .
...

0 . . . . . . . . . Σm,m

 , (14)

Estimation then proceeds as described in Section 17.3 using Σbd instead of Σ. When computing the empirical
semivariogram, semivariances are ignored when observations have different local indexes. For the sv-wls and
sv-cl estimation methods, semivariances are ignored when observations have different local indexes. Via
Equation 14, it can be seen that the local index acts as a partition factor separate from the partition factor
explicitly defined by partition_factor.

spmodel allows for custom local indexes to be passed to splm(). If a custom local index is not passed, the local
index is determined using the "random" or "kmeans" method. The "random" method assigns observations to
indexes randomly based on the number of groups desired. The "kmeans" method uses k-means clustering
(MacQueen and others 1967) on the x-coordinates and y-coordinates to assign observations to indexes (based
on the number of clusters (groups) desired).

The estimate of β when using Equation 14 is given by

β̂bd = (X⊤Σ̂−1
bd X)−1X⊤Σ̂−1

bd y = T−1
xx txy, (15)

where Txx =
∑m

i=1 X⊤
i Σ̂−1

i,i Xi and txy =
∑m

i=1 X⊤
i Σ̂−1

i,i yi. Note that in β̂bd, Xi and yi are the subsets of X
and y, respectively, for the ith local index. Equation 15 acts as a pooled estimator of β across the indexes.
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spmodel has four approaches for estimating the covariance matrix of β̂bd. The choice is determined by the
var_adjust argument to local. The first approach is implements no adjustment (var_adjust = "none")
and simply uses T−1

xx , which is the covariance matrix of β̂bd using Σbd (Equation 14). While computationally
efficient, this approach ignores the covariance across indexes. It can be shown that the covariance of β̂bd

using Σ (Equation 13) is given by
T−1

xx + T−1
xx WxxT−1

xx , (16)

where

W =
m−1∑
i=1

m∑
j=i+1

(X⊤Σ̂−1
i,i Σ̂i,jΣ̂−1

j,j Xj) + (X⊤Σ̂−1
i,i Σ̂i,jΣ̂−1

j,j Xj)⊤

Equation 16 can be viewed as the sum of the unadjusted covariance matrix of β̂bd (T−1
xx ) and a correction that

incorporates the covariance across indexes (T−1
xx WxxT−1

xx ). This adjustment is known as the “theoretically-
correct” (var_adjust = "theoretical") adjustment because it uses Σ. The theoretical adjustment is the
default adjustment in spmodel because it is theoretically correct, but it is the most computationally expensive
adjustment. Two alternative adjustments are also provided, and while not equal to the theoretical adjustment,
they are easier to compute. They are the empirical (var_adjust = "empirical") and pooled (var_adjust
= "pooled") adjustments. The empirical adjustment is given by

1
m(m − 1)

m∑
i=1

(β̂i − β̂bd)(β̂i − β̂bd)⊤,

where β̂i = (X⊤Σ̂−1X)−1X⊤
i Σ̂−1

i,i yi. A similar adjustment could use β̂i = (X⊤
i Σ̂−1

i,i Xi)−1XiΣ̂−1
i,i yi, which

more closely resembles a composite likelihood approach. This approach is sensitive to the presence of at least
one singularity in X⊤

i Σ̂−1
i,i Xi, in which case the variance adjustment cannot be computed. The "pooled"

variance adjustment is given by
1

m2

m∑
i=1

(X⊤
i Σ̂−1

i,i Xi)−1.

Note that the pooled variance adjustment cannot be computed if any X⊤
i Σ̂−1

i,i Xi are singular.

18 sprnorm()

Spatial normal (Gaussian) random variables are simulated by taking the sum of a fixed mean and random
errors. The random errors have mean zero and covariance matrix Σ. A realization of the random errors is
obtained from Σ1/2e, where e is a normal random variable with mean zero and covariance matrix I. Then
the spatial normal random variable equals

y = µ + Σ1/2e,

where µ is the fixed mean. It follows that

E(y) = µ + Σ1/2E(e) = µ

Cov(y) = Cov(Σ1/2e) = Σ1/2Cov(e)Σ1/2 = Σ1/2Σ1/2 = Σ

19 vcov()

vcov() returns the variance-covariance matrix of estimated parameters. Currently, vcov() only returns the
variance-covariance matrix of β̂, the fixed effects. The variance-covariance matrix of the fixed effects is given
by (X⊤Σ̂−1X)−1.
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20 A Note on Covariance Square Roots and Inverse Products
Often Σ−1 is not strictly needed for estimation, prediction, or other purposes, but at least the product
between Σ−1 and some other matrix is needed. Consider the example of the covariance matrix of β̂ and
observe X⊤Σ−1X is needed. The most direct way to find this product is certainly to obtain Σ−1 and then
multiply by X⊤ on the left and X on the right. This is both computationally expensive and cannot be used to
compute products that involve Σ−1/2, which are often useful (Section 16). It is helpful to rewrite X⊤Σ−1X
as X⊤(S⊤)−1S−1X = (S−1X)⊤S−1X. Then one computes the inverse products by finding S.

One way to find S is to use an eigendecomposition. The eigendecomposition of Σ (which is real and symmetric)
is given by

Σ = UDU⊤,

where U is an orthogonal matrix of eigenvectors of Σ and D is a diagonal matrix with eigenvalues of Σ on
the diagonal. Then Σ1/2 = UD1/2U⊤, where D1/2 is a diagonal matrix with square roots of eigenvalues of
Σ on the diagonal. This result follows because U being orthogonal implies U⊤ = U−1 and

Σ1/2Σ1/2 = UD1/2U⊤UD1/2U⊤ = UD1/2(U⊤U)D1/2U⊤ = UDU⊤ = Σ.

So then taking S = D1/2 implies S−1 = D−1/2, which is straightforward to calculate as D1/2 is diagonal. So
not only does the eigendecomposition approach give us the inverse products, it also gives us Σ1/2 and Σ−1/2.
While straightforward, this approach is less efficient than the Cholesky decomposition (Golub and Van Loan
2013), which we discuss next.

The Cholesky decomposition decomposes Σ into the product between C and C⊤ (Σ = CC⊤), where C is a
lower triangular matrix. Note that C is generally not equal to Σ1/2. Taking S to be C, we see that finding
the inverse products requires solving C−1X. Observe that C−1X = A for some matrix A. This implies
X = CA, which for A can be efficiently solved using forward substitution because C is lower triangular.

The products in this document that involve Σ1/2 and Σ−1/2 are actually implemented in spmodel using C
and C−1 (instead of Σ1/2 and Σ−1/2). They are written in this document using Σ1/2 and Σ−1/2 because the
underlying concepts are easier to communicate using square root notation.
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