library(spdep)
library(spatialreg)
library(sf)
library(ggplot2)
This guide show the functionalities of the spqdep package to test spatial dependence on qualitative dataset.
Two data sets will be used as examples in this guide:
provinces_spain: The division of Spain into provinces. It is a multypolygon geometry with isolated provinces (islands without neighbouring provinces). See by example Paez et al. 2021.
FastFood.sf: The data set used as example in Ruiz, López, and Páez (2010). It is a geometry of points.
The package is install like usual and the dataset can be loaded using the next code
library(spqdep)
data("provinces_spain", package = "spqdep")
data("FastFood.sf", package = "spqdep")
Additional to the two dataset available in the spqdep package. The user can generate structured spatial processes using the function. The DGP generate with this function defined in Ruiz, López, and Páez (2010).
The next code show how to generate a random process on a set of random points localized in a square 1x1. In this case, the connectivity criteria is based on the 4 near neighborhood.
set.seed(123)
N <- 100
cx <- runif(N)
cy <- runif(N)
coor <- cbind(cx,cy)
p <- c(1/6,3/6,2/6)
rho = 0.5
listw <- spdep::nb2listw(knn2nb(knearneigh(coor, k = 4)))
fx <- dgp.spq(list = listw, p = p, rho = rho)
The next plot show the qualitative spatial process defined.
ggplot(data.frame(fx = fx, cx = cx, cy = cy), aes(x = cx, y = cy, color = fx)) +
geom_point(size = 6) +
theme_bw()
The Q-test (Ruiz, López, and Páez 2010) is based on m-surroundings
Before to apply the Q-test it is necessary define a set of the m-surroundings
The function generate a set of m-surrounding.
The user can tuning several parameters to obtain a congruent set of m-surroundings.
m.surround() is the function to generate m-surroundings.
The output of this function is a object of the class m_surr
Using the method the user can explore the coherence of m-surroundings.
By example. the next code obtain m-surroundings with length m = 3 and degree of overlapping r = 1:
m = 3
r = 1
mh <- m.surround(x = cbind(cx,cy), m = m, r = r)
class(mh)
## [1] "m_surr" "list"
The spqdep have three methods that can be apply to this class: , and
print(mh)
## [,1] [,2] [,3]
## [1,] 1 19 17
## [2,] 2 65 53
## [3,] 3 42 77
## [4,] 4 11 26
## [5,] 6 18 85
## [6,] 7 79 93
## [7,] 8 21 31
## [8,] 13 58 68
## [9,] 15 98 74
## [10,] 17 76 96
## [11,] 20 87 24
## [12,] 22 82 92
## [13,] 25 9 61
## [14,] 26 14 7
## [15,] 27 72 13
## [16,] 31 5 20
## [17,] 37 73 89
## [18,] 38 30 15
## [19,] 41 91 62
## [20,] 46 47 49
## [21,] 48 43 55
## [22,] 49 29 60
## [23,] 52 86 3
## [24,] 53 97 69
## [25,] 55 28 27
## [26,] 56 64 41
## [27,] 57 35 63
## [28,] 60 44 70
## [29,] 61 78 94
## [30,] 62 54 46
## [31,] 63 83 75
## [32,] 67 50 37
## [33,] 68 84 2
## [34,] 69 59 22
## [35,] 70 12 99
## [36,] 71 34 67
## [37,] 74 51 6
## [38,] 75 36 100
## [39,] 77 88 8
## [40,] 85 80 57
## [41,] 89 32 4
## [42,] 90 45 38
## [43,] 92 23 25
## [44,] 93 39 95
## [45,] 94 33 71
## [46,] 95 81 90
## [47,] 96 40 56
## [48,] 99 10 48
## [49,] 100 66 52
summary(mh)
##
## Characteristics of m-surrounding:
##
## Number of m-surrounding (R): 49
## Length of m-surrounding (m): 3
## Number no-symbolized observations: 1
##
## List of no-symbolized observations:
## 16
##
## List of the degree overlaping:
## There are 2 m-surrounding that have intersection with 1 m-surrounding
## There are 47 m-surrounding that have intersection with 2 m-surrounding
## Mean degree of overlaping: 1.9592
plot(mh, type = 1)
By example, with control argument, the user can ‘prune’ non-coherent m-surroundings.
control <- list (dtmaxknn = 10)
mh.prune <- m.surround(x = coor, m = m, r = r, control = control)
plot(mh.prune)
The user must select the longitude of the m-surroundings (m) and the overlapping degree (r). In the next code example, the Q-test is obtain for the DGP spatial process (fx) obtain with the . The coordinates coor must be included as argument.
q.test <- Q.test(fx = fx, coor = coor, m = 3, r = 1)
The output is a list with the result for symbols based on permutations (standard) and combinations (equivalent).
The output of this function is an object of the spqtest class.
The asymptotic distribution is the default distribution to obtain the significance of Q-test (Ruiz, López, and Páez 2010).
Alternatively, the Monte Carlo method can be used to obtain the significance of the test. The paper López and Páez (2012) describe this approach.
q.test.mc <- Q.test(fx = fx, coor = coor, m = 3, r = 1, distr = "mc")
summary(q.test.mc)
Qualitative Dependence Test (Q) | ||||||||
---|---|---|---|---|---|---|---|---|
Distribution: mc. Distance: Euclidean | ||||||||
Q | p.value | k | N | m | R | n | R/n | 5k^m |
V1 - standard-permutations | ||||||||
41.51 | 0.12900 | 3 | 100 | 3 | 100 | 27 | 3.70 | 135 |
V1 - equivalent-combinations | ||||||||
32.80 | 0.03600 | 3 | 100 | 3 | 100 | 10 | 10.00 | 135 |
A summary can be apply to an object of the spqtest class:
summary(q.test)
Qualitative Dependence Test (Q) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Distribution: asymptotic. Distance: Euclidean | ||||||||||
Q | df | p.value | k | N | m | r | R | n | R/n | 5k^m |
V1 - standard-permutations | ||||||||||
30.10 | 26 | 0.26354 | 3 | 100 | 3 | 1 | 49 | 27 | 1.81 | 135 |
V1 - equivalent-combinations | ||||||||||
16.73 | 9 | 0.05318 | 3 | 100 | 3 | 1 | 49 | 10 | 4.90 | 135 |
The histogram of the number of symbols is obtain appling the plot method.
plot(q.test)
## [[1]]
##
## [[2]]
# Case 3: With a sf object with isolated areas
sf_use_s2(FALSE)
## Spherical geometry (s2) switched off
provinces_spain$Male2Female <- factor(provinces_spain$Male2Female > 100)
levels(provinces_spain$Male2Female) = c("men","woman")
f1 <- ~ Male2Female
q.test.sf <- Q.test(formula = f1, data = provinces_spain, m = 3, r = 1)
plot(q.test.sf)
## [[1]]
##
## [[2]]
The next code generate two qualitative spatial process with different levels of spatial dependence and the Q-Map is apply.
p <- c(1/6,3/6,2/6)
rho = 0.5
QY1 <- dgp.spq(p = p, listw = listw, rho = rho)
rho = 0.8
QY2 <- dgp.spq(p = p, listw = listw, rho = rho)
dt = data.frame(QY1,QY2)
m = 3
r = 1
formula <- ~ QY1 + QY2
control <- list(dtmaxknn = 10)
qmap <- Q.map.test(formula = formula, data = dt, coor = coor, m = m, r = r, type ="combinations", control = control)
## Warning in Q.map.test(formula = formula, data = dt, coor = coor, m = m, : The
## ratio between the number of symbolized observations and the number of symbols is
## lower than 5.
print(qmap[[1]])
##
## Q-Map test of Equivalence for qualitative data.
##
## Symbols type: combinations
##
## Ratio Symbolized observations/Num symbols = 4.6
##
## data: QY1 and QY2
## QE = 148.71, df = 9, p-value < 2.2e-16
## alternative hypothesis: two.sided
plot(qmap, ci=.6)
The runs test (Ruiz, López, and Páez 2021) have global and local versions
listw <- knearneigh(coor, k = 3)
srq <- sp.runs.test(fx = fx, listw = listw)
print(srq)
##
## Runs test of spatial dependence for qualitative data. Asymptotic
## version
##
## data: mxf
## sp.runs test = -0.81833, p-value = 0.4132
## alternative hypothesis: two.sided
## sample estimates:
## Total runs Mean total runs Variance total runs
## 276.0000 285.5152 135.1986
plot(srq)
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less")
print(lsrq)
## runs.i E.i Std.i z.value p.value
## 1 2 2.855152 0.8722689 -0.9803761 0.16345026
## 2 3 2.855152 0.8722689 0.1660594 0.56594492
## 3 3 2.855152 0.8722689 0.1660594 0.56594492
## 4 2 2.855152 0.8722689 -0.9803761 0.16345026
## 5 4 2.855152 0.8722689 1.3124950 0.90532341
## 6 3 2.855152 0.8722689 0.1660594 0.56594492
## 7 3 2.855152 0.8722689 0.1660594 0.56594492
## 8 2 2.855152 0.8722689 -0.9803761 0.16345026
## 9 3 2.855152 0.8722689 0.1660594 0.56594492
## 10 2 2.855152 0.8722689 -0.9803761 0.16345026
## 11 2 2.855152 0.8722689 -0.9803761 0.16345026
## 12 3 2.855152 0.8722689 0.1660594 0.56594492
## 13 4 2.855152 0.8722689 1.3124950 0.90532341
## 14 1 2.855152 0.8722689 -2.1268116 0.01671787
## 15 2 2.855152 0.8722689 -0.9803761 0.16345026
## 16 3 2.855152 0.8722689 0.1660594 0.56594492
## 17 3 2.855152 0.8722689 0.1660594 0.56594492
## 18 4 2.855152 0.8722689 1.3124950 0.90532341
## 19 3 2.855152 0.8722689 0.1660594 0.56594492
## 20 3 2.855152 0.8722689 0.1660594 0.56594492
## 21 3 2.855152 0.8722689 0.1660594 0.56594492
## 22 4 2.855152 0.8722689 1.3124950 0.90532341
## 23 4 2.855152 0.8722689 1.3124950 0.90532341
## 24 3 2.855152 0.8722689 0.1660594 0.56594492
## 25 4 2.855152 0.8722689 1.3124950 0.90532341
## 26 1 2.855152 0.8722689 -2.1268116 0.01671787
## 27 2 2.855152 0.8722689 -0.9803761 0.16345026
## 28 2 2.855152 0.8722689 -0.9803761 0.16345026
## 29 3 2.855152 0.8722689 0.1660594 0.56594492
## 30 3 2.855152 0.8722689 0.1660594 0.56594492
## 31 3 2.855152 0.8722689 0.1660594 0.56594492
## 32 2 2.855152 0.8722689 -0.9803761 0.16345026
## 33 4 2.855152 0.8722689 1.3124950 0.90532341
## 34 2 2.855152 0.8722689 -0.9803761 0.16345026
## 35 3 2.855152 0.8722689 0.1660594 0.56594492
## 36 2 2.855152 0.8722689 -0.9803761 0.16345026
## 37 2 2.855152 0.8722689 -0.9803761 0.16345026
## 38 3 2.855152 0.8722689 0.1660594 0.56594492
## 39 2 2.855152 0.8722689 -0.9803761 0.16345026
## 40 2 2.855152 0.8722689 -0.9803761 0.16345026
## 41 3 2.855152 0.8722689 0.1660594 0.56594492
## 42 3 2.855152 0.8722689 0.1660594 0.56594492
## 43 1 2.855152 0.8722689 -2.1268116 0.01671787
## 44 3 2.855152 0.8722689 0.1660594 0.56594492
## 45 2 2.855152 0.8722689 -0.9803761 0.16345026
## 46 2 2.855152 0.8722689 -0.9803761 0.16345026
## 47 4 2.855152 0.8722689 1.3124950 0.90532341
## 48 1 2.855152 0.8722689 -2.1268116 0.01671787
## 49 3 2.855152 0.8722689 0.1660594 0.56594492
## 50 3 2.855152 0.8722689 0.1660594 0.56594492
## 51 4 2.855152 0.8722689 1.3124950 0.90532341
## 52 2 2.855152 0.8722689 -0.9803761 0.16345026
## 53 3 2.855152 0.8722689 0.1660594 0.56594492
## 54 3 2.855152 0.8722689 0.1660594 0.56594492
## 55 4 2.855152 0.8722689 1.3124950 0.90532341
## 56 4 2.855152 0.8722689 1.3124950 0.90532341
## 57 2 2.855152 0.8722689 -0.9803761 0.16345026
## 58 3 2.855152 0.8722689 0.1660594 0.56594492
## 59 4 2.855152 0.8722689 1.3124950 0.90532341
## 60 2 2.855152 0.8722689 -0.9803761 0.16345026
## 61 3 2.855152 0.8722689 0.1660594 0.56594492
## 62 2 2.855152 0.8722689 -0.9803761 0.16345026
## 63 4 2.855152 0.8722689 1.3124950 0.90532341
## 64 2 2.855152 0.8722689 -0.9803761 0.16345026
## 65 2 2.855152 0.8722689 -0.9803761 0.16345026
## 66 3 2.855152 0.8722689 0.1660594 0.56594492
## 67 2 2.855152 0.8722689 -0.9803761 0.16345026
## 68 4 2.855152 0.8722689 1.3124950 0.90532341
## 69 3 2.855152 0.8722689 0.1660594 0.56594492
## 70 4 2.855152 0.8722689 1.3124950 0.90532341
## 71 3 2.855152 0.8722689 0.1660594 0.56594492
## 72 4 2.855152 0.8722689 1.3124950 0.90532341
## 73 2 2.855152 0.8722689 -0.9803761 0.16345026
## 74 3 2.855152 0.8722689 0.1660594 0.56594492
## 75 2 2.855152 0.8722689 -0.9803761 0.16345026
## 76 3 2.855152 0.8722689 0.1660594 0.56594492
## 77 3 2.855152 0.8722689 0.1660594 0.56594492
## 78 3 2.855152 0.8722689 0.1660594 0.56594492
## 79 3 2.855152 0.8722689 0.1660594 0.56594492
## 80 3 2.855152 0.8722689 0.1660594 0.56594492
## 81 2 2.855152 0.8722689 -0.9803761 0.16345026
## 82 3 2.855152 0.8722689 0.1660594 0.56594492
## 83 3 2.855152 0.8722689 0.1660594 0.56594492
## 84 3 2.855152 0.8722689 0.1660594 0.56594492
## 85 3 2.855152 0.8722689 0.1660594 0.56594492
## 86 3 2.855152 0.8722689 0.1660594 0.56594492
## 87 2 2.855152 0.8722689 -0.9803761 0.16345026
## 88 3 2.855152 0.8722689 0.1660594 0.56594492
## 89 2 2.855152 0.8722689 -0.9803761 0.16345026
## 90 2 2.855152 0.8722689 -0.9803761 0.16345026
## 91 2 2.855152 0.8722689 -0.9803761 0.16345026
## 92 3 2.855152 0.8722689 0.1660594 0.56594492
## 93 3 2.855152 0.8722689 0.1660594 0.56594492
## 94 2 2.855152 0.8722689 -0.9803761 0.16345026
## 95 3 2.855152 0.8722689 0.1660594 0.56594492
## 96 3 2.855152 0.8722689 0.1660594 0.56594492
## 97 4 2.855152 0.8722689 1.3124950 0.90532341
## 98 3 2.855152 0.8722689 0.1660594 0.56594492
## 99 2 2.855152 0.8722689 -0.9803761 0.16345026
## 100 2 2.855152 0.8722689 -0.9803761 0.16345026
plot(lsrq, sig = 0.05)
data("provinces_spain")
listw <- spdep::poly2nb(as(provinces_spain,"Spatial"), queen = FALSE)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
provinces_spain$Male2Female <- factor(provinces_spain$Male2Female > 100)
levels(provinces_spain$Male2Female) = c("men","woman")
plot(provinces_spain["Male2Female"])
formula <- ~ Male2Female
# Boots Version
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw, distr ="bootstrap", nsim = 199)
plot(lsrq, sf = provinces_spain, sig = 0.10)
Two of the scan tests to identify clusters can be apply to test spatial structure in qualitative spatial processes.
The scan test don’t need pre-define the classical W conectivity matrix.
See Kanaroglou (2016)
The scan tests contrasts the null of independence of a spatial qualitative process and give additional information indicating one (or perhaps more) spatial cluster(s).
The scan tests don’t have asymptotic distribution. The significance is obtained by permutational resampling.
The output of the scan function is an object of the classes scantest and htest
formula <- ~ Male2Female
scan.spain <- spqdep::scan.test(formula = formula, data = provinces_spain,
case="men", nsim = 99, distr = "bernoulli")
print(scan.spain)
##
## Scan test. Distribution: bernoulli
##
## data: Male2Female
## scan-loglik = 6.0359, p-value = 0.07
## alternative hypothesis: High
## sample estimates:
##
## Total observations in the MLC = 17.00
## Expected cases in the MLC = 11.84
## Observed cases in the MLC = 16.00
listw <- spdep::poly2nb(provinces_spain, queen = FALSE)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
scan.spain <- spqdep::scan.test(formula = formula, data = provinces_spain,
case="men", nsim = 99, windows = "flexible",
listw = listw, nv = 6, distr = "bernoulli")
## +++++end
print(scan.spain)
##
## Scan test. Distribution: bernoulli
##
## data: Male2Female
## scan-loglik = 1.9464, p-value < 2.2e-16
## alternative hypothesis: High
## sample estimates:
##
## Total observations in the MLC = 6.00
## Expected cases in the MLC = 370.74
## Observed cases in the MLC = 6.00
data(FastFood.sf)
formula <- ~ Type
scan.fastfood <- scan.test(formula = formula, data = FastFood.sf, nsim = 99, distr = "multinomial", windows = "elliptic",
nv = 50)
print(scan.fastfood)
##
## Scan test. Distribution: multinomial
##
## data: Type
## scan-loglik = 15.506, p-value < 2.2e-16
## sample estimates:
## H P S Sum
## cases.expect 13.48 14.86 14.66 43
## cases.observ 16.00 1.00 26.00 43
summary(scan.fastfood)
##
## Summary of data:
## Distribution....................: multinomial
## Number of locations.............: 877
## Total number of cases...........: 877
## Names of cathegories...........: H P S
## Total cases per category........: 275 303 299
## Percent cases per category......: 0.31 0.35 0.34
##
## Scan statistic:
## Total cases in the MLC.........: 43
## Names of cathegories...........: H P S
## Observed cases in the MLC......: 13.48 14.86 14.66
## Expected cases in the MLC......: 16 1 26
## Value of statistic (loglik ratio)....: 15.5058
## p-value........................: 0
##
## IDs of cluster detect:
## Location IDs included.....: 68 849 152 499 630 763 827 765 617 600 607 48 58 588 743 843 74 122 750 115 645 61 226 796 876 699 610 597 596 721 751 53 186 659 778 63 106 229 585 738 612 131 208
##
##
## Secondary Scan statistic. Number 1
## Total cases in secondary cluster......: 16
## Names of cathegories.................: H P S
## Percent per category total...........: 0.31 0.35 0.34
## Percent per category inside cluster..: 0.25 0.5 0.25
## Value of statisitic (loglik ratio)....: 11.5285
## p-value.........................: 0.1
## Location IDs included..................: 677 311 781 128 108 436 551 576 21 374 319 717 561 6 629 547
##
##
## Secondary Scan statistic. Number 2
## Total cases in secondary cluster......: 7
## Names of cathegories.................: H P S
## Percent per category total...........: 0.31 0.35 0.34
## Percent per category inside cluster..: 0.14 0.29 0.57
## Value of statisitic (loglik ratio)....: 7.0038
## p-value.........................: 0.96
## Location IDs included..................: 158 709 335 801 749 545 856
##
##
## Secondary Scan statistic. Number 3
## Total cases in secondary cluster......: 17
## Names of cathegories.................: H P S
## Percent per category total...........: 0.31 0.35 0.34
## Percent per category inside cluster..: 0.35 0.35 0.29
## Value of statisitic (loglik ratio)....: 6.8747
## p-value.........................: 0.98
## Location IDs included..................: 521 782 162 643 297 220 267 265 104 530 312 523 783 157 531 848 680
##
##
## Secondary Scan statistic. Number 4
## Total cases in secondary cluster......: 17
## Names of cathegories.................: H P S
## Percent per category total...........: 0.31 0.35 0.34
## Percent per category inside cluster..: 0.47 0.29 0.24
## Value of statisitic (loglik ratio)....: 6.7961
## p-value.........................: 0.98
## Location IDs included..................: 190 837 555 711 646 216 17 390 742 563 307 4 353 197 254 192 66
##
##
## Secondary Scan statistic. Number 5
## Total cases in secondary cluster......: 10
## Names of cathegories.................: H P S
## Percent per category total...........: 0.31 0.35 0.34
## Percent per category inside cluster..: 0.4 0.2 0.4
## Value of statisitic (loglik ratio)....: 6.5951
## p-value.........................: 0.98
## Location IDs included..................: 78 365 668 228 170 857 306 708 651 187
plot(scan.spain, sf = provinces_spain)
plot(scan.fastfood, sf = FastFood.sf)
The Farber et al. (2014) paper develop the similarity test
The function calculates the similarity test for both asymptotic distribution and permutational resampling.
coor <- st_coordinates(st_centroid(FastFood.sf))
listw <- spdep::knearneigh(coor, k = 4)
formula <- ~ Type
similarity <- similarity.test(formula = formula, data = FastFood.sf, listw = listw)
print(similarity)
##
## Similarity test of spatial dependence for qualitative data.
## Distribution: asymptotic
##
## data: Type
## Similarity-test = -5.4476, p-value = 5.105e-08
## alternative hypothesis: two.sided
provinces_spain$Older <- cut(provinces_spain$Older, breaks = c(-Inf,19,22.5,Inf))
levels(provinces_spain$Older) = c("low","middle","high")
f1 <- ~ Older + Male2Female
jc1 <- jc.test(formula = f1, data = provinces_spain, distr = "asymptotic", alternative = "greater", zero.policy = TRUE)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
summary(jc1)
JoinCount Spatial Tests (asymptotic) | |||||
---|---|---|---|---|---|
pairs | z-value | pvalue | Joincount | Expected | Variance |
Older - multinomial - alternative: greater - Join count test under nonfree sampling | |||||
high:high | −0.56 | 0.71077 | 14 | 15.71 | 9.48 |
low:low | −0.93 | 0.82392 | 7 | 9.34 | 6.35 |
middle:middle | −0.88 | 0.81070 | 13 | 15.71 | 9.48 |
low:high | −0.47 | 0.68162 | 24 | 25.88 | 15.78 |
middle:high | −1.21 | 0.88738 | 28 | 33.27 | 18.88 |
middle:low | −0.22 | 0.58727 | 25 | 25.88 | 15.78 |
Jtot | −1.29 | 0.90190 | 77 | 85.02 | 38.52 |
Male2Female - binomial - alternative: greater - Join count test under nonfree sampling | |||||
men-men | −2.17 | 0.98504 | 60 | 68.39 | 14.92 |
woman-woman | 2.11 | 0.01740 | 13 | 8.01 | 5.59 |
men-woman | −2.47 | 0.99333 | 38 | 49.39 | 21.19 |
jc1 <- jc.test(formula = f1, data = provinces_spain, distr = "mc", alternative = "greater", zero.policy = TRUE)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
summary(jc1)
JoinCount Spatial Tests (Monte Carlo) | ||||
---|---|---|---|---|
pairs | pvalue | Joincount | Expected | Variance |
Older - multinomial - alternative: greater - Monte-Carlo simulation of join-count statistic (nonfree sampling) | ||||
high:high | 0.50900 | 14 | 13.77 | 10.80 |
low:low | 0.68200 | 7 | 8.33 | 6.31 |
middle:middle | 0.53800 | 13 | 13.86 | 10.40 |
low:high | 0.40700 | 24 | 22.89 | 16.40 |
middle:high | 0.68300 | 28 | 29.55 | 18.26 |
middle:low | 0.25300 | 25 | 22.60 | 16.01 |
Jtot | 0.38900 | 77 | 75.03 | 22.51 |
Male2Female - binomial - alternative: greater - Monte-Carlo simulation of join-count statistic | ||||
men-men | 0.52150 | 60 | 60.34 | 23.29 |
woman-woman | 0.01750 | 13 | 7.10 | 5.95 |
Farber, S., Marin, M. R., & Páez, A. (2015). Testing for spatial independence using similarity relations. Geographical Analysis, 47(2), 97-120.
Paez, A., Lopez, F. A., Menezes, T., Cavalcanti, R., & Pitta, M. G. D. R. (2021). A spatio‐temporal analysis of the environmental correlates of COVID‐19 incidence in Spain. Geographical analysis, 53(3), 397-421.