Package 'spray'

July 6, 2022
Type PackageTitle Sparse Arrays and Multivariate Polynomials
Version 1.0-20
Maintainer Robin K. S. Hankin hankin.robin@gmail.com
Description Sparse arrays interpreted as multivariate polynomials.
License GPL (>= 2)
Depends methods
Suggests polynom, testthat
Imports Rcpp (>= 0.12.3),partitions,magic,mathjaxr,disordR (>=0.0-8)
LinkingTo Rcpp
SystemRequirements C++11
URL https://github.com/RobinHankin/spray
BugReports https://github.com/RobinHankin/spray/issues
RdMacros mathjaxr
R topics documented:
spray-package 2
arity 3
as.array 4
as.function.spray 5
asum 6
constant 7
deriv 8
Extract.spray 9
homog 10
knight 12
nterms 13
ooom 13
Ops.spray 14
pmax 15
print.spray 17
rspray 18
spray 19
spray-class 21
spraycross 21
spray_cpp 22
spray_missing_accessor 23
subs 24
summary.spray 25
zap 26
zero 26
Index 29
spray-package Sparse arrays and multivariate polynomials

Description

Functionality for sparse arrays, with emphasis on their interpretation as multivariate polynomials.

Details

Base R has the capability of dealing with arbitrary dimensioned numerical arrays, with the array class.

A sparse array is a type of array in which nonzero elements are stored along with an index vector describing their coordinates-instead of arrays. This allows for efficient storage and manipulation as base arrays often require the storing of many zero elements which consume computational and memory resources.

In the package, sparse arrays are represented as objects of class spray. They use the C++ standard template library (STL) map class, with keys being (unsigned) integer vectors, and values floats.
One natural application of sparse arrays, for which the package was written, is multivariate polynomials and the package vignette presents an extended discussion. Note that other interpretations exist: the stokes and weyl packages interpret spray objects as differential forms and elements of a Weyl algebra respectively.

Author(s)

Robin K. S. Hankin

Examples

```
# define a spray using a matrix of indices and a vector of values:
M <- matrix(sample(0:3,21,replace=TRUE),ncol=3)
a <- spray(M,sample(7))
# there are many pre-defined simple sprays:
b <- homog(3,4)
# arithmetic operators work:
a + 2*b
a - a*b^2/4
a+b
# we can sum over particular dimensions:
asum(a+b,1)
```

```
    # differentiation is supported:
    deriv(a^6,2)
    # extraction and replacement work as expected:
    b[1,2,1]
    b[1,2,1,drop=TRUE]
    b[diag(3)] <- 3
```


arity

The arity of a spray object

Description

The arity of a spray object: the number of indices needed to retrieve an entry, or the number of columns in the index matrix.

Usage

$\operatorname{arity}(S)$

Arguments

S a spray object

Value

Returns an integer

Author(s)

Robin K. S. Hankin

Examples

```
(a <- rspray())
arity(a)
```

```
as.array Coerce spray objects to arrays
```


Description

Coerces spray objects to arrays. Includes off-by-one functionality via option offbyone.

Usage

```
## S3 method for class 'spray'
as.array(x, offbyone=FALSE, compact=FALSE, ...)
## S3 method for class 'spray'
dim(x)
```


Arguments

$x \quad$ spray object
offbyone Boolean with default FALSE meaning to interpret the index entries as positions in their dimension, and TRUE meaning to add one to index values so that zero entries appear in the first place
compact Boolean with default FALSE meaning to translate the spray as is, and TRUE meaning to add constants to each column of the index matrix so that the resulting array is as small as possible
... Further arguments, currently ignored

Details

Argument offbyone defaults to FALSE; but if it is set to TRUE, it effectively adds one from the index matrix, so a zero entry in the index matrix means the first position in that dimension.
After the subtraction, if performed, the function will not operate if any index is less than 1.

Value

Returns an array of dimension $\operatorname{dim}(\mathrm{S})$. The "meat" of the function is

```
out <- array(0, dS)
out[ind] <- coeffs(S)
```


Author(s)

Robin K. S. Hankin

Examples

```
(M <- matrix(sample(0:4, 28, replace=TRUE), ncol=4))
(S <- spray(M, sample(7), addrepeats=TRUE))
as.array(S,offbyone=TRUE) \# a large object! sprays are terse
S <- spray(matrix(sample(1:4,28, replace=TRUE), ncol=4), sample(7))
A <- as.array(S) \# S has no zero indices [if it did, we would need to use offbyone=TRUE]
stopifnot(all(S[index(S),drop=TRUE] == A[index(S)]))
```


as.function.spray Coerce a spray object to a function

Description

Coerce a spray object to a function

Usage

\#\# S3 method for class 'spray'
as.function (x, \ldots. .

Arguments

x spray object, interpreted as a multivariate polynomial

Value

Returns a function; this function returns a numeric vector.

Note

Coercion is possible even if some indices are zero or negative. The function is not vectorized in the arity of its argument.

Author(s)

Robin K. S. Hankin

Examples

```
(S <- spray(matrix(1:6,3,2),1:3))
(f <- as.function(S))
```



```
S1 <- spray(matrix(sample(-2:2,replace=TRUE, 21), ncol=3), rnorm(7), addrepeats=TRUE)
S2 <- spray(matrix(sample(-2:2,replace=TRUE,15),ncol=3),rnorm(5),addrepeats=TRUE)
f1 <- as.function(S1)
f2 <- as.function(S2)
f3 <- as.function(S1*S2)
x <- 4:6
f1(x)*f2(x)-f3(x) # should be zero
```

\# coercion is vectorized:

```
f1(matrix(1:33,ncol=3))
```


asum Sum over dimension margins

Description

Sum over specified dimension margins.

Usage

\#\# S3 method for class 'spray'
asum(S, dims, drop=TRUE, ...)
asum_inverted(S, dims)
process_dimensions(S,dims)

Arguments

S
dims Vector of strictly positive integers corresponding to dimensions to be summed over
drop Boolean, with default TRUE meaning to drop the summed dimensions, and FALSE meaning to retain them.
.. Further arguments, currently ignored

Details

Function asum.spray() is the method for asum(). This takes a spray, and a vector of integers corresponding to dimensions to be summed over.

Function asum_inverted() is the same, but takes a vector of integers corresponding to dimensions not to sum over. This function is here because there is nice $\mathrm{C}++$ idiom for it.

Function process_dimensions() ensures that the dims argument is consistent with the spray S and returns a cleaned version thereof.

Value

Returns a spray object.

Author(s)

Robin K. S. Hankin

Examples

```
S <- spray(matrix(sample(0:2,60,replace=TRUE),ncol=3),addrepeats=TRUE)
S
asum(S,1)
asum(S,1:2)
asum(S,1:2,drop=FALSE)
asum(S,c(1,3)) == asum_inverted(S, 2)
```

constant Get or set the constant term of a spray object

Description

The constant term of a spray object is the coefficient corresponding to an index of all zeros. These functions get or set the constant of a spray object.

Usage

```
is.constant(x)
constant(x,drop=FALSE)
constant(x) <- value
drop(x)
```


Arguments

x	Object of class spray
value	Numeric value to set the constant coefficient to
drop	Boolean, with default FALSE meaning to return a spray object and TRUE meaning to return a numeric value

Value

In function constant(), return the coefficient, or a constant multivariate polynomial, depending on the value of drop.

Note

The behaviour of the drop argument (sort of) matches that of the spray extractor method. Function drop() returns the elements of the coefficients.

Function constant() ensures that zero spray objects retain the argument's arity.
It might have been better to call is.constant() is.scalar(), for consistency with the stokes and clifford packages. But this is not clear.

Author(s)

Robin K. S. Hankin

See Also

Extract

Examples

```
(S <- spray(partitions::blockparts(rep(2,3),3,TRUE)))
constant(S)
constant(S) <- 33
S
drop(constant(S,drop=FALSE))
```

```
deriv Partial differentiation of spray objects
```


Description

Partial differentiation of spray objects interpreted as multivariate polynomials

Usage

\#\# S3 method for class 'spray'
deriv(expr, i , derivative = 1, ...)
aderiv(S, orders)

Arguments

expr	A spray object, interpreted as a multivariate polynomial
i	Dimension to differentiate with respect to
derivative	How many times to differentiate
\ldots	Further arguments, currently ignored
S	spray object
orders	The orders of the differentials

Details

Function deriv.spray () is the method for generic spray (); if S is a spray object, then spray ($\mathrm{S}, \mathrm{i}, \mathrm{n}$) returns $\partial^{n} S / \partial x_{i}^{n}=S^{\left(x_{i}, \ldots, x_{i}\right)}$.
Function aderiv() is the generalized derivative; if S is a spray of arity 3 , then $\operatorname{aderiv}(S, c(i, j, k))$ returns $\frac{\partial^{i+j+k} S}{\partial x_{1}^{i} \partial x_{2}^{j} \partial x_{3}^{k}}$.

Value

Both functions return a spray object.

Author(s)

Robin K. S. Hankin

See Also

asum

Examples

```
(S <- spray(matrix(sample(-2:2,15,replace=TRUE),ncol=3),addrepeats=TRUE))
deriv(S,1)
deriv(S,2,2)
# differentiation is invariant under order:
aderiv(S,1:3) == deriv(deriv(deriv(S,1,1),2,2),3,3)
# Leibniz's rule:
S1 <- spray(matrix(sample(0:3,replace=TRUE,21),ncol=3), sample(7),addrepeats=TRUE)
S2 <- spray(matrix(sample(0:3,replace=TRUE,15),ncol=3),sample(5),addrepeats=TRUE)
S1*deriv(S2,1) + deriv(S1,1)*S2 == deriv(S1*S2,1)
# Generalized Leibniz:
aderiv(S1*S2,c(1,1,0)) == (
aderiv(S1,c(0,0,0))*aderiv(S2,c(1,1,0)) +
aderiv(S1,c(0,1,0))*aderiv(S2,c(1,0,0)) +
aderiv(S1,c(1,0,0))*aderiv(S2,c(0,1,0)) +
aderiv(S1, c(1,1,0))*aderiv(S2, c(0,0,0))
)
```


Description

Extract or replace subsets of sprays.

Usage

```
## S3 method for class 'spray'
S[..., drop=FALSE]
## S3 replacement method for class 'spray'
S[index, ...] <- value
```


Arguments

S	A spray object
index	elements to extract or replace
value	replacement value
\ldots	Further arguments
drop	Boolean, with default FALSE meaning to return a spray object and TRUE meaning to drop the spray structure and return a numeric vector

Details

These methods should work as expected, although the off-by-one issue might be a gotcha.
If drop is TRUE, a numeric vector is returned but the elements may be in any order.
If a <- spray (diag(3)), for example, then idiom such as a[c(1,2,3)] cannot work, because one would like $a[1,2,3]$ and $a[1: 3,2,3]$ to work.
If $p<-1: 3$, then one might expect idiom such as $S[1,, p, 1: 3]$ to work but this is problematic and a discussion is given in inst/missing_accessor.txt.

Examples

```
(a <- spray(diag(5)))
a[rbind(rep(1,5))] <- 5
a
a[3,4,5,3,1] # the NULL polynomial
a[0,1,0,0,0]
a[0,1,0,0,0,drop=TRUE]
a[2,3:5,4,3,3]<- 9
a
options(polyform = TRUE) # print as a multivariate polynomial
a
options(polyform = FALSE) # print in sparse array form
a
(S1 <- spray(diag(5),1:5))
(S2 <- spray(1-diag(5),11:15))
(S3 <- spray(rbind(c(1,0,0,0,0),c(1,2,1,1,1))))
S1[] <- 3
S1[] <- S2
S1[S3] <- 99
S1
```


homog Various functions to create simple spray objects

Description

Various functions to create simple spray objects such as single-term, homogeneous, and constant multivariate polynomials.

Usage

product (power)
homog (d, power=1)
linear(x, power=1)
lone (n, $d=n$)
one(d)
as.id(S)
xyz(d)

Arguments

d
power Integer vector of powers
$x \quad$ Numeric vector of coefficients
S A spray object
n
In function lone(), the term to raise to power 1

An integer; generally, the dimension or arity of the resulting spray object

Value

All functions documented here return a spray object

Note

The functions here are related to their equivalents in the multipol package, but are not exactly the same.

Function zero() is documented at zero. Rd, but is listed below for convenience.

Author(s)

Robin K. S. Hankin

See Also

constant, zero

Examples

$\operatorname{product}(1: 3)$	$\#$	$x * y^{\wedge} 2 * z^{\wedge} 3$
$\operatorname{homog}(3)$	$\#$	$x+y+z$
$\operatorname{homog}(3,2)$	$\#$	$x^{\wedge} 2+x y+x z+y^{\wedge} 2+y z+z^{\wedge} 2$
$\operatorname{linear}(1: 3)$	$\#$	$1 * x+2 * y+3 * z$
$\operatorname{linear}(1: 3,2)$	$\#$	$1 * x^{\wedge} 2+2 * y^{\wedge} 2+3 * z^{\wedge} 2$
$\operatorname{lone}(3)$	$\#$	z
$\operatorname{lone}(2,3)$	$\#$	y
one(3)	$\#$	1
zero(3)	$\#$	0
$\operatorname{xyz}(3)$	$\#$	$x y z$

knight Generating function for a chess knight and king

Description

Generating function for a chess knight and king on an arbitrarily-dimensioned chessboard

Usage

knight(d=2)
king(d=2)

Arguments

d Dimensionality of the board, defaulting to 2

Value

Returns the generating function of the piece in question.

Note

The pieces are forced to move; if they have the option of not moving, add 1 to the returned spray. The vignette contains a short discussion.

Author(s)

Robin K. S. Hankin

Examples

```
knight() # default 2D chess board
king() # ditto
knight()^2 # generating function for two knight's moves
## How many ways can a knight return to its starting square in 6 moves?
constant(knight()^6)
## How many in 6 or fewer?
constant((1+knight())^6)
## Where does a randomly-moving knight end up?
d <- xyz(2)
kt <- (1+knight())*d^2/9
persp(1:25,1:25,as.array(d*kt^6))
## what is the probability that a 4D king is a knight's move from
## (0,0,0,0) after 6 moves?
sum(coeffs(((king(4)/80)^4)[knight(4)]))
```


Description

Number of nonzero terms in a spray object

Usage

nterms(S)

Arguments

S
Object of class spray

Author(s)

Robin K. S. Hankin

Examples

```
(a <- rspray())
nterms(a)
```


Description

One-over-one-minus for spray objects; the nearest to 'division' that we can get.

Usage

ooom(S, n)

Arguments

S
object of class spray
$\mathrm{n} \quad$ Order of the approximation

Details

Returns the Taylor expansion to order n of $1 /(1-S)$, that is, $1+S+S^{2}+S^{3}+\ldots+S^{n}$.

Value

Returns a spray object of the same arity as S .

Note

Uses Horner's method for efficiency

Author(s)

Robin K. S. Hankin

Examples

```
(x <- spray(matrix(1)))
ooom(x,5) # 1 + x + x^2 + x^3 + x^4 + x^5
(a <- homog(4,2))
d <- (1-a)*ooom(a,3)
constant(d) # should be 1
rowSums(index(d)) # a single 0 and lots of 8s.
```


Ops.spray Arithmetic Ops Group Methods for sprays

Description

Allows arithmetic operators to be used for spray calculations, such as addition, multiplication, division, integer powers, etc. Objects of class spray are interpreted as sparse multivariate polynomials.

Usage

```
## S3 method for class 'spray'
Ops(e1, e2 = NULL)
spray_negative(S)
spray_times_spray(S1,S2)
spray_times_scalar(S,x)
spray_plus_spray(S1,S2)
spray_plus_scalar(S,x)
spray_power_scalar(S,n)
spray_eq_spray(S1,S2)
spray_eq_numeric(S1,x)
```


Arguments

$e 1, e 2, S, S 1, S 2 \quad$ Objects of class spray, here interpreted as sparse multivariate polynomials
$x \quad$ Real valued scalar
n Non-negative integer
pmax

Details

The function Ops.spray () passes unary and binary arithmetic operators ("+", "-", "*", "/","==", and " "") to the appropriate specialist function.
The most interesting operators are " $*$ " and " + " which execute multivariate polynomial multiplication and addition respectively.

Testing for equality uses spray_eq_spray(). Note that spray_eq_spray (S1,S2) is algebraically equivalent to is.zero(S1-S2), but faster (FALSE is returned as soon as a mismatch is found).

Value

The functions all return spray objects except "==", which returns a logical.

Author(s)

Robin K. S. Hankin

See Also

ooom

Examples

```
M <- matrix(sample(0:3,21,replace=TRUE),ncol=3)
a <- spray(M,sample(7))
b <- homog(3,4)
# arithmetic operators mostly work as expected:
a + 2*b
a - a*b^2/4
a+b
S1 <- spray(partitions::compositions(4,3))
S2 <- spray(diag(3)) # S2 = x+y+z
stopifnot((S1+S2)^3 == S1^3 + 3*S1^2*S2 + 3*S1*S2^2 + S2^3 )
```


pmax

Description

Parallel (pairwise) maxima and minima for sprays.

Usage

```
maxpair_spray(S1,S2)
minpair_spray(S1,S2)
## S3 method for class 'spray'
pmax(x, ...)
## S3 method for class 'spray'
pmin(x, ...)
```


Arguments

$\mathrm{x}, \mathrm{S} 1$, S2	Spray objects
\ldots	spray objects to be compared

Details

Function maxpair_spray() finds the pairwise maximum for two sprays. Specifically, if S3 <maxpair_spray (S1,S2), then $\mathrm{S} 3[\mathrm{v}]==\max (\mathrm{S} 1[\mathrm{v}], \mathrm{S} 2[\mathrm{v}])$ for every index vector v .
Function pmax.spray() is the method for the generic $\operatorname{pmax}()$, which takes any number of arguments. If S 3 <-maxpair_spray $(S 1, S 2, \ldots)$, then $S 3[v]==\max (S 1[v], S 2[v], \ldots)$ for every index vector v.
Function pmax.spray () operates right-associatively:
$\operatorname{pmax}(S 1, S 2, S 3, S 4)==f(S 1, f(S 2, f(S 3, S 4)))$ where $f()$ is short for maxpair_spray(). So if performance is important, put the smallest spray (in terms of number of nonzero entries) last.
In these functions, a scalar is interpreted as a sort of global maximum. Thus if S3 <- pmax (S,x) we have $S 3[v]==\max (S[v], x)$ for every index v. Observe that this operation is not defined if $x>0$, for then there would be an infinity of v for which $S 3[v]!=0$, an impossibility (or at least counter to the principles of a sparse array). Note also that x cannot have length >1 as the elements of a spray object are stored in an arbitrary order.

Functions minpair_spray() and pmin.spray() are analogous. Note that minpair_spray(S1, S2) is algebraically equivalent to -pmax_spray ($-\mathrm{S} 1,-\mathrm{S} 2$); see the examples.
The value of $\operatorname{pmax}(S)$ is problematic. Suppose all (coeffs $(S)<0)$; the current implementation returns $\operatorname{pmax}(S)==S$ but there is a case for returning the null polynomial.

Value

Returns a spray object

Author(s)

Robin K. S. Hankin

Examples

```
S1 <- rspray(100,vals=sample(100)-50)
S2 <- rspray(100,vals=sample(100)-50)
S3 <- rspray(100,vals=sample(100)-50)
# following comparisons should all be TRUE:
jj <- pmax(S1,S2,S3)
```

```
jj == maxpair_spray(S1,maxpair_spray(S2,S3))
jj == maxpair_spray(maxpair_spray(S1,S2),S3)
pmax(S1,S2,S3) == -pmin(-S1,-S2,-S3)
pmin(S1,S2,S3) == -pmax(-S1,-S2,-S3)
pmax(S1,-Inf) == S1
pmin(S1, Inf) == S2
pmax(S1,-3)
## Not run:
pmax(S1,3) # not defined
## End(Not run)
```

```
print.spray
```

Print methods for spray objects

Description

Print methods for spray objects with options for printing in matrix form or multivariate polynomial form

Usage

```
## S3 method for class 'spray'
print(x, ...)
print_spray_matrixform(S)
print_spray_polyform(S)
```


Arguments

x, S	spray object
\ldots	Further arguments (currently ignored)

Details

The print method, print.spray(), dispatches to helper functions print_spray_matrixform() and print_spray_polyform() depending on the value of option polyform; see the examples section.
Option sprayvars is a character vector with entries corresponding to the variable names for printing. The sprayvars option has no algebraic significance: all it does is affect the print method.

Note that printing a spray object (in either matrix form or polynomial form) generally takes much longer than calculating it.

Value

Returns its argument invisibly.

Note

There are a couple of hard-wired symbols for multiplication and equality which are defined near the top of the helper functions.

Author(s)

Robin K. S. Hankin

Examples

(a <- spray (diag(3)))
options(polyform = FALSE)
$a^{\wedge} 3$
options(polyform = TRUE)
$a^{\wedge} 3$
options(sprayvars=letters)
a <- diag(26)
spray(a)
\#\# Following example from mpoly:
a[1 + cbind(0:25, 1:26) \%\% 26] <- 2
spray (a)

$$
\text { rspray } \quad \text { Random spray objects }
$$

Description

Creates random spray objects as quick-and-dirty examples of multivariate polynomials

Usage

rspray($n=9$, vals $=$ seq_len(n), arity $=3$, powers $=0: 2$)

Arguments

n	Number of distinct rows (maximum); repeated rows are merged (argument addrepeats is TRUE)
vals	Values to use for coefficients
arity	Arity of the spray; the number of columns in the index matrix
powers	Set from which to sample the entries of the index matrix

Value

Returns a spray object

Note

If the index matrix contains repeated rows, the returned spray object will contain fewer than n entries

Author(s)

Robin K. S. Hankin

See Also

spray

Examples

```
rspray()
rspray(4)*rspray(3,rnorm(3))
rspray(3,arity=7,powers=-2:2)^3
rspray(1000,vals=rnorm(1000))
```

spray Sparse arrays: spray objects

Description

Create, coerce, and test for sparse array objects

Usage

spray(M, x, addrepeats=FALSE)
spraymaker(L, addrepeats=FALSE, arity=ncol(L[[1]]))
is.spray(S)
as.spray (arg1, arg2, addrepeats=FALSE, offbyone=FALSE)
index(S)
coeffs(S)
coeffs(S) <- value
is_valid_spray(L)

Arguments

M Integer matrix with rows corresponding to index positions
$x \quad$ Numeric value with elements corresponding to spray entries
S Object to be tested for being a spray
L A list, nominally of two elements (index matrix and value) which is to be tested for acceptability to be coerce to class spray
$\arg 1, \arg 2 \quad$ Various arguments to be coerced to a spray
addrepeats Boolean, with default FALSE meaning to check for repeated index rows and, if any are found, return an error

value	In the assignment operator coeffs $<-()$, a disord object (or a length-one nu- meric vector), so that coeffs $(S)<-x$ works as expected
offbyone	In function as. spray (), when converting from an array. Argument offbyone is Boolean with default FALSE meaning to insert array elements in positions corresponding to index elements, and TRUE meaning to add one
arity	In function spraymaker (), integer specifying the arity (number of columns of the index matrix $L[[1]])$; ignored if L is non-empty. See details

Details

Spray objects are sparse arrays interpreted as multivariate polynomials. They can be added and subtracted; " \star " is interpreted as polynomial multiplication,

To create a spray object the user should use spray(), if a matrix of indices and vector of values is available, or as.spray () which tries hard to do the Right Thing (tm).

Function spraymaker () is the formal creator function, and it is written to take the output of the C++ routines and return a spray object. The reason this needs an arity argument is that $\mathrm{C}++$ sometimes returns NULL (in lieu of a zero-row matrix, which it cannot deal with). In this case, we need some way to tell R the arity of the corresponding spray object.

Functions index () and coeffs() are accessor methods.
There is an extensive vignette available; type vignette("spray") at the command line.

Note

Function coeffs() was formerly known as value(); function value() will be deprecated

Author(s)

Robin K. S. Hankin

See Also

Ops,spray-package

Examples

```
S <- spray(diag(5)) # missing second argument interpreted as '1'.
as.array(S,offbyone=TRUE) # zero indices interpreted as ones.
M <- matrix(1:5,6,5) # note first row matches the sixth row
## Not run: spray(M,1:6) # will not work because addrepeats is not TRUE
spray(M,1:6,addrepeats=TRUE) # 7=1:6
S <- spray(matrix(1:7,5,7))
a <- as.array(S) # will not work if any(M<1)
S1 <- as.spray(a)
stopifnot(S==S1)
a <- rspray(20)
coeffs(a)[coeffs(a) %% 2 == 1] <- 99 # every odd coefficient -> 99
```

```
spray-class Class "spray"
```


Description

The formal S4 class for sprays.

Objects from the Class

Objects can be created by calls of the form new("spray", ...) but this is not encouraged. Use functions spray () or as.spray() instead.

Slots

index: Index matrix
value: Numeric vector holding coefficients

Author(s)

Robin K. S. Hankin

See Also

```
spray
```

spraycross
Cross product for spray objects

Description

Provides a natural cross product for spray objects, useful for tensors and k-forms

Usage

spraycross(S, ...)
spraycross2(S1,S2)

Arguments

S,S1,S2,... spray objects

Details

Cross products for sprays. This is not an algebraic product of sprays interpreted as multivariate polynomials. The function is used in the stokes package.

Function spraycross2() is a helper function that takes exactly two arguments. Function spraycross() is a more general function that takes any number of arguments.

Value

Returns a spray object

Author(s)

Robin K. S. Hankin

Examples

```
a <- spray(matrix(1:4,2,2),c(2,5))
b <- spray(matrix(c(10,11,12,13),2,2),c(7,11))
a
b
spraycross2(a,b)
spraycross2(b,a)
spraycross(a,b,b)
```

spray_cpp Low-level functions that call C++ source code

Description

Low-level functions that call C++ source code, as detailed in the automatically generated RcppExports.R file.

Usage

```
spray_maker(M, d)
spray_add(M1, d1, M2, d2)
spray_mult(M1, d1, M2, d2)
spray_overwrite(M1, d1, M2, d2)
spray_accessor(M, d, Mindex)
spray_setter(M1, d1, M2, d2)
spray_equality(M1, d1, M2, d2)
spray_asum_include(M,d,n)
spray_asum_exclude(M,d,n)
spray_deriv(M,d,n)
spray_pmax(M1,d1,M2,d2)
spray_pmin(M1,d1,M2,d2)
spray_power(M,d,pow)
spray_spray_accessor()
spray_spray_add()
spray_spray_asum_exclude()
spray_spray_asum_include()
spray_spray_deriv()
spray_spray_equality()
spray_spray_maker()
spray_spray_mult()
spray_spray_overwrite()
spray_spray_pmax()
```

```
spray_spray_pmin()
spray_spray_setter()
spray_spray_power()
```


Arguments

M, M1, M2, Mindex Integer valued matrices with rows corresponding to array indices
$\mathrm{d}, \mathrm{d} 1, \mathrm{~d} 2 \quad$ Vector of values corresponding to nonzero array entries
$\mathrm{n} \quad$ Integer vector corresponding to dimensions to sum over for the sum functions
pow Nonnegative integer for spray_power()

Value

These functions return a two-element list which is coerced to an object of class spray by function spraymaker().

Note

These functions aren't really designed for the end-user.
Function spray_equality() cannot simply check for equality of \$value because the order of the index rows is not specified in a spray object. Function spray_crush() has been removed as it is redundant.

Author(s)

Robin K. S. Hankin

See Also

spraymaker,spray

```
spray_missing_accessor
```

Discussion document

Description

Discussion about the difficulties of implementing idiom like $\mathrm{S}[1,, 5,$,$] in the package$

Usage

spray_missing_accessor (S, dots)

Arguments

$\begin{array}{ll}\mathrm{S} & \text { Object of class spray } \\ \text { dots } & \text { further }\end{array}$

Details

Look at the source which contains an extended discussion of the difficulties

Author(s)

Robin K. S. Hankin
subs Substitute values into a spray object

Description

Substitute values into a spray object, interpreted as a multivariate polynomial

Usage

subs(S, dims, x, drop=TRUE)

Arguments

S	spray object
dims	Integer or logical vector with entries corresponding to the dimensions to be sub- stituted
x	Numeric vector of values to be substituted
drop	Boolean, with default TRUE meaning to return the drop() of the result, and FALSE meaning to return a spray object consistently

Note

It is much easier if argument dims is sorted into increasing order. If not, caveat emptor!

Author(s)

Robin K. S. Hankin

See Also

process_dimensions

Examples

```
(S <- spray(matrix(sample(0:3,60,replace=TRUE),nrow=12)))
subs(S, c(2,5),1:2)
P <- homog(3,3)
subs(P,1,2)
```

summary.spray Summaries of spray objects

Description

A summary method for spray objects, and a print method for summaries.

Usage

```
## S3 method for class 'spray'
summary(object, ...)
## S3 method for class 'summary.spray'
print(x, ...)
```


Arguments

object,$x \quad$ Object of class spray
... Further arguments, passed to head()

Details

A summary. spray object is summary of a spray object x : a list with first element being a summary () of the coefficients (which is a disord object), and the second being a spray object comprising a few selected index-coefficient pairs. The selection is done by head().

Note

The "representative selection" is impementation-specific, as it uses disordR: :elements() to extract rows of the index matrix and coefficients.

Author(s)

Robin K. S. Hankin

Examples

```
<- rspray()^2
a
summary(a)
summary (a, 2)
options(polyform=TRUE)
summary(a^4,3)
options(polyform=FALSE) # restore default
```


Description

Generic version of zapsmall()

Usage

zap(x, digits = getOption("digits"))
\#\# S4 method for signature 'spray'
zapsmall(x, digits = getOption("digits"))

Arguments

$\begin{array}{ll}x & \text { spray object } \\ \text { digits } & \text { number of digits to retain }\end{array}$

Details

Given a spray object, coefficients close to zero are 'zapped', i.e., replaced by ' 0 ', using base: : zapsmall(). Function zap() is an easily-typed alias; zapsmall() is the $S 4$ generic.

Note, zap() actually changes the numeric value, it is not just a print method.

Author(s)

Robin K. S. Hankin

Examples

```
(S <- spray(matrix(sample(1:50),ncol=2),10^-(1:25)))
zap(S)
S-zap(S) # print method will probably print zeros...
coeffs(S-zap(S)) # ...but they are nevertheless nonzero
```

zero The zero polynomial

Description

Test for the zero, or empty, polynomial

Usage

zero(d)
is.zero(x)
is.empty(L)

Arguments

L, x	A two-element list of indices and values, possibly a spray object or numeric
vector	
d	Integer specifying dimensionality of the spray (the arity)

Details

Functions is.empty() and is.zero() are synonyms. If spray objects are interpreted as multivariate polynomials, "is.zero()" is more intuitive, if sprays are interpreted as sparse arrays, "is.empty ()" is better (for me).

Passing a zero-row index matrix can have unexpected effects:
dput(spray(matrix(0, 0,5), 9))
structure(list(structure(numeric(0), .Dim = c(0L, 5L)), numeric(0)), class = "spray")

Above, the index matrix has zero rows (and no elements) but the fact that it has five columns is retained. The spray object has no coefficients as the index matrix has zero rows. Compare:

```
    spray(matrix(0,0,5),0)
empty sparse array with 5 columns
    spray(matrix (0, 1,5),0)
empty sparse array with columns
    dput(spray(matrix(0, 1,5),0))
structure(list(index = NULL, value = NULL), class = "spray")
>
    spray(matrix(0,1,5),0)
empty sparse array with columns
    dput(spray(matrix(0, 1,5),0))
structure(list(index = NULL, value = NULL), class = "spray")
>
```

Above, the index matrix given to spray() has one row but the coefficient is zero. The resulting spray object has a NULL index matrix [because rows with zero coefficients are removed] and a NULL coefficient.

Arguably, the output should include the fact that we are dealing with a 5-dimensional array; but the index matrix is NULL so this information is lost (note that the value is NULL too). However, observe that the following works:

```
> a1 <- spray(matrix(0,1,4),0)
> a2 <- spray(t(1:5))
> a1+a2
    val
2345 = 1
>
```


Examples

(a <- lone $(1,3)$)
is.zero(a-a) \# should be TRUE
is.zero(zero(6))
$x<-\operatorname{spray}(t(0: 1))$
$\mathrm{y}<-\operatorname{spray}(\mathrm{t}(1: 0))$
is. zero $\left((x+y) *(x-y)-\left(x^{\wedge} 2-y^{\wedge} 2\right)\right)$ \# TRUE

Index

```
* classes
    spray-class, 21
* datasets
    zero, 26
* mathsymbol
    deriv, }
* package
    spray-package, 2
* symbolmath
    arity,3
    as.array,4
    as.function.spray,5
    asum,6
    constant,7
    Extract.spray,9
    homog, 10
    ooom,13
    Ops.spray,14
    print.spray,17
    rspray,18
    spray,19
    spray_cpp, 22
    spraycross,21
    subs,24
[.spray (Extract.spray), 9
[<-.spray (Extract.spray), }
aderiv(deriv), 8
arity,3
as.array,4
as.function.spray,5
as.id (homog), 10
as.spray (spray), 19
asum, 6,9
asum_inverted (asum), 6
chess_knight (knight), 12
coeff(spray), 19
coeffs (spray), 19
coeffs, spray-method (spray), 19
coeffs.spray (spray), 19
coeffs<- (spray), 19
coeffs<--,spray-method (spray), 19
coeffs<-.spray (spray), 19
```

constant, 7, 11
constant, spray-method (constant), 7
constant.spray (constant), 7
constant<- (constant), 7
constant<-, spray-method (constant), 7
constant<-.spray (constant), 7
cross (spraycross), 21
cross_product (spraycross), 21
deriv, 8
dim. spray (as.array), 4
drop (constant), 7
drop, spray-method (constant), 7
empty (zero), 26
Extract, 8
extract (Extract.spray), 9
Extract.spray, 9
homog, 10
index (spray), 19
is. constant (constant), 7
is.empty (zero), 26
is.scalar (constant), 7
is.spray (spray), 19
is.zero (zero), 26
is_valid_spray (spray), 19
king (knight), 12
knight, 12
linear (homog), 10
lone (homog), 10
maxpair_spray (pmax), 15
minpair_spray (pmax), 15
nterms, 13
one (homog), 10
ooom, 13, 15
Ops, 20
Ops (Ops.spray), 14
Ops.spray, 14
pmax, 15
pmin (pmax), 15
print.spray, 17
print.summary.spray (summary.spray), 25
print_spray_matrixform (print.spray), 17
print_spray_polyform (print.spray), 17
process_dimensions, 24
process_dimensions (asum), 6
product (homog), 10
replace (Extract.spray), 9
rspray, 18
scalar (constant), 7
spray, 19, 19, 21, 23
spray-class, 21
spray-package, 2
spray_accessor (spray_cpp), 22
spray_add (spray_cpp), 22
spray_asum_exclude (spray_cpp), 22
spray_asum_include (spray_cpp), 22
spray_cpp, 22
spray_crush (spray_cpp), 22
spray_deriv (spray_cpp), 22
spray_eq_numeric (Ops.spray), 14
spray_eq_spray (Ops.spray), 14
spray_equality (spray_cpp), 22
spray_maker (spray_cpp), 22
spray_missing_accessor, 23
spray_mult (spray_cpp), 22
spray_negative (Ops.spray), 14
spray_overwrite (spray_cpp), 22
spray_plus_scalar (Ops.spray), 14
spray_plus_spray (Ops.spray), 14
spray_pmax (spray_cpp), 22
spray_pmin (spray_cpp), 22
spray_power (spray_cpp), 22
spray_power_scalar (Ops.spray), 14
spray_rcpp (spray_cpp), 22
spray_setter (spray_cpp), 22
spray_spray_accessor (spray_cpp), 22
spray_spray_add (spray_cpp), 22
spray_spray_asum_exclude (spray_cpp), 22
spray_spray_asum_include (spray_cpp), 22
spray_spray_crush (spray_cpp), 22
spray_spray_deriv (spray_cpp), 22
spray_spray_equality (spray_cpp), 22
spray_spray_maker (spray_cpp), 22
spray_spray_mult (spray_cpp), 22
spray_spray_overwrite (spray_cpp), 22
spray_spray_pmax (spray_cpp), 22
spray_spray_pmin (spray_cpp), 22
spray_spray_power (spray_cpp), 22
spray_spray_setter (spray_cpp), 22
spray_times_scalar (Ops.spray), 14
spray_times_spray (Ops.spray), 14
spraycross, 21
spraycross2 (spraycross), 21
spraymaker, 23
spraymaker (spray), 19
sprayvars (print.spray), 17
subs, 24
substitute (subs), 24
summary (summary.spray), 25
summary.spray, 25
value (spray), 19
value, spray-method (spray), 19
value.spray (spray), 19
value<- (spray), 19
values (spray), 19
xyz (homog), 10
zap, 26
zapsmall (zap), 26
zapsmall, ANY-method (zap), 26
zapsmall, spray-method (zap), 26
zapsmall.spray (zap), 26
zaptiny (zap), 26
zero, 11, 26

