Package ‘spsi’

August 19, 2015
Title Shape-Preserving Uni-Variate and Bi-Variate Spline Interpolation
Date 2015-08-12
Version 0.1

Author Szymon Sacher & Andrew Clausen, The University of Edinburgh. Excerpts adapted from For-
tran code Copyright (C) Paolo Costantini

Maintainer Szymon Sacher <s1340144@sms.ed.ac.uk>

Description Program uses method of polynomial of variable degrees to interpolate gridded data pre-
serving monotonicity and/or convexity or none. Method is implemented for univariate and bivari-
ate cases. If values of derivatives are provided, spline will fix them,if not program will esti-
mate them numerically. Package written purely in R.

License GPL (>=2.0)

LazyData TRUE

Depends plot3D, R(>=2.10.0)
NeedsCompilation no

Repository CRAN

Date/Publication 2015-08-19 20:35:02

R topics documented:

akima e e e e e 2
SPSL « o e e e e e e 2
sps_eval . .. e e e e e 3
sps_fun 5
SPS_PICP -« v v e 7
Index 11

2 spsi

akima Wave distortions data.

Description

Data taken from a study of waveform distortion in electronic circuits.

Usage

data("akima")

Format

The format is: num [1:11, 1:9] 58.237.222.421.8 16.8127.43.200 ...

Source

Akima, H; A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Pro-
cedures’, Comm. ACM, 17, 1974, pp 26-27

Examples

data(akima)

spsi Shape Preserving Spline Interpolation

Description

Shape preserving Uni-variate and Bi-variate spline interpolation using method of polynomials of
variable degree.

Details

Package: spsi

Type: Package

Version: 0.1

Date: 2015-08-19
License: GPL-2 or greater

LazylLoad: yes

sps_eval 3

Author(s)

Szymon Sacher <s1340144 @sms.ed.ac.uk> & Andrew Clausen <andrew.clausen @ed.ac.uk>
Excerpts adapted from Fortran code Copyright (C) Paolo Costantini

See Also

sps_fun sps_prep

sps_eval Evaluates spline on given points

Description

Function which uses output from sps_prep to evaluate spline on given set of tabulation points

Usage

sps_eval(spline, x, der.x = NULL, y = NULL, der.y = NULL, grid = FALSE)

Arguments
spline Output of sps_prep function; list containing values of data points, derivatives on
the points, degrees of polynomial, etc. see: sps_prep
X Vector or matrix of x-coordinates of tabulation points.
der.x vector of requested derivatives of spline with respect to x. By default will re-
turn values of spline. If der.x = c(0,1) will return value of spline and its first
derivative with respect to x. Only 0 and 1 are supported so far.
y Vector or matrix of y-coordinates of tabulation points. For bi-variate case only.
der.y For bi-variate case only. Vector of requested derivatives of spline with respect
to y. By default will return values of spline. If der.y = ¢(0,1) will return value
of spline and its first derivative with respect to y. Only O and 1 are supported so
far. See details.
grid For bi-variate case only. If TRUE function will return matrix of values of the
spline on grid spanned by vectors of tabulation points. If FALSE vector of
f(zli],yli]),i = 1,2,...,length(x) will be returned. If matrices were given
as tabulation points grid is meaningless.
Details

Der.x and der.y need some more attention for bi-variate case. If they are not provided they are
both assumed to be 0. If user needs more then 1 derivative then length of der.x and der.y must
be equal. For example if der.x = ¢(0,1,0) and der.y = ¢(0,0,1) than function will return values
of spline, values of partial derivative with respect to x and partial derivative with respect to y,
respectively, on each tabulation point in a form of list of vectors or matrices.

4 sps_eval

Value

If length of der.x = 1 function will return vector or matrix of values, depending on parameter
grid. Otherwise if length of der. x is greater than 1, function will return list of vectors or matrices
depending on grid.

Author(s)

Szymon Sacher <s1340144 @sms.ed.ac.uk> & Andrew Clausen <andrew.clausen @ed.ac.uk>
Excerpts adapted from Fortran code Copyright (C) Paolo Costantini

References

Costantini, P; Fontanella, F; ’Shape Preserving Bi-variate Interpolation’ sSIAM J NUMER. ANAL.
Vol. 27, No.2, pp. 488-506, April 1990

See Also

sps_fun sps_prep

Examples

Univariate example

x<-c(1, 2, 3, 4,5, 6)

y <- c(16 ,18, 21, 17, 15, 12)

spline <- sps_prep(x, y, shape = 'monotonicity', smoothness = 2)
plot(seq(l, 6, @0.1), sps_eval(spline, seq(l, 6, 0.1)))

Bivariate example

fun <- function(x,y) pmax(@, sin(pi*x) * sin(pixy))
X <- seq(-1, 2, 0.5)

Y <- seq(-1, 1, 0.5)

grid <- mesh(X, Y)

Z <- matrix(fun(grid$x, grid$y), ncol = length(Y))

X_ <- seq(-1, 2, 0.05)
Y_ <- seq(-1, 1, 0.05)

Prepare spline parameters
spline <- sps_prep(X, Y, Z)

evaluate spline on grid of tabulation points spanned by X_ and Y_
eval <- sps_eval(spline, x = X_, y = Y_, grid = TRUE)

Plot resulting data
persp3D(X_, Y_, eval)

sps_fun

sps_fun

Shape Preserving Bi-variate and Uni-variate Interpolation.

Description

Both functions recognize whether uni-variate or bi-variate interpolation is requested

sps_fun calls sps_prep to prepare spline object and according to data provided creates uni-variate
or bi-variate executable function. Parameters can be set by specifying them as arguments

sps_interpolate prepares spline and returns its values on given set of tabulation points

Usage
sps_fun(x, y, z=NULL, der=0, der.x=der, der.y=der, grid = FALSE, ...)
sps_interpolate(x, y, z=NULL, xt, yt=NULL, grid = TRUE, ...)
Arguments
X Vector of x-coordinates of data.
y Vector of y-coordinates of data. For uni-variate case length should be equal to
length of x and y[i] = f(«[d]). For bi-variate case length may differ.
z Bi-variate case only. Matrix of values of function on grid spanned by x and
y; z[i,7] = f(x[i],y[j]) OR Vector of values of functions on points (X, y);
z[i] = f(x[i],y[i]). In this case length of all three vectors should be equal and
it should be possible to transform the point to a gridded form.
xt, yt Vectors OR Matrices containing coordinates of the tabulation point; yt for bi-

variate case only

der, der.x, der.y

grid

Indicate which derivative should be returned; der.y used in bi-variate case only.
If length of vector is greater than 1 function will return list of values. For bi-
variate case vectors should have equal length. At the moment only 1 and O are
supported. See examples.

For bi-variate interpolation only. If TRUE function will return matrix of values
of the spline on grid spanned by vectors of tabulation points. If FALSE vector of
f(xt[i] , yt[i]), i =1, 2, ..., length(xt) will be returned. If matrices were given as
tabulation points grid is meaningless.

arguments in tag = value format. The tags must come from the names of param-
eters of sps_prep and/or sps_eval.

6 sps_fun

Details
Following parameters can be specified:

fx, fy, fxy Matrices with values of the derivatives: see sps_prep
maxdeg Maximum degree of polynomial allowed: see sps_prep
smoothness Smoothness required: see sps_prep

tol Relative tolerance used by program

shape Vector of shape attributes that must be preserved. Must contain only *monotonicity’ and/or
’curvature’

Value

sps_fun Function of 1 or 2 variables depending on data provided. Function will accept vector(s)
or matrix(es) of tabulation point and return object of the same class. If while calling sps_fun
length der.x (and possibly der.y) was bigger than 1. Resulting function will be returning list
of values of respective derivatives at given tabulation points.

sps_interpolate Vector, matrix or list of vectors/matrices of value of function and/or derivatives
on given set of tabulation points

Author(s)

Szymon Sacher <s1340144 @sms.ed.ac.uk> & Andrew Clausen <andrew.clausen @ed.ac.uk>
Excerpts adapted from Fortran code Copyright (C) Paolo Costantini

References

Costantini, P; Fontanella, F; *Shape Preserving Bi-variate Interpolation” SIAM J] NUMER. ANAL.
Vol. 27, No.2, pp. 488-506, April 1990

See Also

sps_eval sps_prep

Examples

Example 1

Following example shows usage of sps_fun along with the parameter 'smoothness'.
As you will see if smoothness = 2 then first derivative of function is differentiable
everywhere.

x<-c¢c(1, 2,3, 4,5, 6)
y <- c(16 ,18, 21, 17, 15, 12)

evalKl <- sps_fun(x, y)
derK1 <- sps_fun(x, y, der.x=1)

evalkK2 <- sps_fun(x, y, smoothness = 2)

sps_prep 7

derK2 <- sps_fun(x, y, smoothness = 2, der.x = 1)

xs <- seq(1, 6, 0.01)

par(mfrow = c(2, 2))

plot(x, y, col = "red”, xlim = c(@, 7), ylim = c(10, 22),
main = "Spline, smoothness = 1")

gridQ)

lines(xs,evalK1(xs), col="cyan")

par(new = TRUE)

plot(derKl, from = 1,to = 6, col = "magenta”, xlim = c(0,7), ylim = c(-6,5),
xaxt = 'n',yaxt='n',ann = FALSE)

axis(4, -6:5)

plot(x, y, col="red", xlim=c(0,7), ylim=c(10,22),
main = "Spline, smoothness = 2")
grid()

lines(xs,evalk2(xs), col="cyan")
par(new = TRUE)
plot(derK2, from = 1, to = 6, col = "magenta”, xlim = c(0,7), ylim = c(-6,5),

xaxt = 'n',yaxt = 'n', ann = FALSE)
axis(4, -6:5)
plot(derKl, from = 1.5, to = 2.5)
plot(derK2, from = 1.5, to = 2.5)

EXAMPLE 2

par(mfrow = c(1,1))
X <- seq(@, 50, 5)
Y <- seq(@0, 40, 5)

X_ <- seq(@, 50, 0.5)
Y_ <- seq(@, 40, 0.5)

persp3D(X_, Y_, sps_interpolate(X, Y, akima, X_, Y_,
grid = TRUE, shape = 'monotonicity'))

sps_prep Prepare list of objects for shape preserving interpolation.

Description

This is primitive function which output is used by sps_eval. Function works with both uni- and
bi-variate functions and returns list consisting original data provided, values of the derivatives and
degrees of polynomial needed to satisfy the shape constraints required

8 sps_prep
Usage
sps_prep(x, y, z=NULL,

fx = NA, fy = NA, fxy = NA,

shape = c("monotonicity”, "curvature”),

shape.x = shape, shape.y = shape,

max.deg = 50, smoothness = 1,

tol = 0.0001)
Arguments

X Vector of x-coordinates of points to be interpolated.

y Vector of y-coordinates of points to be interpolated. For uni-variate case length
should be equal to length of x and y[i] = f(z[¢]). For bi-variate case length may
differ.

z Bi-variate case only. Matrix of values of function on grid spanned by x and
y; z[i,5] = f(x[i],y[j]) OR Vector of values of functions on points (x, y);
z[i] = f(x[é], y[¢]). In this case length of all three vectors should be equal and
it should be possible to transform the point to a gridded form.

fx Matrix of values of the derivative with respect to x of the function; fz[i, j] =
fx(z[i], y[j]); By default it is estimated internally.

fy Bi-variate case only. Matrix of values of the derivative with respect to y of the
function; fy[i, j] = fy(«[é], y[j]); By default it is estimated internally.

fxy Bi-variate case only. Matrix of values of mixed partial derivative of the function;
fxyli, j] = fay(z[i], y[j]); By default it is estimated internally.

shape Specifies which attributes should be preserved. Vector should contain *mono-
tonicity’ and/or ’curvature’ only. In bi-variate case this can be set separately for
both dimensions using shape. x, shape.y.

shape. x Specifies which attributes should be preserved for x dimension.

shape.y Specifies which attributes should be preserved for y dimension.

max.deg Specifies maximum degree of polynomial allowed. In some cases in order to
preserve shape, very high degrees are necessary. If maximum degree is reached,
it is not guaranteed that resulting spline will preserve all the attributes required.

smoothness How many times does the spline needs to be differentiable.

tol Tolerance used within program. Default value is suitable for graphical purposes.

Details

If z is not provided function will prepare list needed for uni-variate interpolation. If values of the
derivatives are provided, resulting spline will preserve them. For bi-variate case it is possible to set
some derivatives and let program estimate the rest.

Value

Uni-variate: list with 6 components:

X,y

Coordinates of the data points

sps_prep 9

k Smoothness (or continuity class) required

fx Estimated or given values of derivative

deg Degree of polynomial needed on each of the line segments
dim Number of variables; numeric equal to 1

Bi-variate: list with 10 components:

X,y Coordinates of the data points
Matrix of vales of the function
k Smoothness (or continuity class) required
fx, fy, fxy Estimated or given values of respective derivatives
deg.x, deg.y Degree of polynomial needed on each of the line segments in each dimension

dim Number of variables; numeric equal to 2

Author(s)

Szymon Sacher <s1340144 @sms.ed.ac.uk> & Andrew Clausen <andrew.clausen @ed.ac.uk>
Excerpts adapted from Fortran code Copyright (C) Paolo Costantini

References

Costantini, P; Fontanella, F; *Shape Preserving Bi-variate Interpolation’ STAM J NUMER. ANAL.
Vol. 27, No.2, pp. 488-506, April 1990

See Also

sps_eval sps_fun
Examples

Univariate example

x<-c(1, 2, 3, 4, 5, 6)

y <- c(16 ,18, 21, 17, 15, 12)

spline <- sps_prep(x, y, shape = 'monotonicity', smoothness = 2)
plot(seq(1, 6, @.1), sps_eval(spline, seq(1, 6, 0.1)))

Bivariate example

tower <- function(x, y)

{

X <- abs(x)

Y <- abs(y)

ifelse((X + Y) <=1, floor(3*x(1 - X - Y)),
ifelse(pmax(X, Y) >= 1, pmax(X, Y)/2 - 0.5,

2))
3

X <- Y <- seq(-1.25, 1.25, 2.5/13)

10

grid <- mesh(X, Y)
Z <- tower(grid$x, grid$y)

spline <- sps_prep(X, Y, 2)
X_ <= Y_ <- seq(-1.25, 1.25, 2.5/60)

persp3D(X_, Y_, sps_eval(spline, x = X_, y = Y_, grid = TRUE))

sps_prep

Index

xTopic Akima
akima, 2
xTopic Costantini
sps_eval, 3
sps_fun, 5
sps_prep, 7
+Topic curvature
sps_fun, 5
sps_prep, 7
*Topic datasets
akima, 2
+Topic interpolation
sps_eval, 3
spsi, 2
+Topic monotonicity
sps_fun, 5
sps_prep, 7
+Topic spline
sps_eval, 3
sps_fun, 5
sps_prep, 7
spsi, 2

akima, 2

sps_eval, 3,6, 9

sps_fun, 3,4,5,9
sps_interpolate (sps_fun), 5
sps_prep, 3,4,6,7

spsi, 2

11

	akima
	spsi
	sps_eval
	sps_fun
	sps_prep
	Index

