
Package ‘stagedtrees’
April 29, 2022

Type Package

Title Staged Event Trees

Version 2.2.1

Description Creates and fits staged event tree probability models,
which are probabilistic graphical models capable of representing
asymmetric conditional independence statements
for categorical variables.
Includes functions to create, plot and fit staged
event trees from data, as well as many efficient structure
learning algorithms.
References:
Collazo R. A., Görgen C. and Smith J. Q.
(2018, ISBN:9781498729604).
Görgen C., Bigatti A., Riccomagno E. and Smith J. Q. (2018)
<arXiv:1705.09457>.
Thwaites P. A., Smith, J. Q. (2017) <arXiv:1510.00186>.
Barclay L. M., Hutton J. L. and Smith J. Q. (2013)
<doi:10.1016/j.ijar.2013.05.006>.
Smith J. Q. and Anderson P. E. (2008)
<doi:10.1016/j.artint.2007.05.004>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

URL https://github.com/gherardovarando/stagedtrees

BugReports https://github.com/gherardovarando/stagedtrees/issues

Imports stats, graphics

Suggests testthat, bnlearn, covr, clue, igraph

NeedsCompilation no

Author Gherardo Varando [aut, cre] (<https://orcid.org/0000-0002-6708-1103>),
Federico Carli [aut],
Manuele Leonelli [aut] (<https://orcid.org/0000-0002-2562-5192>),
Eva Riccomagno [aut]

1

https://arxiv.org/abs/1705.09457
https://arxiv.org/abs/1510.00186
https://doi.org/10.1016/j.ijar.2013.05.006
https://doi.org/10.1016/j.artint.2007.05.004
https://github.com/gherardovarando/stagedtrees
https://github.com/gherardovarando/stagedtrees/issues
https://orcid.org/0000-0002-6708-1103
https://orcid.org/0000-0002-2562-5192

2 R topics documented:

Maintainer Gherardo Varando <gherardo.varando@gmail.com>

Repository CRAN

Date/Publication 2022-04-28 23:10:02 UTC

R topics documented:
as.character.parentslist . 3
Asym . 4
as_adj_matrix . 4
as_bn . 5
as_parentslist . 5
as_sevt . 6
barplot.sevt . 8
ceg . 9
ceg2adjmat . 9
cid . 10
compare_stages . 11
confint.sevt . 13
full_indep . 14
generate_linear_dataset . 16
generate_random_dataset . 17
generate_xor_dataset . 17
get_stage . 18
inclusions_stages . 19
join_stages . 19
join_unobserved . 20
logLik.sevt . 21
lr_test . 22
PhDArticles . 23
plot.ceg . 24
plot.sevt . 25
Pokemon . 27
predict.sevt . 28
print.sevt . 29
prob . 30
rename_stage . 31
sample_from . 32
search_best . 32
search_greedy . 33
sevt . 34
sevt_add . 36
sevt_fit . 37
stagedtrees . 38
stages . 39
stages_bhc . 40
stages_bhcr . 41
stages_bj . 42

as.character.parentslist 3

stages_fbhc . 43
stages_hc . 44
stages_hclust . 45
stages_kmeans . 46
stndnaming . 47
subtree . 48
summary.sevt . 49
text.sevt . 49

Index 51

as.character.parentslist

Print a parentslist object

Description

Nice print of a parentslist object

Usage

S3 method for class 'parentslist'
as.character(x, only_parents = FALSE, ...)

S3 method for class 'parentslist'
print(x, ...)

Arguments

x an object of class parentslist.

only_parents logical, if the basic DAG encoding is to be returned.

... additional arguments for compatibility.

Value

as.character.parentslist returns a string encoding the associated directed graph and eventually
the context specific independences. The encoding is similar to the one returned by modelstring in
package bnlearn and package deal. In particular, parents of a variable can be enclosed in:

• () if a partial (conditional) independence is present.

• { } if a context specific independence is present.

• < > if no context specific and partial (conditional) independences are present, but at least a
local independence is detected.

If a parent is not enclosed in parenthesis the dependence is full.

If only_parents = TRUE, the simple DAG encoding as in bnlearn is returned.

4 as_adj_matrix

Examples

model <- stages_hclust(full(Titanic), k = 2)
pl <- as_parentslist(model)
pl
as.character(pl)
as.character(pl, only_parents = TRUE)

Asym Asym dataset

Description

Artificial dataset with observations from four variables having a non-symmetrical conditional inde-
pendence structure.

Usage

Asym

Format

A data frame with 1000 observations of 4 binary variables.

Source

The data has been generated by Federico Carli <carli@dima.unige>.

as_adj_matrix Convert to an adjacency matrix

Description

Convert to an adjacency matrix

Usage

as_adj_matrix(x)

S3 method for class 'parentslist'
as_adj_matrix(x)

Arguments

x an R object

Value

the equivalent adjacency matrix

as_bn 5

as_bn Convert to a bnlearn object

Description

Convert a staged tree object into an object of class bn from the bnlearn package.

Usage

as_bn(x)

S3 method for class 'parentslist'
as_bn(x)

S3 method for class 'sevt'
as_bn(x)

Arguments

x an R object of class sevt or parentslist.

Value

an object of class bn from package bnlearn.

as_parentslist Obtain the equivalent DAG as list of parents

Description

Convert to the equivalent representation as list of parents.

Usage

as_parentslist(x, ...)

S3 method for class 'bn'
as_parentslist(x, order = NULL, ...)

S3 method for class 'bn.fit'
as_parentslist(x, order = NULL, ...)

S3 method for class 'sevt'
as_parentslist(x, ...)

6 as_sevt

Arguments

x an R object.

... additional parameters.

order order of the variables, usually a topological order.

Details

The output of this function is an object of class parentslist which is one of the possible encoding
for a directed graph. This is mainly an internal class and its specification can be changed in the
future. For example, now it may also include information on the sample space of the variables and
the context/partial/local independences.

In as_parentslist.sevt, if a context-specific or a local-partial independence is detected a mes-
sage is printed and the minimal super-model is returned.

Value

An object of class parentslist for which a print method exists. Basically a list with one entries
for each variable with fields:

• parents The parents of the variable.

• context Where context independences are detected.

• partial Where partial independences are detected.

• local Where no context/partial independences are detected, but local independences are
present.

• values values for the variable.

See Also

print.parentslist and as.character.parentslist for the parenthesis-encoding of the DAG
structure and the asymmetric independences.

Examples

model <- stages_hclust(full(Titanic), k = 2)
pl <- as_parentslist(model)
pl$Age

as_sevt Coerce to sevt

Description

Convert to an equivalent object of class sevt.

as_sevt 7

Usage

as_sevt(x, ...)

S3 method for class 'bn.fit'
as_sevt(x, order = NULL, ...)

S3 method for class 'bn'
as_sevt(x, order = NULL, values = NULL, ...)

S3 method for class 'parentslist'
as_sevt(x, order = NULL, values = NULL, ...)

Arguments

x an R object.

... additional parameters to be used by specific methods.

order order of the variables.

values the values for each variable, the sample space.

Details

In as_sevt.bn.fit the order argument, if provided, must be a topological order of the bn.fit
object (no check is performed). If the order is not provided a topological order will be used (the one
returned by bnlearn::node.ordering).

In as_sevt.parentslist the order argument, if provided, must be a topological order of the
corresponding DAG (no check is performed). If the order is not provided names(x) is used.

The values parameter is used to specify the sample space of each variable. For a parentslist
object created with as_parentslist from an object of class sevt, it is, usually, not needed to
specify the values parameter, since the sample space is saved in the parentslist object.

Value

the equivalent object of class sevt.

Examples

model <- stages_hclust(full(Titanic), k = 2)
plot(model)
pl <- as_parentslist(model)
model2 <- as_sevt(pl)
plot(model2) ## this is a super-model of the first staged tree
we can check it with
inclusions_stages(model, model2)

8 barplot.sevt

barplot.sevt Bar plots of stage probabilities

Description

Create a bar plot visualizing probabilities associated to the different stages of a variable in a staged
event tree.

Usage

S3 method for class 'sevt'
barplot(
height,
var,
ignore = height$name_unobserved,
beside = TRUE,
horiz = FALSE,
legend.text = FALSE,
col = NULL,
xlab = ifelse(horiz, "probability", NA),
ylab = ifelse(!horiz, "probability", NA),
...

)

Arguments

height an object of class sevt.

var name of a variable in object.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

beside a logical value. See barplot.

horiz a logical value. See barplot.

legend.text logical.

col color mapping for the stages, see col argument in plot.sevt.

xlab a label for the x axis.

ylab a label for the y axis.

... additional arguments passed to barplot.

Value

As barplot: A numeric vector (or matrix, when beside = TRUE), giving the coordinates of all the
bar midpoints drawn, useful for adding to the graph.

ceg 9

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
barplot(model, "Kids", beside = TRUE)

ceg Chain event graph (CEG)

Description

Build the CEG representation from an object of class sevt.

Usage

ceg(object)

Arguments

object an object of class sevt.

Details

An object of class ceg is a staged event tree object with additional information on the positions.

Value

an object of class ceg.

Examples

DD <- generate_xor_dataset(3, 100)
model <- stages_bhc(full(DD))
model.ceg <- ceg(model)
model.ceg$positions

ceg2adjmat Ceg to adjmat of graph

Description

Obtain the adjacency matrix corresponding to a CEG.

Usage

ceg2adjmat(x)

10 cid

Arguments

x an object of class ceg.

Details

This utility function can be used to prepare the adjacency matrix to plot the CEG using a graph
package (e.g. igraph).

Value

the adj matrix

Examples

model <- stages_fbhc(full(PhDArticles))
model.ceg <- ceg(model)
ceg2adjmat(model.ceg)

cid Context specific interventional discrepancy

Description

Compute the context specific interventional discrepeancy of a staged tree with respect to a reference
staged tree.

Usage

cid(object1, object2, FUN = mean)

Arguments

object1 an object of class sevt.

object2 an object of class sevt.

FUN a function that is used to aggregate CID for each variable. The default mean will
obtain the CID as defined in Leonelli and Varando (2021).

Value

A list with components:

• wrong a stages-like structure which record where object2 wrongly infer the interventional
distance with respect to object1.

• cid the value of the computed CID.

compare_stages 11

References

Leonelli M., Varando G. Context-Specific Causal Discovery for Categorical Data Using Staged
Trees https://arxiv.org/abs/2106.04416

Examples

model1 <- stages_bhc(full(Titanic))
model2 <- stages_bhc(full(Titanic,

order = c("Survived", "Sex", "Age", "Class")))
cid(model1, model2)$cid
cid(model1, model2)$wrong

compare_stages Compare two staged event tree

Description

Compare two staged event trees, return the differences of the stages structure and plot the difference
tree. Three different methods to compute the difference tree are available (see Details).

Usage

compare_stages(
object1,
object2,
method = "naive",
return_tree = FALSE,
plot = FALSE,
...

)

hamming_stages(object1, object2, return_tree = FALSE)

diff_stages(object1, object2)

Arguments

object1 an object of class sevt.

object2 an object of class sevt.

method character, method to compare staged event trees. One of: "naive", "hamming"
or "stages".

return_tree logical, if TRUE the difference tree is returned.

plot logical.

... additional parameters to be passed to plot.sevt.

https://arxiv.org/abs/2106.04416

12 compare_stages

Details

compare_stages tests if the stage structure of two sevt objects is the same. Three methods are
available:

• naive first applies stndnaming to both objects and then simply compares the resulting stage
names.

• hamming uses the hamming_stages function that finds a minimal subset of nodes which stages
must be changed to obtain the same structure.

• stages uses the diff_stages function that compares stages to check whether the same stage
structure is present in both models.

Setting return_tree = TRUE will return the stages difference obtained with the selected method.
The stages difference is a list of numerical vectors with same lengths and structure as stages(object1)
or stages(object2), where values are 1 if the corresponding node has different (with respect to
the selected method) associated stage, and 0 otherwise.

With plot = TRUE the plot of the difference tree is displayed.

If return_tree = FALSE and plot = FALSE the logical output is the same for the three methods and
thus the naive method should be used since it is computationally faster.

hamming_stages finds a minimal set of nodes for which the associated stages should be changed to
obtain equivalent structures. To do that, a maximum-weight bipartite matching problem between the
stages of the two staged trees is solved using the Hungarian method implemented in the solve_LSAP
function of the clue package. hamming_stages requires the package clue.

Value

compare_stages: if return_tree = FALSE, logical: TRUE if the two models are exactly equal,
otherwise FALSE. Else if return_tree = TRUE, the differences between the two trees, according to
the selected method.

hamming_stages: if return_tree = FALSE, integer, the minimum number of situations where the
stage should be changed to obtain the same models. If return_tree = TRUE a stages-like structure
showing which situations should be modified to obtain the same models.

diff_stages: a stages-like structure marking the situations belonging to stages which are not the
exactly equal.

Examples

data("Asym")
mod1 <- stages_bhc(full(Asym, lambda = 1))
mod2 <- stages_fbhc(full(Asym, lambda = 1))
compare_stages(mod1, mod2)

##########
m0 <- full(PhDArticles[, 1:4], lambda = 0)
m1 <- stages_bhc(m0)
m2 <- stages_bj(m0, distance = "totvar", thr = 0.25)
diff_stages(m1, m2)

confint.sevt 13

confint.sevt Confidence intervals for staged event tree parameters

Description

Confint method for class sevt.

Usage

S3 method for class 'sevt'
confint(
object,
parm,
level = 0.95,
method = c("wald", "waldcc", "wilson", "goodman", "quesenberry-hurst"),
ignore = object$name_unobserved,
...

)

Arguments

object an object of class sevt.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

method a character string specifing which method to use: wald", "waldcc", "goodman",
"quesenberry-hurst" or "wilson".

ignore vector of stages which will be ignored, by default the name of the unobserved
stages stored in object$name_unobserved.

... additional argument(s) for compatibility with confint methods.

Details

Compute confidence intervals for staged event trees. Currently five methods are available:

• wald, waldcc: Wald method and with continuity correction.

• wilson, quesenberry-hurst and goodman.

Value

A matrix with columns giving lower and upper confidence limits for each parameter. These will be
labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

14 full_indep

Author(s)

The function is partially inspired by code in the MultinomCI function from the DescTools package,
implemented by Andri Signorelli and Pablo J. Villacorta Iglesias.

References

Goodman, L. A. (1965) On Simultaneous Confidence Intervals for Multinomial Proportions Tech-
nometrics, 7, 247-254.

Wald, A. Tests of statistical hypotheses concerning several parameters when the number of obser-
vations is large, Trans. Am. Math. Soc. 54 (1943) 426-482.

Wilson, E. B. Probable inference, the law of succession and statistical inference, J.Am. Stat. Assoc.
22 (1927) 209-212.

Quesenberry, C., & Hurst, D. (1964). Large Sample Simultaneous Confidence Intervals for Multi-
nomial Proportions. Technometrics, 6(2), 191-195

Examples

m1 <- stages_bj(full(PhDArticles), distance = "kullback", thr = 0.01)
confint(m1, "Prestige", level = 0.90)
confint(m1, "Married", method = "goodman")
confint(m1, c("Married", "Kids"))

full_indep Full and independent staged event tree

Description

Build fitted staged event tree from data.

Usage

full(
data,
order = NULL,
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

)

S3 method for class 'table'
full(
data,
order = names(dimnames(data)),
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

full_indep 15

)

S3 method for class 'data.frame'
full(
data,
order = colnames(data),
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

)

indep(
data,
order = NULL,
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

)

S3 method for class 'table'
indep(
data,
order = names(dimnames(data)),
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

)

S3 method for class 'data.frame'
indep(
data,
order = colnames(data),
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"

)

Arguments

data data to create the model, data.frame or table.

order character vector, order of variables.

join_unobserved

logical, if situations with zero observations should be joined (default TRUE).

lambda smoothing coefficient (default 0).

name_unobserved

name to pass to join_unobserved.

16 generate_linear_dataset

Details

Functions to create full or independent staged tree models from data. The full (or saturated) staged
tree is the model where every situation is in a different stage, and thus the model has the maximum
number of parameters. Conversely, the independent staged tree (indep) assigns all the situations
related to the same variable to the same stage, thus it is equivalent to the independence factorization.

Examples

full model
DD <- generate_xor_dataset(4, 100)
model_full <- full(DD, lambda = 1)

independence model (data.frame)
DD <- generate_xor_dataset(4, 100)
model <- indep(DD, lambda = 1)
model

generate_linear_dataset

Generate a random binary dataset for classification

Description

Randomly generate a simple classification problem.

Usage

generate_linear_dataset(
n = 2,
N = 10000,
eps = 1.2,
gamma = runif(1, min = -n, max = n),
alpha = runif(n, min = -n, max = n)

)

Arguments

n number of variables.
N number of observations.
eps noise.
gamma numeric.
alpha numeric vector of length n.

Value

A data.frame with n independent random variables and one class variable C computed as sign(sum(x
* alpha) + runif(1, -eps, eps) + gamma).

generate_random_dataset 17

Examples

DD <- generate_linear_dataset(n = 5, 1000)

generate_random_dataset

Generate a random binary dataset

Description

Randomly generate a data.frame of independent binary variables.

Usage

generate_random_dataset(n = 2, N = 10000)

Arguments

n number of variables.

N number of observations.

Value

A data.frame with n independent random variables.

Examples

DD <- generate_random_dataset(n = 5, 1000)

generate_xor_dataset Generate a xor dataset

Description

Generate a xor dataset

Usage

generate_xor_dataset(n = 2, N = 100, eps = 1.2)

Arguments

n number of variables.

N number of observations.

eps error.

18 get_stage

Value

The xor dataset with n + 1 variables, where the first one is the class variable C computed as a noisy
xor.

Examples

DD <- generate_xor_dataset(n = 5, N = 1000, eps = 1.2)

get_stage Get stage or path

Description

Utility functions to obtain stages from paths and paths from stages.

Usage

get_stage(object, path)

get_path(object, var, stage)

Arguments

object an object of class sevt.

path character vector, the path from root or a two dimensional array where each row
is a path from root.

var character, one of the variable in the staged tree.

stage character vector, the name of the stages for which the paths should be returned.

Value

get_stage returns the stage name(s) for given path(s).

get_path returns a data.frame containing the paths corresponding to the given stage(s).

Examples

model <- stages_fbhc(full(PhDArticles))
get_stage(model, c("0", "male"))
paths <- expand.grid(model$tree[2:1])[, 2:1]
get_stage(model, paths)
get_path(model, "Kids", "5")
get_path(model, "Gender", "2")
get_path(model, "Kids", c("5", "6"))

inclusions_stages 19

inclusions_stages Inclusions of stages

Description

Display the relationship between two staged tree models over the same variables.

Usage

inclusions_stages(object1, object2)

Arguments

object1 an object of class sevt.

object2 an object of class sevt.

Details

Computes the relations between the stages structures of the two models.

The relations between stages of the same variable are stored in a data frame with three columns
where each row represent a relation between a stage of the first model (s1) and a stage of the
second model (s2). The relation can be one of the following: inclusion (s1 < s2 or s1 > s2; equal
(s1 = s2); not-equal (s1 != s2).

Value

a list with inclusion relations between stage structures for each variable in the models.

Examples

mod1 <- stages_bhc(full(PhDArticles[, 1:5], lambda = 1))
mod2 <- stages_fbhc(full(PhDArticles[, 1:5], lambda = 1))
inclusions_stages(mod1, mod2)

join_stages Join stages

Description

Join two stages in a staged event tree object, updating probabilities and log-likelihood accordingly.

Usage

join_stages(object, v, s1, s2)

20 join_unobserved

Arguments

object an object of class sevt.

v variable.

s1 first stage.

s2 second stage.

Details

This function joins two stages associated to the same variable, updating probabilities and log-
likelihood if the object was fitted.

Value

the staged event tree where s1 and s2 are joined.

Examples

model <- full(PhDArticles, lambda = 0)
model <- stages_fbhc(model)
model$stages$Kids
model <- join_stages(model, "Kids", "5", "6")
model$stages$Kids

join_unobserved Join situations with no observations

Description

Join situations with no observations

Usage

join_unobserved(
object,
fit = TRUE,
trace = 0,
name = "UNOBSERVED",
scope = sevt_varnames(object)[-1],
lambda = object$lambda

)

logLik.sevt 21

Arguments

object an object of class sevt with associated data.

fit if TRUE update model’s probabilities.

trace if > 0 print information to console.

name character, name for the new stage storing unobserved situations.

scope character vector, list of variables in object.

lambda smoothing parameter for the fitting.

Details

It takes as input a (fitted) staged event tree object and it joins, in the same stage, all the situations
with zero recorded observations. Since such joining does not change the log-likelihood of the
model, it is a useful (time-wise) pre-processing prior to others model selection algorithms.

Unobserved situations can be joined directly in full or indep, by setting join_unobserved =
TRUE.

Value

a staged event tree with at most one stage per variable with no observations. If, as default, fit=TRUE
the model will be re-fitted, if fit=FALSE probabilities in the output model are not estimated.

Examples

DD <- generate_xor_dataset(n = 5, N = 10)
model_full <- full(DD, lambda = 1, join_unobserved = FALSE)
model <- join_unobserved(model_full)
logLik(model_full)
logLik(model)
BIC(model_full, model)

logLik.sevt Log-Likelihood of a staged event tree

Description

Compute, or extract the log-likelihood of a staged event tree.

Usage

S3 method for class 'sevt'
logLik(object, ...)

Arguments

object an fitted object of class sevt.

... additional parameters (compatibility).

22 lr_test

Value

An object of class logLik.

Examples

data("PhDArticles")
mod <- indep(PhDArticles)
logLik(mod)

lr_test Likelihood Ratio Test for staged trees models

Description

Function to perform likelihood ratio test between two or multiple staged event tree models.

Usage

lr_test(object, ...)

Arguments

object an object of class sevt.

... further objects of class sevt. Must specify super-models of object. See below
for details.

Details

If a single object of class sevt is passed as argument, it computes the likelihood-ratio test with
respect to the independence model. If multiple objects are passed, likelihood-ratio tests between the
first object and the followings are computed. In the latter casem the function checks automatically
if the first model is nested in the additional ones, via inclusions_stages, and throws an error if
not.

Value

An object of class anova which contains the log-likelihood, degrees of freedom, difference in de-
grees of freedom, likelihood ratio statistics and corresponding p values.

Examples

data(PhDArticles)
order <- c("Gender", "Kids", "Married", "Articles")
phd.mod1 <- stages_hc(indep(PhDArticles, order))
phd.mod2 <- stages_hc(full(PhDArticles, order))

compare two nested models
lr_test(phd.mod1, phd.mod2)

PhDArticles 23

compare a single model vs the independence model
lr_test(phd.mod1)

PhDArticles PhD Students Publications

Description

Number of publications of 915 PhD biochemistry students during the 1950’s and 1960’s.

Usage

PhDArticles

Format

A data frame with 915 rows and 6 variables:

Articles Number of articles during the last 3 years of PhD: either 0, 1-2 or >2.

Gender male or female.

Kids yes if the student has at least one kid 5 or younger, no otherwise.

Married yes or no.

Mentor Number of publications of the student’s mentor: low between 0 and 3, medium between 4
and 10, high otherwise.

Prestige low if the student is at a low-prestige university, high otherwise.

Source

The data has been modified from the Rchoice package.

References

Long, J. S. (1990). The origins of sex differences in science. Social Forces, 68(4), 1297-1316.

24 plot.ceg

plot.ceg igraph’s plotting for CEG

Description

igraph’s plotting for CEG

Usage

S3 method for class 'ceg'
plot(x, col = NULL, ignore = x$name_unobserved, layout = NULL, ...)

Arguments

x an object of class ceg.

col colors specification see plot.sevt.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in x$name_unobserved.

layout an igraph layout.

... additional arguments passed to plot.igraph.

Details

This function is a simple wrapper around igraph’s plot.igraph. The ceg object is converted to
an igraph object by firstly obtaining the adjacency matrix representation with ceg2adjmat. If not
specified, the default layout used is a rotated layout.reingold.tilford.

We use palette() as palette for the igraph plotting, while plot.igraph uses as default a different
palette. This is to allow matching stages colors between plot.ceg and plot.sevt.

Examples

Not run:
model <- stages_bhc(full(Titanic))
model.ceg <- ceg(model)
plot(model.ceg, edge.arrow.size = 0.1, vertex.label.dist = -2)

End(Not run)

plot.sevt 25

plot.sevt Plot method for staged event trees

Description

Plot method for staged event tree objects. It allows easy plotting of staged event trees with some
options (see Examples).

Usage

S3 method for class 'sevt'
plot(
x,
y = 10,
limit = y,
xlim = c(0, 1),
ylim = c(0, 1),
main = NULL,
sub = NULL,
asp = 1,
cex_label_nodes = 0,
cex_label_edges = 1,
cex_nodes = 2,
cex_tree_y = 0.9,
col = NULL,
col_edges = "black",
var_names = TRUE,
ignore = x$name_unobserved,
pch_nodes = 16,
lwd_nodes = 1,
lwd_edges = 1,
...

)

make_stages_col(x, col = NULL, ignore = x$name_unobserved, limit = NULL)

Arguments

x an object of class sevt.

y alias for limit for compatibility with plot.

limit maximum number of variables plotted.

xlim the x limits (x1, x2) of the plot.

ylim the y limits of the plot.

main an overall title for the plot.

sub a sub title for the plot.

26 plot.sevt

asp the y/x aspect ratio.
cex_label_nodes

the magnification to be used for the node labels. If set to 0 (as default) node
labels are not showed.

cex_label_edges

the magnification for the edge labels. If set to 0 edge labels are not displayed.

cex_nodes the magnification for the nodes of the tree.

cex_tree_y the magnification for the tree in the vertical direction. Default is 0.9 to leave
some space for the variable names.

col color mapping for stages, one of the following: NULL (color will be assigned
based on the current palette); a named (variables) list of named (stages) vec-
tors of colors; the character "stages", in which case the stage names will
be used as colors; a function that takes as input a vector of stages and out-
put the corresponding colors. Check the provided examples. The function
make_stages_col is used internally and make_stages_col(x, NULL) or make_stages_col(x,
"stages") can be used as a starting point for colors tweaking.

col_edges color for the edges.

var_names logical, if variable names should be added to the plot, otherwise variable names
can be added manually using text.sevt.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in x$name_unobserved.

pch_nodes either an integer specifying a symbol or a single character to be used as the
default in plotting nodes shapes see points.

lwd_nodes the line width for edges, a positive number, defaulting to 1.

lwd_edges the line width for nodes, a positive number, defaulting to 1.

... additional graphical parameters to be passed to points, lines, title, text and
plot.window.

Examples

data("PhDArticles")
mod <- stages_bj(full(PhDArticles, join_unobserved = TRUE))

simple plotting
plot(mod)

labels in nodes
plot(mod, cex_label_nodes = 1, cex_nodes = 0)

reduce nodes size
plot(mod, cex_nodes = 0.5)

change line width and nodes style
plot(mod, lwd_edges = 3, pch_nodes = 5)

changing palette

Pokemon 27

plot(mod, col = function(s) heat.colors(length(s)))

or changing global palette
palette(hcl.colors(10, "Harmonic"))
plot(mod)
palette("default") ##

forcing plotting of unobserved stages
plot(mod, ignore = NULL)

use function to specify colors
plot(mod, col = function(stages){

hcl.colors(n = length(stages))
})

manually give stages colors
as an example we will assign colors only to the stages of two variables
Gender (one stage named "1") and Mentor (six stages)
col <- list(Gender = c("1" = "blue"),

Mentor = c("UNOBSERVED" = "grey",
"2" = "red",
"3" = "purple",
"10" = "pink",
"18" = "green",
"22" = "brown"))

by setting ignore = NULL we will plot also the UNOBSERVED stage for Mentor
plot(mod, col = col, ignore = NULL)

Pokemon Pokemon Go Users

Description

Demographic information of a population of possible Pokemon Go users.

Usage

Pokemon

Format

A data frame with 999 rows and 5 variables:

Use Y if the individual used the app, N otherwise
Age >30 if the individual is older than 30, <=30 otherwise
Degree Yes if the individual completed a Higher Education degree, No otherwise
Gender Male or Female
Activity Yes if the individual was physically active (i.e. had a walk longer than 30 mins, went

for a run or had a bike ride to get some exercise) in the past week before the experiment, No
otherwise

28 predict.sevt

Source

https://osf.io/xy5g6/

References

Gabbiadini, Alessandro, Christina Sagioglou, and Tobias Greitemeyer. "Does Pokémon Go lead to
a more physically active life style?." Computers in Human Behavior 84 (2018): 258-263.

predict.sevt Predict method for staged event tree

Description

Predict class values from a staged event tree model.

Usage

S3 method for class 'sevt'
predict(object, newdata = NULL, class = NULL, prob = FALSE, log = FALSE, ...)

Arguments

object an object of class sevt with fitted probabilities.

newdata the newdata to perform predictions

class character, the name of the variable to use as the class variable, if NULL the first
element names(object$tree) will be used.

prob logical, if TRUE the probabilities of class are returned

log logical, if TRUE log-probabilities are returned

... additional parameters, see details

Details

Predict the most probable a posterior value for the class variable given all the other variables in the
model. Ties are broken at random and if, for a given vector of predictor variables, all conditional
probabilities are 0, NA is returned.

if prob = TRUE, a matrix with number of rows equals to the number of rows in the newdata and
number of columns as the number of levels of the class variable is returned. if log = TRUE, log-
probabilities are returned.

if prob = FALSE, a vector of length as the number of rows in the newdata with the level with higher
estimated probability for each new observations is returned.

Value

A vector of predictions or the corresponding matrix of probabilities.

https://osf.io/xy5g6/

print.sevt 29

Examples

DD <- generate_xor_dataset(n = 4, 600)
order <- c("C", "X1", "X2", "X3", "X4")
train <- DD[1:500, order]
test <- DD[501:600, order]
model <- full(train)
model <- stages_bhc(model)
pr <- predict(model, newdata = test, class = "C")
table(pr, test$C)
class values:
predict(model, newdata = test, class = "C")
probabilities:
predict(model, newdata = test, class = "C", prob = TRUE)
log-probabilities:
predict(model, newdata = test, class = "C", prob = TRUE, log = TRUE)

print.sevt Print a staged event tree

Description

Print a staged event tree

Usage

S3 method for class 'sevt'
print(x, ...)

Arguments

x an object of class sevt.

... additional parameters (compatibility).

Details

The order of the variables in the staged tree is printed (from root). In addition the number of levels
of each variable is shown in square brackets. If available the log-likelihood of the model is printed.

Value

An invisible copy of x.

Examples

DD <- generate_xor_dataset(5, 100)
model <- full(DD, lambda = 1)
print(model)

30 prob

prob Probabilities for a staged event tree

Description

Compute (marginal and/or conditional) probabilities of elementary events with respect to the prob-
ability encoded in a staged event tree.

Usage

prob(object, x, conditional_on = NULL, log = FALSE, na0 = TRUE)

Arguments

object an object of class sevt with probabilities.

x the vector or data.frame of observations.

conditional_on named vector, the conditioning event.

log logical, if TRUE log-probabilities are returned.

na0 logical, if NA should be converted to 0.

Details

Computes probabilities related to a vector or a data.frame of observations.

Optionally, conditional probabilities can be obtained by specifying the conditioning event in conditional_on.
This can be done either with a single named vector or with a data.frame object with the same num-
ber of rows of x. In the former, the same conditioning is used for all the computed probabilities (if
x has multiple rows); while with the latter different conditioning events (but on the same variables)
can be specified for each row of x.

Value

the probabilities to observe each observation in x, possibly conditional on the event(s) in conditional_on.

Examples

data(Titanic)
model <- full(Titanic, lambda = 1)
samples <- expand.grid(model$tree[c(1, 4)])
pr <- prob(model, samples)
probabilities sum up to one
sum(pr)
print observations with probabilities
print(cbind(samples, probability = pr))

compute one probability
prob(model, c(Class = "1st", Survived = "Yes"))

rename_stage 31

compute conditional probability
prob(model, c(Survived = "Yes"), conditional_on = c(Class = "1st"))

compute conditional probabilities with different conditioning set
prob(model, data.frame(Age = rep("Adult", 8)),

conditional_on = expand.grid(model$tree[2:1]))
the above should be the same as
summary(model)$stages.info$Age

rename_stage Rename stage(s) in staged event tree

Description

Change the name of a stage in a staged event tree.

Usage

rename_stage(object, var, stage, new)

Arguments

object an object of class sevt.

var name of a variable in object.

stage name of the stage to be renamed.

new new name for the stage.

Details

No internal checks are performed and as side effect stages can be joined, if e.g. new is equal to the
name of a stage for variable var.

Value

a staged event tree object where stages stage have been renamed to new.

32 search_best

sample_from Sample from a staged event tree

Description

Generate a random sample from the distribution encoded in a staged event tree object.

Usage

sample_from(object, nsim = 1, seed = NULL)

Arguments

object an object of class sevt with fitted probabilities.
nsim number of observations to sample.
seed an object specifying if and how the random number generator should be initial-

ized (‘seeded’). Either NULL or an integer that will be used in a call to set.seed.

Details

It samples nsim observations according to the transition probabilities (object$prob) in the model.

Value

A data frame containing nsim observations from the variables in object.

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
sample_from(model, 10)

search_best Optimal Order Search

Description

Find the optimal staged event tree with a dynamic programming approach.

Usage

search_best(
data,
alg = stages_bhc,
search_criterion = BIC,
lambda = 0,
join_unobserved = TRUE,
...

)

search_greedy 33

Arguments

data either a data.frame or a table containing the data.

alg a function that performs stages structure estimation. Similar to stages_bhc or
stages_hclust. The function alg must accept the argument scope.

search_criterion

the criterion minimized in the order search.

lambda numerical value passed to full.
join_unobserved

logical, passed to full.

... additional arguments, passed to alg.

Details

This function is an implementation of the dynamic programming approach of Silander and Leong
(2013). If the search_criterion is decomposable the returned model attains the best value among
all possible orders.

Value

The estimated staged event tree model.

References

Silander T., Leong TY. A Dynamic Programming Algorithm for Learning Chain Event Graphs.
In: Fürnkranz J., Hüllermeier E., Higuchi T. (eds) Discovery Science. DS 2013. Lecture Notes in
Computer Science, vol 8140. Springer, Berlin, Heidelberg. 2013.

Cowell R and Smith J. Causal discovery through MAP selection of stratified chain event graphs.
Electronic Journal of Statistics, 8(1):965–997, 2014.

Examples

default search using BIC score
model <- search_best(Titanic, alg = stages_kmeans)

use df as search_criterion
model1 <- search_best(Titanic, alg = stages_bhc,

search_criterion = function(m) attr(logLik(m), "df"))

search_greedy Greedy Order Search

Description

Search the optimal staged event tree with a greedy heuristic.

34 sevt

Usage

search_greedy(
data,
alg = stages_bhc,
search_criterion = BIC,
lambda = 0,
join_unobserved = TRUE,
...

)

Arguments

data either a data.frame or a table containing the data.

alg a function that performs stages structure estimation. Similar to stages_bhc or
stages_hclust. The function alg must accept the argument scope.

search_criterion

the criterion minimized in the order search.

lambda numerical value passed to full.

join_unobserved

logical, passed to full.

... additional arguments, passed to alg.

Details

The greedy approach implemented in this function iteratively adds variables to the staged tree that
better improve the search_criterion.

Value

The estimated staged event tree model.

Examples

model <- search_greedy(Titanic, alg = stages_fbhc)
print(model)

sevt Staged event tree (sevt) class

Description

Structure and usage of S3 class sevt, used to store a staged event tree.

sevt 35

Usage

sevt(x, full = FALSE, order = NULL)

S3 method for class 'table'
sevt(x, full = FALSE, order = names(dimnames(x)))

S3 method for class 'data.frame'
sevt(x, full = FALSE, order = colnames(x))

S3 method for class 'list'
sevt(x, full = FALSE, order = names(x))

Arguments

x a list, a data frame or table object.

full logical, if TRUE the full model is created otherwise the independence model.

order character vector, order of the variables to build the tree, by default the order of
the variables in x.

Details

A staged event tree object is a list with components:

• tree (required): A named list with one component for each variable in the model, a character
vector with the names of the levels for that variable. The order of the variables in tree is the
order of the event tree.

• stages (required): A named list with one component for each variable but the first, a character
vector storing the stages for the situations related to path ending in that variable.

• ctables: A named list with one component for each variable, the flat contingency table of that
variable given the previous variables.

• lambda: The smoothing parameter used to compute probabilities.

• name_unobserved: The stage name for unobserved situations.

• prob: The conditional probability tables for every variable and stage. Stored in a named list
with one component for each variable, a list with one component for each stage.

• ll: The log-likelihood of the estimated model. If present, logLik.sevt will return this value
instead of computing the log-likelihood.

The tree structure is never defined explicitly, instead it is implicitly defined by the list tree contain-
ing the order of the variables and the names of their levels. This is sufficient to define a complete
symmetric tree where an internal node at a depth related to a variable v has a number of children
equal to the cardinality of the levels of v. The stages information is instead stored as a list of vectors,
where each vector is indexed as the internal nodes of the tree at a given depth.

To define a staged tree from data (data frame or table) the user can call either full or indep
which both construct the staged tree object, attach the data in ctables and compute probabilities.
After, one of the available model selection algorithm can be used, see for example stages_hc,
stages_bhc or stages_hclust. If, mainly for development, only the staged tree structure is needed
(without data or probabilities) the basic sevt constructor can be used.

36 sevt_add

Value

A staged event tree object, an object of class sevt.

Examples

######### from table
model.titanic <- sevt(Titanic, full = TRUE)

######### from data frame
DD <- generate_random_dataset(n = 4, 1000)
model.indep <- sevt(DD)
model.full <- sevt(DD, full = TRUE)

######### from list
model <- sevt(list(

X = c("good", "bad"),
Y = c("high", "low")

))

sevt_add Add a variable to a staged event tree

Description

Return an updated staged event tree with one additional variable at the end of the tree.

Usage

sevt_add(object, var, data, join_unobserved = TRUE)

Arguments

object an object of class sevt.

var character, the name of the new variable to be added.

data either a data.frame or a table containing the data from the variables in object
plus var.

join_unobserved

logical, passed to full.

Details

This function update a staged event tree object with an additional variable. The stages structure of
the new variable is initialized as in the saturated model.

Value

An object of class sevt representing a staged event tree model with var added as last variable.

sevt_fit 37

Examples

model <- full(Titanic, order = c("Age", "Class"))
print(model)
model <- sevt_add(model, "Survived", Titanic)
print(model)

sevt_fit Fit a staged event tree

Description

Estimate transition probabilities in a staged event tree from data. Probabilities are estimated with
the relative frequencies plus, eventually, an additive (Laplace) smoothing.

Usage

sevt_fit(object, data = NULL, lambda = object$lambda)

Arguments

object an object of class sevt.

data data.frame or contingency table with observations of the variables in object.

lambda smoothing parameter or pseudocount.

Details

The data in form of contingency tables and the log-likelihood of the model is stored in the returned
staged event tree.

Value

A fitted staged event tree, that is an object of class sevt with ctables, prob and ll components.

Examples

#########
model <- sevt(list(

X = c("good", "bad"),
Y = c("high", "low")

))
D <- data.frame(

X = c("good", "good", "bad"),
Y = c("high", "low", "low")

)
model.fit <- sevt_fit(model, data = D, lambda = 1)

38 stagedtrees

stagedtrees Staged event trees.

Description

Algorithms to create, learn, fit and explore staged event tree models. Functions to compute proba-
bilities, make predictions from the fitted models and to plot, analyze and manipulate staged event
trees.

Details

A staged event tree is a representation of a particular factorization of a joint probability over a prod-
uct space. In particular, given a vector of categorical random variables X1, X2, . . ., a staged event
tree represents the factorization P (X1, X2, X3, . . .) = P (X1)P (X2|X1)P (X3|X1, X2)
Additionally, the stages structure indicates which conditional probabilities are equal.

Model selection algorithms:

• full model full

• independence model indep

• Hill-Climbing stages_hc

• Backward Hill-Climbing stages_bhc

• Fast Backward Hill-Climbing stages_fbhc

• Backward Hill-Climbing Random stages_bhcr

• Backward joining stages_bj

• Hierarchical Clustering stages_hclust

• K-Means Clustering stages_kmeans

• Optimal order search search_best

• Greedy order search search_greedy

Probabilities, log-likelihood and predictions:

• Marginal/Conditional probabilities prob

• Log-Likelihood logLik.sevt

• Predict method predict.sevt

• Confidence intervals confint.sevt

Plot, explore and compare:

• Plot plot.sevt

• Compare compare_stages

• Stages inclusion inclusions_stages

• Stages info summary.sevt

• List of parents as_parentslist

stages 39

• Barplot construction barplot.sevt

• Likelihood-ratio test lr_test

• Context-specific interventional distance cid

Modify models:

• Join and isolate unobserved situations join_unobserved

• Join two stages join_stages

• Rename a stage rename_stage

References

Collazo R. A., Görgen C. and Smith J. Q. Chain event graphs. CRC Press, 2018.

Görgen C., Bigatti A., Riccomagno E. and Smith J. Q. Discovery of statistical equivalence classes
using computer algebra. International Journal of Approximate Reasoning, vol. 95, pp. 167-184,
2018.

Barclay L. M., Hutton J. L. and Smith J. Q. Refining a Bayesian network using a chain event graph.
International Journal of Approximate Reasoning, vol. 54, pp. 1300-1309, 2013.

Smith J. Q. and Anderson P. E. Conditional independence and chain event graphs. Artificial Intelli-
gence, vol. 172, pp. 42-68, 2008.

Thwaites P. A., Smith, J. Q. A new method for tackling asymmetric decision problems. Interna-
tional Journal of Approximate Reasoning, vol. 88, pp. 624–639, 2017.

Examples

data("PhDArticles")
mf <- full(PhDArticles, join_unobserved = TRUE)
mod <- stages_fbhc(mf)
plot(mod)

stages Stages of a variable

Description

Obtain the stages of a given variable in a staged event tree object.

Usage

stages(object, var = NULL)

Arguments

object an object of class sevt.

var name of one variable in object.

40 stages_bhc

Value

If var is specified, it returns a character vector with stage names for the given variable (that is
object$stages[[var]]. Otherwise, If var is not specified, stages returns a list of character
vectors containing the stages associated to each variable in the model (that is object$stages).

stages_bhc Backward hill-climbing

Description

Greedy search of staged event trees with iterative joining of stages.

Usage

stages_bhc(
object,
score = function(x) { return(-BIC(x)) },
max_iter = Inf,
scope = NULL,
ignore = object$name_unobserved,
trace = 0

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

score the score function to be maximized.
max_iter the maximum number of iterations per variable.
scope names of variables that should be considered for the optimization.
ignore vector of stages which will be ignored and left untouched, by default the name

of the unobserved stages stored in object$name_unobserved.
trace if >0 increasingly amount of info is printed (via message).

Details

For each variable the algorithm tries to join stages and moves to the best model that increases the
score. When no increase is possible it moves to the next variable.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(n = 4, N = 100)
model <- stages_bhc(full(DD), trace = 2)
summary(model)

stages_bhcr 41

stages_bhcr Backward random hill-climbing

Description

Randomly try to join stages. This is a pretty-useless function, used for comparisons.

Usage

stages_bhcr(
object,
score = function(x) { return(-BIC(x)) },
max_iter = 100,
trace = 0

)

Arguments

object an object of class sevt.

score the score function to be maximized.

max_iter the maximum number of iteration.

trace if >0 increasingly amount of info is printed (via message).

Details

At each iteration a variable and two of its stages are randomly selected. If joining the stages in-
creases the score, the model is updated. The procedure is repeated until the number of iterations
reaches max_iter.

Value

an object of class sevt.

Examples

DD <- generate_xor_dataset(n = 4, N = 100)
model <- stages_bhcr(full(DD), trace = 2)
summary(model)

42 stages_bj

stages_bj Backward joining of stages

Description

Join stages from more complex to simpler models using a distance and a threshold value.

Usage

stages_bj(
object = NULL,
distance = "kullback",
thr = 0.1,
scope = NULL,
ignore = object$name_unobserved,
trace = 0

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

distance character, see details.

thr the threshold for joining stages

scope names of variables that should be considered for the optimization.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

trace if >0 increasingly amount of info is printed (via message).

Details

For each variable in the model stages are joined iteratively. At each iteration the two stages with
minimum distance are selected and joined if their distance is less than thr.

Available distances are: manhattan (manhattan), euclidean (euclidean), Renyi divergence (reny),
Kullback-Liebler (kullback), total-variation (totvar), squared Hellinger (hellinger), Bhattacharyya
(bhatt), Chan-Darwiche (chandarw). See also probdist.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(n = 5, N = 1000)
model <- stages_bj(full(DD, lambda = 1), trace = 2)
summary(model)

stages_fbhc 43

stages_fbhc Fast backward hill-climbing

Description

Greedy search of staged event trees with iterative joining of stages.

Usage

stages_fbhc(
object = NULL,
score = function(x) { return(-BIC(x)) },
max_iter = Inf,
scope = NULL,
ignore = object$name_unobserved,
trace = 0

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

score the score function to be maximized.

max_iter the maximum number of iteration.

scope names of variables that should be considered for the optimization.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

trace if >0 increasingly amount of info is printed (via message).

Details

For each variable the algorithm tries to join stages and moves to the first model that increases the
score. When no increase is possible it moves to the next variable.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(n = 5, N = 100)
model <- stages_fbhc(full(DD), trace = 2)
summary(model)

44 stages_hc

stages_hc Hill-climbing

Description

Greedy search of staged event trees with iterative moving of nodes between stages.

Usage

stages_hc(
object,
score = function(x) { return(-BIC(x)) },
max_iter = Inf,
scope = NULL,
ignore = object$name_unobserved,
trace = 0

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

score the score function to be maximized.

max_iter the maximum number of iterations per variable.

scope names of variables that should be considered for the optimization

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

trace if >0 increasingly amount of info is printed (via message).

Details

For each variable node-moves that best increases the score are performed until no increase is pos-
sible. A node-move is either changing the stage associate to a node or move the node to a new
stage.

The ignore argument can be used to specify stages that should not be affected during the search,
that is left untouched. This is useful for preserving structural zeroes and to speed-up computations.

Value

The final staged event tree obtained.

Examples

start <- indep(PhDArticles[,1:5], join_unobserved = TRUE)
model <- stages_hc(start)

stages_hclust 45

stages_hclust Learn a staged tree with hierarchical clustering

Description

Build a stage event tree with k stages for each variable by clustering stage probabilities with hierar-
chical clustering.

Usage

stages_hclust(
object,
distance = "totvar",
k = length(object$tree[[1]]),
method = "complete",
ignore = object$name_unobserved,
limit = length(object$tree),
scope = NULL

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

distance character, the distance measure to be used, either a possible method for dist or
one of the following: "totvar", "hellinger".

k integer or (named) vector: number of clusters, that is stages per variable. Values
will be recycled if needed.

method the agglomeration method to be used in hclust.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

limit the maximum number of variables to consider.

scope names of the variables to consider.

Details

hclust_sevt performs hierarchical clustering of the initial stage probabilities in object and it
aggregates them into the specified number of stages (k). A different number of stages for the
different variables in the model can be specified by supplying a (named) vector via the argument k.

Value

A staged event tree object.

46 stages_kmeans

Examples

data("Titanic")
model <- stages_hclust(full(Titanic, join_unobserved = TRUE, lambda = 1), k = 2)
summary(model)

stages_kmeans Learn a staged tree with k-means clustering

Description

Build a stage event tree with k stages for each variable by clustering (transformed) probabilities
with k-means.

Usage

stages_kmeans(
object,
k = length(object$tree[[1]]),
algorithm = "Hartigan-Wong",
transform = sqrt,
ignore = object$name_unobserved,
limit = length(object$tree),
scope = NULL,
nstart = 1

)

Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

k integer or (named) vector: number of clusters, that is stages per variable. Values
will be recycled if needed.

algorithm character: as in kmeans.

transform function applied to the probabilities before clustering.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

limit the maximum number of variables to consider.

scope names of the variables to consider.

nstart as in kmeans

Details

kmenas_sevt performs k-means clustering to aggregate the stage probabilities of the initial staged
tree object. Different values for k can be specified by supplying a (named) vector to k. kmeans
from the stats package is used internally and arguments algorithm and nstart refer to the same
arguments as kmeans.

stndnaming 47

Value

A staged event tree.

Examples

data("Titanic")
model <- stages_kmeans(full(Titanic, join_unobserved = TRUE, lambda = 1), k = 2)
summary(model)

stndnaming Standard renaming of stages

Description

Rename all stages in a staged event tree.

Usage

stndnaming(
object,
uniq = FALSE,
prefix = FALSE,
ignore = object$name_unobserved

)

Arguments

object an object of class sevt.

uniq logical, if stage numbers should be unique over all tree.

prefix logical, if stage names should be prefixed with variable name.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

Value

a staged event tree object with stages named with consecutive integers.

Examples

model <- stages_fbhc(full(PhDArticles, join_unobserved = TRUE))
model$stages
model1 <- stndnaming(model)
model1$stages

unique stage names in all tree
model2 <- stndnaming(model, uniq = TRUE)
model2$stages

48 subtree

prefix stage names with variable name
model3 <- stndnaming(model, prefix = TRUE)
model3$stages

manuallty select stage names left untouched
model4 <- stndnaming(model, ignore = c("2", "6"), prefix = TRUE)
model4$stages

subtree Extract subtree

Description

Extract subtree

Usage

subtree(object, path)

Arguments

object an object of class sevt.

path the path from root after which extract the subtree.

Details

Returns the subtree of the staged event tree, starting from path.

Value

A staged event tree object corresponding to the subtree.

Examples

DD <- generate_random_dataset(4, 100)
model <- sevt(DD, full = TRUE)
plot(model)
model1 <- subtree(model, path = c("-1", "1"))
plot(model1)

summary.sevt 49

summary.sevt Summarizing staged event trees

Description

Summary method for class sevt.

Usage

S3 method for class 'sevt'
summary(object, ...)

S3 method for class 'summary.sevt'
print(x, max = 10, ...)

Arguments

object an object of class sevt.

... arguments for compatibility.

x an object of class summary.sevt.

max the maximum number of variables for which information is printed.

Details

Print model information and summary of stages.

Value

An object of class summary.sevt for which a print method exist.

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
summary(model)

text.sevt Add text to a staged event tree plot

Description

Add text to a staged event tree plot

Usage

S3 method for class 'sevt'
text(x, y = ylim[1], limit = 10, xlim = c(0, 1), ylim = c(0, 1), ...)

50 text.sevt

Arguments

x An object of class sevt.

y the position of the labels.

limit maximum number of variables plotted.

xlim graphical parameter.

ylim graphical parameter.

... additional parameters passed to text.

Index

∗ datasets
Asym, 4
PhDArticles, 23
Pokemon, 27

as.character.parentslist, 3, 6
as_adj_matrix, 4
as_bn, 5
as_parentslist, 5, 7, 38
as_sevt, 6
Asym, 4

barplot, 8
barplot.sevt, 8, 39

ceg, 9, 10, 24
ceg2adjmat, 9, 24
cid, 10, 39
compare_stages, 11, 38
confint.sevt, 13, 38

diff_stages (compare_stages), 11
dist, 45

full, 21, 33–36, 38
full (full_indep), 14
full_indep, 14

generate_linear_dataset, 16
generate_random_dataset, 17
generate_xor_dataset, 17
get_path (get_stage), 18
get_stage, 18

hamming_stages (compare_stages), 11
hclust, 45

inclusions_stages, 19, 22, 38
indep, 21, 35, 38
indep (full_indep), 14

join_stages, 19, 39

join_unobserved, 15, 20, 39

kmeans, 46

logLik, 22
logLik.sevt, 21, 35, 38
lr_test, 22, 39

make_stages_col (plot.sevt), 25

PhDArticles, 23
plot.ceg, 24
plot.sevt, 8, 11, 24, 25, 38
points, 26
Pokemon, 27
predict.sevt, 28, 38
print.parentslist, 6
print.parentslist

(as.character.parentslist), 3
print.sevt, 29
print.summary.sevt (summary.sevt), 49
prob, 30, 38
probdist, 42

rename_stage, 31, 39

sample_from, 32
search_best, 32, 38
search_greedy, 33, 38
sevt, 6, 7, 9, 10, 22, 34, 35
sevt_add, 36
sevt_fit, 37
stagedtrees, 38
stages, 39
stages_bhc, 33–35, 38, 40
stages_bhcr, 38, 41
stages_bj, 38, 42
stages_fbhc, 38, 43
stages_hc, 35, 38, 44
stages_hclust, 33–35, 38, 45
stages_kmeans, 38, 46

51

52 INDEX

stndnaming, 12, 47
subtree, 48
summary.sevt, 38, 49

text, 50
text.sevt, 26, 49

	as.character.parentslist
	Asym
	as_adj_matrix
	as_bn
	as_parentslist
	as_sevt
	barplot.sevt
	ceg
	ceg2adjmat
	cid
	compare_stages
	confint.sevt
	full_indep
	generate_linear_dataset
	generate_random_dataset
	generate_xor_dataset
	get_stage
	inclusions_stages
	join_stages
	join_unobserved
	logLik.sevt
	lr_test
	PhDArticles
	plot.ceg
	plot.sevt
	Pokemon
	predict.sevt
	print.sevt
	prob
	rename_stage
	sample_from
	search_best
	search_greedy
	sevt
	sevt_add
	sevt_fit
	stagedtrees
	stages
	stages_bhc
	stages_bhcr
	stages_bj
	stages_fbhc
	stages_hc
	stages_hclust
	stages_kmeans
	stndnaming
	subtree
	summary.sevt
	text.sevt
	Index

