stlELM: Hybrid Forecasting Model Based on STL Decomposition and ELM

Univariate time series forecasting with STL decomposition based Extreme Learning Machine hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.

Version: 0.1.1
Depends: R (≥ 2.10)
Imports: forecast, nnfor
Published: 2022-08-09
Author: Girish Kumar Jha [aut, cre], Ronit Jaiswal [aut, ctb], Kapil Choudhary [ctb], Rajeev Ranjan Kumar [ctb]
Maintainer: Girish Kumar Jha <girish.stat at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: stlELM results

Documentation:

Reference manual: stlELM.pdf

Downloads:

Package source: stlELM_0.1.1.tar.gz
Windows binaries: r-devel: stlELM_0.1.1.zip, r-release: stlELM_0.1.1.zip, r-oldrel: stlELM_0.1.1.zip
macOS binaries: r-release (arm64): stlELM_0.1.1.tgz, r-oldrel (arm64): stlELM_0.1.1.tgz, r-release (x86_64): stlELM_0.1.1.tgz, r-oldrel (x86_64): stlELM_0.1.1.tgz
Old sources: stlELM archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=stlELM to link to this page.