
Introduction to stream: An Extensible Framework

for Data Stream Clustering Research with R

Michael Hahsler
Southern Methodist University

Matthew Bolaños
Microsoft Corporation

John Forrest
Microsoft Corporation

Abstract

In recent years, data streams have become an increasingly important area of research
for the computer science, database and statistics communities. Data streams are ordered
and potentially unbounded sequences of data points created by a typically non-stationary
data generating process. Common data mining tasks associated with data streams include
clustering, classification and frequent pattern mining. New algorithms for these types
of data are proposed regularly and it is important to evaluate them thoroughly under
standardized conditions.

In this paper we introduce stream, a research tool that includes modeling and simu-
lating data streams as well as an extensible framework for implementing, interfacing and
experimenting with algorithms for various data stream mining tasks. The main advantage
of stream is that it seamlessly integrates with the large existing infrastructure provided by
R. In addition to data handling, plotting and easy scripting capabilities, R also provides
many existing algorithms and enables users to interface code written in many program-
ming languages popular among data mining researchers (e.g., C/C++, Java and Python).
In this paper we describe the architecture of stream and focus on its use for data stream
clustering research. stream was implemented with extensibility in mind and will be ex-
tended in the future to cover additional data stream mining tasks like classification and
frequent pattern mining.

Keywords: data streams, data mining, clustering.

Note: A previous version of this manuscript was published in the Journal of Statistical Soft-
ware (Hahsler, Bolaños, and Forrest 2017a).

1. Introduction

Typical statistical and data mining methods (e.g., clustering, regression, classification and
frequent pattern mining) work with “static” data sets, meaning that the complete data set
is available as a whole to perform all necessary computations. Well known methods like k-
means clustering, linear regression, decision tree induction and the APRIORI algorithm to
find frequent itemsets scan the complete data set repeatedly to produce their results (Hastie,
Tibshirani, and Friedman 2001). However, in recent years more and more applications need to

2 Introduction to stream

work with data which are not static, but are the result of a continuous data generating process
which is likely to evolve over time. Some examples are web click-stream data, computer
network monitoring data, telecommunication connection data, readings from sensor nets and
stock quotes. These types of data are called data streams and dealing with data streams
has become an increasingly important area of research (Babcock, Babu, Datar, Motwani,
and Widom 2002; Gaber, Zaslavsky, and Krishnaswamy 2005; Aggarwal 2007). Early on,
the statistics community also recognized the importance of the emerging field of statistical
analysis of massive data streams (see Keller-McNulty (2004)).

A data stream can be formalized as an ordered sequence of data points

Y = 〈y1, y2, y3, . . .〉,

where the index reflects the order (either by explicit time stamps or just by an integer reflecting
order). The data points themselves are often simple vectors in multidimensional space, but can
also contains nominal/ordinal variables, complex information (e.g., graphs) or unstructured
information (e.g., text). The characteristic of continually arriving data points introduces an
important property of data streams which also poses the greatest challenge: the size of a data
stream is potentially unbounded. This leads to the following requirements for data stream
processing algorithms:

• Bounded storage: The algorithm can only store a very limited amount of data to sum-
marize the data stream.

• Single pass: The incoming data points cannot be permanently stored and need to be
processed at once in the arriving order.

• Real-time: The algorithm has to process data points on average at least as fast as the
data is arriving.

• Concept drift: The algorithm has to be able to deal with a data generating process which
evolves over time (e.g., distributions change or new structure in the data appears).

Most existing algorithms designed for static data are not able to satisfy all these requirements
and thus are only usable if techniques like sampling or time windows are used to extract small,
quasi-static subsets. While these approaches are important, new algorithms to deal with the
special challenges posed by data streams are needed and have been introduced over the last
decade.

Even though R represents an ideal platform to develop and test prototypes for data stream
mining algorithms, R currently does only have very limited infrastructure for data streams.
The following are some packages available from the Comprehensive R Archive Network1

related to streams:

Data sources: Random numbers are typically created as streams (see e.g., rstream (Leydold
2015) and rlecuyer (Sevcikova and Rossini 2012)). Financial data can be obtained
via packages like quantmod (Ryan 2016). Intra-day price and trading volume can be
considered a data stream. For Twitter, a popular micro-blogging service, packages like
streamR (Barbera 2014) and twitteR (Gentry 2015) provide interfaces to retrieve life
Twitter feeds.

1http://CRAN.R-project.org/

http://CRAN.R-project.org/

Michael Hahsler, Matthew Bolanos, John Forrest 3

Statistical models: Several packages provide algorithms for iteratively updating statistical
models, typically to deal with very large data. For example, factas (Bar 2014) imple-
ments iterative versions of correspondence analysis, PCA, canonical correlation analysis
and canonical discriminant analysis. For clustering, birch (Charest, Harrington, and
Salibian-Barrera 2012) implements BIRCH, a clustering algorithm for very large data
sets. The algorithm maintains a clustering feature tree which can be updated in an
iterative fashion. Although BIRCH was not developed as a data stream clustering al-
gorithm, it first introduced some characteristics needed for efficiently handling data
streams. Unfortunately, the birch package is no longer maintained and was removed
recently from CRAN. rEMM (Hahsler and Dunham 2015) implements a stand-alone
version of a pure data stream clustering algorithm enhanced with a methodology to
model a data stream’s temporal structure. Very recently RMOA (Wijffels 2014) was
introduced. The package interfaces data stream classification algorithms from the MOA
framework (see existing tools discussed in Section 2.4), however, the package focuses
not on data streams but on static data sets that do not fit into main memory.

Distributed computing frameworks: With the development of Hadoop2, distributed com-
puting frameworks to solve large scale computational problems have become very pop-
ular. HadoopStreaming (Rosenberg 2012) is available to use map and reduce scripts
written in R within the Java-based Hadoop framework. However, contrary the word
streaming in its name, HadoopStreaming does not refer to data streams. As Hadoop
itself, HadoopStreaming is used for batch processing and streaming in the name refers
only to the internal usage of pipelines for “streaming” the input and output between
the Hadoop framework and the used R scripts. A distributed framework for realtime
computation is Storm3. Storm builds on the idea of constructing a computing topology
by connecting spouts (data stream sources) with a set of bolts (computational units).
RStorm (Kaptein 2013) provides an environment to prototype bolts in R. Spouts are
represented as data frames. Bolts developed in RStorm can currently not directly be
used in Storm, but this is planned for the future (Kaptein 2014).

Even in the stream-related packages discussed above, data is still represented by data frames
or matrices which is suitable for static data but not ideal to represent streams.

In this paper we introduce the package stream (Hahsler, Bolaños, and Forrest 2017b) which
provides a framework to represent and process data streams and use them to develop, test
and compare data stream algorithms in R. We include an initial set of data stream generators
and data stream clustering algorithms in this package with the hope that other researchers
will use stream to develop, study and improve their own algorithms.

The paper is organized as follows. We briefly review data stream mining in Section 2. In
Section 3 we cover the basic design principles of the stream framework. Sections 4, 5 and 6
introduce details about creating data stream sources, performing data stream mining tasks,
and evaluating data stream clustering algorithms, respectively. Each of the three sections
include example code. Section 7 we provides comprehensive examples performing an ex-
perimental comparison of several data stream clustering algorithms and clustering a large,
high-dimensional data set. Section 8 concludes the paper.

2http://hadoop.apache.org/
3http://storm.incubator.apache.org/

http://hadoop.apache.org/
http://storm.incubator.apache.org/

4 Introduction to stream

2. Data stream mining

Due to advances in data gathering techniques, it is often the case that data is no longer viewed
as a static collection, but rather as a potentially very large dynamic set, or stream, of incoming
data points. The most common data stream mining tasks are clustering, classification and
frequent pattern mining (Aggarwal 2007; Gama 2010). In this section we will give a brief
introduction to these data stream mining tasks. We will focus on clustering, since this is also
the current focus of package stream.

2.1. Data stream clustering

Clustering, the assignment of data points to (typically k) groups such that points within
each group are more similar to each other than to points in different groups, is a very ba-
sic unsupervised data mining task. For static data sets, methods like k-means, k-medoids,
hierarchical clustering and density-based methods have been developed among others (Jain,
Murty, and Flynn 1999). Many of these methods are available in tools like R, however, the
standard algorithms need access to all data points and typically iterate over the data multiple
times. This requirement makes these algorithms unsuitable for large data streams and led to
the development of data stream clustering algorithms.

Over the last 10 years many algorithms for clustering data streams have been proposed (see
Silva, Faria, Barros, Hruschka, Carvalho, and Gama (2013) for a current survey). Most
data stream clustering algorithms deal with the problems of unbounded stream size, and
the requirements for real-time processing in a single pass by using the following two-stage
online/offline approach introduced by Aggarwal, Han, Wang, and Yu (2003).

1. Online: Summarize the data using a set of k′ micro-clusters organized in a space effi-
cient data structure which also enables fast look-up. Micro-clusters were introduced for
CluStream by Aggarwal et al. (2003) based on the idea of cluster features developed for
clustering large data sets with the BIRCH algorithm (Zhang, Ramakrishnan, and Livny
1996). Micro-clusters are representatives for sets of similar data points and are created
using a single pass over the data (typically in real time when the data stream arrives).
Micro-clusters are often represented by cluster centers and additional statistics such as
weight (local density) and dispersion (variance). Each new data point is assigned to
its closest (in terms of a similarity function) micro-cluster. Some algorithms use a grid
instead and micro-clusters are represented by non-empty grid cells (e.g., D-Stream by
Tu and Chen (2009) or MR-Stream by Wan, Ng, Dang, Yu, and Zhang (2009)). If a
new data point cannot be assigned to an existing micro-cluster, a new micro-cluster
is created. The algorithm might also perform some housekeeping (merging or deleting
micro-clusters) to keep the number of micro-clusters at a manageable size or to remove
information outdated due to a change in the stream’s data generating process.

2. Offline: When the user or the application requires a clustering, the k′ micro-clusters
are reclustered into k ≪ k′ final clusters sometimes referred to as macro-clusters. Since
the offline part is usually not regarded time critical, most researchers use a conventional
clustering algorithm where micro-cluster centers are regarded as pseudo-points. Typical
reclustering methods involve k-means or clustering based on the concept of reachability
introduced by DBSCAN (Ester, Kriegel, Sander, and Xu 1996). The algorithms are
often modified to take also the weight of micro-clusters into account.

Michael Hahsler, Matthew Bolanos, John Forrest 5

The most popular approach to adapt to concept drift (changes of the data generating process
over time) is to use the exponential fading strategy introduced first for DenStream by Cao,
Ester, Qian, and Zhou (2006). Micro-cluster weights are faded in every time step by a factor
of 2−λ, where λ > 0 is a user-specified fading factor. This way, new data points have more
impact on the clustering and the influence of older points gradually disappears. Alternative
models use sliding or landmark windows. Details of these methods as well as other data
stream clustering algorithms are discussed in the survey by Silva et al. (2013).

2.2. Outlier detection

The outlier detection in data streams is a popular task, often used for risk management, e.g.,
fraud and intrusion detection. From the end-user point of view, outliers are important and
meaningful data points that are standing out from the usual populations (clusters) that can
be found in data streams (Silva et al. 2013). This differentiation between clusters and outliers
can be statistically or density-based.

We build special outlier detectors to detect them in big data streams. Detecting small statis-
tical (or density) differences between clusters and outliers is the key feature of a good outlier
detector. Outlier detectors that can detect outlier smaller statistical or density variations are
better. This leads us to the outlier detector breaking point, which is the smaller statistical
or density variation for which the outlier detector still can detect some outlier.

End-user interest in outliers requires that detected outliers get reported back to the user in a
limited time frame, which is directly correlated with data stream velocity.

Such a time requirement requires a more fine-grained approach than the previously described
two-stage approach. For outlier detectors, such as Continuous Outlier Detection (COD),
Micro-cluster Continuous Outlier Detection (MCOD) (Kontaki, Gounaris, Papadopoulos,
Tsichlas, and Manolopoulos (2016)), and Statistical Hierarchical Clustering (SHC) (Krleža,
Vrdoljak, and Brčić (2020)), this means processing each data point retrieved from the input
data stream in two steps. In the first step, outlier detectors are trying to classify the input
data point. If the input data point does not belong to any known cluster (population), the
outlier detector must decide whether the data point represents a new outlier.

The evolving nature of the input data stream causes outliers to become inliers, which repre-
sents an issue while trying to assess the outlier detection correctness. In such cases, outlier
detectors must have outlier tracking capabilities, which allows users to re-check each out-
lier individually and determine whether a previously detected outlier is still an outlier, or it
evolved into an inlier in the meantime.

2.3. Other popular data stream mining tasks

Classification, learning a model in order to assign labels to new, unlabeled data points is a well
studied supervised machine learning task. Methods include naive Bayes, k-nearest neighbors,
classification trees, support vector machines, rule-based classifiers and many more (Hastie
et al. 2001). However, as with clustering these algorithms need access to the complete training

6 Introduction to stream

data several times and thus are not suitable for data streams with constantly arriving new
training data and concept drift.

Several classification methods suitable for data streams have been developed. Examples are
Very Fast Decision Trees (VFDT) (Domingos and Hulten 2000) using Hoeffding trees, the time
window-based Online Information Network (OLIN) (Last 2002) and On-demand Classification
(Aggarwal, Han, Wang, and Yu 2004) based on micro-clusters found with the data-stream
clustering algorithm CluStream (Aggarwal et al. 2003). For a detailed discussion of these
and other methods we refer the reader to the survey by Gaber, Zaslavsky, and Krishnaswamy
(2007).

Another common data stream mining task is frequent pattern mining. The aim of frequent
pattern mining is to enumerate all frequently occurring patterns (e.g., itemsets, subsequences,
subtrees, subgraphs) in large transaction data sets. Patterns are then used to summarize the
data set and can provide insights into the data. Although finding all frequent patterns in large
data sets is a computationally expensive task, many efficient algorithms have been developed
for static data sets. A prime example is the APRIORI algorithm (Agrawal, Imielinski, and
Swami 1993) for frequent itemsets. However, these algorithms use breath-first or depth-first
search strategies which results in the need to pass over each transaction (i.e., data point)
several times and thus makes them unusable for the case where transactions arrive and need
to be processed in a streaming fashion. Algorithms for frequent pattern mining in streams are
discussed in the surveys by Jin and Agrawal (2007), Cheng, Ke, and Ng (2008) and Vijayarani
and Sathya (2012).

2.4. Existing tools

MOA4 (short for Massive Online Analysis) is a framework implemented in Java for stream
classification, regression and clustering (Bifet, Holmes, Kirkby, and Pfahringer 2010). It
was the first experimental framework to provide easy access to multiple data stream mining
algorithms, as well as to tools for generating data streams that can be used to measure and
compare the performance of different algorithms. Like WEKA (Witten and Frank 2005),
a popular collection of machine learning algorithms, MOA is also mainly developed by the
University of Waikato and its graphical user interface (GUI) and workflow are similar to those
of WEKA. Classification results are shown as text, while clustering results have a visualization
component that shows both the evolution of the clustering (in two dimensions) and various
performance metrics over time (Kranen, Kremer, Jansen, Seidl, Bifet, Holmes, and Pfahringer
2010).

SAMOA5 (Scalable Advanced Massive Online Analysis) is a recently introduced tool for dis-
tributed stream mining with Storm or the Apache S4 distributed computing platform. Sim-
ilar to MOA it is implemented in Java, and supports the basic data stream mining tasks of
clustering, classification and frequent pattern mining. Some MOA clustering algorithms are
interfaced in SAMOA. SAMOA currently does not provide a GUI.

Another distributed processing framework and streaming machine learning library is Jabatus6.
It is implemented in C++ and supports classification, regression and clustering. For clustering
it currently supports k-means and Gaussian Mixture Models (version 0.5.4).

4http://moa.cms.waikato.ac.nz/
5http://yahoo.github.io/samoa/
6http://jubat.us/en/

http://moa.cms.waikato.ac.nz/
http://yahoo.github.io/samoa/
http://jubat.us/en/

Michael Hahsler, Matthew Bolanos, John Forrest 7

Commercial data stream mining platforms include IBM InfoSphere Streams and Microsoft
StreamInsight (part of MS SQL Server). These platforms aim at building applications using
existing data stream mining algorithms rather than developing and testing new algorithms.

MOA is currently the most complete framework for data stream clustering research and it
is an important pioneer in experimenting with data stream algorithms. MOA’s advantages
are that it interfaces with WEKA, provides already a set of data stream classification and
clustering algorithms and it has a clear Java interface to add new algorithms or use the
existing algorithms in other applications.

A drawback of MOA and the other frameworks for R users is that for all but very simple
experiments custom Java code has to be written. Also, using MOA’s data stream mining
algorithms together with the advanced capabilities of R to create artificial data and to analyze
and visualize the results is currently very difficult and involves running code and copying data
manually. The recently introduce R-package RMOA (Wijffels 2014) interfaces MOA’s data
stream classification algorithms, however, it focuses on processing large data sets that do not
fit into main memory and not on data streams.

3. The stream framework

The stream framework provides an R-based alternative to MOA which seamlessly integrates
with the extensive existing R infrastructure. Since R can interface code written in many
different programming languages (e.g., C/C++, Java, Python), data stream mining algorithms
in any of these languages can be easily integrated into stream. stream is based on several
packages including fpc (Hennig 2014), clue (Hornik 2017), cluster (Maechler, Rousseeuw,
Struyf, Hubert, and Hornik 2014), clusterGeneration (Qiu and Joe. 2015), MASS (Venables
and Ripley 2002), proxy (Meyer and Buchta 2017), and others. The stream extension package
streamMOA (Hahsler and Bolanos 2015) also interfaces the data stream clustering algorithms
already available in MOA using the rJava package by Urbanek (2016).

We will start with a very short example to make the introduction of the framework and its
components easier to follow. After loading stream, we create a simulated data stream with
data points drawn from three random Gaussians in 2D space. Note that we set the random
number generator seed every time when we create simulated data sets to get reproducible
results.

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 2)

Next, we create an instance of the density-based data stream clustering algorithm D-Stream
which uses grid cells as micro-clusters. We specify the grid cell size (gridsize) as .1 and
require that the density of a grid cell (Cm) needs to be at least 1.2 times the average cell
density to become a micro-cluster. Then we update the model with the next 500 data points
from the stream.

R> dstream <- DSC_DStream(gridsize = .1, Cm = 1.2)

R> update(dstream, stream, n = 500)

8 Introduction to stream

0.2 0.4 0.6 0.8

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

X1

X
2

Figure 1: Data stream clustering result of D-Stream on a simple simulated data set with
three random Gaussians. Micro-clusters are shown as circles and macro-clusters are shown
as crosses (size represents weight).

Finally, we perform reclustering using k-means with three clusters and plot the resulting micro
and macro clusters (see Figure 1).

R> km <- DSC_Kmeans(k = 3)

R> recluster(km, dstream)

R> plot(km, stream, type = "both")

As shown in this example, the stream framework consists of two main components:

1. Data stream data (DSD) simulates or connects to a data stream.

2. Data stream task (DST) performs a data stream mining task. In the example above,
we performed twice a data stream clustering (DSC) task.

Figure 2 shows a high level view of the interaction of the components. We start by creating
a DSD object and a DST object. Then the DST object starts receiving data form the DSD
object. At any time, we can obtain the current results from the DST object. DSTs can
implement any type of data stream mining task (e.g., classification or clustering).

Since stream mining is a relatively young field and many advances are expected in the near
future, the object oriented framework in stream was developed with easy extensibility in
mind. We are using the S3 class system (Chambers and Hastie 1992) throughout and, for
performance reasons, the R-based algorithms are implemented using reference classes. The
framework provides for each of the two core components a lightweight interface definition (i.e.,
an abstract class) which can be easily implemented to create new data stream types or to
interface new data stream mining algorithms. Developers can also extend the infrastructure
with new data mining tasks. Details for developers interested in extending stream can be

Michael Hahsler, Matthew Bolanos, John Forrest 9

Data Stream Data
(DSD)

Data Stream Task
(DST)

Result

Figure 2: A high level view of the stream architecture.

found in the package’s vignette and manual pages (Hahsler et al. 2017b). In the following we
will concentrate on describing the aspects of the framework which are important to a users
interested in dealing with data streams and performing data stream mining tasks in R.

4. Data stream data (DSD)

4.1. Introduction

The first step in the stream workflow is to select a data stream implemented as a data stream
data (DSD) object. This object can be a management layer on top of a real data stream, a
wrapper for data stored in memory or on disk, or a generator which simulates a data stream
with know properties for controlled experiments. Figure 3 shows the relationship (inheritance
hierarchy) of the DSD classes as a UML class diagram (Fowler 2003). All DSD classes extend
the abstract base class DSD. There are currently two types of DSD implementations, classes
which implement R-based data streams (DSD_R) and MOA-based stream generators (DSD_MOA)
provided in streamMOA. Note that abstract classes define interfaces and only implement
common functionality. Only implementation classes can be used to create objects (instances).
This mechanism is not enforced by S3, but is implemented in stream by providing for all
abstract classes constructor functions which create an error.

The package stream provides currently the following set of DSD implementations:

• Simulated streams with static structure.

– DSD_BarsAndGaussians generates two uniformly filled rectangular and two Gaus-
sians clusters with different density.

– DSD_Gaussians generates randomly placed static clusters with random multivari-
ate Gaussian distributions. Allows generating and marking outliers for outlier
detectors.

– DSD_mlbenchData provides streaming access to machine learning benchmark data
sets found in the mlbench package (Leisch and Dimitriadou 2012).

– DSD_mlbenchGenerator interfaces the generators for artificial data sets defined in
the mlbench package.

– DSD_Target generates a ball in circle data set.

– DSD_UniformNoise generates uniform noise in a d-dimensional (hyper) cube.

• Simulated streams with concept drift.

10 Introduction to stream

– DSD_Benchmark, a collection of simple benchmark problems including splitting and
joining clusters, and changes in density or size. This collection is indented to grow
into a comprehensive benchmark set used for algorithm comparison.

– DSD_MG, a generator to specify complex data streams with concept drift. The shape
as well as the behavior of each cluster over time (changes in position, density and
dispersion) can be specified using keyframes (similar to keyframes in animation
and film making) or by mathematical functions.

– DSD_RandomRBFGeneratorEvents (streamMOA) generates streams using radial
base functions with noise. Clusters move, merge and split.

• Connectors to real data and streams.

– DSD_Memory provides a streaming interface to static, matrix-like data (e.g., a data
frame, a matrix) in memory which represent a fixed portion of a data stream.
Matrix-like objects also include large objects potentially stored on disk like ffdf

from package ff (Adler, Gläser, Nenadic, Oehlschlägel, and Zucchini 2014) or
big.matrix from package bigmemory (Kane, Emerson, and Weston 2013). Any
matrix-like object which implements at least row subsetting with "[" and dim()

can be used. Using these, stream mining algorithms (e.g., clustering) can be per-
formed on data that does not fit into main memory. In addition, DSD_Memory can
directly create a static copy of a portion of another DSD object to be replayed in
experiments several times.

– DSD_ReadCSV reads data line by line in text format from a file or an open connection
and makes it available in a streaming fashion. This way data that is larger than
the available main memory can be processed. Connections can be used to read
from real-time data streams.

– DSD_ReadDB provides an interface to an open result set from a SQL query to a
relational database. Any of the many database management systems with a DBI

interface (R Special Interest Group on Databases 2014) can be used.

• In-flight stream operations.

– DSD_ScaleStream can be used to standardize (centering and scaling) data in a
data stream in-flight.

All DSD implementations share a simple interface consisting of the following two functions:

1. A creator function. This function typically has the same name as the class. By definition
the function name starts with the prefix DSD_. The list of parameters depends on the
type of data stream it creates. The most common input parameters for the creation
of DSD classes for clustering are k, the number of clusters (i.e., dense areas), and d,
the number of dimensions. A full list of parameters can be obtained from the help
page for each class. The result of this creator function is not a data set but an object
representing the stream’s properties and its current state.

2. A data generating function
get_points(x, n = 1, outofpoints = c("stop", "warn", "ignore") , ...).
This function is used to obtain the next data point (or next n data points) from the

Michael Hahsler, Matthew Bolanos, John Forrest 11

DSD_R

DSD_Gaussian

DSD

DSD_MOA

DSD_Memory DSD_ReadCSV DSD_RandomRBF.

A
b

s
tr

a
c
t

c
la

s
s
e

s
Im

p
le

m
e

n
ta

ti
o

n

streamMOA

Figure 3: Overview of the data stream data (DSD) class structure.

stream represented by object x. Parameter outofpoints controls how to deal with a
stream which runs out of points (the stream source does not provide more points at this
time). For "warn" and "ignore" all (possibly zero) available points are returned. For
clustering data, the data points are returned as a data frame with each row representing
a single data point. For other types of data streams (e.g., transaction data for frequent
pattern mining), the returned points might be represented in a different, appropriate
way (e.g., as a list).

Next to these core functions several utility functions like print(), plot() and write_stream(),
to save a part of a data stream to disk, are provided by stream for class DSD and are avail-
able for all data stream sources. Different data stream implementations might have additional
functions implemented. For example, DSD_Gaussians, DSD_Memory and DSD_ReadCSV provide
reset_stream() to reset the position in the stream to its beginning.

Next we give some examples of how to manage data streams using stream. In Section 4.2
we start with creating a data stream using different implementations of the DSD class. The
second example in Section 4.5 shows how to save and read stream data to and from disk.
Section 4.6 gives examples for how to reuse the same data from a stream in order to perform
comparison experiments with multiple data stream mining algorithms on exactly the same
data. All examples contain the complete code necessary for replication.

4.2. Example: Creating a data stream

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 3, noise = .05, p = c(.5, .3, .1))

R> stream

Mixture of Gaussians

Class: DSD_Gaussians, DSD_R, DSD_data.frame, DSD

With 3 clusters and 0 outliers in 3 dimensions

After loading the stream package we call the creator function for the class DSD_Gaussians

specifying the number of clusters as k = 3 and a data dimensionality of d = 3 with an

12 Introduction to stream

added noise of 5% of the generated data points. Each cluster is represented by a multivariate
Gaussian distribution with a randomly chosen mean (cluster center) and covariance matrix.
New data points are requested from the stream using get_points(). When a new data point
is requested from this generator, a cluster is chosen randomly (using the probability weights
in p) and then a point is drawn from the multivariate Gaussian distribution given by the
mean and covariance matrix of the cluster. Noise points are generated in a bounding box
from a d-dimensional uniform distribution. The following instruction requests n = 5 new data
points.

R> p <- get_points(stream, n = 5)

R> p

X1 X2 X3

1 0.720 0.274 0.283

2 0.556 0.221 0.530

3 0.539 0.204 0.550

4 0.585 0.203 0.381

5 0.895 0.463 0.742

The result is a data frame containing the data points as rows. For evaluation it is often
important to know the ground truth, i.e., from which cluster each point was created. Many
generators also return the ground truth (class or cluster label) if they are called with class

= TRUE.

R> p <- get_points(stream, n = 100, class = TRUE)

R> head(p, n = 10)

X1 X2 X3 class

1 0.741 0.445 0.236 1

2 0.589 0.394 0.188 1

3 0.714 0.289 0.269 1

4 0.733 0.221 0.374 1

5 0.610 0.347 0.217 1

6 0.760 0.208 0.305 1

7 0.746 0.270 0.357 NA

8 0.817 0.204 0.285 1

9 0.574 0.250 0.566 2

10 0.674 0.271 0.203 1

Note that the data was created by a generator with 5% noise. Noise points do not belong to
any cluster and thus have a class label of NA.

Next, we plot 500 points from the data stream to get an idea about its structure.

R> plot(stream, n = 500)

Michael Hahsler, Matthew Bolanos, John Forrest 13

X1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8 1.0

X2

0
.2

0
.4

0
.6

0
.8

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X3

Figure 4: Plotting 500 data points from the data stream.

The resulting scatter plot matrix is shown in Figures 4. The assignment values are automat-
ically used to distinguish between clusters using color and different plotting symbols. Noise
points are plotted as gray dots. The data can also be projected on its first two principal
components using method="pc".

R> plot(stream, n = 500, method = "pc")

Figures 5 show the projected data.

Stream also supports data streams which contain concept drift. Several examples of such
data stream generators are collected in DSD_Benchmark. We create an instance of the first
benchmark generator which creates two clusters moving in two-dimensional space. One moves
from top left to bottom right and the other one moves from bottom left to top right. Both
clusters overlap when they meet exactly in the center of the data space.

R> set.seed(1000)

R> stream <- DSD_Benchmark(1)

R> stream

14 Introduction to stream

−0.4 −0.2 0.0 0.2 0.4 0.6

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

PC1

P
C

2

Explains 74.34% of the point variability

Figure 5: Plotting 500 data points from the data stream projected onto its first two principal
components.

Benchmark 1: Two clusters moving diagonally from left to right, meeting in

the center (5% noise).

Class: DSD_MG, DSD_R, DSD_data.frame, DSD

With 2 clusters in 2 dimensions. Time is 1

To show concept drift, we request four times 250 data points from the stream and plot them.
To fast-forward in the stream we request 1400 points in between the plots and ignore them.

R> for(i in 1:4) {

+ plot(stream, 250, xlim = c(0, 1), ylim = c(0, 1))

+ tmp <- get_points(stream, n = 1400)

+ }

Figure 6 shows the four plots where clusters move over time. Arrows are added to high-
light the direction of cluster movement. An animation of the data can be generated using
animate_data(). We use reset_stream() to start the animation at the beginning of the
stream.

R> reset_stream(stream)

R> animate_data(stream, n = 10000, horizon = 100,

+ xlim = c(0, 1), ylim = c(0, 1))

Animations are recorded using package animation (Xie 2015) and can be replayed using
ani.replay().

R> library("animation")

R> animation::ani.options(interval = .1)

R> ani.replay()

Michael Hahsler, Matthew Bolanos, John Forrest 15

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(a) Position 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(b) Position 1650

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(c) Position 3300

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(d) Position 4950

Figure 6: Data points from DSD_Benchmark(1) at different positions in the stream. The two
arrows are added to highlight the direction of movement.

16 Introduction to stream

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

Figure 7: Plotting 10000 data instances from the data stream comprising outliers.

Animations can also be saved as an animation embedded in a HTML document or an animated
image in the Graphics Interchange Format (GIF) which can easily be used in presentations.

R> saveHTML(ani.replay())

R> saveGIF(ani.replay())

More formats for saving the animation are available in package animation.

4.3. Example: Outlier generating data streams

We can use DSD_Gaussians to generate and mark outliers as well. We define a data stream
consisting of 10000 data points.

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 2, outliers = 4,

+ outlier_options = list(outlier_horizon = 10000),

+ separation = 0.3, space_limit = c(0,1))

Next, we plot 10000 points from the data stream, which can be seen in Figure 7.

We can obtain data points from the stream, asking for the outlier marks.

R> reset_stream(stream)

R> p <- get_points(stream, n = 10000, outlier = TRUE)

R> head(p)

X1 X2

1 0.211 0.351

2 0.770 0.773

3 0.938 0.851

4 0.351 0.346

Michael Hahsler, Matthew Bolanos, John Forrest 17

5 0.694 0.302

6 0.703 0.284

Outlier marks can be retrieved from the outlier attribute.

R> out_marks <- attr(p, "outlier")

R> sum(out_marks)

[1] 4

We can see that four data points were marked as outliers. These outliers were generated at
positions

R> which(out_marks)

[1] 2250 2535 4647 4919

and can be seen also in Figure 7. Such data stream generators can be used in outlier detector
assessment, since they generate the ground truth for the true positive outliers.

4.4. Example: Advanced statistical data streams

DSD_Gaussians has capabilities to generate more complex statistical data streams. In the
previous examples, we used simple cluster and outlier generating capabilities and Euclidean
distance for their separation.

Maximal variance and space limitations

In case we do not predefine covariance matrices by using sigma parameter, DSD_Gaussians

can randomly generate covariance matrices. Maximal variance used to generate covariance
matrices can be limited, which comes together with space limitation to fit clusters.

R> library("stream")

R> set.seed(1000)

R> stream1 <- DSD_Gaussians(k = 3, d = 2, variance_limit = 0.2,

+ space_limit = c(0, 5))

R> stream2 <- DSD_Gaussians(k = 3, d = 2, variance_limit = 2,

+ space_limit = c(0, 5))

Next, we plot 1000 points from the data stream, which can be seen in Figure 8. As seen in
Figure 8b, we can experience overlapping of clusters due to high maximal variance limit.

Keeping clusters sufficiently separated

To keep cluster from overlapping we can use two separation distance measures: Euclidean and
Mahalanobis (the statistical distance). While Euclidean distance can be used to some extent,
it might not keep clusters cleanly separated at all times, since cluster size highly depend on
the related covariance matrix. This is the reason why we want do use statistical distance
(Mahalanobis) to control cluster separation.

18 Introduction to stream

1 2 3 4 5

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

X1

X
2

(a) Maximal variance = 0.2

−1 0 1 2 3 4 5

0
2

4
6

X1

X
2

(b) Maximal variance = 2

Figure 8: Data points from DSD_Gaussians having maximal variance limit and space limits.

R> library("stream")

R> set.seed(1000)

R> stream1 <- DSD_Gaussians(k = 5, d = 2, variance_limit = 0.2,

+ space_limit = c(0, 7),

+ separation_type = "Mahalanobis",

+ separation = 4)

R> set.seed(1000)

R> stream2 <- DSD_Gaussians(k = 5, d = 2, variance_limit = 0.2,

+ space_limit = c(0, 15),

+ separation_type = "Mahalanobis",

+ separation = 10)

Plots comprising 1000 points from the data stream can be seen in Figure 9.

Adding outliers

For assessment of outlier detectors, we want to generate some number of outliers in the
data stream. Each data point (o in total) that represents an outlier need to be marked
and statistically just enough separated from clusters so that outlier detectors could pick this
separation. In DSD_Gaussians, a concept of virtual covariance (Krleža et al. (2020)) is used
to create a statistically significant free area around outliers. This can be controlled through
outlier_virtual_variance parameter.

R> library("stream")

R> set.seed(1000)

R> stream1 <- DSD_Gaussians(k = 5, d = 2, outliers = 5, variance_limit = 0.2,

+ space_limit = c(0, 15), separation = 4,

Michael Hahsler, Matthew Bolanos, John Forrest 19

0 2 4 6 8

0
2

4
6

8

X1

X
2

(a) Mahalanobis separation = 4

0 5 10 15

0
5

1
0

1
5

X1

X
2

(b) Mahalanobis separation = 10

Figure 9: Data points from DSD_Gaussians having distinct Mahalanobis separation values.

+ separation_type = "Mahalanobis",

+ outlier_options = list(

+ outlier_virtual_variance = 0.3))

R> set.seed(1000)

R> stream2 <- DSD_Gaussians(k = 5, d = 2, outliers = 5, variance_limit = 0.2,

+ space_limit = c(0, 40), separation = 4,

+ separation_type = "Mahalanobis",

+ outlier_options = list(

+ outlier_virtual_variance = 3))

Plots comprising 1000 points from the data stream can be seen in Figure 9. The separation
of outliers is clear when comparing Figures 10a and 10b.

20 Introduction to stream

0 2 4 6 8 10 12 14

0
5

1
0

1
5

X1

X
2

(a) Outlier virt. variance = 0.3

0 10 20 30 40

1
0

2
0

3
0

4
0

X1

X
2

(b) Outlier virt. variance = 3

Figure 10: Data points from DSD_Gaussians having distinct outlier virtual variances.

4.5. Example: Reading and writing data streams

Although data streams are potentially unbounded by definition and thus storing the complete
stream is infeasible, it is often useful to store parts of a stream on disk. For example, a
small part of a stream with an interesting feature can be used to test how a new algorithm
handles this particular case. stream has support for reading and writing parts of data streams
through R connections which provide a set of functions to interface file-like objects including
files, compressed files, pipes, URLs or sockets (R Foundation 2011).

We start the example by creating a DSD object.

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 5)

Next, we write 100 data points to disk using write_stream().

R> write_stream(stream, "data.csv", n = 100, sep = ",")

write_stream() accepts a DSD object, and then either a connection or a file name. The
instruction above creates a new file called dsd_data.csv. The sep parameter defines how
the dimensions in each data point (row) are separated. Here a comma is used to create a
comma separated values file. The actual writing is done by R’s write.table() function and
additional parameters are passed on. Data points are requested blockwise (defaults to 100,000
points) from the stream and then written to the connection. This way the only restriction for
the size of the written stream are limitations at the receiving end (e.g., the available storage).

Finally, parameters class and write_outliers can be used to control writing of the class
information and outlier marks. These two details are stored in fields named "class" and
"outlier" respectively, and can be read again.

Michael Hahsler, Matthew Bolanos, John Forrest 21

The DSD_ReadCSV object is used to read a stream from a connection or a file. It reads only
the specified number of data points at a time using the read.table() function. Since, after
the read data is processed, e.g., by a data stream clustering algorithm, it is removed from
memory, we can efficiently process files larger than the available main memory in a streaming
fashion. In the following example we create a data stream object representing data stored as
a compressed CSV-file in the package’s examples directory.

R> file <- system.file("examples", "kddcup10000.data.gz", package = "stream")

R> stream_file <- DSD_ReadCSV(gzfile(file),

+ take = c(1, 5, 6, 8:11, 13:20, 23:42), class = 42, k = 7)

R> stream_file

File Data Stream (kddcup10000.data.gz)

Class: DSD_ReadCSV, DSD_R, DSD_data.frame, DSD

With 7 clusters and NA outliers in 34 dimensions

Using take, class, and outlier we define which columns should be used as data, which
column contains the ground truth assignment, and which column contains outlier marks. We
also specify the true number of clusters k and outliers o. Ground truth and number of clusters
do not need to be specified if they are not available or no evaluation is planned. Note that
at this point no data has been read in. Reading only occurs when get_points is called.

R> get_points(stream_file, n = 5)

V1 V5 V6 V8 V9 V10 V11 V13 V14 V15 V16 V17 V18 V19 V20 V23 V24 V25

1 0 215 45076 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

2 0 162 4528 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0

3 0 236 1228 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

4 0 233 2032 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0

5 0 239 486 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0

V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41

1 0 0 0 1 0 0 0 0 0 0 0.00 0 0 0 0 0

2 0 0 0 1 0 0 1 1 1 0 1.00 0 0 0 0 0

3 0 0 0 1 0 0 2 2 1 0 0.50 0 0 0 0 0

4 0 0 0 1 0 0 3 3 1 0 0.33 0 0 0 0 0

5 0 0 0 1 0 0 4 4 1 0 0.25 0 0 0 0 0

For clustering it is often necessary to normalize data first. Streams can be scaled and centered
in-flight using DSD_ScaleStream. The scaling and centering factors are computed from a set
of points (by default 1000) from the beginning of the stream.

R> stream_scaled <- DSD_ScaleStream(stream_file, center = TRUE, scale = TRUE)

R> get_points(stream_scaled, n = 5)

V1 V5 V6 V8 V9 V10 V11 V13 V14 V15 V16 V17 V18

1 -0.0507 0.758 -0.194 0 0 -0.0447 0 0 0 0 0 0 -0.0316

22 Introduction to stream

2 -0.0507 1.634 -0.279 0 0 -0.0447 0 0 0 0 0 0 -0.0316

3 -0.0507 1.569 -0.160 0 0 -0.0447 0 0 0 0 0 0 -0.0316

4 -0.0507 1.525 4.831 0 0 -0.0447 0 0 0 0 0 0 -0.0316

5 -0.0507 1.525 -0.326 0 0 -0.0447 0 0 0 0 0 0 -0.0316

V19 V20 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33

1 -0.0316 0 -0.869 -0.917 0 0 0 0 0 0 -0.428 -0.524 0.481

2 -0.0316 0 -1.030 1.237 0 0 0 0 0 0 0.327 -0.881 0.481

3 -0.0316 0 -0.869 1.357 0 0 0 0 0 0 0.327 -0.870 0.481

4 -0.0316 0 -0.708 1.476 0 0 0 0 0 0 0.252 -0.858 0.481

5 -0.0316 0 -0.547 1.596 0 0 0 0 0 0 0.252 -0.847 0.481

V34 V35 V36 V37 V38 V39 V40 V41

1 0 0 -0.325 -0.5932 0 0 0 0

2 0 0 4.906 -0.0687 0 0 0 0

3 0 0 2.210 -0.0687 0 0 0 0

4 0 0 1.293 -0.0687 0 0 0 0

5 0 0 0.862 -0.0687 0 0 0 0

Michael Hahsler, Matthew Bolanos, John Forrest 23

4.6. Example: Replaying a data stream

An important feature of stream is the ability to replay portions of a data stream. With
this feature we can capture a special feature of the data (e.g., an anomaly) and then adapt
our algorithm and test if the change improved the behavior on exactly that data. Also, this
feature can be used to conduct experiments where different algorithms need to be compared
using exactly the same data.

There are several ways to replay streams. As described in the previous section, we can write
a portion of a stream to disk with write_stream() and then use DSD_ReadCSV to read the
stream portion back every time it is needed. However, often the interesting portion of the
stream is small enough to fit into main memory or might be already available as a matrix or a
data frame in R. In this case we can use the DSD class DSD_Memory which provides a stream
interface for a matrix-like objects.

For illustration purposes, we use data for four major European stock market indices available
in R as a data frame.

R> data("EuStockMarkets", package = "datasets")

R> head(EuStockMarkets)

DAX SMI CAC FTSE

[1,] 1629 1678 1773 2444

[2,] 1614 1688 1750 2460

[3,] 1607 1679 1718 2448

[4,] 1621 1684 1708 2470

[5,] 1618 1687 1723 2485

[6,] 1611 1672 1714 2467

Next, we create a DSD_Memory object. The number of true clusters k is unknown.

R> replayer <- DSD_Memory(EuStockMarkets, k = NA)

R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and 0 outliers in 4 dimensions

Contains 1860 data points - currently at position 1 - loop is FALSE

Every time we get a point from replayer, the stream moves to the next position (row) in the
data.

R> get_points(replayer, n = 5)

DAX SMI CAC FTSE

1 1629 1678 1773 2444

2 1614 1688 1750 2460

3 1607 1679 1718 2448

4 1621 1684 1708 2470

5 1618 1687 1723 2485

24 Introduction to stream

R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and 0 outliers in 4 dimensions

Contains 1860 data points - currently at position 6 - loop is FALSE

Note that the stream is now at position 6. The stream only has 1854 points left and the
following request for more than the available number of data points results in an error.

R> get_points(replayer, n = 2000)

Error in get_points.DSD_Memory(replayer, n = 2000) :

Not enough data points left in stream! Only 1855 are available.

Note that with the parameter outofpoints this behavior can be changed to a warning or
ignoring the problem.

DSD_Memory and DSD_ReadCSV can be created to loop indefinitely, i.e., start over once the last
data point is reached. This is achieved by passing loop = TRUE to the creator function. The
current position in the stream for those two types of DSD classes can also be reset to the
beginning of the stream or, for DSD_Memory, to an arbitrary position via reset_stream().
Here we set the stream to position 100.

R> reset_stream(replayer, pos = 100)

R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and 0 outliers in 4 dimensions

Contains 1860 data points - currently at position 100 - loop is FALSE

DSD_Memory also accepts other matrix-like objects. This includes data shared between pro-
cesses or data that is too large to fit into main memory represented by memory-mapped files
using ffdf objects from package ff (Adler et al. 2014) or big.matrix objects from pack-
age bigmemory (Kane et al. 2013). In fact any object that provides basic matrix functions
like dim() and subsetting with "[" can be used.

5. Data stream task (DST)

After choosing a DSD class to use as the data stream source, the next step in the workflow
is to define a data stream task (DST). In stream, a DST refers to any data mining task that
can be applied to data streams. The design is flexible enough for future extensions including
even currently unknown tasks. Figure 11 shows the class hierarchy for DST. It is important
to note that the DST base class is shown merely for conceptual purpose and is not directly
visible in the code. The reason is that the actual implementations of data stream operators

Michael Hahsler, Matthew Bolanos, John Forrest 25

DSC_Micro

DSTask

DSC_MOA

DSC_Kmeans DSC_CluStream

DSC

. . .

. . .DSOutlier

A
b

s
tr

a
c
t

c
la

s
s
e

s
Im

p
le

m
e

n
ta

ti
o

n

DSC_DStream . . .

DSClassifier

streamMOA

DSO

DSC_R DSC_Macro DSC_TwoStage

. . .

Figure 11: Overview of the data stream task (DST) class structure with subclasses for data
stream operators (DSO), clustering (DSC), classification (DSClass) and frequent pattern min-
ing (DSFPM).

(DSO), clustering (DSC), classification (DSClass) or frequent pattern mining (DSFPM) are
typically quite different and the benefit of sharing methods would be minimal.

DST classes implement mutable objects which can be changed without creating a copy. This
is more efficient, since otherwise a new copy of all data structures used by the algorithm
would be created for processing each data point. Mutable objects can be implemented in R
using environments or the recently introduced reference class construct (see package methods

by the R Core Team (2014)). Alternatively, pointers to external data structures in Java or
C/C++ can be used to create mutable objects.

We will restrict the following discussion to data stream clustering (DSC) since stream cur-
rently focuses on this task. stream currently provides moving windows and sampling from
a stream as data stream operators (DSO). The operators provide simple functionality which
can be used by other tasks and we will discuss them in the context of clustering. Packages
which cover the other tasks using the stream framework are currently under development.

5.1. Introduction to data stream clustering (DSC)

Data stream clustering algorithms are implemented as subclasses of the abstract class DSC (see
Figure 11). First we differentiate between different interfaces for clustering algorithms. DSC_R

provides a native R interface, while DSC_MOA (available in streamMOA) provides an interface
to algorithms implemented for the Java-based MOA framework. DSCs implement the online
process as subclasses of DSC_Micro (since it produces micro-clusters) and the offline process
as subclasses of DSC_Macro. To implement the typical two-stage process in data stream
clustering, stream provides DSC_TwoStage which can be used to combine any available micro

26 Introduction to stream

and macro-clustering algorithm.

The following functions can be used for objects of subclasses of DSC:

• A creator function which creates an empty clustering. Creator function names by defi-
nition start with the prefix DSC_.

• update(dsc, dsd, n = 1, verbose = FALSE, ...) which accepts a DSC object and
a DSD object. It requests the n data points from dsd and adds them to the clustering
in dsc.

• nclusters(x, type = c("auto", "micro", "macro"), ...) returns the number of
clusters currently in the DSC object. This is important since the number of clusters is
not fixed for most data stream clustering algorithms.

DSC objects can contain several clusterings (e.g., micro and macro-clusters) at the same
time. The default value for type is "auto" and results in DSC_Micro objects to return
micro-cluster information and DSC_Macro objects to return macro-cluster information.
Most DSC_Macro objects also store micro-clusters and using type these can also be
retrieved. Some DSC_Micro implementations also have a reclustering procedure imple-
mented and type also allows the user to retrieve macro-cluster information. Trying to
access cluster information that is not available in the clustering results in an error. type

is also available for many other functions.

• get_centers(x, type = c("auto", "micro", "macro"), ...) returns the centers
of the clusters of the DSC object. Depending on the clustering algorithm the centers
can be centroids, medoids, centers of dense grids, etc.

• get_weights(x, type = c("auto", "micro", "macro"), ...) returns the weights
of the clusters in the DSC object x. How the weights are calculated depends on the
clustering algorithm. Typically they are a function of the number of points assigned to
each cluster.

• get_assignment(dsc, points, type = c("auto", "micro", "macro"),

method = c("auto", "model", "nn"), ...) returns a cluster assignment vector in-
dicating to which cluster each data point in points would be assigned. The assignment
can be determined by the model (e.g., point falls inside the radius of the micro-cluster)
or via nearest neighbor assignment ("nn"). method = "auto" selects model-based as-
signment if available and otherwise defaults to nearest neighbor assignment. Note that
model-based assignment might result in some points not being assigned to any cluster
(i.e., an assignment value of NA) which indicates a noise data point.

• get_copy(x) creates a deep copy of a DSC object. This is necessary since clusterings are
represented by mutable objects (R-based reference classes or external data structures).
Calling this function results in an error if a mechanism for creating a deep copy is not
available for the used DSC implementation.

• plot(x, dsd = NULL, ..., method = "pairs", dim = NULL,

type = c("auto", "micro", "macro", "both", "outliers", "all")

(see manual page for more available parameters) plots the centers of the clusters and
marks detected outliers. There are 3 available plot methods: "pairs", "scatter", "pc".

Michael Hahsler, Matthew Bolanos, John Forrest 27

Method "pairs" is the default method and produces a matrix of scatter plots that plots
all attributes against one another (this method defaults to a regular scatter plot for d

= 2). Method "scatter" takes the attributes specified in dim (the first two if dim is
unspecified) and plots them in a scatter plot. Lastly, method "pc" performs Principle
Component Analysis (PCA) on the data and projects the data onto a 2-dimensional
plane for plotting. Parameter type controls plotting of cluster and outlier markings.
User can select to plot micro- (micro), macro-clusters (macro), both micro and macro
clusters (both), outliers (outliers), and everything (all). If a DSD object is provides
as dsd, then some example data points are plotted in the background in light gray.

• print(x, ...) prints common attributes of the DSC object. This includes a short
description of the underlying algorithm and the number of clusters that have been
calculated.

We can add DSC_Outlier abstract class anywhere between DSC abstract class and a concrete
clusterer implementation class. This means that the clusterer has additional outlier detection
capabilities. The following functions can be used for objects of subclasses of DSC_Outlier:

• clean_outliers(x, ...) instructs the outlier detector to clean up the outlier list.

• get_outlier_positions(x, ...) returns positions of currently detected outliers.

• recheck_outlier(x, outlier_correlated_id, ...) invokes re-checking whether pre-
viously detected outlier identifier by outlier_correlated_id is still an outlier (TRUE)
or has become an inlier in the meantime (FALSE).

• noutlier(x, ...) returns the number of current outliers.

• print(x, ...) prints out DSC object details that include detected outliers.

• get_assignment(x, points, type=c("auto", "micro", "macro"),

method=c("auto", "nn", "model"), outlier_threshold=0.05, ...) returns a data
frame comprising cluster assignments for related data point in points argument. As an
addition, attributes outliers and outliers_corrid are returned with assignment data
frame. Attribute outliers comprises outlier marks, while attribute outliers_corrid

comprises outlier identifiers.

All single-pass clusterers must have abstract class DSC_SinglePass anywhere between ab-
stract class DSC and a concrete clusterer class. DSC_SinglePass abstract class indicates that
the clusterer does automatic model update automatically when processing each data point
retrieved from the input data stream (DSD). It is necessary that single-pass clusterers override
implementations of the following methods:

• update(dsc, dsd, n = 1, verbose = FALSE, ...)

• get_assignment(dsc, points, type=c("auto", "micro", "macro"),

method=c("auto", "nn", "model"), ...)

Figure 12 shows the typical use of update() and other functions. Clustering on a data
stream (DSD) is performed with update() on a DSC object. This is typically done with a

28 Introduction to stream

Data Stream Data
(DSD)

Data Stream
Clustering

(DSC)

get_centers()
get_weights()
evaluate()
plot()

update()

Data Stream
Clustering

(DSC_Macro)

recluster()

get_centers()
get_weights()
evaluate()
plot()

get_assignment()

New data
points

(data.frame)

Cluster
assignments

microToMacro()
Macro-cluster
assignments

Figure 12: Interaction between the DSD and DSC classes.

DSC_Micro object which will perform its online clustering process and the resulting micro-
clusters are available from the object after clustering (via get_centers(), etc.). Note, that
DSC classes implement mutable objects and thus the result of update() does not need to be
reassigned to its name.

Reclustering (the offline component of data stream clustering) is performed with

recluster(macro, micro, type="auto", ...),

where micro and macro are objects of class DSC. Here the centers in micro are used as
pseudo-points by the DSC_macro object macro. After reclustering the macro-clusters can be
inspected (using get_centers(), etc.) and the assignment of micro-clusters to macro-clusters
is available via microToMacro().

Figure 13 shows interaction for single-pass clusterers (DSC_SinglePass) and outlier detectors
(DSC_Outlier). Single-pass clusterers not necessarily need to be outlier detectors. The
interaction is slightly modified from the default interaction in Figure 12. Since single-pass
clusterers perform model updates for each data point retrieved from the input data stream,
using update to update models before classification becomes unnecessary. However, update

method can still be used when we do not care about cluster assignments. Usual way of
using single-pass clusterers is to call get_assignment method, which updates the clusterer
model and returns cluster assignments. In outlier detectors (DSC_Outlier), get_assignment

returns outlier marks and identifiers as well. After that, we can use the same methods as in
Figure 12 on the clusterer instance. For outlier detectors there are additional methods, such
as get_outlier_positions, which returns outlier spatial positions. Anytime after calling
update or get_assignment, we can re-check outlier validity by calling recheck_outlier

method on the outlier detector instance.

The following data stream clustering algorithms are currently available:

• DSC_CluStream (streamMOA) interfaces the MOA implementation of the CluStream
algorithm by Aggarwal et al. (2003). The algorithm maintains a user-specified number

Michael Hahsler, Matthew Bolanos, John Forrest 29

Data Stream Data
(DSD)

Data Stream
Clustering

(DSC, DSC_Outlier,
DSC_SinglePass)

get_centers()
get_weights()
get_outlier_positions()
evaluate()
plot()

update()

Data Stream
Clustering

(DSC_Macro)

recluster()

get_centers()
get_weights()
evaluate()
plot()

get_assignment()
Cluster assignments
Outlier ids and marks

microToMacro()
Macro-cluster
assignments

recheck_outlier() Outlier
validity

Figure 13: Interaction between the DSD and single-pass / outlier detector DSC classes.

of micro-clusters. The number of clusters is held constant by merging and removing
clusters. The suggested reclustering method is weighted k-means.

• DSC_ClusTree (streamMOA) interfaces the MOA implementation of the ClusTree al-
gorithm by Kranen, Assent, Baldauf, and Seidl (2009). The algorithm organizes micro-
clusters in a tree structure for faster access and automatically adapts micro-cluster sizes
based on the variance of the assigned data points. Either k-means or reachability from
DBSCAN can be used for reclustering.

• DSC_DenStream (streamMOA) interfaces MOA’s implementation of the DenStream al-
gorithm by Cao et al. (2006). DenStream estimates the density of micro-clusters in a
user-specified neighborhood. To suppress noise, it also organizes micro-clusters based
on their weight as core and outlier micro-clusters. Core Micro-clusters are reclustered
using reachability from DBSCAN.

• DSC_DStream implements the D-Stream algorithm by Chen and Tu (2007). D-Stream
uses a grid to estimate density in grid cells. For reclustering adjacent dense cells are
merged to form macro-clusters. Alternatively, the concept of attraction between grids
cells can be used for reclustering (Tu and Chen 2009).

• DSC_Sample provides a clustering interface to the data stream operator DSO_Sample. It
selects a user-specified number of representative points from the stream via Reservoir
Sampling (Vitter 1985). It keeps an unbiased sample of all data points seen thus far
using the algorithm by McLeod and Bellhouse (1983). For evolving data streams it

30 Introduction to stream

is more appropriate to bias the sample toward more recent data points. For biased
sampling, the method called Algorithm 2.1 by Aggarwal (2006) is also implemented.

• DSC_DBSTREAM (Hahsler and Bolaños 2016) implements an extension of the simple data
stream clustering algorithm called tNN threshold nearest-neighbors (tNN) which was
developed for package rEMM by Hahsler and Dunham (2015, 2010). Micro-clusters are
defined by a fixed radius (threshold) around their center. Reachability from DBSCAN
is used for reclustering.

• DSC_Window provides a clustering interface to the data stream operator DSO_Window.
It implements the sliding window and the dampened window models (Zhu and Shasha
2002) which keep a user-specified number (window length) of the most recent data
points of the stream. For the dampened window model, data points in the window have
a weight that deceases exponentially with age.

Although the authors of most data stream clustering algorithms suggest a specific reclustering
method, in stream any available method can be applied. For reclustering, the following
clustering algorithms are currently available as subclasses of DSC_Macro:

• DSC_DBSCAN interfaces the weighted version of DBSCAN (Ester et al. 1996) implemented
in package dbscan (Hahsler 2017).

• DSC_Hierarchical interfaces R’s hclust function.

• DSC_Kmeans interface R’s k-means implementation and a version of k-means where the
data points (micro-clusters) are weighted by the micro-cluster weights, i.e., a micro-
cluster representing more data points has more weight.

• DSC_Reachability uses DBSCAN’s concept of reachability for micro-clusters. Two
micro-clusters are directly reachable if they are closer than a user-specified distance
epsilon from each other (they are within each other’s epsilon-neighborhood). Two
micro-clusters are reachable and therefore assigned to the same macro-cluster if they
are connected by a chain of directly reachable micro-clusters. Note that this concept
is related to hierarchical clustering with single linkage and the dendrogram cut at he
height of epsilon.

For outlier detection, the following clustering algorithms are currently available as subclasses
of DSC_SinglePass and DSC_Outlier:

• DSC_MCOD (streamMOA) interfaces the MOA implementation of the MCOD algorithm
by Kontaki et al. (2016). This is a micro-clusterer and outlier detector algorithm.
For the macro-clustering it needs an additional macro-clusterer algorithm, to improve
clustering results.

All single-pass and outlier examples are given in the streamMOA package, since DSC_MCOD is
currently the only algorithm that was implemented to support such functionalities.

Some non-outlier detecting data clustering algorithms create small clusters for noise or outliers
in the data. stream provides prune_clusters(dsc, threshold = .05, weight = TRUE) to
remove a given percentage (given by threshold) of the clusters with the least weight. The

Michael Hahsler, Matthew Bolanos, John Forrest 31

percentage is either computed based on the number of clusters (e.g., remove 5% of the number
of clusters) or based on the total weight of the clustering (e.g., remove enough clusters to
reduce the total weight by 5%). The default weight = TRUE is based on the total weight. The
resulting clustering is a static copy (DSC_Static). Further clustering cannot be performed
with this object, but it can be used as input for reclustering and for evaluation. Pruning is
also available in many macro-clustering algorithms as parameter min_weight which excludes
all micro-clusters with a weight less than the specified value before reclustering.

To specify a full data stream clustering process with an arbitrarily chosen online and offline
algorithm, stream implements a special DSC class called DSC_TwoStage which can combine
any DSC_Micro and DSC_Macro implementation into a two-stage process.

In the following section we give a short example for how to cluster a data stream.

5.2. Example: Clustering a data stream

In this example we show how to cluster data using DSC implementations. First, we create a
data stream (three Gaussian clusters in two dimensions with 5% noise).

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

Next, we prepare the clustering algorithm. We use here DSC_DStream which implements the
D-Stream algorithm (Tu and Chen 2009). D-Stream assigns points to cells in a grid. For the
example we use a gridsize of 0.1.

R> dstream <- DSC_DStream(gridsize = .1, Cm = 1.2)

R> dstream

DStream

Class: DSC_DStream, DSC_Micro, DSC_R, DSC

Number of micro-clusters: 0

Number of macro-clusters: 0

After creating an empty clustering, we are ready to cluster data from the stream using the
update() function. Note, that update() will implicitly alter the mutable DSC object so no
reassignment is necessary.

R> update(dstream, stream, n = 500)

R> dstream

DStream

Class: DSC_DStream, DSC_Micro, DSC_R, DSC

Number of micro-clusters: 13

Number of macro-clusters: 3

After clustering 500 data points, the clustering contains 13 micro-clusters. Note that the
implementation of D-Stream has built-in reclustering and therefore also shows macro-clusters.
The first few micro-cluster centers are:

32 Introduction to stream

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1
X

2

(b)

Figure 14: Plotting the micro-clusters produced by D-Stream together with the original data
points. Shown as (a) micro-clusters and as (b) dense grid cells.

R> head(get_centers(dstream))

X1 X2

1 0.25 0.45

2 0.35 0.35

3 0.35 0.45

4 0.45 0.35

5 0.45 0.45

6 0.55 0.35

It is often helpful to visualize the results of the clustering operation.

R> plot(dstream, stream)

For the grid-based D-Stream algorithm there is also a second type of visualization available
which shows the used dense and transitional grid cells as gray squares.

R> plot(dstream, stream, grid = TRUE)

The resulting plots are shown in Figure 14. In Figure 14(a) the micro-clusters are plotted in
red on top of gray data points. The size of the micro-clusters indicates the weight, i.e., the
number of data points represented by each micro-cluster. In Figure 14(b) the micro-clusters
are shown as dense grid cells (density is coded with gray values).

Michael Hahsler, Matthew Bolanos, John Forrest 33

6. Evaluation of data stream clustering

6.1. Introduction

Evaluation of data stream mining is an important issue. The evaluation of conventional
clustering is discussed in the literature extensively and there are many evaluation criteria
available. For an overview we refer the reader to the popular books by Jain and Dubes (1988)
and Kaufman and Rousseeuw (1990). However, this evaluation only measures how well the
algorithm learns static structure in the data. Data streams often exhibit concept drift and
it is important to evaluate how well the algorithm is able to adapt to these changes. The
evaluation of data stream clustering is still in its infancy. The current state of the evaluation
of data stream mining methods including clustering is described in the books by Aggarwal
(2007) and Gama (2010), and the papers by Kremer, Kranen, Jansen, Seidl, Bifet, Holmes,
and Pfahringer (2011) and Gama, Sebastião, and Rodrigues (2013).

In the following we will discuss how stream can be used to evaluate clustering algorithms in
terms of learning static structures and clustering dynamic streams.

6.2. Evaluation of clustering static data streams

Evaluation of how well an algorithm is able to learn static structures in a data stream which
does not exhibit concept drift is performed in stream via

evaluate(dsc, dsd, measure, n = 100, type = c("auto", "micro", "macro"),

assign = "micro", assignmentMethod = c("auto", "model", "nn"),

noise = c("class", "exclude"), ...),

where dsc is the evaluated clustering. n data points are taken from dsd and used for eval-
uation. The evaluation measure is specified in measure. Several measures can be specified
as a vector of character strings. For evaluation, the points are assigned to the clusters in
the clustering in dsc using get_assignment(). By default the points are assigned to micro-
clusters, but it is also possible to assign them to macro-cluster centers instead (assign =

"macro"). New points can be assigned to clusters by the rule used in the clustering algo-
rithm (assignmentMethod = "model") or using nearest-neighbor assignment ("nn"). If the
assignment method is set to "auto" then model assignment is used when available and oth-
erwise nearest-neighbor assignment is used. The initial assignments are aggregated to the
level specified in type. For example, for a macro-clustering, the initial assignments will be
made by default to micro-clusters and then these assignments will be translated into macro-
cluster assignments using the micro- to macro-cluster relationships stored in the clustering
and available via microToMacro(). This separation between assignment and evaluation type
is especially important for data with non-spherical clusters where micro-clusters are linked
together in chains produced by a macro-clustering algorithm based on hierarchical clustering
with single-link or reachability. How noise is handled is controlled by noise. Noise points in
the data can be considered forming their own class. This is typically appropriate for external
validity measures, however, for some internal validity measures using noise points is prob-
lematic since the noise data points will not form a compact cluster and thus negatively effect
measures like the sum of squares. Therefore, for some internal measures, it is more consistent
to exclude noise points.

34 Introduction to stream

Clustering evaluation measures can be categorized into internal and external cluster validity
measures. Internal measures evaluate properties of the clustering. A simple measure to
evaluate the compactness of (spherical) clusters in a clustering is the within-cluster sum of
squares, i.e., the sum of squared distances between each data point and the center of its
cluster (method "SSQ"). External measures use the ground truth (i.e., true partition of
the data into groups) to evaluate the agreement of the partition created by the clustering
algorithm with a known true partition. In the following we will enumerate the evaluation
measures (passed on as measure) available in stream. We will not describe each measure here
since most of them are standard measures which can be found in many text books (e.g., Jain
and Dubes 1988; Kaufman and Rousseeuw 1990) or in the documentation supplied with the
packages fpc (Hennig 2014), clue (Hornik 2017) and cluster (Maechler et al. 2014). Measures
currently available for evaluate() (method name are under quotation marks and the package
that implements the evaluation measure is shown in parentheses) include:

• Information items.

– "numMicroClusters" Number of micro-clusters

– "numMacroClusters" Number of macro-clusters

– "numClasses" Number of classes (i.e., groups in the ground truth)

• Noise-related items.

– "noisePredicted" Number data points predicted as noise

– "noiseActual" Number of data points which are actually noise

– "noisePrecision" Precision of the predicting noise (i.e., number of correctly pre-
dicted noise points over the total number of points predicted as noise)

• Internal evaluation measures.

– "SSQ" Within cluster sum of squares. Assigns each non-noise point to its nearest
center from the clustering and calculates the sum of squares

– "silhouette" Average silhouette width (actual noise points which stay unassigned
by the clustering algorithm are removed; regular points that are unassigned by the
clustering algorithm will form their own noise cluster) (cluster))

– "average.between" Average distance between clusters (fpc)

– "average.within" Average distance within clusters (fpc)

– "max.diameter" Maximum cluster diameter (fpc)

– "min.separation" Minimum cluster separation (fpc)

– "ave.within.cluster.ss" a generalization of the within-clusters sum of squares
(half the sum of the within-cluster squared dissimilarities divided by the cluster
size) (fpc)

– "g2" Goodman and Kruskal’s Gamma coefficient (fpc)

– "pearsongamma" Correlation between distances and a 0-1-vector where 0 means
same cluster, 1 means different clusters (fpc)

– "dunn" Dunn index (minimum separation over maximum diameter) (fpc)

Michael Hahsler, Matthew Bolanos, John Forrest 35

– "dunn2" Minimum average dissimilarity between two cluster over maximum aver-
age within-cluster dissimilarity (fpc)

– "entropy" entropy of the distribution of cluster memberships (fpc)

– "wb.ratio" average.within over average.between (fpc)

• External evaluation measures.

– "precision", "recall", "F1". A true positive (TP) decision assigns two points
in the same true cluster also to the same cluster, a true negative (TN) decision
assigns two points from two different true clusters to two different clusters. A
false positive (FP) decision assigns two points from the same true cluster to two
different clusters. A false negative (FN) decision assigns two points from the same
true cluster to different clusters.

precision =
TP

TP + FP

recall =
TP

TP + FN

The F1 measure is the harmonic mean of precision and recall.

– "purity" Average purity of clusters. The purity of each cluster is the proportion
of the points of the majority true group assigned to it (Cao et al. 2006).

– "Euclidean" Euclidean dissimilarity of the memberships (clue),

– "Manhattan" Manhattan dissimilarity of the memberships (clue)

– "Rand" Rand index (clue)

– "cRand" Rand index corrected for chance (clue)

– "NMI" Normalized Mutual Information (clue)

– "KP" Katz-Powell index (clue)

– "angle" Maximal cosine of the angle between the agreements (clue)

– "diag" Maximal co-classification rate (clue)

– "FM" Fowlkes and Mallows’s index (clue)

– "Jaccard" Jaccard index (clue)

– "PS" Prediction Strength (clue)

– "vi" Variation of Information (VI) index (fpc)

• Outlier evaluation measures.

– "OutlierJaccard". A variant of the Jaccard index that can be applied assess
the outlier detection correctness (Krleža et al. 2020). It can be applied only to
data streams that mark outliers (for example DSD_Gaussians). The most sen-
sible use of this measure is with outlier detectors, e.g., those clusterers that in-
herit DSC_Outlier. However, the OutlierJaccard can be calculated for all those
clusterers that enclose outliers in small clusters, which are were not pruned by
prune_clusters. A true positive (TP) decision is made for outliers that were

36 Introduction to stream

both marked by the input data stream generator and found by the clusterer in-
stance, A false positive (FP) decision is made for data points that were not marked
by the input data stream generator, yet the clusterer instance marked it is an out-
lier. A undetected (UND) decision is made for outliers that were marked by the
input data stream generator, yet the clusterer instance failed to recognized it as
an outlier. The OutlierJaccard index is calculated as follows:

OJI =
TP

TP + FP + UND

evaluate() is appropriate if the data stream does not evolve significantly from the data that
is used to learn the clustering to the data that is used for evaluation. The approach described
next might be more appropriate for streams which exhibit significant concept drift.

6.3. Evaluation of clustering of dynamic data streams

For dynamic data streams it is important to evaluate how well the clustering algorithm is able
to adapt to concept drift which results in changes in the cluster structure. Aggarwal et al.
(2003) have introduced an evaluation scheme for data stream clustering which addresses these
issues. In this approach a horizon is defined as a number of data points. The data stream is
split into consecutive horizons. After a horizon is clustered, the points in the next horizon are
each assigned to the closest centroid and the sum of squares is reported as an internal measure
of cluster quality. Later on, this scheme was used by others (e.g., by Tu and Chen (2009)).
Cao et al. (2006) and Wan et al. (2009) also use this scheme for the external measure of average
purity of clusters. Here for each (micro-) cluster the dominant true cluster label is determined
and the proportion of points with the dominant label is averaged over all clusters. This type of
evaluation strategy is called prequential since new data is always used for evaluation and and
afterwards to update the model. Recent detailed analysis of prequential error estimation for
classification can be found in the work by Gama et al. (2013) and Bifet, de Francisci Morales,
Read, Holmes, and Pfahringer (2015). Obviously, algorithms which can better adapt to the
changing stream will achieve better evaluation values. However, it is important to mention
that choosing the horizon inappropriately for the stream may impact the evaluation. Consider,
for example, a fast changing stream and a very long horizon. In this case the evaluation data
might have not much similarity to the data used for clustering and thus the evaluation will
produce meaningless results. For fast evolving streams a shorter horizon, or even a horizon
of length one, needs to be used. Longer horizons have the advantage that evaluation can be
usually performed more efficiently for larger batches of points.

This prequential evaluation strategy is implemented in stream as function evaluate_cluster().
It shares most parameters with evaluate() and all evaluation measures for evaluate() de-
scribed above can be used.

6.4. Evaluation of clustering done by single-pass clusterers

The single-pass clusterers and outlier detectors are doing classification and model update for
every data point retrieved from the input data stream. This makes then more fine-grained.
Evaluation of single-pass clusterers is a special case of evaluation for dynamic data streams
having horizon = 1. For evaluate_cluster(..., horizon=1000, ...) this means that
a single-pass clusterer processes the batch of 1000 data points each data point individually,

Michael Hahsler, Matthew Bolanos, John Forrest 37

which includes both the model update and returning the assignment. From the caller point of
view, such evaluation is the same as for all other clustering algorithms in the stream package.

6.5. Evaluation of clustering using callbacks

While most of the well-known clustering indices are already supported by the stream pack-
age (or by the clue package), some clusterers have available other performance and memory
indicators that users can use for assessment and tuning. This implies creation of a cus-
tom code that can be executed within the evaluation procedures, right after the assessment
(get_assessment) of data points retrieved from the input data stream. For this purpose there
is an abstract class EvalCallback that can be used to write classes that implement ad-hoc
evaluation measures. Each evaluation callback object is instantiated using classes that inherit
EvalCallback, which must implement the following fields:

• all_measures - The vector of measures this callback class contributes to the evaluation
procedure.

• internal_measures - The subset of all measures that are considered for internal mea-
sures.

• external_measures - The subset of all measures that are considered for external mea-
sures.

• outlier_measures - The subset of all measures that are considered for outlier measures.

and the following method:

• evaluate_callback(cb_obj, dsc, measure, points, actual, predict,

outliers, predict_outliers, predict_outliers_corrid, centers, noise)

This is the method that comprises the custom code required to calculate all measures
this callback contributes to the evaluation procedure.

Evaluating using additional callback objects can be done through:

• evaluate_with_callbacks(dsc, dsd, measure, callbacks=NULL,

n = 100, type=c("auto", "micro", "macro"), assign="micro",

assignmentMethod=c("auto","model", "nn"), noise = c("class", "exclude"),

...)

• evaluate_cluster_with_callbacks(dsc, dsd, measure,

callbacks=NULL, n=1000, type=c("auto", "micro", "macro"),

assign="micro", assignmentMethod = c("auto", "model", "nn"),

horizon=100, verbose=FALSE,noise = c("class", "exclude"), ...)

where callbacks parameter is a named list of callback objects.

6.6. Example: Evaluating clustering results

In this example we will show how to calculate evaluation measures, first on a stream without
concept drift and then on an evolving stream. First, we prepare a data stream and create a
clustering.

38 Introduction to stream

R> library("stream")

R> stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

R> dstream <- DSC_DStream(gridsize = .1)

R> update(dstream, stream, n = 2000)

The evaluate() function takes a DSC object containing a clustering and a DSD object with
evaluation data to compute several quality measures for clustering.

R> evaluate(dstream, stream, n = 100)

Evaluation results for micro-clusters.

Points were assigned to micro-clusters.

numMicroClusters numMacroClusters numClasses

19.00000 2.00000 4.00000

noisePredicted noiseActual noisePrecision

10.00000 6.00000 0.50000

SSQ silhouette precision

0.19126 0.08561 0.88333

recall F1 purity

0.22068 0.35314 0.97000

Euclidean Manhattan Rand

0.22540 0.40000 0.76465

cRand NMI KP

0.26794 0.59828 0.39157

angle diag FM

0.40000 0.40000 0.44151

Jaccard PS average.between

0.21443 0.16774 0.31014

average.within max.diameter min.separation

0.08860 0.87013 0.00593

ave.within.cluster.ss g2 pearsongamma

0.01261 0.75986 0.32076

dunn dunn2 entropy

0.00681 0.12473 2.70823

wb.ratio vi OutlierJaccard

0.28568 1.86774 0.00000

The number of points taken from dsd and used for the evaluation are passed on as the
parameter n. Since no evaluation measure is specified, all available measures are calculated.
We use only a small number of points for evaluation since calculating some measures is
computational quite expensive. Individual measures can be calculated using the measure
argument.

R> evaluate(dstream, stream, measure = c("purity", "crand"), n = 500)

Michael Hahsler, Matthew Bolanos, John Forrest 39

Evaluation results for micro-clusters.

Points were assigned to micro-clusters.

purity cRand

0.943 0.266

Note that this second call of evaluate() uses a new and larger set of 500 evaluation data
points from the stream and thus the results may vary slightly from the first call. Purity of the
micro-clusters is high since each micro-cluster only covers points from the same true cluster,
however, the corrected Rand index is low because several micro-clusters split the points from
each true cluster. We will see in one of the following examples that reclustering will improve
the corrected Rand index.

To evaluate how well a clustering algorithm can adapt to an evolving data stream, stream

provides evaluate_cluster() to perform prequential evaluation with a given horizon. Each
data point in the horizon is assigned to clusters to evaluate how well it fits into the clustering
(internal evaluation) or its assignment agrees with the known true cluster labels (external
evaluation). Average evaluation measures for each horizon are returned. Afterwards, the
clustering is updated with the points in the horizon.

The following examples evaluate D-Stream on an evolving stream created with DSD_Benchmark.
This data stream was introduced in Figure 6 on page 15 and contains two Gaussian clusters
moving from left to right with their paths crossing in the middle. We modify the default
decay parameter lambda of D-Stream since the data stream evolves relatively quickly and
then perform the evaluation over 5000 data points with a horizon of 100.

R> set.seed(1000)

R> stream <- DSD_Benchmark(1)

R> dstream <- DSC_DStream(gridsize = .05, lambda = .01)

R> ev <- evaluate_cluster(dstream, stream,

+ measure = c("numMicroClusters", "purity"), n = 5000, horizon = 100)

R> head(ev)

points numMicroClusters purity

1 100 0 NA

2 200 6 0.929

3 300 8 0.873

4 400 14 1.000

5 500 10 0.929

6 600 9 0.861

Note that the first row in the results contains NA for the purity measure. This is the case
since we started evaluation with a new, empty clustering and for evaluating the first horizon
no prior clusters were available.

R> plot(ev[, "points"], ev[, "purity"], type = "l",

+ ylab = "Avg. Purity", xlab = "Points")

40 Introduction to stream

0 1000 2000 3000 4000 5000

0
.7

0
.8

0
.9

1
.0

Points

A
v
g
.
P

u
ri

ty

Figure 15: Micro-cluster purity of D-Stream over an evolving stream.

Figure 15 shows the development of the average micro-cluster purity (how well each micro-
cluster only represents points of a single group in the ground truth) over 5000 data points in
the data stream. Purity drops before point 3000 significantly, because the two true clusters
overlap for a short period of time.

To analyze the clustering process, we can visualize the clustering using animate_cluster().
To recreate the previous experiment, we reset the data stream and create a new empty
clustering.

R> set.seed(1000)

R> stream <- DSD_Benchmark(1)

R> dstream <- DSC_DStream(gridsize = .05, lambda = .01)

R> r <- animate_cluster(dstream, stream, horizon = 100, n = 5000,

+ measure = "purity", plot.args = list(xlim = c(0, 1), ylim = c(0, 1)))

Figure 16 shows the result of the clustering animation with purity evaluation. The whole
animation can be recreated by executing the code above. The animation can also be replayed
and saved using package animation.

6.7. Example: Evaluating reclustered DSC objects

This example shows how to recluster a DSC object after creating it and performing evaluation
on the macro clusters. First we create data, a DSC micro-clustering object and cluster 1000
points.

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

R> dstream <- DSC_DStream(gridsize = .05, Cm = 1.5)

Michael Hahsler, Matthew Bolanos, John Forrest 41

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

0 1000 2000 3000 4000 5000

0
.7

0
0
.8

5
1
.0

0

p
u
ri

ty

Figure 16: Result of animated clustering with evaluation.

R> update(dstream, stream, n = 1000)

R> dstream

DStream

Class: DSC_DStream, DSC_Micro, DSC_R, DSC

Number of micro-clusters: 58

Number of macro-clusters: 2

Although the data contains three clusters, the built-in reclustering of D-Stream (joining ad-
jacent dense grids) only produces two macro-clusters. The reason for this can be found by
visualizing the clustering.

R> plot(dstream, stream, type = "both")

Figure 17(a) shows micro- and macro-clusters produced by D-Stream. Micro-clusters are
shown as red circles while macro-clusters are represented by large blue crosses. Cluster symbol
sizes are proportional to the cluster weights. We see that D-Stream’s reclustering strategy
which joins adjacent dense grid cells is not able to separate the two overlapping clusters in
the top part of the plot.

Micro-clusters produced with any clustering algorithm can be reclustered by the recluster()

method with any available macro-clustering algorithm (sub-classes of DSD_Macro) available in
stream. Some supported macro-clustering models that are typically used for reclustering are

42 Introduction to stream

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(a)

0.0 0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2

(b)

Figure 17: A data stream clustered with D-Stream using the (a) built-in reclustering strategy,
and (b) reclustered with weighted k-means and k = 3.

k-means, hierarchical clustering, and reachability. We use weighted k-means since we want
to separate overlapping Gaussian clusters.

R> km <- DSC_Kmeans(k = 3, weighted = TRUE)

R> recluster(km, dstream)

R> km

k-Means (weighted)

Class: DSC_Kmeans, DSC_Macro, DSC_R, DSC

Number of micro-clusters: 58

Number of macro-clusters: 3

R> plot(km, stream, type = "both")

Figure 17(b) shows that weighted k-means on the micro-clusters produces by D-Stream sep-
arated the three clusters correctly.

Evaluation on a macro-clustering model automatically uses the macro-clusters. For evalua-
tion, n new data points are requested from the data stream and each is assigned to its nearest
micro-cluster. This assignment is translated into macro-cluster assignments and evaluated
using the ground truth provided by the data stream generator.

R> evaluate(km, stream, measure = c("purity", "crand", "SSQ"), n = 1000)

Evaluation results for macro-clusters.

Points were assigned to micro-clusters.

Michael Hahsler, Matthew Bolanos, John Forrest 43

purity cRand SSQ

0.926 0.843 8.048

Alternatively, the new data points can also be directly assigned to the closest macro-cluster.

R> evaluate(km, stream, c(measure = "purity", "crand", "SSQ"), n = 1000,

+ assign = "macro")

Evaluation results for macro-clusters.

Points were assigned to macro-clusters.

purity cRand SSQ

0.934 0.871 7.411

In this case the evaluation measures purity and corrected Rand slightly increase, since D-
Stream produces several micro-clusters covering the area between the top two true clusters
(see micro-clusters in Figure 17). Each of these micro-clusters contains a mixture of points
from the two clusters but has to assign all its points to only one resulting in some error.
Assigning the points rather to the macro-cluster centers splits these points better and therefore
decreases the number of incorrectly assigned points. The sum of squares decreases because
the data points are now directly assigned to minimize this type of error.

Other evaluation methods can also be used with a clustering in stream. For example we can
calculate and plot silhouette information Kaufman and Rousseeuw (1990) using the functions
available in cluster. We take 100 data points and find the assignment to macro clusters in the
data stream clustering. For a DSC_Micro implementation like D-Stream, the data points are
assigned by default to micro clusters and then this assignment is translated to macro-cluster
assignments.

R> points <- get_points(stream, n = 100)

R> assignment <- get_assignment(dstream, points, type = "macro")

R> assignment

<NA> 35 <NA> 18 31 2 29 45 41 28 <NA> 23 43 13 56

NA 1 NA 1 2 1 1 2 1 1 NA 1 1 1 2

14 31 39 41 5 56 38 28 21 31 29 39 3 38 39

1 2 2 1 1 2 2 1 1 2 1 2 1 2 2

15 34 42 16 44 <NA> 3 19 <NA> 36 5 32 46 42 36

1 1 1 1 2 NA 1 1 NA 1 1 2 2 1 1

12 14 22 45 43 42 25 3 <NA> 22 <NA> <NA> 6 <NA> <NA>

1 1 1 2 1 1 1 1 NA 1 NA NA 1 NA NA

31 18 6 56 52 28 55 <NA> 42 23 4 <NA> 39 13 <NA>

2 1 1 2 2 1 2 NA 1 1 1 NA 2 1 NA

29 46 23 56 24 <NA> 24 34 56 41 29 22 55 36 <NA>

1 2 1 2 1 NA 1 1 2 1 1 1 2 1 NA

47 41 <NA> 40 46 10 29 <NA> 12 <NA>

44 Introduction to stream

Silhouette width si

−0.5 0.0 0.5 1.0

Silhouette plot of (x = assignment, dist = dist(points))

Average silhouette width : 0.31

n = 100 3 clusters Cj

j : nj | avei∈ Cj si

0 : 18 | −0.39

1 : 55 | 0.39

2 : 27 | 0.62

Figure 18: Silhouette plot for D-Stream clustering with two macro-clusters and a cluster
(j = 0) representing the unassigned points.

2 1 NA 2 2 1 1 NA 1 NA

attr(,"method")

[1] "model"

Note that D-Stream uses a grid for assignment and that points which do not fall inside a
dense (or connected transitional) cell are not assigned to a cluster represented by a value of
NA. For the following silhouette calculation we replace the NAs with 0 to make the unassigned
(noise) points its own cluster. Note also that the silhouette is only calculated for a small
number of points and not the whole stream.

R> assignment[is.na(assignment)] <- 0L

R> library("cluster")

R> plot(silhouette(assignment, dist = dist(points)))

Figure 18 shows the silhouette plot for the macro-clusters produced by D-Stream. The top
cluster (j = 0) represents the points not assigned to any cluster by the algorithm (predicted
noise) and thus is expected to have a large negative silhouette. Cluster j = 2 comprises the
two overlapping real clusters and thus has lower silhouette values than cluster j = 1. Other
visual evaluation methods can be used in a similar way.

6.8. Example: Evaluating with callbacks

For custom evaluation using callbacks, we create a class that inherits EvalCallback.

R> library("stream")

R> CustomCallback <- function() {

Michael Hahsler, Matthew Bolanos, John Forrest 45

+ env <- environment()

+ all_measures <- c("LowestWeightPercentage")

+ internal_measures <- c()

+ external_measures <- all_measures

+ outlier_measures <- c()

+ this <- list(description = "Custom evaluation callback",

+ env = environment())

+ class(this) <- c("CustomCallback", "EvalCallback")

+ this

+ }

In the new class, we define all evaluation measures that are contributed. In our case this is
LowestWeightPercentage. Next, we define the callback code, i.e., the code that performs
calculation of our custom evaluation measure.

R> evaluate_callback.CustomCallback <- function(cb_obj, dsc, measure, points,

+ actual, predict, outliers,

+ predict_outliers,

+ predict_outliers_corrid,

+ centers, noise) {

+ r <- list()

+ if("LowestWeightPercentage" %in% measure)

+ r$LowestWeightPercentage=min(get_weights(dsc))/sum(get_weights(dsc))

+ r

+ }

Since DSC_Kmeans clusterer returns the number of data points assignment to each macro-
cluster, we use this to calculate population percentage for the minimally populated cluster.

We take DSD_Gaussians data stream generator i and generate 3 clusters, each with his own
probablity. Distinct probablities direct how many data points is going to be generated for
each cluster. We expect the smallest cluster to have around 20% of generated data points.

R> stream <- DSD_Gaussians(k = 3, d = 2, p = c(0.2, 0.4, 0.4))

R> km <- DSC_Kmeans(3)

R> update(km, stream, n=500)

R> evaluate_with_callbacks(km, stream, type="macro", n=500,

+ measure = c("crand","LowestWeightPercentage"),

+ callbacks = list(cc=CustomCallback()))

Evaluation results for macro-clusters.

Points were assigned to micro-clusters.

LowestWeightPercentage cRand

0.204 0.750

46 Introduction to stream

−5 0 5

−
6

−
4

−
2

0
2

4
6

x

y

Figure 19: Bars and Gaussians data set.

7. Example applications

7.1. Experimental comparison of different algorithms

Providing a framework for rapid prototyping new data stream mining algorithms and com-
paring them experimentally is the main purpose of stream. In this section we give a more
elaborate example of how to perform a comparison between several algorithms.

First, we set up a static data set. We extract 1500 data points from the Bars and Gaussians
data stream generator with 5% noise and put them into a DSD_Memory. This object is used to
replay the same part of the data stream for each algorithm. We will use the first 1000 points
to learn the clustering and the remaining 500 points for evaluation.

R> set.seed(1000)

R> library("stream")

R> stream <- DSD_Memory(DSD_BarsAndGaussians(noise = .05), n = 1500)

R> stream

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With 4 clusters and 0 outliers in 2 dimensions

Contains 1500 data points - currently at position 1 - loop is FALSE

R> plot(stream)

Figure 19 shows the structure of the data set. It consists of four clusters, two Gaussians and
two uniformly filled, slightly rotated rectangular clusters. The Gaussian and the bar to the
right have 1/3 the density of the other two clusters.

Michael Hahsler, Matthew Bolanos, John Forrest 47

We initialize four algorithms from stream. We choose the parameters experimentally so that
the algorithms produce each approximately 100 micro-clusters.

R> algorithms <- list(

+ 'Sample' = DSC_TwoStage(micro = DSC_Sample(k = 100),

+ macro = DSC_Kmeans(k = 4)),

+ 'Window' = DSC_TwoStage(micro = DSC_Window(horizon = 100),

+ macro = DSC_Kmeans(k = 4)),

+ 'D-Stream' = DSC_DStream(gridsize = .7, Cm = 1.5),

+ 'DBSTREAM' = DSC_DBSTREAM(r = .45)

+)

The algorithms are reservoir sampling reclustered with weighted k-means, sliding window
reclustered with weighted k-means, D-Stream and DBSTREAM with their built-in recluster-
ing strategies. We store the algorithms in a list for easier handling and then cluster the same
1000 data points with each algorithm. Note that we have to reset the stream each time before
we cluster with a new algorithm.

R> for(a in algorithms) {

+ reset_stream(stream)

+ update(a, stream, n = 1000)

+ }

We use nclusters() with type="micro" to inspect the number of micro-clusters.

R> sapply(algorithms, nclusters, type = "micro")

Sample Window D-Stream DBSTREAM

100 100 84 99

To inspect micro-cluster placement, we plot the calculated micro-clusters on a sample of the
original data.

R> op <- par(no.readonly = TRUE)

R> layout(mat = matrix(1:length(algorithms), ncol = 2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main = description(a), type = "micro")

+ }

R> par(op)

Figure 20 shows the micro-cluster placement by the different algorithms. Micro-clusters are
shown as red circles and the size is proportional to each cluster’s weight. Reservoir sampling
and the sliding window select some data points as micro-clusters and also include a few noise
points. D-Stream and DBSTREAM suppress noise well and concentrate the micro-clusters
on the real clusters. D-Stream is grid-based and thus the micro-clusters are regularly spaced.
DBSTREAM produces a slightly less regular pattern.

48 Introduction to stream

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

DStream

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

DBSTREAM − density−based stream clustering with shared−density−based rec

x

y

Figure 20: Micro-cluster placement for different data stream clustering algorithms.

It is also interesting to compare the assignment areas for micro-clusters created by different
algorithms. The assignment area is the area around the center of a micro-cluster in which
points are considered to belong to the micro-cluster. The specific clustering algorithm decides
how points which fall inside the assignment area of several micro-clusters are assigned (e.g.,
assign the point to the closest center). To show the assignment area we add assignment =

TRUE to plot. We also disable showing micro-cluster weights to make the plot less cluttered.

R> op <- par(no.readonly = TRUE)

R> layout(mat = matrix(1:length(algorithms), ncol = 2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main = description(a),

+ assignment = TRUE, weight = FALSE, type = "micro")

+ }

Michael Hahsler, Matthew Bolanos, John Forrest 49

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

−5 0 5

−
5

0
5

DStream

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

DBSTREAM − density−based stream clustering with shared−density−based rec

x

y

Figure 21: Micro-cluster assignment areas for different data stream clustering algorithms.

R> par(op)

Figure 21 shows the assignment areas. For regular micro-cluster-based algorithms the as-
signment areas are shown as dotted circles around micro-cluster centers. For example for
DBSTREAM the assignment area for all micro-clusters has exactly the same radius. D-
Stream uses a grid for assignment and thus shows the grid. Reservoir sampling and sliding
window does not have assignment areas and data points are always assigned to the nearest
micro-cluster.

To compare the cluster quality, we can check for example the micro-cluster purity. Note that
we set the stream to position 1001 since we have used the first 1000 points for learning and
we want to use data points not seen by the algorithms for evaluation.

R> sapply(algorithms, FUN=function(a) {

+ reset_stream(stream, pos = 1001)

50 Introduction to stream

+ evaluate(a, stream,

+ measure = c("numMicroClusters", "purity"),

+ type = "micro",

+ n = 500)

+ })

Sample Window D-Stream DBSTREAM

numMicroClusters 100.000 100.000 84.000 99.000

purity 0.944 0.947 0.966 0.971

We need to be careful with the comparison of these numbers, since they depend heavily on the
number of micro-clusters with more clusters leading to a better value. We can compare purity
here since we have set the clustering parameters such that the number of micro-clusters is very
close. All algorithms produce very good values for purity for this data set with reasonably
well separated clusters.

Next, we compare macro-cluster placement. D-Stream and DBSTREAM have built-in reclus-
tering strategies. D-Stream joins adjacent dense grid cells to form macro-clusters and DB-
STREAM joins micro-clusters reachable by overlapping assignment areas. For sampling and
sliding window we already have created a two-stage process together with weighted k-means
(k = 4).

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:length(algorithms), ncol = 2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main = description(a), type = "both")

+ }

R> par(op)

Figure 22 shows the macro-cluster placement. Sampling and the sliding window use k-means
reclustering and therefore produce exactly four clusters. However, the placement is off, split-
ting a true cluster and missing one of the less dense clusters. D-Stream and DBSTREAM
identify the two denser clusters correctly, but split the lower density clusters into multiple
pieces.

R> sapply(algorithms, FUN = function(a) {

+ reset_stream(stream, pos = 1001)

+ evaluate(a, stream, measure = c("numMacroClusters", "purity",

+ "SSQ", "cRand", "silhouette"),

+ n = 500, assign = "micro", type = "macro")

+ })

Sample Window D-Stream DBSTREAM

numMacroClusters 4.000 4.000 7.000 6.000

purity 0.898 0.823 0.893 0.876

SSQ 1111.975 976.861 866.966 885.504

cRand 0.846 0.673 0.782 0.795

silhouette 0.456 0.466 0.305 0.294

Michael Hahsler, Matthew Bolanos, John Forrest 51

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

DStream

x

y

−5 0 5

−
6

−
4

−
2

0
2

4
6

DBSTREAM − density−based stream clustering with shared−density−based rec

x

y

Figure 22: Macro-cluster placement for different data stream clustering algorithms.

The evaluation measures at the macro-cluster level reflect the findings from the visual analysis
of the clustering with D-Stream and DBSTREAM producing the best results. Note that D-
Stream and DBSTREAM do not assign some points which are not noise points which has a
negative effect on the average silhouette width.

Comparing algorithms on evolving streams is similarly easy in stream. For the following
example we use again DSD_Benchmark with two moving clusters crossing each other’s path
(see Section 4.2). First we create a fixed stream with 5000 data points.

R> set.seed(0)

R> stream <- DSD_Memory(DSD_Benchmark(1), n = 5000)

Next we initialize again a list of clustering algorithms. Note that this time we use a k of
two for reclustering sampling and the sliding window. We also use a sample biased to newer
data points (Aggarwal 2006) since otherwise outdated data points would result in creating

52 Introduction to stream

outdated clusters. For the sliding window, D-Stream and DBSTREAM we use faster decay
(lambda=.01) since the clusters in the data stream move very quickly.

R> algorithms <- list(

+ 'Sample' = DSC_TwoStage(micro = DSC_Sample(k = 100, biased = TRUE),

+ macro = DSC_Kmeans(k = 2)),

+ 'Window' = DSC_TwoStage(micro = DSC_Window(horizon = 100, lambda = .01),

+ macro = DSC_Kmeans(k = 2)),

+ 'D-Stream' = DSC_DStream(gridsize = .1, lambda = .01),

+ 'DBSTREAM' = DSC_DBSTREAM(r = .05, lambda = .01)

+)

We apply evaluate_cluster() to each of the clustering algorithms, and we evaluate and
cluster 5000 data points using the prequential evaluation method with a horizon of 250
points. The chosen evaluation measure is the corrected Rand index. This produces a list
with 5000/250 = 20 evaluations for each algorithm.

R> evaluation <- lapply(algorithms, FUN = function(a) {

+ reset_stream(stream)

+ evaluate_cluster(a, stream, horizon = 100, n = 5000, measure = "crand",

+ type = "macro", assign = "micro")

+ })

To plot the results we first get the positions at which the evaluation measure was calculated
from the first element in the evaluation list and then extract a matrix with the corrected
Rand index values. Note that the first evaluation values are again NA since we start with
empty clusterings.

R> Position <- evaluation[[1]][, "points"]

R> cRand <- sapply(evaluation, FUN = function(x) x[, "cRand"])

R> head(cRand)

Sample Window D-Stream DBSTREAM

[1,] NA NA NA NA

[2,] 0.813 0.147 1.000 1.000

[3,] 0.822 0.822 0.980 0.980

[4,] 0.786 0.787 0.976 0.952

[5,] 0.827 0.827 0.978 0.978

[6,] 0.820 0.820 0.555 1.000

We visualize the development of the evaluation measure over the stream as a line plot and
we add a boxplot comparing the distributions.

R> matplot(Position, cRand, type = "l", lwd = 2)

R> legend("bottomleft", legend = names(evaluation),

+ col = 1:6, lty = 1:6, bty = "n", lwd = 2)

Michael Hahsler, Matthew Bolanos, John Forrest 53

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Position

c
R

a
n
d

Sample

Window

D−Stream

DBSTREAM

S
a
m

p
le

W
in

d
o
w

D
−

S
tr

e
a
m

D
B

S
T

R
E

A
M

0.0

0.2

0.4

0.6

0.8

1.0

Figure 23: Evaluation of data stream clustering of an evolving stream.

R> boxplot(cRand, las = 2, cex.axis = .8)

Figure 23 shows the corrected Rand index for the four data stream clustering algorithms over
the evolving data stream. All algorithms show that separating the two clusters is impossible
around position 3000 when the two clusters overlap. D-Stream and DBSTREAM perform
equally well while biased sampling and the sliding window achieve only a lower corrected
Rand index. This is easily explained by the fact that these two algorithms cannot detect
noise and thus have to assign noise points to one of the clusters resulting in the lower Rand
index. The behavior of the individual clustering algorithms can be visually analyzed using
animate_cluster().

The stream framework allows us to easily create many experiments by using different data
and by matching different clustering and reclustering algorithms. An example of a study for
clustering large data sets using an earlier version of stream can be found in Bolaños, Forrest,
and Hahsler (2014).

7.2. Clustering a real data set

In this section we show how to cluster the well-known and widely used KDD Cup’99 data set.
The data set was created for the Third International Knowledge Discovery and Data Mining
Tools Competition and contains simulated network traffic with a wide variety of intrusions.
The data set contains 4,898,431 data points and we use the 34 numeric features for clustering.
The data set is available from the UCI Machine Learning Repository (Bache and Lichman
2013) and we directly stream the data from there. We use the first 1000 data points to center
and scale the observations in the data stream in flight.

R> library("stream")

R> con <- gzcon(

+ url(paste("http://archive.ics.uci.edu/ml/machine-learning-databases/",

+ "kddcup99-mld/kddcup.data.gz", sep="")))

R> stream <- DSD_ReadCSV(con, take=c(1, 5, 6, 8:11, 13:20, 23:42),

+ class=42, k=7)

R> stream2 <- DSD_ScaleStream(stream, n=1000)

Next, we set up D-Stream with slightly modified values for gaptime (increased number of
points after which obsolete micro-clusters are removed) and lambda (faster fading), and cluster
the next 4 million data points.

54 Introduction to stream

R> dstream <- DSC_DStream(gridsize = .5, gaptime = 10000L, lambda = .01)

R> update(dstream, stream2, n = 4000000, verbose = TRUE)

In stream clustering, each data point is processed individually and we have recorded some
key statistics averaged over 1000 point intervals. Figure 24(a) shows the number of micro-
clusters used by the algorithm. This number is directly related to the memory used by the
algorithm. For the used 34 dimensional data set, each micro-cluster occupies 416 bytes of
storage leading to a maximal memory requirement of less than 5MB (a maximum of 12,039
micro-clusters are used at the end of the first quarter of the stream) for this clustering. The
number of micro-clusters varies significantly over the stream. This behavior can be explained
by the changes in the distribution of the data. Figure 24(b) shows the number of different
classes (normal and different types of intrusions) in each 1000 point segment. It is easy to
see that the number of micro-clusters is directly related to the number of different classes in
the data. Figure 24(c) reports the clustering speed in number of points per second. We use
here R 3.1.2 on Linux 3.16.0-28 with an Intel i5 processor at 1.9GHz and 8GB of memory,
and the algorithm is implemented as a mixture of R and C++ code using the Rcpp interface
package (Eddelbuettel and François 2011; Eddelbuettel 2013). The speed varies significantly
between 7,559 and 384,600 points per second with an average throughput of 280,200 points
per second (this measure excludes delays caused by the network connection). The throughput
remains very high for a long stretch between point 1.5 and 3.5 million. It is easy to see that
the performance is inversely related to the number of micro-clusters since more micro-clusters
increase the search time for updates. Clustering the 4 million data points took a total of
65 seconds. In comparison, k-means clustering using kmeans (in package stats) with eight
clusters (number of classes) took 186 seconds and used at its peek 80% of 8GB of the available
main memory (the whole dataset is stored in memory).

Michael Hahsler, Matthew Bolanos, John Forrest 55

0 1 2 3 4

0
4
0
0
0

8
0
0
0

1
2
0
0
0

Points [in millions]

N
u
m

b
e
r

o
f
M

C
s

(a)

0 1 2 3 4

1
2

3
4

5

Points [in millions]

N
u
m

b
e
r

o
f
c
la

s
s
e
s

(b)

0 1 2 3 4

0

50

100

150

200

250

300

350

Points [in millions]

P
o
in

ts
 p

e
r

s
e
c
o
n
d
 [
in

 1
0
0
0
s
]

(c)

Figure 24: Clustering 4 million data points of the KDD Cup’99 data set with D-Stream.

56 Introduction to stream

8. Conclusion and future work

Package stream is a data stream modeling framework for R that provides both, a variety
of data stream generation tools as well as a component for performing data stream mining
tasks. The flexibility offered by the framework allows the user to create a multitude of easily
reproducible experiments to compare the performance of these tasks. While R is not an ideal
environment to process high-throughput streams in real-time, stream provides an infrastruc-
ture to develop and test these algorithms. stream can be directly used for applications where
new points are produced at slower speeds (less than 100,000 points per second depending on
the algorithm). Another important application of stream is for processing data point by point
which otherwise would not fit into main memory.

The presented infrastructure can be extended by adding new data sources and algorithms, or
by defining whole new data stream mining tasks. We have abstracted each component to only
require a small set of functions that are defined in each base class. Writing the framework
in R means that developers have the ability to design components either directly in R, or
implement components in Java, Python or C/C++, and then write a small R wrapper as we
did for some MOA algorithms in streamMOA. This approach makes it easy to experiment
with a multitude of algorithms in a consistent way.

Currently, stream focuses on the data stream clustering and outlier detection tasks, but
we are working on incorporating classification (incorporating the algorithms interfaced by
RMOA (Wijffels 2014)) and frequent pattern mining algorithms as an extension of the base
DST class.

Acknowledgments

Matthew Bolaños and John Forrest worked on stream when they were undergraduate students
at the Lyle School of Engineering at SMU. Both were supported in part by the U.S. National
Science Foundation as a research experience for undergraduates (REU) under contract number
IIS-0948893. Part of this work was also supported by the National Human Genome Research
Institute under contract number R21HG005912.

References

Adler D, Gläser C, Nenadic O, Oehlschlägel J, Zucchini W (2014). ff: Memory-efficient
Storage of Large Data on Disk and Fast Access Functions. R package version 2.2-13, URL
http://CRAN.R-project.org/package=ff.

Aggarwal C (ed.) (2007). Data Streams – Models and Algorithms. Springer-Verlag.

Aggarwal CC (2006). “On Biased Reservoir Sampling in the Presence of Stream Evolution.”
In Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06,
pp. 607–618. VLDB Endowment.

Aggarwal CC, Han J, Wang J, Yu PS (2003). “A Framework for Clustering Evolving Data
Streams.” In Proceedings of the International Conference on Very Large Data Bases (VLDB
’03), pp. 81–92.

http://CRAN.R-project.org/package=ff

Michael Hahsler, Matthew Bolanos, John Forrest 57

Aggarwal CC, Han J, Wang J, Yu PS (2004). “On Demand Classification of Data Streams.” In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’04, pp. 503–508. ACM, New York, NY, USA.

Agrawal R, Imielinski T, Swami A (1993). “Mining Association Rules between Sets of Items
in Large Databases.” In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 207–216. Washington D.C.

Babcock B, Babu S, Datar M, Motwani R, Widom J (2002). “Models and Issues in Data
Stream Systems.” In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’02, pp. 1–16. ACM, New York, NY, USA.

Bache K, Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.

ics.uci.edu/ml.

Bar R (2014). factas: Data Mining Methods for Data Streams. R package version 2.3, URL
http://CRAN.R-project.org/package=factas.

Barbera P (2014). streamR: Access to Twitter Streaming API via R. R package version 0.2.1,
URL http://CRAN.R-project.org/package=streamR.

Bifet A, de Francisci Morales G, Read J, Holmes G, Pfahringer B (2015). “Efficient Online
Evaluation of Big Data Stream Classifiers.” In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 59–68.
ACM. ISBN 978-1-4503-3664-2.

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010). “MOA: Massive Online Analysis.” Journal
of Machine Learning Research, 99, 1601–1604. ISSN 1532-4435.

Bolaños M, Forrest J, Hahsler M (2014). “Clustering Large Datasets using Data Stream Clus-
tering Techniques.” In M Spiliopoulou, L Schmidt-Thieme, R Janning (eds.), Data Analysis,
Machine Learning and Knowledge Discovery, Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 135–143. Springer-Verlag.

Cao F, Ester M, Qian W, Zhou A (2006). “Density-Based Clustering over an Evolving Data
Stream with Noise.” In Proceedings of the 2006 SIAM International Conference on Data
Mining, pp. 328–339. SIAM.

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall. ISBN
9780412830402.

Charest L, Harrington J, Salibian-Barrera M (2012). birch: Dealing With Very Large Datasets
Using BIRCH. R package version 1.2-3, URL http://CRAN.R-project.org/package=

birch.

Chen Y, Tu L (2007). “Density-based Clustering for Real-time Stream Data.” In Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’07, pp. 133–142. ACM, New York, NY, USA. doi:10.1145/1281192.

1281210.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://CRAN.R-project.org/package=factas
http://CRAN.R-project.org/package=streamR
http://CRAN.R-project.org/package=birch
http://CRAN.R-project.org/package=birch
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1145/1281192.1281210

58 Introduction to stream

Cheng J, Ke Y, Ng W (2008). “A Survey on Algorithms for Mining Frequent Itemsets
Over Data Streams.” Knowledge and Information Systems, 16(1), 1–27. doi:10.1007/

s10115-007-0092-4.

Domingos P, Hulten G (2000). “Mining High-speed Data Streams.” In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’00, pp. 71–80. ACM, New York, NY, USA.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York.
ISBN 978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Ester M, Kriegel HP, Sander J, Xu X (1996). “A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases With Noise.” In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’1996), pp. 226–
231.

Fowler M (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. 3 edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0321193687.

Gaber M, Zaslavsky A, Krishnaswamy S (2007). “A Survey of Classification Methods in Data
Streams.” In C Aggarwal (ed.), Data Streams – Models and Algorithms. Springer-Verlag.

Gaber MM, Zaslavsky A, Krishnaswamy S (2005). “Mining Data Streams: A Review.” SIG-
MOD Rec., 34, 18–26.

Gama J (2010). Knowledge Discovery from Data Streams. 1st edition. Chapman & Hall/CRC,
Boca Raton, FL. ISBN 1439826110, 9781439826119.

Gama J, Sebastião R, Rodrigues PP (2013). “On evaluating stream learning algorithms.”
Machine Learning, pp. 317–346.

Gentry J (2015). twitteR: R Based Twitter Client. R package version 1.1.9, URL http:

//CRAN.R-project.org/package=twitteR.

Hahsler M (2017). dbscan: Density Based Clustering of Applications with Noise (DBSCAN)
and Related Algorithms. R package version 1.0-0, URL http://CRAN.R-project.org/

package=dbscan.

Hahsler M, Bolanos M (2015). streamMOA: Interface for MOA Stream Clustering Algorithms.
R package version 1.1-2, URL http://CRAN.R-project.org/package=streamMOA.

Hahsler M, Bolaños M (2016). “Clustering Data Streams Based on Shared Density Between
Micro-Clusters.” IEEE Transactions on Knowledge and Data Engineering, 28(6), 1449–
1461. ISSN 1041-4347. doi:10.1109/TKDE.2016.2522412.

Hahsler M, Bolaños M, Forrest J (2017a). “Introduction to stream: An Extensible Framework
for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50.
doi:10.18637/jss.v076.i14.

https://doi.org/10.1007/s10115-007-0092-4
https://doi.org/10.1007/s10115-007-0092-4
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=dbscan
http://CRAN.R-project.org/package=dbscan
http://CRAN.R-project.org/package=streamMOA
https://doi.org/10.1109/TKDE.2016.2522412
https://doi.org/10.18637/jss.v076.i14

Michael Hahsler, Matthew Bolanos, John Forrest 59

Hahsler M, Bolaños M, Forrest J (2017b). stream: Infrastructure for Data Stream Mining.
R package version 1.2-4, URL http://CRAN.R-project.org/package=stream.

Hahsler M, Dunham MH (2010). “rEMM: Extensible Markov Model for Data Stream Clus-
tering in R.” Journal of Statistical Software, 35(5), 1–31. URL http://www.jstatsoft.

org/v35/i05/.

Hahsler M, Dunham MH (2015). rEMM: Extensible Markov Model for Data Stream Cluster-
ing in R. R package version 1.0-11., URL http://CRAN.R-project.org/.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning (Data
Mining, Inference and Prediction). Springer-Verlag.

Hennig C (2014). fpc: Flexible procedures for clustering. R package version 2.1-7, URL
http://CRAN.R-project.org/package=fpc.

Hornik K (2017). clue: Cluster Ensembles. R package version 0.3-53., URL http://CRAN.

R-project.org/package=clue.

Jain AK, Dubes RC (1988). Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA. ISBN 0-13-022278-X.

Jain AK, Murty MN, Flynn PJ (1999). “Data Clustering: A Review.” ACM Computer
Surveys, 31(3), 264–323.

Jin R, Agrawal G (2007). “Frequent Pattern Mining in Data Streams.” In C Aggarwal (ed.),
Data Streams – Models and Algorithms. Springer-Verlag.

Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(14), 1–19. URL http://www.jstatsoft.org/

v55/i14/.

Kaptein M (2013). RStorm: Simulate and Develop Streaming Processing in R. R package
version 0.902, URL http://CRAN.R-project.org/package=RStorm.

Kaptein M (2014). “RStorm: Developing and Testing Streaming Algorithms in R.” The
R Journal, 6(1), 123–132. URL http://journal.r-project.org/archive/2014-1/

kaptein.pdf.

Kaufman L, Rousseeuw PJ (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, New York.

Keller-McNulty S (ed.) (2004). Statistical Analysis of Massive Data Streams: Proceedings of
a Workshop. Committee on Applied and Theoretical Statistics, National Research Council,
National Academies Press, Washington, DC.

Kontaki M, Gounaris A, Papadopoulos AN, Tsichlas K, Manolopoulos Y (2016). “Efficient and
flexible algorithms for monitoring distance-based outliers over data streams.” Information
systems, 55, 37–53.

Kranen P, Assent I, Baldauf C, Seidl T (2009). “Self-Adaptive Anytime Stream Clustering.”
In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM
’09, pp. 249–258. IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3895-2.

http://CRAN.R-project.org/package=stream
http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/
http://CRAN.R-project.org/
http://CRAN.R-project.org/package=fpc
http://CRAN.R-project.org/package=clue
http://CRAN.R-project.org/package=clue
http://www.jstatsoft.org/v55/i14/
http://www.jstatsoft.org/v55/i14/
http://CRAN.R-project.org/package=RStorm
http://journal.r-project.org/archive/2014-1/kaptein.pdf
http://journal.r-project.org/archive/2014-1/kaptein.pdf

60 Introduction to stream

Kranen P, Kremer H, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer B (2010). “Benchmark-
ing Stream Clustering Algorithms within the MOA Framework.” In 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2010), Wash-
ington, DC, USA.

Kremer H, Kranen P, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer B (2011). “An
Effective Evaluation Measure for Clustering on Evolving Data Streams.” In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’11, pp. 868–876. ACM, New York, NY, USA. ISBN 978-1-4503-0813-7.
doi:10.1145/2020408.2020555.

Krleža D, Vrdoljak B, Brčić M (2020). “Statistical hierarchical clustering algorithm
for outlier detection in evolving data streams.” Machine Learning. doi:10.1007/

s10994-020-05905-4. URL https://doi.org/10.1007/s10994-020-05905-4.

Last M (2002). “Online Classification of Nonstationary Data Streams.” Intelligent Data
Analysis, 6, 129–147. ISSN 1088-467X.

Leisch F, Dimitriadou E (2012). mlbench: Machine Learning Benchmark Problems. R package
version 2.1-1, URL http://CRAN.R-project.org/package=mlbench.

Leydold J (2015). rstream: Streams of Random Numbers. R package version 1.3.4, URL
http://CRAN.R-project.org/package=rstream.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014). cluster: Cluster Analysis
Basics and Extensions. R package version 1.15.2, URL http://CRAN.R-project.org/

package=cluster.

McLeod A, Bellhouse D (1983). “A Convenient Algorithm for Drawing a Simple Random
Sample.” Applied Statistics, 32(2), 182–184.

Meyer D, Buchta C (2017). proxy: Distance and Similarity Measures. R package version 0.4-
17, URL http://CRAN.R-project.org/package=proxy.

Qiu W, Joe H (2015). clusterGeneration: Random Cluster Generation. R package ver-
sion 1.3.4, URL http://CRAN.R-project.org/package=clusterGeneration.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

R Foundation (2011). R Data Import/Export. Version 2.13.1 (2011-07-08), URL http:

//CRAN.R-project.org/doc/manuals/R-data.html.

R Special Interest Group on Databases (2014). DBI: R Database Interface. R package
version 0.3.1, URL http://CRAN.R-project.org/package=DBI.

Rosenberg DS (2012). HadoopStreaming: Utilities for Using R Scripts in Hadoop Streaming.
R package version 0.2, URL http://CRAN.R-project.org/package=HadoopStreaming.

Ryan JA (2016). quantmod: Quantitative Financial Modelling Framework. R package ver-
sion 0.4-7, URL http://CRAN.R-project.org/package=quantmod.

https://doi.org/10.1145/2020408.2020555
https://doi.org/10.1007/s10994-020-05905-4
https://doi.org/10.1007/s10994-020-05905-4
https://doi.org/10.1007/s10994-020-05905-4
http://CRAN.R-project.org/package=mlbench
http://CRAN.R-project.org/package=rstream
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=proxy
http://CRAN.R-project.org/package=clusterGeneration
http://www.R-project.org/
http://CRAN.R-project.org/doc/manuals/R-data.html
http://CRAN.R-project.org/doc/manuals/R-data.html
http://CRAN.R-project.org/package=DBI
http://CRAN.R-project.org/package=HadoopStreaming
http://CRAN.R-project.org/package=quantmod

Michael Hahsler, Matthew Bolanos, John Forrest 61

Sevcikova H, Rossini T (2012). rlecuyer: R Interface to RNG With Multiple Streams. R pack-
age version 0.3-3, URL http://CRAN.R-project.org/package=rlecuyer.

Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho A, Gama J (2013). “Data Stream
Clustering: A Survey.” ACM Computer Surveys, 46(1), 13:1–13:31. ISSN 0360-0300. doi:

10.1145/2522968.2522981.

Tu L, Chen Y (2009). “Stream Data Clustering Based on Grid Density and Attraction.” ACM
Transactions on Knowledge Discovery from Data, 3(3), 12:1–12:27. ISSN 1556-4681.

Urbanek S (2016). rJava: Low-level R to Java interface. R package version 0.9-8, URL
http://CRAN.R-project.org/package=rJava.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer-
Verlag, New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Vijayarani S, Sathya P (2012). “A Survey on Frequent Pattern Mining Over Data Streams.”
International Journal of Computer Science and Information Technology & Security, 2(5),
1046–1050. ISSN 2249-9555.

Vitter JS (1985). “Random Sampling With a Reservoir.” ACM Transactions on Mathematical
Software, 11(1), 37–57. ISSN 0098-3500. doi:10.1145/3147.3165.

Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009). “Density-based Clustering of Data
Streams at Multiple Resolutions.” ACM Transactions on Knowledge Discovery from Data,
3, 14:1–14:28. ISSN 1556-4681.

Wijffels J (2014). RMOA: Connect R with MOA to perform streaming classifications. R pack-
age version 1.0, URL http://CRAN.R-project.org/package=RMOA.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques.
The Morgan Kaufmann Series in Data Management Systems, 2nd edition. Morgan Kauf-
mann Publishers. ISBN 0-12-088407-0.

Xie Y (2015). animation: A Gallery of Animations in Statistics and Utilities to Create Ani-
mations. R package version 2.4, URL http://CRAN.R-project.org/package=animation.

Zhang T, Ramakrishnan R, Livny M (1996). “BIRCH: An Efficient Data Clustering Method
for Very Large Databases.” SIGMOD Rec., 25(2), 103–114. ISSN 0163-5808. doi:10.

1145/235968.233324.

Zhu Y, Shasha D (2002). “StatStream: Statistical Monitoring of Thousands of Data Streams
in Real Time.” In Proceedings of the 28th International Conference on Very Large Data
Bases, VLDB ’02, pp. 358–369. VLDB Endowment.

http://CRAN.R-project.org/package=rlecuyer
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1145/2522968.2522981
http://CRAN.R-project.org/package=rJava
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1145/3147.3165
http://CRAN.R-project.org/package=RMOA
http://CRAN.R-project.org/package=animation
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/235968.233324

62 Introduction to stream

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu

URL: http://lyle.smu.edu/~mhahsler

Matthew Bolaños
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-7329
E-mail: mbolanos@curiouscrane.com

John Forrest
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-7329
E-mail: jforrest@microsoft.com

mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler
mailto:mbolanos@curiouscrane.com
mailto:jforrest@microsoft.com

	Introduction
	Data stream mining
	Data stream clustering
	Outlier detection
	Other popular data stream mining tasks
	Existing tools

	The stream framework
	Data stream data (DSD)
	Introduction
	Example: Creating a data stream
	Example: Outlier generating data streams
	Example: Advanced statistical data streams
	Maximal variance and space limitations
	Keeping clusters sufficiently separated
	Adding outliers

	Example: Reading and writing data streams
	Example: Replaying a data stream

	Data stream task (DST)
	Introduction to data stream clustering (DSC)
	Example: Clustering a data stream

	Evaluation of data stream clustering
	Introduction
	Evaluation of clustering static data streams
	Evaluation of clustering of dynamic data streams
	Evaluation of clustering done by single-pass clusterers
	Evaluation of clustering using callbacks
	Example: Evaluating clustering results
	Example: Evaluating reclustered DSC objects
	Example: Evaluating with callbacks

	Example applications
	Experimental comparison of different algorithms
	Clustering a real data set

	Conclusion and future work

