
Extending the stream Framework

Michael Hahsler
Southern Methodist University

Matthew Bolaños
Microsoft Corporation

John Forrest
Microsoft Corporation

Abstract

This document describes how to add new data stream sources DSD and data stream
tasks DST to the stream framework.

Keywords: data streams, data mining, clustering.

1. Extending the stream framework

Since stream mining is a relatively young field and many advances are expected in the near
future, the object oriented framework in stream is developed with easy extensibility in mind.
Implementations for data streams (DSD) and data stream mining tasks (DST) can be easily
added by implementing a small number of core functions. The actual implementation can
be written in either R, Java, C/C++ or any other programming language which can be
interfaced by R. In the following we discuss how to extend stream with new DSD and DST
implementations.

1.1. Adding a new data stream source (DSD)

DSD objects can be a management layer on top of a real data stream, a wrapper for data
stored in memory or on disk, or a generator which simulates a data stream with know prop-
erties for controlled experiments. Figure 1 shows the relationship (inheritance hierarchy) of
the DSD classes as a UML class diagram (Fowler 2003). All DSD classes extend the abstract
base class DSD. There are currently two types of DSD implementations, classes which imple-
ment R-based data streams (DSD_R) and MOA-based stream generators (DSD_MOA) provided
in streamMOA. Note that abstract classes define interfaces and only implement common
functionality. Only implementation classes can be used to create objects (instances). This
mechanism is not enforced by S3, but is implemented in stream by providing for all abstract
classes constructor functions which create an error.

The class hierarchy in Figure 1 is implemented using the S3 class system (Chambers and Hastie
1992). Class membership and the inheritance hierarchy is represented by a vector of class
names stored as the object’s class attribute. For example, an object of class DSD_Gaussians

will have the class attribute vector c("DSD_Gaussians", "DSD_R", "DSD") indicating that
the object is an R implementation of DSD. This allows the framework to implement all

2 Extending the stream Framework

DSD_R

DSD_Gaussian

DSD

DSD_MOA

DSD_Memory DSD_ReadCSV DSD_RandomRBF.

A
b

s
tr

a
c
t

c
la

s
s
e

s
Im

p
le

m
e

n
ta

ti
o

n

streamMOA

Figure 1: Overview of the data stream data (DSD) class structure.

common functionality as functions at the level of DSD and DSD_R and only a minimal set of
functions is required to implement a new data stream source. Note that the class attribute
has to contain a vector of all parent classes in the class diagram in bottom-up order.

For a new DSD implementation only the following two functions need to be implemented:

1. A creator function (with a name starting with the prefix DSD_) and

2. the get_points() method.

The creator function creates an object of the appropriate DSD subclass. Typically this S3
object contains a list of all parameters, an open R connection and/or an environment or a
reference class for storing state information (e.g., the current position in the stream). Standard
parameters are d and k for the number of dimensions of the created data and the true number
of clusters, respectively. In addition an element called "description" should be provided.
This element is used by print().

The implemented get_points() needs to dispatch for the class and create as the output a
data frame containing the new data points as rows. Also, if the ground truth (true cluster
assignment as an integer vector; noise is represented by NA) is available, then this can be
attached to the data frame as an attribute called "cluster". If the new DSD implementation
is capable of generating outliers, all outliers in the output data frame should be marked in a
logical vector added as an attribute called "outlier".

For a very simple example, we show here the implementation of DSD_UniformNoise available
in the package’s source code in file DSD_UniformNoise.R. This generator creates noise points
uniformly distributed in a d-dimensional hypercube with a given range.

R> library("stream")

R> DSD_UniformNoise <- function(d = 2, range = NULL) {

+ if(is.null(range)) range <- matrix(c(0, 1), ncol = 2, nrow = d,

+ byrow = TRUE)

+ structure(list(description = "Uniform Noise Data Stream", d = d,

+ k = NA_integer_, range = range),

+ class = c("DSD_UniformNoise", "DSD_R", "DSD"))

Michael Hahsler, Matthew Bolanos, John Forrest 3

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform Noise Data Stream

X1

X
2

Figure 2: Sample points from the newly implemented DSD_UniformNoise object.

+ }

R> get_points.DSD_UniformNoise <- function(x, n = 1,

+ assignment = FALSE, ...) {

+ data <- as.data.frame(t(replicate(n,

+ runif(x$d, min = x$range[, 1], max = x$range[, 2]))))

+ if(assignment) attr(data, "assignment") <- rep(NA_integer_, n)

+ data

+ }

The constructor only stores the description, the dimensionality and the range of the data.
For this data generator k, the number of true clusters, is not applicable. Since all data is
random, there is also no need to store a state. The get_points() implementation creates n

random points and if assignments are needed attaches a vector with the appropriate number
of NAs indicating that the data points are all noise.

Now the new stream type can already be used.

R> stream <- DSD_UniformNoise()

R> stream

Uniform Noise Data Stream

Class: DSD_UniformNoise, DSD_R, DSD

With NA clusters and NA outliers in 2 dimensions

R> plot(stream, main = description(stream))

The resulting plot is shown in Figure 2.

For the outlier data stream generator, we can take DSD_Gaussians. If we generate one cluster
and one outlier for the horizon of 10 data points

4 Extending the stream Framework

R> stream <- DSD_Gaussians(k = 1, d = 2, outliers = 1, space_limit = c(0,0.5),

+ outlier_options = list(outlier_horizon = 5))

we can obtain the first 10 data points, simultaneously looking for the cluster and outlier
information. The data points obtained from the data stream are

R> points <- get_points(stream, n = 10, cluster = TRUE, outlier = TRUE)

R> points

X1 X2

1 0.131 0.11701

2 0.335 -0.00470

3 0.211 0.20574

4 0.102 0.42236

5 0.225 0.16891

6 0.242 0.11392

7 0.282 0.09495

8 0.243 0.09585

9 0.145 0.00989

10 0.321 0.05669

we can extract cluster information as

R> attr(points, "cluster")

[1] 1 1 1 2 1 1 1 1 1 1

and outlier marks as

R> attr(points, "outlier")

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Several more complicated examples are available in the package’s source code directory in
files starting with DSD_.

1.2. Adding a new data stream tasks (DST)

DST refers to any data mining task that can be applied to data streams. The design is
flexible enough for future extensions including even currently unknown tasks. Figure 3 shows
the class hierarchy for DST. It is important to note that the DST base class is shown merely
for conceptual purpose and is not directly visible in the code. The reason is that the actual
implementations of data stream operators (DSO), clustering (DSC), classification (DSClass)
or frequent pattern mining (DSFPM) are typically quite different and the benefit of sharing
methods would be minimal.

DST classes implement mutable objects which can be changed without creating a copy. This
is more efficient, since otherwise a new copy of all data structures used by the algorithm

Michael Hahsler, Matthew Bolanos, John Forrest 5

DSC_Micro

DSTask

DSC_MOA

DSC_Kmeans DSC_CluStream

DSC

. . .

. . .DSOutlier

A
b

s
tr

a
c
t

c
la

s
s
e

s
Im

p
le

m
e

n
ta

ti
o

n

DSC_DStream . . .

DSClassifier

streamMOA

DSO

DSC_R DSC_Macro DSC_TwoStage

. . .

Figure 3: Overview of the data stream task (DST) class structure with subclasses for data
stream operators (DSO), clustering (DSC), classification (DSClass) and frequent pattern min-
ing (DSFPM).

would be created for processing each data point. Mutable objects can be implemented in R
using environments or the recently introduced reference class construct (see package methods

by the R Core Team (2014)). Alternatively, pointers to external data structures in Java or
C/C++ can be used to create mutable objects.

To add a new data stream mining tasks (e.g., frequent pattern mining), a new package with a
subclass hierarchy similar to the hierarchy in Figure 3 for data stream clustering (DSC) can be
easily added. This new package can take full advantage of the already existing infrastructure
in stream. An example is the package streamMOA Hahsler and Bolanos (2015), which can
be used as a model to develop a new package. We plan to provide more add-on packages to
stream for frequent pattern mining and data stream classification in the near future.

In the following we discuss how to interface an existing algorithm with stream. We concentrate
again on clustering, but interfacing algorithms for other types of tasks is similar. To interface
an existing clustering algorithm with stream,

1. a creator function (typically named after the algorithm and starting with DSC_) which
created the clustering object,

2. an implementation of the actual cluster algorithm, and

3. accessors for the clustering

are needed. The implementation depends on the interface that is used. Currently an R inter-
face is available as DSC_R and a MOA interface is implemented in DSC_MOA (in streamMOA).

6 Extending the stream Framework

The implementation for DSC_MOA takes care of all MOA-based clustering algorithms and we
will concentrate here on the R interface.

For the R interface, the clustering class needs to contain the elements "description" and
"RObj". The description needs to contain a character string describing the algorithm. RObj
is expected to be a reference class object and contain the following methods:

1. cluster(newdata, ...), where newdata is a data frame with new data points.

2. get_assignment(dsc, points, ...), where the clusterer dsc returns cluster assign-
ments, outlier marks, and outlier identifiers for the input points data frame.

3. For micro-clusters: get_microclusters(...) and get_microweights(...)

4. For macro-clusters: get_macroclusters(...), get_macroweights and
microToMacro(micro, ...) which does micro- to macro-cluster matching.

5. For outlier detectors:

• clean_outliers(dsc, ...) instructing the outlier detector to clean up the list
of outliers

• get_outlier_positions(dsc, ...) retrieving spatial positions of all current
outliers

• recheck_outlier(dsc, outlier_id, ...) re-checking the validity of the outlier
by using its identifier, i.e., whether the outlier became an inlier in the meantime.
This function must return TRUE if the outlier is still valid, and FALSE if the outlier
has become an inlier in the meantime. Some outlier detectors allow outliers to
decay (or fade), which rises an open question about whether a decayed outlier
remains an outlier.

• noutliers(dsc, ...) returns the number of current outliers.

Note that these are methods for reference classes and do not contain the called object in the
parameter list. Neither of these methods are called directly by the user. Figure 4 shows that
the function update() is used to cluster data points, and get_centers() and get_weights()

are used to obtain the clustering. These user facing functions call internally the methods in
RObj via the R interface in class DSC_R.

Single-pass clusterers and outlier detectors

Single-pass clusterers are processing input each data point separately. Processing is done in
two steps. In the first step clusterer makes the classification and assessment. This classifica-
tion is taken as the output result. In the second step, the clusterer makes necessary model
updates using the input data point. Single-pass clusterers need to use the abstract class
DSC_SinglePass anywhere between the abstract class DSC and the final clusterer class. For
example:

R> DSC_MyClusterer <- function(x) {

+ structure(

+ list(

Michael Hahsler, Matthew Bolanos, John Forrest 7

Data Stream Data
(DSD)

Data Stream
Clustering

(DSC)

get_centers()
get_weights()
evaluate()
plot()

update()

Data Stream
Clustering

(DSC_Macro)

recluster()

get_centers()
get_weights()
evaluate()
plot()

get_assignment()

New data
points

(data.frame)

Cluster
assignments

microToMacro()
Macro-cluster
assignments

Figure 4: Interaction between the DSD and DSC classes.

+ description = "My new clusterer",

+ RObj = x

+), class = c("DSC_MyClusterer", "DSC_SinglePass", "DSC_Outlier",

+ "DSC_Micro", "DSC_R", "DSC")

+)

+ }

Figure 5 shows the interaction in case of single-pass clusterers. Obviously, since the model
update is done at the end of processing for each data point, there is no need to perform
update() before get_assignment().

Outlier detectors are the clusterers that inherit the abstract class DSC_Outlier, placed any-
where between the abstract class DSC and the concrete final class, as seen in the previous
code example. Besides all the method enumerated previously, outlier detectors must return
additional structures from their get_assignment() method. For example:

R> stream <- DSD_Gaussians(k = 1, d = 2, outliers = 1,

+ space_limit = c(0, 1), variance_limit = .01,

+ outlier_options = list(outlier_horizon = 20))

R> points <- get_points(stream, n=20, cluster = TRUE, outlier = TRUE)

R> dsc <- DSC_MyClusterer()

R> assigns <- get_assignment(dsc, points, type="micro")

All outlier must have present their identifiers in the attr(assigns, "outlier_corrid").
Using these identifiers, calling the method recheck_outlier(dsc, outlier_id, ...) we
can re-check the outlier validity.

For a comprehensive example of a clustering algorithm implemented in R, we refer the reader
to DSC_DStream (in file DSC_DStream.R) in the package’s R directory.

8 Extending the stream Framework

Data Stream Data
(DSD)

Data Stream
Clustering

(DSC, DSC_Outlier,
DSC_SinglePass)

get_centers()
get_weights()
get_outlier_positions()
evaluate()
plot()

update()

Data Stream
Clustering

(DSC_Macro)

recluster()

get_centers()
get_weights()
evaluate()
plot()

get_assignment()
Cluster assignments
Outlier ids and marks

microToMacro()
Macro-cluster
assignments

recheck_outlier() Outlier
validity

Figure 5: Interaction between the DSD and DSC classes for single-pass clusterers.

References

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall. ISBN
9780412830402.

Fowler M (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. 3 edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0321193687.

Hahsler M, Bolanos M (2015). streamMOA: Interface for MOA Stream Clustering Algorithms.
R package version 1.1-2, URL http://CRAN.R-project.org/package=streamMOA.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

http://CRAN.R-project.org/package=streamMOA
http://www.R-project.org/

Michael Hahsler, Matthew Bolanos, John Forrest 9

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu

URL: http://lyle.smu.edu/~mhahsler

Matthew Bolaños
Research Now
5800 Tennyson Pkwy # 600
Plano, TX 75024 E-mail: mbolanos@curiouscrane.com

John Forrest
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-7329
E-mail: jforrest@microsoft.com

mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler
mailto:mbolanos@curiouscrane.com
mailto:jforrest@microsoft.com

	Extending the stream framework
	Adding a new data stream source (DSD)
	Adding a new data stream tasks (DST)
	Single-pass clusterers and outlier detectors

