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Abstract

Public health surveillance aims at lessening disease burden by, e.g., timely recogniz-
ing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective,
this implies the use of appropriate methods for monitoring time series of aggregated case
reports. This paper presents the tools for such automatic aberration detection offered by
the R package surveillance. We introduce the functionalities for the visualization, mod-
eling and monitoring of surveillance time series. With respect to modeling we focus on
univariate time series modeling based on generalized linear models (GLMs), multivariate
GLMs, generalized additive models and generalized additive models for location, shape
and scale. Applications of such modeling include illustrating implementational improve-
ments and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or
by treating it in a Bayesian context. Furthermore, we look at categorical time series and
address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With re-
spect to monitoring we consider detectors based on either a Shewhart-like single timepoint
comparison between the observed count and the predictive distribution or by likelihood-
ratio based cumulative sum methods. Finally, we illustrate how surveillance can support
aberration detection in practice by integrating it into the monitoring workflow of a public
health institution. Altogether, the present article shows how well surveillance can support
automatic aberration detection in a public health surveillance context.

Keywords: R, surveillance, outbreak detection, statistical process control.

1. Introduction

Nowadays, the fight against infectious diseases does not only require treating patients and
setting up measures for prevention but also demands the timely recognition of emerging
outbreaks in order to avoid their expansion. Along these lines, health institutions such as
hospitals and public health authorities collect and store information about health events –
typically represented as individual case reports containing clinical information, and subject
to specific case definitions. Analysing these data is crucial. It enables situational awareness
in general and the timely detection of aberrant counts in particular, empowering the preven-
tion of additional disease cases through early interventions. For any specific aggregation of
characteristics of events, such as over-the-counter sales of pain medication, new cases of foot-
and-mouth disease among cattle, or adults becoming sick with hepatitis C in Germany, data
can be represented as time series of counts with days, weeks, months or years as time units of
the aggregation. Abnormally high or low values at a given time point can reveal critical issues
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such as an outbreak of the disease or a malfunction of data transmission. Thus, identifying
aberrations in the collected data is decisive, for human as well as for animal health.

In this paper we present the R package surveillance which is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=surveillance. It
implements a range of methods for aberration detection in time series of counts and pro-
portions. Statistical algorithms provide an objective and reproducible analysis of the data
and allow the automation of time-consuming aspects of the monitoring process. In the re-
cent years, a variety of such tools has flourished in the literature. Reviews of methods for
aberration detection in time series of counts can be found in Buckeridge (2007) and Unkel,
Farrington, Garthwaite, Robertson, and Andrews (2012). However, the great variety of sta-
tistical algorithms for aberration detection can be a hurdle to practitioners wishing to find
a suitable method for their data. It is our experience that ready-to-use and understandable
implementation and the possibility to use the methods in a routine and automatic fashion
are the criteria most important to the epidemiologists.

The package offers an open-source implementation of state-of-the-art methods for the prospec-
tive detection of outbreaks in count data time series with established methods, as well as the
visualization of the analysed time series. With the package, the practitioner can introduce
statistical surveillance into routine practice without too much difficulty. As far as we know,
the package is now used in several public health institutions in Europe: at the National Public
Health Institute of Finland, at the Swedish Institute for Communicable Disease Control, at
the French National Reference Centre for Salmonella, and at the Robert Koch Institute (RKI)
in Berlin. The use of surveillance at the RKI shall be the focus of this paper. The package
also provides many other functions serving epidemic modeling purposes. Such susceptible-
infectious-recovered based models and their extensions towards regression based approaches
are documented in other works (Held, Höhle, and Hofmann 2005; Held, Hofmann, Höhle, and
Schmid 2006; Meyer, Elias, and Höhle 2012; Meyer, Held, and Höhle 2017).

The present paper is designed as an extension of two previous articles about the surveillance

package published as Höhle (2007) and Höhle and Mazick (2010). On the one hand, the paper
aims at giving an overview of the new features added to the package since the publication of the
two former papers. On the other hand it intends to illustrate how well the surveillance package
can support routine practical disease surveillance by presenting the current surveillance system
of infectious diseases at the RKI.

This paper is structured as follows. Section 2 gives an introduction to the data structure
used in the package for representing and visualizing univariate or multivariate time series.
Furthermore, the structure and use of aberration detection algorithms are explained. Section 3
leads the reader through different surveillance methods available in the package. Section 4
describes the integration of such methods in a complete surveillance system as currently in
use at the RKI. Finally, a discussion rounds off the work.

2. Getting to know the basics of the package

The package provides a central S4 data class sts to capture multivariate or univariate time
series. All further methods use objects of this class as an input. Therefore we first describe
the sts class and then show the typical usage of a function for aberration detection, including
visualization. All monitoring methods of the package conform to the same syntax.

https://CRAN.R-project.org/package=surveillance


Maëlle Salmon, Dirk Schumacher, Michael Höhle 3

2.1. How to store time series and related information

In surveillance, time series of counts and related information are encoded in a specific S4-
class called sts (surveillance time series) that represents possibly multivariate time series of
counts. Denote the counts as (yit; i = 1, . . . , m, t = 1, . . . , n), where n is the length of the time
series and m is the number of entities, e.g., geographical regions, hospitals or age groups, being
monitored. An example which we shall look at in more details is a time series representing
the weekly counts of cases of infection with Salmonella Newport in all 16 federal states of
Germany from 2004 to 2013 with n = 525 weeks and m = 16 geographical units. Infections
with Salmonella Newport, a subtype of Salmonella, can trigger gastroenteritis, prompting the
seek of medical care. Infections with Salmonella are notifiable in Germany since 2001 with
data being forwarded to the RKI by federal states health authorities on behalf of the local
health authorities.

Slots of the class sts

The key slots of the sts class are those describing the observed counts and the corresponding
time periods of the aggregation. The observed counts (yit) are stored in the n × m matrix
observed. A number of other slots characterize time. First, epoch denotes the corresponding
time period of the aggregation. If the Boolean epochAsDate is TRUE, epoch is the numeric
representation of Date objects corresponding to each observation in observed. If the Boolean
epochAsDate is FALSE, epoch is the time index 1 ≤ t ≤ n of each of these observations. Then,
freq is the number of observations per year: 365 for daily data, 52 for weekly data and 12 for
monthly data. Finally, start is a vector representing the origin of the time series with two
values that are the year and the epoch within that year for the first observation of the time
series – c(2014, 1) for a weekly time series starting on the first week of 2014 for instance.

Other slots enable the storage of additional information. Known aberrations are recorded in
the Boolean slot state of the same dimensions as observed with TRUE indicating an outbreak
and FALSE indicating the absence of any known aberration. The monitored population in each
of the units is stored in slot populationFrac, which gives either proportions or numbers. The
geography of the zone under surveillance is accessible through slot map which is an object of
class SpatialPolygonsDataFrame (Pebesma and Bivand 2005; Bivand, Pebesma, and Gomez-
Rubio 2013) providing a shape of the m areas which are monitored and slot neighbourhood,
which is a symmetric matrix of Booleans size m2 stating the neighborhood matrix. Slot map

is pertinent when units are geographical units, whereas neighbourhood could be useful in any
case, e.g., for storing a contact matrix between age groups for modeling purposes. Finally, if
monitoring has been performed on the data the information on its control arguments and its
results are stored in control, upperbound and alarm presented in Section 2.2.

Creation of an object of class sts

The creation of an sts object is straightforward, requiring a call of the constructor function
sts together with the slots to be assigned as arguments. The input of data from external
files is one possibility for getting the counts as it is described in Höhle and Mazick (2010). To
exemplify the process we shall use weekly counts of Salmonella Newport in Germany loaded
using data("salmNewport"). Alternatively, one can use coercion methods to convert between
the ts class and the sts class. Note that this only converts the content of the slot observed,
that is,
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Figure 1: Weekly number of cases of S. Newport in Germany, 2004-2013.

> all.equal(observed(salmNewport),

+ observed(as(as(salmNewport, "ts"), "sts")))

Using the ts class as intermediate step also allows the conversion between other time series
classes, e.g., from packages zoo (Zeileis and Grothendieck 2005) or xts (Ryan and Ulrich
2014).

Basic manipulation of objects of the class sts

This time series above is represented as a multivariate sts object whose dimensions correspond
to the 16 German federal states. Values are weekly counts so freq = 52. Weeks are indexed
by Date here (epochAsDate = TRUE). One can thus for instance get the weekday of the date
by calling weekdays(epoch(salmNewport)) (all Mondays here). Furthermore, one can use
the function format (and the package specific platform independent version dateFormat)
to obtain strftime compatible formatting of the epochs. Another advantage of using Date

objects is that the plot functions have been re-written for better management of ticks and
labelling of the x-axis based on strftime compatible conversion specifications. For example,
to get ticks at all weeks corresponding to the first week in a month as well as all weeks
corresponding to the first in a year while placing labels consisting of the year at the median
index per year:

> plot(salmNewport, type = observed ~ time,

+ xaxis.tickFreq = list("%m" = atChange, "%G" = atChange),

+ xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y")

which is shown in Figure 1. Here, the atChange and atMedian functions are small helper
functions and the respective tick lengths are controlled by the surveillance specific option
surveillance.options("stsTickFactors"). Actually sts objects can be plotted using
different options: type = observed ~ time produces the time series for whole Germany
as shown in Figure 1, whereas type = observed ~ time | unit is a panelled graph with
each panel representing the time series of counts of a federal state as seen in Figure 2.
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Figure 2: Weekly count of S. Newport in the German federal states (a) Bavaria and (b) Berlin.

Once created one can use typical subset operations on a sts object: for instance salmNewport[

1:10, "Berlin"] is a new sts object with weekly counts for Berlin during the 10 first weeks
of the initial dataset; salmNewport[isoWeekYear(epoch(salmNewport))$ISOYear<=2010,]

uses the surveillance’s isoWeekYear() function to get a sts object with weekly counts for
all federal states up to 2010. Moreover, one can take advantage of the R function aggregate().
For instance, aggregate(salmNewport,by="unit") returns a sts object representing weekly
counts of Salmonella Newport in Germany as a whole, whereas aggregate(salmNewport, by

= "time") corresponds to the total count of cases in each federal state over the whole period.

2.2. How to use aberration detection algorithms

Monitoring algorithms of the package operate on objects of the class sts as described below.

Statistical framework for aberration detection

We introduce the framework for aberration detection on an univariate time series of counts
{yt, t = 1, 2, . . .}. Surveillance aims at detecting an aberration, that is to say, an important
change in the process occurring at an unknown time τ . This change can be a step increase of
the counts of cases or a more gradual change (Sonesson and Bock 2003).

Based on the possibility of such a change, for each time t we want to differentiate between the
two states in-control and out-of-control. At any timepoint t0 ≥ 1, the available information –
i.e., past counts – is defined as yt0

= {yt ; t ≤ t0}. Detection is based on a statistic r(·) with
resulting alarm time TA = min {t0 ≥ 1 : r(yt0

) > g} where g is a known threshold. Functions
for aberration detection thus use past data to estimate r(yt0

), and compare it to the threshold
g, above which the current count can be considered as suspicious and thus doomed as out-of-
control.

Threshold values and alarm Booleans for each timepoint of the monitored range are saved
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in the slots upperbound and alarm, of the same dimensions as observed, while the method
parameters used for computing the threshold values and alarm Booleans are stored in the slot
control.

Aberration detection in the package

To perform such a monitoring of the counts of cases, one has to choose one of the surveillance
algorithms of the package – this choice will be the topic of Section 3. Then, one must indicate
which part of the time series or range has to be monitored – for instance the current year.
Lastly, one needs to specify the parameters specific to the algorithm.

Example with the EARS C1 method

We will illustrate the basic principle by using the earsC function that implements the EARS
(Early Aberration Detection System) methods of the CDC as described in Fricker, Hegler,
and Dunfee (2008). This algorithm is especially convenient in situations when little historic
information is available. It offers three variants called C1, C2 and C3.

Here we shall expand on C1 for which the baseline are the 7 timepoints before the assessed
timepoint t0, that is to say (yt0−7, . . . , yt0−1). The expected value is the mean of the baseline.

The method is based on a statistic called Ct0
defined as Ct0

=
(yt0

−ȳt0
)

st0

, where

ȳt0
=

1

7
·

t0−1∑

i=t0−7

yi and s2
t0

=
1

7 − 1
·

t0−1∑

i=t0−7

(yi − ȳt0
)2 .

Under the null hypothesis of no outbreak, it is assumed that Ct0

H0∼ N(0, 1). The upperbound
Ut0

is found by assuming that yt is normal, estimating parameters by plug-in and then taking
the (1 − α)-th quantile of this distribution, i.e. Ut0

= ȳt0
+ z1−αst0

, where z1−α is the (1 − α)-
quantile of the standard normal distribution. An alarm is raised if yt0

> Ut0
.

The output of the algorithm is a sts object that contains subsets of slots observed, population

and state defined by the range of timepoints specified in the input – e.g the last 20 time-
points of the time series, and with the slots upperbound and alarm filled by the output of the
algorithm. Information relative to the range of data to be monitored and to the parameters
of the algorithm, such as alpha for earsC, has to be formulated in the slot control. This
information is also stored in the slot control of the returned sts object for later inspection.

> in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011)

> salmNewportGermany <- aggregate(salmNewport, by = "unit")

> control <- list(range = in2011, method = "C1", alpha = 0.05)

> surv <- earsC(salmNewportGermany, control = control)

> plot(surv)

The sts object is easily visualized using the function plot as depicted in Figure 3, which
shows the upperbound as a solid line and the alarms – timepoints where the upperbound has
been exceeded – as triangles. The four last alarms correspond to a known outbreak in 2011
due to sprouts (Bayer, Bernard, Prager, Rabsch, Hiller, Malorny, Pfefferkorn, Frank, de Jong,
Friesema, and others 2014). One sees that the upperbound right after the outbreak is affected
by the outbreak: it is very high, so that a smaller outbreak would not be detected.
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Figure 3: Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C1
method. The line represents the upperbound calculated by the algorithm. Triangles indicate
alarms that are the timepoints where the observed number of counts is higher than the
upperbound.

The EARS methods C1, C2 and C3 are simple in that they only use information from the very
recent past. This is appropriate when data has only been collected for a short time or when
one expects the count to be fairly constant. However, data from the less recent past often
encompass relevant information about e.g., seasonality and time trend, that one should take
into account when estimating the expected count and the associated threshold. For instance,
ignoring an increasing time trend could decrease sensitivity. Inversely, overlooking an annual
surge in counts during the summer could decrease specificity. Therefore, it is advisable to
use detection methods whose underlying models incorporate essential characteristics of time
series of disease count data such as overdispersion, seasonality, time trend and presence of
past outbreaks in the records (Unkel et al. 2012; Shmueli and Burkom 2010). Moreover, the
EARS methods do not compute a proper prediction interval for the current count. Sounder
statistical methods will be reviewed in the next section.

3. Using surveillance in selected contexts

More than a dozen algorithms for aberration detection are implemented in the package.
Among those, this section presents a set of representative algorithms, which are already in
routine application at several public health institutions or which we think have the potential
to become so. First we describe the Farrington method introduced by Farrington, Andrews,
Beale, and Catchpole (1996) together with the improvements proposed by Noufaily, Enki,
Farrington, Garthwaite, Andrews, and Charlett (2012). As a Bayesian counterpart to these
methods we present the BODA method published by Manitz and Höhle (2013) which allows
the easy integration of covariates. All these methods perform one-timepoint detection in that
they detect aberrations only when the count at the currently monitored timepoint is above the
threshold. Hence, no accumulation of evidence takes place. As an extension, we introduce an
implementation of the negative binomial cumulative sum (CUSUM) of Höhle and Paul (2008)
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that allows the detection of sustained shifts by accumulating evidence over several timepoints.
Finally, we present a method suitable for categorical data described in Höhle (2010) that is
also based on cumulative sums.

3.1. One size fits them all for count data

Two implementations of the Farrington method, which is currently the method of choice at
European public health institutes (Hulth, Andrews, Ethelberg, Dreesman, Faensen, van Pelt,
and Schnitzler 2010), exist in the package. First, the original method as described in Farring-
ton et al. (1996) is implemented as the function farrington. Its use was already described in
Höhle and Mazick (2010). Now, the newly implemented function farringtonFlexible sup-
ports the use of this original method as well as of the improved method built on suggestions
made by Noufaily et al. (2012) for improving the specificity without reducing the sensitivity.

In the function farringtonFlexible one can choose to use the original method or the im-
proved method by specification of appropriate control arguments. Which variant of the
algorithm is to be used is determined by the contents of the control slot. In the example
below, control1 corresponds to the use of the original method and control2 indicates the
options for the improved method.

> control1 <- list(range = in2011, noPeriods = 1,

+ b = 4, w = 3, weightsThreshold = 1,

+ pastWeeksNotIncluded = 3, pThresholdTrend = 0.05,

+ thresholdMethod = "delta")

> control2 <- list(range = in2011, noPeriods = 10,

+ b = 4, w = 3, weightsThreshold = 2.58,

+ pastWeeksNotIncluded = 26, pThresholdTrend = 1,

+ thresholdMethod = "nbPlugin")

In both cases the steps of the algorithm are the same. In a first step, an overdispersed Poisson
generalized linear model with log link is fitted to the reference data yt0

⊆ {yt ; t ≤ t0}, where
E(yt) = µt with log µt = α + βt and Var(yt) = ϕ · µt and where ϕ ≥ 1 is ensured.

The original method took seasonality into account by using a subset of the available data
as reference data for fitting the GLM: w timepoints centred around the timepoint located
1, 2, . . . , b years before t0, amounting to a total b · (2w + 1) reference values. However, it was
shown in Noufaily et al. (2012) that the algorithm performs better when using more historical
data. In order to do do so without disregarding seasonality, the authors introduced a zero
order spline with 11 knots, which can be conveniently represented as a 10-level factor. We
have extended this idea in our implementation so that one can choose an arbitrary number of
periods in each year. Thus, log µt = α+βt+γc(t) where γc(t) are the coefficients of a zero order
spline with noPeriods+1 knots, which can be conveniently represented as a noPeriods-level
factor that reflects seasonality. Here, c(t) is a function indicating in which season or period
of the year t belongs to. The algorithm uses w, b and noPeriods to deduce the length of
periods so they have the same length up to rounding. An exception is the reference window
centred around t0. Figure 4 shows a minimal example, where each character corresponds to a
different period. Note that setting noPeriods = 1 corresponds to using the original method
with only a subset of the data: there is only one period defined per year, the reference window
around t0 and other timepoints are not included in the model.
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Figure 4: Construction of the noPeriods-level factor to account for seasonality, depending
on the value of the half-window size w and of the freq of the data. Here the number of
years to go back in the past b is 2. Each level of the factor variable corresponds to a period
delimited by ticks and is denoted by a character. The windows around t0 are respectively of
size 2w + 1, 2w + 1 and w + 1. The segments between them are divided into the other periods
so that they have the same length up to rounding.

Moreover, it was shown in Noufaily et al. (2012) that it is better to exclude the last 26
weeks before t0 from the baseline in order to avoid reducing sensitivity when an outbreak
has started recently before t0. In the farringtonFlexible function, one controls this by
specifying pastWeeksNotIncluded, which is the number of last timepoints before t0 that are
not to be used. The (historical) default is to use pastWeeksNotIncluded = w.

Lastly, in the new implementation a population offset can be included in the GLM by setting
populationBool to TRUE and supplying the possibly time-varying population size in the
population slot of the sts object, but this will not be discussed further here.

In a second step, the expected number of counts µt0
is predicted for the current timepoint

t0 using this GLM. An upperbound Ut0
is calculated based on this predicted value and its

variance. The two versions of the algorithm make different assumptions for this calculation.
The original method assumes that a transformation of the prediction error g (yt0

− µ̂t0
) is

normally distributed, for instance when using the identity transformation g(x) = x one obtains

yt0
− µ̂0 ∼ N (0, Var(yt0

− µ̂0)) .

The upperbound of the prediction interval is then calculated based on this distribution. First
we have that

Var(yt0
− µ̂t0

) = Var(ŷt0
) + Var(µ̂t0

) = ϕµ0 + Var(µ̂t0
)

with Var(ŷt0
) being the variance of an observation and Var(µ̂t0

) being the variance of the
estimate. The threshold, defined as the upperbound of a one-sided (1 − α) · 100% prediction
interval, is then

Ut0
= µ̂0 + z1−α

√
V̂ar(yt0

− µ̂t0
) .

This method can be used by setting the control option thresholdMethod equal to "delta".
However, a weakness of this procedure is the normality assumption itself, so that an alternative
was presented in Noufaily et al. (2012) and implemented as thresholdMethod="Noufaily".
The central assumption of this approach is that yt0

∼ NB (µt0
, ν), with µt0

the mean of the
distribution and ν =

µt0

φ−1 its overdispersion parameter. In this parameterization, we still have
E(yt) = µt and Var(yt) = ϕ·µt with ϕ > 1 – otherwise a Poisson distribution is assumed for the
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observed count. The threshold is defined as a quantile of the negative binomial distribution
with plug-in estimates µ̂t0

and ϕ̂. Note that this disregards the estimation uncertainty in µ̂t0

and ϕ̂. As a consequence, the method "muan" (mu for µ and an for asymptotic normal) tries
to solve the problem by using the asymptotic normal distribution of (α̂, β̂) to derive the upper
(1 − α) · 100% quantile of the asymptotic normal distribution of µ̂t0

= α̂ + β̂t0. Note that this
does not reflect all estimation uncertainty because it disregards the estimation uncertainty of
ϕ̂. Note also that for time series where the variance of the estimator is large, the upperbound
also ends up being very large. Thus, the method "nbPlugin" seems to provide information
that is easier to interpret by epidemiologists but with "muan" being more statistically correct.

In a last step, the observed count yt0
is compared to the upperbound Ut0

and an alarm is
raised if yt0

> Ut0
. In both cases the fitting of the GLM involves three important steps.

First, the algorithm performs an optional power-transformation for skewness correction and
variance stabilisation, depending on the value of the parameter powertrans in the control

slot. Then, the significance of the time trend is checked. The time trend is included only
when significant at a chosen level pThresholdTrend, when there are more than three years
reference data and if no overextrapolation occurs because of the time trend. Lastly, past
outbreaks are reweighted based on their Anscombe residuals. In farringtonFlexible the
limit for reweighting past counts, weightsThreshold, can be specified by the user. If the
Anscombe residual of a count is higher than weightsThreshold it is reweighted accordingly
in a second fitting of the GLM. Farrington et al. (1996) used a value of 1 whereas Noufaily
et al. (2012) advise a value of 2.56 so that the reweighting procedure is less drastic, because
it also shrinks the variance of the observations.

The original method is widely used in public health surveillance (Hulth et al. 2010). The
reason for its success is primarily that it does not need to be fine-tuned for each specific
pathogen. It is hence easy to implement it for scanning data for many different pathogens.
Furthermore, it does tackle classical issues of surveillance data: overdispersion, presence of
past outbreaks that are reweighted, seasonality that is taken into account differently in the
two methods. An example of use of the function is shown in Figure 5 with the code below.

> salm.farrington <- farringtonFlexible(salmNewportGermany, control1)

> salm.noufaily <- farringtonFlexible(salmNewportGermany, control2)

With our implementation of the improvements presented in Noufaily et al. (2012) we hope
that the method with time can replace the original method in routine use. The RKI system
described in Section 4.2 already uses this improved method.

Similar methods in the package

The package also contains further methods based on a subset of the historical data: bayes, rki

and cdc. See Table 1 for the corresponding references. Here, bayes uses a simple conjugate
prior-posterior approach and computes the parameters of a negative binomial distribution
based on past values. The procedure rki makes either the assumption of a normal or a
Poisson distribution based on the mean of past counts. Finally, cdc aggregates weekly data
into 4-week-counts and computes a normal distribution based upper confidence interval. None
of these methods offer the inclusion of a linear trend, down-weighting of past outbreaks or
power transformation of the data. Although these methods are nice to have at hand, we
recommend using the improved method implemented in the function farringtonFlexible

because it is rather fast and makes use of more historical data than the other methods.
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Figure 5: S. Newport in Germany in 2011 monitored by (a) the original method and (b) the
improved method. For the figure we turned off the option that the threshold is only computed
if there were more than 5 cases during the 4 last timepoints including t0. One gets less alarms
with the most recent method and still does not miss the outbreak in the summer. Simulations
on more time series support the use of the improved method instead of the original method.

3.2. A Bayesian refinement

The farringtonFlexible function described previously was a first indication that the mon-
itoring of surveillance time series requires a good modeling of the time series before assessing
aberrations. Generalized linear models (GLMs) and generalized additive models (GAMs)
are well-established and powerful modeling frameworks for handling the count data nature
and trends of time series in a regression context. The boda procedure (Manitz and Höhle
2013) continues this line of thinking by extending the simple GLMs used in the farrington

and farringtonFlexible procedures to a fully fledged Bayesian GAM allowing for penalized
splines, e.g., to describe trends and seasonality, while simultaneously adjusting for previous
outbreaks or concurrent processes influencing the case counts. A particular advantage of the
Bayesian approach is that it constitutes a seamless framework for performing both estima-
tion and subsequent prediction: the uncertainty in parameter estimation is directly carried
forward to the predictive posterior distribution. No asymptotic normal approximations nor
plug-in inference is needed. For fast approximate Bayesian inference we use the INLA R

package (Rue, Martino, and Chopin 2009) to fit the Bayesian GAM.

Still, monitoring with boda is substantially slower than using the Farrington procedures.
Furthermore, detailed regression modeling is only meaningful if the time series is known to
be subject to external influences on which information is available. Hence, the typical use at
a public health institution would be the detailed analysis of a few selected time series, e.g.,
critical ones or those with known trend character.

As an example, Manitz and Höhle (2013) studied the influence of absolute humidity on the
occurrence of weekly reported campylobacter cases in Germany.
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Figure 6: Weekly number of reported campylobacteriosis cases in Germany 2002-2011 as
vertical bars. In addition, the corresponding mean absolute humidity time series is shown as
a white curve.

> data("campyDE")

> cam.sts <- sts(epoch = campyDE$date,

+ observed = campyDE$case, state = campyDE$state)

> plot(cam.sts, col = "mediumblue")

> lines(campyDE$hum * 50, col = "white", lwd = 2)

> axis(4, at = seq(0, 2500, by = 500), labels = seq(0, 50, by = 10))

The corresponding plot of the weekly time series is shown in Figure 6. We observe a strong
association between humidity and case numbers - an association which is stronger than with,
e.g., temperature or relative humidity. As noted in Manitz and Höhle (2013) the excess in cases
in 2007 is thus partly explained by the high atmospheric humidity. Furthermore, an increase
in case numbers during the 2011 STEC O104:H4 outbreak is observed, which is explained by
increased awareness and testing of many gastroenteritits pathogens during that period. The
hypothesis is thus that there is no actual increased disease activity (Bernard, Werber, and
Höhle 2014). Unfortunately, the German reporting system only records positive test results
without keeping track of the number of actual tests performed – otherwise this would have
been a natural adjustment variable. Altogether, the series contains several artefacts which
appear prudent to address when monitoring the campylobacteriosis series.

The GAM in boda is based on the negative binomial distribution with time-varying expecta-
tion and time constant overdispersion parameter, i.e.,

yt ∼ NB(µt, ν)

with µt the mean of the distribution and ν the dispersion parameter (Lawless 1987). Hence,
we have E(yt) = µt and Var(yt) = µt · (1 + µt/ν). The linear predictor is given by

log(µt) = α0t + βt + γt + x⊤
t δ + ξzt, t = 1, . . . , t0.

Here, the time-varying intercept α0t is described by a penalized spline (e.g., first or second
order random walk) and γt denotes a periodic penalized spline (as implemented in INLA)
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with period equal to the periodicity of the data. Furthermore, β characterizes the effect of a
possible linear trend (on the log-scale) and ξ is the effect of previous outbreaks. Typically, zt

is a zero-one process denoting if there was an outbreak in week t, but more involved adaptive
and non-binary forms are imaginable. Finally, xt denotes a vector of possibly time-varying
covariates, which influence the expected number of cases. Data from timepoints 1, . . . , t0 − 1
are now used to determine the posterior distribution of all model parameters and subsequently
the posterior predictive distribution of yt0

is computed. If the actual observed value of yt0
is

above the (1 − α) · 100% quantile of the predictive posterior distribution an alarm is flagged
for t0.

Below we illustrate the use of boda to monitor the campylobacteriosis time series from 2007.
In the first case we include in the model for log (µt) penalized splines for trend and seasonality
and a simple linear trend.

> library("INLA")

> rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01"))

> control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE,

+ season = TRUE, prior = "iid", alpha = 0.025,

+ mc.munu = 10000, mc.y = 1000,

+ samplingMethod = "marginals")

> boda <- boda(cam.sts, control = control.boda)

In the second case we instead use only penalized and linear trend components, and, further-
more, include as covariates lags 1–4 of the absolute humidity as well as zero-one indicators
for t0 belonging to the last two weeks (christmas) or first two weeks (newyears) of the year,
respectively. These covariates shall account for systematically changed reporting behavior at
the turn of the year (c.f. Figure 6). Finally, O104period is an indicator variable on whether
the reporting week belongs to the W21–W30 2011 period of increased awareness during the
O104:H4 STEC outbreak. No additional correction for past outbreaks is made.

> covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum",

+ "newyears", "christmas", "O104period")

> control.boda2 <- modifyList(control.boda,

+ list(X = campyDE[, covarNames], season = FALSE))

> boda.covars <- boda(cam.sts, control = control.boda2)

We plot boda.covars in Figure 7 and compare the alarms of the two boda calls with
farrington, farringtonFlexible and bayes in Figure 8 (plot type = alarm ~ time).

Note (2018-07-19): We currently have to use the argument prior = "iid" in both calls of
the boda function, because the procedure crashes when using recent versions of INLA (>=

17.06.20) with argument prior = "rw1". This means results in this vignette deviate from
the results reported in the JSS paper – in particular we do not get any alarms when using
the boda procedure with covariates. We are looking into the problem.

Note here that the bayes procedure is not really useful as the adjustment for seasonality
only works poorly. Moreover, we think that this method produces many false alarms for
this time series because it disregards the increasing time trend in number of reported cases.
Furthermore, it becomes clear that the improved Farrington procedure acts similar to the
original procedure, but the improved reweighting and trend inclusion produces fewer alarms.
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Figure 7: Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the boda
method with covariates. The line represents the upperbound calculated by the algorithm.
Triangles indicate alarms, i.e., timepoints where the observed number of counts is higher
than the upperbound.

The boda method is to be seen as a step towards more Bayesian thinking in aberration detec-
tion. However, besides its time demands for a detailed modeling, the speed of the procedure
is also prohibitive as regards routine application. As a response Salmon, Schumacher, Stark,
and Höhle (2015) introduce a method which has two advantages: it allows to adjust outbreak
detection for reporting delays and includes an approximate inference method much faster than
the INLA inference method. However, its linear predictor is more in the style of Noufaily
et al. (2012) not allowing for additional covariates or penalized options for the intercept.

3.3. Beyond one-timepoint detection

GLMs as used in the Farrington method are suitable for the purpose of aberration detection
since they allow a regression approach for adjusting counts for known phenomena such as
trend or seasonality in surveillance data. Nevertheless, the Farrington method only performs
one-timepoint detection. In some contexts it can be more relevant to detect sustained shifts
early, e.g., an outbreak could be characterized at first by counts slightly higher than usual in
subsequent weeks without each weekly count being flagged by one-timepoint detection meth-
ods. Control charts inspired by statistical process control (SPC) e.g., cumulative sums would
allow the detection of sustained shifts. Yet they were not tailored to the specific characteris-
tics of surveillance data such as overdispersion or seasonality. The method presented in Höhle
and Paul (2008) conducts a synthesis of both worlds, i.e., traditional surveillance methods
and SPC. The method is implemented in the package as the function glrnb, whose use is
explained here.

Definition of the control chart

For the control chart, two distributions are defined, one for each of the two states in-control
and out-of-control, whose likelihoods are compared at each time step. The in-control distri-
bution fθ0

(yt|zt) with the covariates zt is estimated by a GLM of the Poisson or negative
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Figure 8: Alarmplot showing the alarms for the campylobacteriosis time series for four dif-
ferent algorithms.

binomial family with a log link, depending on the overdispersion of the data. In this context,
the standard model for the in-control mean is

log µ0,t = β0 + β1t +
S∑

s=1


β2s cos


2πst

Period


+ β2s+1 sin


2πst

Period



where S is the number of harmonic waves to use and Period is the period of the data as
indicated in the control slot, for instance 52 for weekly data. However, more flexible linear
predictors, e.g., containing splines, concurrent covariates or an offset could be used on the
right hand-side of the equation. The GLM could therefore be made very similar to the one
used by Noufaily et al. (2012), with reweighting of past outbreaks and various criteria for
including the time trend.

The parameters of the in-control and out-of-control models are respectively given by θ0 and
θ1. The out-of-control mean is defined as a function of the in-control mean, either with
a multiplicative shift (additive on the log-scale) whose size κ can be given as an input or
reestimated at each timepoint t > 1, µ1,t = µ0,t · exp(κ), or with an unknown autoregressive
component as in Held et al. (2005), µ1,t = µ0,t + λyt−1 with unknown λ > 0.

In glrnb, timepoints are divided into two intervals: phase 1 and phase 2. The in-control mean
and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance
operates on phase 2 data. When λ is fixed, one uses a likelihood-ratio (LR) and defines the
stopping time for alarm as

N = min

{
t0 ≥ 1 : max

1≤t≤t0


t0∑

s=t

log


fθ1

(ys|zs)

fθ0
(ys|zs)

]
≥ c.ARL

}
,

where c.ARL is the threshold of the CUSUM.

When λ is unknown and with the autoregressive component one has to use a generalized
likelihood ratio (GLR) with the following stopping rule to estimate them on the fly at each
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time point so that

NG = min

{
t0 ≥ 1 : max

1≤t≤t0

sup
θ∈Θ


t0∑

s=t

log


fθ(ys|zs)

fθ0
(ys|zs)

]
≥ c.ARL

}
.

Thus, one does not make any hypothesis about the specific value of the change to detect, but
this GLR is more computationally intensive than the LR.

Practical use

For using glrnb one has two choices to make. First, one has to choose an in-control model
that will be fitted on phase 1 data. One can either provide the predictions for the vector of
in-control means mu0 and the overdispersion parameter alpha by relying on an external fit, or
use the built-in GLM estimator, that will use all data before the beginning of the surveillance
range to fit a GLM with the number of harmonics S and a time trend if trend is TRUE. The
choice of the exact in-control model depends on the data under surveillance. Performing model
selection is a compulsory step in practical applications. Then, one needs to tune the surveil-
lance function itself, for one of the two possible change forms, intercept or epi. One can
choose either to set theta to a given value and thus perform LR instead of GLR. The value
of theta has to be adapted to the specific context in which the algorithm is applied: how big
are shifts one wants to detect optimally? Is it better not to specify any and use GLR instead?

The threshold c.ARL also has to be specified by the user. As explained in Höhle and Mazick
(2010) one can compute the threshold for a desired run-length in control through direct Monte
Carlo simulation or a Markov chain approximation. Lastly, as mentioned in Höhle and Paul
(2008), a window-limited approach of surveillance, instead of looking at all the timepoints
until the first observation, can make computation faster.

Here we apply glrnb to the time series of report counts of Salmonella Newport in Germany
by assuming a known multiplicative shift of factor 2 and by using the built-in estimator to
fit an in-control model with one harmonic for seasonality and a trend. This model will be
refitted after each alarm, but first we use data from the years before 2011 as reference or
phase1, and the data from 2011 as data to be monitored or phase2. The threshold c.ARL

was chosen to be 4 as we found with the same approach as Höhle and Mazick (2010) that it
made the probability of a false alarm within one year smaller than 0.1. Figure 9 shows the
results of this monitoring.

> phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011)

> phase2 <- in2011

> control <- list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases",

+ mu0 = list(S = 1, trend = TRUE, refit = FALSE))

> salmGlrnb <- glrnb(salmNewportGermany, control = control)

The implementation of glrnb on individual time series was already thoroughly explained
in Höhle and Mazick (2010). Our objective in the present document is rather to provide
practical tips for the implementation of this function on huge amounts of data in public
health surveillance applications. Issues of computational speed become very significant in
such a context. Our proposal to reduce the computational burden incurred by this algorithm
is to compute the in-control model for each time serie (pathogen, subtype, subtype in a given
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Figure 9: S. Newport in Germany in 2011 monitored by the glrnb function.

location, etc.) only once a year and to use this estimation for the computation of a threshold
for each time series. An idea to avoid starting with an initial value of zero in the CUSUM is to

use either


1
2


· c.ARL as a starting value (fast initial response CUSUM as presented in Lucas

and Crosier (1982)) or to let surveillance run with the new in-control model during a buffer
period and use the resulting CUSUM as an initial value. One could also choose the maximum
of these two possible starting values as a starting value. During the buffer period alarms
would be generated with the old model. Lastly, using GLR is much more computationally
intensive than using LR, whereas LR performs reasonably well on shifts different from the one
indicated by theta as seen in the simulation studies of Höhle and Paul (2008). Our advice
would therefore be to use LR with a reasonable predefined theta. The amount of historical
data used each year to update the model, the length of the buffer period and the value of
theta have to be fixed for each specific application, e.g., using simulations and/or discussion
with experts.

Similar methods in the package

The algorithm glrPois is the same function as glrnb but for Poisson distributed data.
Other CUSUM methods for count data are found in the package: cusum and rogerson. Both
methods are discussed and compared to glrnb in Höhle and Paul (2008). The package also
includes a semi-parametric method outbreakP that aims at detecting changes from a constant
level to a monotonically increasing incidence, for instance the beginning of the influenza
season. See Table 1 for the corresponding references.

3.4. A method for monitoring categorical data

All monitoring methods presented up to now have been methods for analysing count data.
Nevertheless, in public health surveillance one also encounters categorical time series which
are time series where the response variable obtains one of k ≥ 2 different categories (nominal
or ordinal). When k = 2 the time series is binary, for instance representing a specific outcome
in cases such as hospitalization, death or a positive result to some diagnostic test. One can
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also think of applications with k > 2 if one studies, e.g., the age groups of the cases in the
context of monitoring a vaccination program: vaccination targeted at children could induce
a shift towards older cases which one wants to detect as quickly as possible – this will be
explained thoroughly with an example.

The developments of prospective surveillance methods for such categorical time series were
up to recently limited to CUSUM-based approaches for binary data such as those explained
in Chen (1978), Reynolds, Jr. and Stoumbos (2000) and Rogerson and Yamada (2004). Other
than being only suitable for binary data these methods have the drawback of not handling
overdispersion. A method improving on these two limitations while casting the problem into a
more comprehending GLM regression framework for categorical data was presented in Höhle
(2010). It is implemented as the function categoricalCUSUM.

The way categoricalCUSUM operates is very similar to what glrnb does with fixed out-of-
control parameter. First, the parameters in a multivariate GLM for the in-control distribution
are estimated from the historical data. Then the out-of-control distribution is defined by a
given change in the parameters of this GLM, e.g., an intercept change, as explained later.
Lastly, prospective monitoring is performed on current data using a likelihood ratio detec-
tor which compares the likelihood of the response under the in-control and out-of-control
distributions.

Categorical CUSUM for binomial models

The challenge when performing these steps with categorical data from surveillance systems is
finding an appropriate model. Binary GLMs as presented in Chapter 6 of Fahrmeir, Kneib,
Lang, and Marx (2013) could be a solution but they do not tackle well the inherent overdis-
persion in the binomial time series. Of course one could choose a quasi family but these
are not proper statistical distributions making many issues such as prediction complicated.
A better alternative is offered by the use of generalized additive models for location, scale
and shape (GAMLSS, Rigby and Stasinopoulos 2005), that support distributions such as the
beta-binomial distribution, suitable for overdispersed binary data. With GAMLSS one can
model the dependency of the mean – location – upon explanatory variables but the regression
modeling is also extended to other parameters of the distribution, e.g., scale. Moreover any
modelled parameter can be put under surveillance, be it the mean (as in the example later
developed) or the time trend in the linear predictor of the mean. This very flexible modeling
framework is implemented in R through the gamlss package (Stasinopoulos and Rigby 2007).

As an example we consider the time series of the weekly number of hospitalized cases among
all Salmonella cases in Germany in Jan 2004–Jan 2014, depicted in Figure 10. We use 2004–
2012 data to estimate the in-control parameters and then perform surveillance on the data
from 2013 and early 2014. We start by preprocessing the data.

> data("salmHospitalized")

> isoWeekYearData <- isoWeekYear(epoch(salmHospitalized))

> dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013)

> data2013 <- which(isoWeekYearData$ISOYear == 2013)

> dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014

+ & isoWeekYearData$ISOWeek <= 4)

> phase1 <- dataBefore2013

> phase2 <- c(data2013, dataEarly2014)
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Figure 10: Weekly proportion of Salmonella cases that were hospitalized in Germany 2004-
2014. In addition the corresponding number of reported cases is shown as a light curve.

> salmHospitalized.df <- cbind(as.data.frame(salmHospitalized),

+ weekNumber = isoWeekYearData$ISOWeek)

> names(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound", "n",

+ "freq", "epochInPeriod", "weekNumber")

We assume that the number of hospitalized cases follows a beta-binomial distribution, i.e.,
yt ∼ BetaBin(nt, πt, σt) with nt the total number of reported cases at time t, πt the proportion
of these cases that were hospitalized and σ the dispersion parameter. In this parametrization,

E(yt) = ntπt, and

Var(yt) = ntπt(1 − πt)


1 +

σ(nt − 1)

σ + 1


.

We choose to model the expectation ntπt using a beta-binomial model with a logit-link which
is a special case of a GAMLSS, i.e.,

logit(πt) = z⊤
t β

where zt is a vector of possibly time-varying covariates and β a vector of covariate effects in
our example.

The proportion of hospitalized cases varies throughout the year as seen in Figure 10. One
observes that in the summer the proportion of hospitalized cases is smaller than in other sea-
sons. However, over the holidays in December the proportion of hospitalized cases increases.
Note that the number of non-hospitalized cases drops while the number of hospitalized cases
remains constant (data not shown): this might be explained by the fact that cases that are
not serious enough to go to the hospital are not seen by general practitioners because sick
workers do not need a sick note during the holidays. Therefore, the in-control model should
contain these elements, as well as the fact that there is an increasing trend of the propor-
tion because GPs prescribe less and less stool diagnoses so that more diagnoses are done on
hospitalized cases.
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We choose a model with an intercept, a time trend, two harmonic terms and a factor variable
for the first two weeks of each year. The variable epochInPeriod takes into account the fact
that not all years have 52 weeks.

> vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber")

> m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t

+ + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod)

+ + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod)

+ + I(weekNumber == 1) + I(weekNumber == 2),

+ sigma.formula =~ 1,

+ family = BB(sigma.link = "log"),

+ data = salmHospitalized.df[phase1, vars])

The change we aim to detect is defined by a multiplicative change of odds, from
π0

t

(1−π0

t
)

to

R ·
π0

t

(1−π0

t
)

with R > 0, similar to what was done in Steiner, Cook, and Farewell (1999) for the

logistic regression model. This is equivalent to an additive change of the log-odds,

logit(π1
t ) = logit(π0

t ) + log R

with π0
t being the in-control proportion and π1

t the out-of-control distribution. The likelihood
ratio based CUSUM statistic is now defined as

Ct0
= max

1≤t≤t0


t0∑

s=t

log


f(ys; zs, θ1)

f(ys; zs, θ0)



with θ0 and θ1 being the vector in- and out-of-control parameters, respectively. Given a
threshold h, an alarm is sounded at the first time when Ct0

> h.

We set the parameters of the categoricalCUSUM to optimally detect a doubling of the odds
in 2013 and 2014, i.e., R = 2. Furthermore, we for now set the threshold of the CUSUM
at h = 2. We use the GAMLSS to predict the mean of the in-control and out-of-control
distributions and store them into matrices with two columns among which the second one
represents the reference category.

> R <- 2

> h <- 2

> pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars],

+ type = "response")

> pi1 <- plogis(qlogis(pi0) + log(R))

> pi0m <- rbind(pi0, 1 - pi0)

> pi1m <- rbind(pi1, 1 - pi1)

Note that the categoricalCUSUM function is constructed to operate on the observed slot of
sts-objects which have as columns the number of cases in each category at each timepoint,
i.e., each row of the observed slot contains the elements (yt1, ..., ytk).

> populationHosp <- unname(cbind(

+ population(salmHospitalized),
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+ population(salmHospitalized)))

> observedHosp <- cbind(

+ "Yes" = as.vector(observed(salmHospitalized)),

+ "No" = as.vector(population(salmHospitalized) - observed(salmHospitalized)))

> salmHospitalized.multi <- sts(

+ frequency = 52, start = c(2004, 1), epoch = epoch(salmHospitalized),

+ observed = observedHosp, population = populationHosp,

+ multinomialTS = TRUE)

Furthermore, one needs to define a wrapper for the distribution function in order to have an
argument named "mu" in the function.

> dBB.cusum <- function(y, mu, sigma, size, log = FALSE) {

+ dBB(if (is.matrix(y)) y[1,] else y,

+ if (is.matrix(y)) mu[1,] else mu,

+ sigma = sigma, bd = size, log = log)

+ }

After these preliminary steps, the monitoring can be performed.

> controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m,

+ ret = "cases", dfun = dBB.cusum)

> salmHospitalizedCat <- categoricalCUSUM(

+ salmHospitalized.multi, control = controlCat,

+ sigma = exp(m.bbin$sigma.coefficients))

The results can be seen in Figure 11(a). With the given settings, there are alarms at week
16 in 2004 and at week 3 in 2004. The one in 2014 corresponds to the usual peak of the
beginning of the year, which was larger than expected this year, maybe because the weekdays
of the holidays were particularly worker-friendly so that sick notes were even less needed.

The value for the threshold h can be determined following the procedures presented in Höhle
and Mazick (2010) for count data, and as in the code exhibited below. Two methods can
be used for determining the probability of a false alarm within a pre-specified number of
steps for a given value of the threshold h: a Monte Carlo method relying on, e.g., 1000
simulations and a Markov Chain approximation of the CUSUM. The former is much more
computationally intensive than the latter: with the code below, the Monte Carlo method
needed approximately 300 times more time than the Markov Chain method. Since both
results are close we recommend the Markov Chain approximation for practical use. The
Monte Carlo method works by sampling observed values from the estimated distribution and
performing monitoring with categoricalCUSUM on this sts object. As observed values are
estimated from the in-control distribution every alarm thus obtained is a false alarm so that
the simulations allow to estimate the probability of a false alarm when monitoring in-control
data over the timepoints of phase2. The Markov Chain approximation introduced by Brook
and Evans (1972) is implemented as LRCUSUM.runlength which is already used for glrnb.
Results from both methods can be seen in Figure 11(b). We chose a value of 2 for h so that
the probability of a false alarm within the 56 timepoints of phase2 is less than 0.1.
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One first has to set the values of the threshold to be investigated and to prepare the func-
tion used for simulation, that draws observed values from the in-control distribution and
performs monitoring on the corresponding time series, then indicating if there was at least
one alarm. Then 1000 simulations were performed with a fixed seed value for the sake of
reproducibility. Afterwards, we tested the Markov Chain approximation using the function
LRCUSUM.runlength over the same grid of values for the threshold.

> h.grid <- seq(1, 10, by = 0.5)

> simone <- function(sts, h) {

+ y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE],

+ bd = population(sts)[phase2, ],

+ sigma = exp(m.bbin$sigma.coefficients),

+ fast = TRUE)

+ observed(sts)[phase2, ] <- cbind(y, population(sts)[phase2, 1] - y)

+ one.surv <- categoricalCUSUM(

+ sts, control = modifyList(controlCat, list(h = h)),

+ sigma = exp(m.bbin$sigma.coefficients))

+ return(any(alarms(one.surv)[, 1]))

+ }

> set.seed(123)

> nSims <- 1000

> pMC <- sapply(h.grid, function(h) {

+ mean(replicate(nSims, simone(salmHospitalized.multi, h)))

+ })

> pMarkovChain <- sapply(h.grid, function(h) {

+ TA <- LRCUSUM.runlength(mu = pi0m[1,,drop = FALSE],

+ mu0 = pi0m[1,,drop = FALSE],

+ mu1 = pi1m[1,,drop = FALSE],

+ n = population(salmHospitalized.multi)[phase2, ],

+ h = h, dfun = dBB.cusum,

+ sigma = exp(m.bbin$sigma.coef))

+ return(tail(TA$cdf, n = 1))

+ })

The procedure for using the function for multicategorical variables follows the same steps (as
illustrated later). Moreover, one could expand the approach to utilize the multiple regression
possibilities offered by GAMLSS. Here we chose to try to detect a change in the mean of the
distribution of counts but as GAMLSS provides more general regression tools than GLM we
could also aim at detecting a change in the time trend included in the model for the mean.

Categorical CUSUM for multinomial models

In order to illustrate the use of categoricalCUSUM for more than two classes we analyse the
monthly number of rotavirus cases in the federal state Brandenburg during 2002-2013 and
which are stratified into the five age-groups 00-04, 05-09, 10-14, 15-69, 70+ years. In 2006
two rotavirus vaccines were introduced, which are administered in children at the age of 4–6
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Figure 11: (a) Results of the monitoring with categorical CUSUM of the proportion of
Salmonella cases that were hospitalized in Germany in Jan 2013 - Jan 2014. (b) Probability
of a false alarm within the 56 timepoints of the monitoring as a function of the threshold h.

months. Since then, coverage of these vaccination has steadily increased and interest is to
detect possible age-shifts in the distribution of cases.

> data("rotaBB")

> plot(rotaBB)

From Figure 12 we observe a shift in proportion away from the very young. However, in-
terpreting the proportions only makes sense in combination with the absolute numbers. In
these plots (not shown) it becomes clear that the absolute numbers in the 0–4 year old have
decreased since 2009. However, in the 70+ group a small increase is observed with 2013 by
far being the strongest season so far.

Hence, our interest is in prospectively detecting a possible age-shift. Since the vaccine was
recommended for routine vaccination in Brandenburg in 2009 we choose to start the moni-
toring at that time point. We do so by fitting a multinomial logit-model containing a trend
as well as one harmonic wave and use the age group 0–4 years as reference category, to the
data from the years 2002-2008. Different R packages implement such type of modeling, but
we shall use the MGLM package (Zhang and Zhou 2016), because it also offers the fitting of
extended multinomial regression models allowing for extra dispersion.

> rotaBB.df <- as.data.frame(rotaBB)

> X <- with(rotaBB.df, cbind(intercept = 1, epoch,

+ sin1 = sin(2 * pi * epochInPeriod),

+ cos1 = cos(2 * pi * epochInPeriod)))

> phase1 <- epoch(rotaBB) < as.Date("2009-01-01")

> phase2 <- !phase1
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Figure 12: Monthly proportions in five age-groups for the reported rotavirus cases in Bran-
denburg, Germany, 2002-2013.

> library("MGLM")

> ## MGLMreg automatically takes the last class as ref so we reorder

> order <- c(2:5, 1); reorder <- c(5, 1:4)

> m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ],

+ dist = "MN")

As described in Höhle (2010) we can try to detect a specific shift in the intercept coefficients
of the model. For example, a multiplicative shift of factor 2 in the example below, in the odds
of each of the four age categories against the reference category is modelled by changing the
intercept value of each category. Based on this, the in-control and out-of-control proportions
are easily computed using the predict function for MGLMreg objects.

> m1 <- m0

> m1@coefficients[1, ] <- m0@coefficients[1, ] + log(2)

> pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder])

> pi1 <- t(predict(m1, newdata = X[phase2, ])[, reorder])

For applying the categoricalCUSUM function one needs to define a compatible wrapper func-
tion for the multinomial as in the binomial example.

With π0 and π1 in place one only needs to define a wrapper function, which defines the
PMF of the sampling distribution – in this case the multinomial – in a categoricalCUSUM

compatible way.

> dfun <- function(y, size, mu, log = FALSE) {

+ dmultinom(x = y, size = size, prob = mu, log = log)

+ }

> h <- 2 # threshold for the CUSUM statistic

> control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0,



Maëlle Salmon, Dirk Schumacher, Michael Höhle 25

+ pi1 = pi1, ret = "value", dfun = dfun)

> surv <- categoricalCUSUM(rotaBB,control=control)

The resulting CUSUM statistic Ct as a function of time is shown in Figure 13(a). The first
time an aberration is detected is July 2009. Using 10000 Monte Carlo simulations we estimate
that with the chosen threshold h = 2 the probability for a false alarm within the 60 time
points of phase2 is 0.02.

As the above example shows, the LR based categorical CUSUM is rather flexible in handling
any type of multivariate GLM modeling to specify the in-control and out-of-control propor-
tions. However, it requires a direction of the change to be specified – for which detection is
optimal. One sensitive part of such monitoring is the fit of the multinomial distribution to a
multivariate time series of proportions, which usually exhibit extra dispersion when compared
to the multinomial. For example comparing the AIC between the multinomial logit-model
and a Dirichlet-multinomial model with αti = exp(x⊤

t β) (Zhang and Zhou 2016) shows that
overdispersion is present. The Dirichlet distribution is the multicategorical equivalent of the
beta-binomial distribution. We exemplify its use in the code below.

> m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ],

+ dist = "DM")

> c(m0@AIC, m0.dm@AIC)

[1] 2485.446 2060.532

Hence, the above estimated false alarm probability might be too low for the actual monitoring
problem, because the variation in the time series is larger than implied by the multinomial.
Hence, it appears prudent to repeat the analysis using the more flexible Dirichlet-multinomial
model. This is straightforward with categoricalCUSUM once the out-of-control proportions
are specified in terms of the model. Such a specification is, however, hampered by the fact
that the two models use different parametrizations.

For performing monitoring in this new setting we first need to calculate the α’s of the
multinomial-Dirichlet for the in-control and out-of-control distributions.

> ## Change intercept in the first class (for DM all 5 classes are modeled)

> delta <- 2

> m1.dm <- m0.dm

> m1.dm@coefficients[1, ] <- m0.dm@coefficients[1, ] +

+ c(-delta, rep(delta/4, 4))

> alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients)

> alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients)

> dfun <- function(y, size, mu, log = FALSE) {

+ dLog <- ddirmn(t(y), t(mu))

+ if (log) dLog else exp(dLog)

+ }

> h <- 2

> control <- list(range = seq(nrow(rotaBB))[phase2], h = h,

+ pi0 = t(alpha0), pi1 = t(alpha1),

+ ret = "value", dfun = dfun)

> surv.dm <- categoricalCUSUM(rotaBB, control = control)
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Figure 13: Categorical CUSUM statistic Ct. Once Ct > 2 an alarm is sounded and the
statistic is reset. In (a) surveillance uses the multinomial distribution and in (b) surveillance
uses the Dirichlet-multinomial distribution.

The resulting CUSUM statistic Ct using the Dirichlet multinomial distribution is shown in
Figure 13(b). We notice a rather similar behavior even though the shift-type specified by this
model is slightly different than in the model of Figure 13(a).

Categorical data in routine surveillance

The multidimensionality of data available in public health surveillance creates many oppor-
tunities for the analysis of categorical time series, for example: sex ratio of cases of a given
disease, age group distribution, regions sending data, etc. If one is interested in monitoring
with respect to a categorical variable, a choice has to be made between monitoring each time
series individually, for instance a time series of Salmonella cases for each age group, or mon-
itoring the distribution of cases with respect to that factor jointly via categoricalCUSUM. A
downside of the latter solution is that one has to specify the change parameter R in advance,
which can be quite a hurdle if one has no pre-conceived idea of what could happen for, say,
the age shift after the introduction of a vaccine. Alternatively, one could employ an ensemble
of monitors or monitor an aggregate. However, more straightforward applications could be
found in the (binomial) surveillance of positive diagnostics given laboratory test data and
not only data about confirmed cases. An alternative would be to apply farringtonFlexible

while using the number of tests as populationOffset.

Similar methods in the package

The package also offers another CUSUM method suitable for binary data, pairedbinCUSUM

that implements the method introduced by Steiner et al. (1999), which does not, however,
take overdispersion into account as well as glrnb. The algorithm rogerson also supports the
analysis of binomial data. See Table 1 for the corresponding references.
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Function References

bayes Riebler (2004)
boda Manitz and Höhle (2013)
bodaDelay Salmon et al. (2015)
categoricalCUSUM Höhle (2010)
cdc Stroup, Williamson, Herndon, and Karon (1989); Farrington and

Andrews (2003)
cusum Rossi, Lampugnani, and Marchi (1999); Pierce and Schafer (1986)
earsC Fricker et al. (2008)
farrington Farrington et al. (1996)
farringtonFlexible Farrington et al. (1996); Noufaily et al. (2012)
glrnb Höhle and Paul (2008)
glrpois Höhle and Paul (2008)
outbreakP Frisén, Andersson, and Schiöler (2009); Frisén and Andersson

(2009)
pairedbinCUSUM Steiner et al. (1999)
rki Not available – unpublished
rogerson Rogerson and Yamada (2004)

Table 1: Algorithms for aberration detection implemented in surveillance.

3.5. Other algorithms implemented in the package

We conclude this description of surveillance methods by giving an overview of all algorithms
implemented in the package with the corresponding references in Table 1. One can refer to
the relative reference articles and to the reference manual of the package for more information
about each method.

Criteria for choosing a method in practice are numerous. First one needs to ponder on the
amount of historical data at hand – for instance the EARS methods only need data for the
last timepoints whereas the Farrington methods use data up to b years in the past. Then
one should consider the amount of past data used by the algorithm – historical reference
methods use only a subset of the past data, namely the timepoints located around the same
timepoint in the past years, whereas other methods use all past data included in the reference
data. This can be a criterion of choice since one can prefer using all available data. It is also
important to decide whether one wants to detect one-timepoint aberration or more prolonged
shifts. And lastly, an important criterion is how much work needs to be done for finetuning
the algorithm for each specific time series.

The package on the one hand provides the means for analysing nearly all type of surveillance
data and on the other hand makes the comparison of algorithms possible. This is useful in
practical applications when those algorithms are implemented into routine use, which will be
the topic of Section 4.

4. Implementing surveillance in routine monitoring

Combining surveillance with other R packages and programs is easy, allowing the integration
of the aberration detection into a comprehensive surveillance system to be used in routine
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practice. In our opinion, such a surveillance system has to at least support the following
process: loading data from local databases, analysing them within surveillance and sending
the results of this analysis to the end-user who is typically an epidemiologist in charge of the
specific pathogen. This section exemplifies the integration of the package into a whole analysis
stack, first through the introduction of a simple workflow from data query to a Sweave (Leisch
2003) or knitr (Xie 2014) report of signals, and secondly through the presentation of the more
elaborate system in use at the German Robert Koch Institute.

4.1. A simple surveillance system

Suppose you have a database with surveillance time series but little resources to build a
surveillance system encompassing all the above stages. Using R and Sweave or knitr for
LATEX you can still set up a simple surveillance analysis without having to do everything
by hand. You only need to input the data into R and create sts objects for each time
series of interest as explained thoroughly in Höhle and Mazick (2010). Then, after choosing a
surveillance algorithm, say farringtonFlexible, and feeding it with the appropriate control

argument, you can get a sts object with upperbounds and alarms for each of your time series
of interest over the range supplied in control. For defining the range automatically one
could use the R function Sys.Date() to get today’s date. These steps can be introduced as a
code chunk in a Sweave or knitr code that will translate it into a report that you can send
to the epidemiologists in charge of the respective pathogen whose cases are monitored.

Below is an example of a short code segment showing the analysis of the S. Newport weekly
counts of cases in the German federal states Baden-Württemberg and North Rhine-Westphalia
with the improved method implemented in farringtonFlexible. The package provides a
toLatex method for sts objects that produces a table with the observed number of counts and
upperbound for each column in observed, where alarms can be highlighted by for instance
bold text. The resulting table is shown in Table 2.

> today <- which(epoch(salmNewport) == as.Date("2013-12-23"))

> rangeAnalysis <- (today - 4):today

> in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013)

> algoParameters <- list(range = rangeAnalysis, noPeriods = 10,

+ populationBool = FALSE,

+ b = 4, w = 3, weightsThreshold = 2.58,

+ pastWeeksNotIncluded = 26, pThresholdTrend = 1,

+ thresholdMethod = "nbPlugin", alpha = 0.05,

+ limit54 = c(0, 50))

> results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg",

+ "North.Rhine.Westphalia")],

+ control = algoParameters)

> start <- isoWeekYear(epoch(salmNewport)[min(rangeAnalysis)])

> end <- isoWeekYear(epoch(salmNewport)[max(rangeAnalysis)])

> caption <- paste0("Results of the analysis of reported S. Newport ",

+ "counts in two German federal states for the weeks ",

+ start$ISOYear, "-W", start$ISOWeek, " to ",

+ end$ISOYear, "-W", end$ISOWeek,
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+ ". Bold red counts indicate weeks with alarms.")

> toLatex(results, caption = caption, label = "tableResults",

+ ubColumnLabel = "Threshold", include.rownames = FALSE,

+ sanitize.text.function = identity)

year week Baden.Wuerttemberg Threshold North.Rhine.Westphalia Threshold

2013 48 0 4 0 3
2013 49 1 3 0 3
2013 50 1 3 0 3
2013 51 2 3 0 2
2013 52 3 2 1 2

Table 2: Results of the analysis of reported S. Newport counts in two German federal states
for the weeks 2013-W48 to 2013-W52. Bold red counts indicate weeks with alarms.

The advantage of this approach is that it can be made automatic. The downside of such a
system is that the report is not interactive, for instance one cannot click on the cases and
get the linelist. Nevertheless, this is a workable solution in many cases – especially when
human and financial resources are narrow. In the next section, we present a more advanced
surveillance system built on the package.

4.2. Automatic detection of outbreaks at the Robert Koch Institute

The package surveillance was used as a core building block for designing and implementing
the automated outbreak detection system at the RKI in Germany (Salmon, Schumacher,
Burmann, Frank, Claus, and Höhle 2016). The text below describes the system as it was
in early 2014. Due to the Infection Protection Act (IfSG) the RKI daily receives over 1,000
notifiable disease reports. The system analyses about half a million time series per day to
identify possible aberrations in the reported number of cases. Structurally, it consists of two
components: an analytical process written in R that daily monitors the data and a reporting
component that compiles and communicates the results to the epidemiologists.

The analysis task in the described version of the system relied on surveillance and three
other R packages, namely data.table, RODBC and testthat as described in the following.
The data-backend is an OLAP-system (Microsoft Corp. 2012a) and relational databases,
which are queried using RODBC (Ripley and Lapsley 2016). The case reports are then
rapidly aggregated into univariate time series using data.table (Dowle, Srinivasan, Short,
and Lianoglou 2015). To each time series we apply the farringtonFlexible algorithm on
univariate sts objects and store the analysis results in another SQL-database. We make
intensive use of testthat (Wickham 2016) for automatic testing of the component. Although
R is not the typical language to write bigger software components for production, choosing R

in combination with surveillance enabled us to quickly develop the analysis workflow. We can
hence report positive experience using R also for larger software components in production.

The reporting component was realized using Microsoft Reporting Services (Microsoft Corp.
2012b), because this technology is widely used within the RKI. It allows quick development of
reports and works well with existing Microsoft Office tools, which the end-user, the epidemiol-
ogist, is used to. For example, one major requirement by the epidemiologists was to have the
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results compiled as Excel documents. Moreover, pathogen-specific reports are automatically
sent once a week by email to epidemiologists in charge of the respective pathogen.

Having state-of-the-art detection methods already implemented in surveillance helped us to
focus on other challenges during development, such as bringing the system in the organiza-
tion’s workflow and finding ways to efficiently and effectively analyse about half a million of
time series per day. In addition, major developments in the R component can be shared with
the community and are thus available to other public health institutes as well.

5. Discussion

The R package surveillance was initially created as an implementational framework for the
development and the evaluation of outbreak detection algorithms in routine collected public
health surveillance data. Throughout the years it has more and more also become a tool for
the use of surveillance in routine practice. The presented description aimed at showing the
potential of the package for aberration detection. Other functions offered by the package for
modeling (Meyer et al. 2017), nowcasting (Höhle and an der Heiden 2014) or back-projection
of incidence cases (Becker and Marschner 1993) are documented elsewhere and contribute
to widening the scope of possible analysis in infectious disease epidemiology when using
surveillance. Future areas of interest for the package are, e.g., to better take into account the
multivariate and hierarchical structure of the data streams analysed. Another important topic
is the adjustment for reporting delays when performing the surveillance (Salmon et al. 2015).
The package can be obtained from CRAN and resources for learning its use are listed in the
documentation section of the project (https://surveillance.R-Forge.R-project.org/).
As all R packages, surveillance is distributed with a manual describing each function with
corresponding examples. The manual, the present article and two previous ones (Höhle 2007;
Höhle and Mazick 2010) form a good basis for getting started with the package. The data and
analysis of the present manuscript are accessible as the vignette "monitoringCounts.Rnw"

in the package.

Since all functionality is available just at the cost of learning R we hope that parts of the
package can be useful in health facilities around the world. Even though the package is
tailored for surveillance in public health contexts, properties such as overdispersion, low
counts, presence of past outbreaks, apply to a wide range of count and categorical time
series in other surveillance contexts such as financial surveillance (Frisén 2008), occupational
safety monitoring (Schuh, Camelio, and Woodall 2014) or environmental surveillance (Luo,
DeVol, and Sharp 2012).

Other R packages can be worth of interest to surveillance users. Statistical process control
is offered by two other packages, spc (Knoth 2016) and qcc (Scrucca 2004). The pack-
age strucchange allows detecting structural changes in general parametric models includ-
ing GLMs (Zeileis, Leisch, Hornik, and Kleiber 2002), while the package tscount provides
methods for regression and (retrospective) intervention analysis for count time series based
on GLMs (Liboschik, Fried, Fokianos, and Probst 2015b; Liboschik, Fokianos, and Fried
2015a) . For epidemic modelling and outbreaks, packages such as EpiEstim (Cori 2013),
outbreaker (Jombart, Cori, Didelot, Cauchemez, Fraser, and Ferguson 2014) and Outbreak-

Tools (The Hackout Team 2016) offer good functionalities for investigating outbreaks that
may for instance have been detected through to the use of surveillance. They are listed on

https://surveillance.R-Forge.R-project.org/
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the website of the R-epi project (https://sites.google.com/site/therepiproject) that
was initiated for compiling information about R tools useful for infectious diseases epidemiol-
ogy. Another software of interest for aberration detection is SaTScan (Kulldorff 1997) which
allows the detection of spatial, temporal and space-time clusters of events – note that it is
not a R package.

Code contributions to the package are very welcome as well as feedback and suggestions for
improving the package.
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