
This introduction to the twinstim modeling framework of the R package surveillance is based on a
publication in the Journal of Statistical Software – Meyer, Held, and Höhle (2017, Section 3) – which is the

suggested reference if you use the twinstim implementation in your own work.
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Abstract

The availability of geocoded health data and the inherent temporal structure of com-
municable diseases have led to an increased interest in statistical models and software
for spatio-temporal data with epidemic features. The R package surveillance can handle
various levels of aggregation at which infective events have been recorded. This vignette
illustrates the analysis of point-referenced surveillance data using the endemic-epidemic
point process model “twinstim” proposed by Meyer, Elias, and Höhle (2012) and ex-
tended in Meyer and Held (2014). We first describe the general modeling approach and
then exemplify data handling, model fitting, visualization, and simulation methods for
time-stamped geo-referenced case reports of invasive meningococcal disease (IMD) caused
by the two most common bacterial finetypes of meningococci in Germany, 2002–2008.

Keywords: spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epi-
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1. Model class: twinstim

Infective events occur at specific points in continuous space and time, which gives rise to
a spatio-temporal point pattern ¶(si, ti) : i = 1, . . . , n♢ from a region W observed during
a period (0, T ]. The locations si and time points ti of the n events can be regarded as a
realization of a self-exciting spatio-temporal point process, which can be characterized by its
conditional intensity function (CIF, also termed intensity process) λ(s, t). It represents the
instantaneous event rate at location s at time point t given all past events, and is often more
verbosely denoted by λ∗ or by explicit conditioning on the “history” Ht of the process. Daley
and Vere-Jones (2003, Chapter 7) provide a rigorous mathematical definition of this concept,
which is key to likelihood analysis and simulation of “evolutionary” point processes.

Meyer et al. (2012) formulated the model class “twinstim” – a two-component spatio-
temporal intensity model – by a superposition of an endemic and an epidemic component:
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2 Endemic-epidemic modeling of spatio-temporal point patterns

λ(s, t) = ν[s][t] +
∑

j∈I(s,t)

ηj f(∥s − sj∥) g(t − tj) . (1)

This model constitutes a branching process with immigration. Part of the event rate is due
to the first, endemic component, which reflects sporadic events caused by unobserved sources
of infection. This background rate of new events is modeled by a log-linear predictor ν[s][t]

incorporating regional and/or time-varying characteristics. Here, the space-time index [s][t]
refers to the region covering s during the period containing t and thus spans a whole spatio-
temporal grid on which the involved covariates are measured, e.g., district × month. We
will later see that the endemic component therefore simply equals an inhomogeneous Poisson
process for the event counts by cell of that grid.

The second, observation-driven epidemic component adds “infection pressure” from the set

I(s, t) =
{

j : tj < t ∧ t − tj ≤ τj ∧ ∥s − sj∥ ≤ δj

}

of past events and hence makes the process “self-exciting”. During its infectious period of
length τj and within its spatial interaction radius δj , the model assumes each event j to
trigger further events, which are called offspring, secondary cases, or aftershocks, depending
on the application. The triggering rate (or force of infection) is proportional to a log-linear
predictor ηj associated with event-specific characteristics (“marks”) mj , which are usually
attached to the point pattern of events. The decay of infection pressure with increasing
spatial and temporal distance from the infective event is modeled by parametric interaction
functions f and g, respectively. A simple assumption for the time course of infectivity is
g(t) = 1. Alternatives include exponential decay, a step function, or empirically derived
functions such as Omori’s law for aftershock intervals. With regard to spatial interaction, a
Gaussian kernel f(x) = exp

{

−x2/(2σ2)
}

could be chosen. However, in modeling the spread
of human infectious diseases on larger scales, a heavy-tailed power-law kernel f(x) = (x+σ)−d

was found to perform better (Meyer and Held 2014). The (possibly infinite) upper bounds τj

and δj provide a way of modeling event-specific interaction ranges. However, since these need
to be pre-specified, a common assumption is τj ≡ τ and δj ≡ δ, where the infectious period τ
and the spatial interaction radius δ are determined by subject-matter considerations.

1.1. Model-based effective reproduction numbers

Similar to the simple SIR model (see, e.g., Keeling and Rohani 2008, Section 2.1), the above
point process model (1) features a reproduction number derived from its branching process
interpretation. As soon as an event occurs (individual becomes infected), it triggers offspring
(secondary cases) around its origin (sj , tj) according to an inhomogeneous Poisson process
with rate ηj f(∥s − sj∥) g(t − tj). Since this triggering process is independent of the event’s
parentage and of other events, the expected number µj of events triggered by event j can be
obtained by integrating the triggering rate over the observed interaction domain:

µj = ηj ·



∫ min(T −tj ,τj)

0
g(t) dt

]

·



∫

Rj

f(∥s∥) ds

]

, (2)

where

Rj = (b(sj , δj) ∩ W ) − sj (3)
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is event j’s influence region centered at sj , and b(sj , δj) denotes the disc centered at sj with
radius δj . Note that the above model-based reproduction number µj is event-specific since
it depends on event marks through ηj , on the interaction ranges δj and τj , as well as on the
event location sj and time point tj . If the model assumes unique interaction ranges δ and τ , a
single reference number of secondary cases can be extrapolated from Equation 2 by imputing
an unbounded domain W = R

2 and T = ∞ (Meyer, Warnke, Rössler, and Held 2016).

Equation 2 can also be motivated by looking at a spatio-temporal version of the simple SIR
model wrapped into the twinstim class (1). This means: no endemic component, homoge-
neous force of infection (ηj ≡ β), homogeneous mixing in space (f(x) = 1, δj ≡ ∞), and
exponential decay of infectivity over time (g(t) = e−αt, τj ≡ ∞). Then, for T → ∞,

µ = β ·


∫ ∞

0
e−αt dt



·



∫

W −sj

1 ds

]

= β · ♣W ♣/α ,

which corresponds to the basic reproduction number known from the simple SIR model by
interpreting ♣W ♣ as the population size, β as the transmission rate and α as the removal rate.
If µ < 1, the process is sub-critical, i.e., its eventual extinction is almost sure.

However, it is crucial to understand that in a full model with an endemic component, new
infections may always occur via “immigration”. Hence, reproduction numbers in twinstim are
adjusted for infections occurring independently of previous infections. This also means that
a misspecified endemic component may distort model-based reproduction numbers (Meyer
et al. 2016). Furthermore, under-reporting and implemented control measures imply that the
estimates are to be thought of as effective reproduction numbers.

1.2. Likelihood inference

The log-likelihood of the point process model (1) is a function of all parameters in the log-
linear predictors ν[s][t] and ηj and in the interaction functions f and g. It has the form



n
∑

i=1

log λ(si, ti)

]

−

∫ T

0

∫

W

λ(s, t) ds dt . (4)

To estimate the model parameters, we maximize the above log-likelihood numerically using
the quasi-Newton algorithm available through the R function nlminb. We thereby employ the
analytical score function and an approximation of the expected Fisher information worked
out by Meyer et al. (2012, Web Appendices A and B).

The space-time integral in the log-likelihood (4) poses no difficulties for the endemic com-
ponent of λ(s, t), since ν[s][t] is defined on a spatio-temporal grid. However, integration of
the epidemic component involves two-dimensional integrals

∫

Ri
f(∥s∥) ds over the influence

regions Ri, which are represented by polygons (as is W ). Similar integrals appear in the score
function, where f(∥s∥) is replaced by partial derivatives with respect to kernel parameters.
Calculation of these integrals is trivial for (piecewise) constant f , but otherwise requires nu-
merical integration. The R package polyCub (Meyer 2019) offers various cubature methods
for polygonal domains. Of particular relevance for twinstim is the polyCub.iso method,
which takes advantage of the assumed isotropy of spatial interaction such that numerical
integration remains in only one dimension (Meyer and Held 2014, Supplement B, Section 2).
We memoise (Wickham, Hester, Chang, Müller, and Cook 2021) the cubature function during
log-likelihood maximization to avoid integration for unchanged parameters of f .

https://CRAN.R-project.org/package=polyCub
https://CRAN.R-project.org/package=memoise
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1.3. Special cases: Single-component models

If the epidemic component is omitted in Equation 1, the point process model becomes equiv-
alent to a Poisson regression model for aggregated counts. This provides a link to eco-
logical regression approaches in general and to the count data model hhh4 illustrated in
vignette("hhh4") and vignette("hhh4_spacetime"). To see this, recall that the endemic
component ν[s][t] is piecewise constant on the spatio-temporal grid with cells ([s], [t]). Hence
the log-likelihood (4) of an endemic-only twinstim simplifies to a sum over all these cells,

∑

[s],[t]

{

Y[s][t] log ν[s][t] − ♣[s]♣ ♣[t]♣ ν[s][t]

}

,

where Y[s][t] is the aggregated number of events observed in cell ([s], [t]), and ♣[s]♣ and ♣[t]♣
denote cell area and length, respectively. Except for an additive constant, the above log-
likelihood is equivalently obtained from the Poisson model Y[s][t] ∼ Po(♣[s]♣ ♣[t]♣ ν[s][t]). This
relation offers a means of code validation using the established glm function to fit an endemic-
only twinstim model – see the examples in help("glm_epidataCS").

If, in contrast, the endemic component is omitted, all events are necessarily triggered by
other observed events. For such a model to be identifiable, a prehistory of events must exist
to trigger the first event, and interaction typically needs to be unbounded such that each
event can actually be linked to potential source events.

1.4. Extension: twinstim with event types

To model the example data on invasive meningococcal disease in the remainder of this sec-
tion, we actually need to use an extended version λ(s, t, k) of Equation 1, which accounts for
different event types k with own transmission dynamics. This introduces a further dimension
in the point process, and the second log-likelihood component in Equation 4 accordingly splits
into a sum over all event types. We refer to Meyer et al. (2012, Sections 2.4 and 3) for the
technical details of this type-specific twinstim class. The basic idea is that the meningococcal
finetypes share the same endemic pattern (e.g., seasonality), while infections of different fine-
types are not associated via transmission. This means that the force of infection is restricted
to previously infected individuals with the same bacterial finetype k, i.e., the epidemic sum in
Equation 1 is over the set I(s, t, k) = I(s, t) ∩ ¶j : kj = k♢. The implementation has limited
support for type-dependent interaction functions fkj

and gkj
(not further considered here).

2. Data structure: epidataCS

The first step toward fitting a twinstim is to turn the relevant data into an object of the
dedicated class epidataCS.1 The primary ingredients of this class are a spatio-temporal point
pattern (events) and its underlying observation region (W). An additional spatio-temporal
grid (stgrid) holds (time-varying) area-level covariates for the endemic regression part. We
exemplify this data class by the epidataCS object for the 636 cases of invasive meningococcal
disease in Germany originally analyzed by Meyer et al. (2012). It is already contained in the
surveillance package as data("imdepi") and has been constructed as follows:

1The suffix “CS” indicates that the data-generating point process is indexed in continuous space.
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R> imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid,

+ qmatrix = diag(2), nCircle2Poly = 16)

The function as.epidataCS checks the consistency of the three data ingredients described in
detail below. It also pre-computes auxiliary variables for model fitting, e.g., the individual
influence regions (3), which are intersections of the observation region with discs approxi-
mated by polygons with nCircle2Poly = 16 edges. The intersections are computed using
functionality of the package polyclip (Johnson and Baddeley 2019). For multitype epidemics
as in our example, the additional indicator matrix qmatrix specifies transmissibility across
event types. An identity matrix corresponds to an independent spread of the event types,
i.e., cases of one type can not produce cases of another type.

2.1. Data ingredients

The core events data must be provided in the form of a SpatialPointsDataFrame as defined
by the package sp (Pebesma and Bivand 2022):

R> summary(events)

Object of class SpatialPointsDataFrame

Coordinates:

min max

x 4039 4665

y 2710 3525

Is projected: TRUE

proj4string :

[+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=km +no_defs]

Number of points: 636

Data attributes:

time tile type eps.t eps.s sex agegrp

Min. : 0.2 05354 : 34 B:336 Min. :30 Min. :200 female:292 [0,3) :194

1st Qu.: 539.5 05370 : 27 C:300 1st Qu.:30 1st Qu.:200 male :339 [3,19) :279

Median :1155.0 11000 : 27 Median :30 Median :200 NA's : 5 [19,Inf):162

Mean :1192.7 05358 : 13 Mean :30 Mean :200 NA's : 1

3rd Qu.:1808.0 05162 : 12 3rd Qu.:30 3rd Qu.:200

Max. :2542.8 05382 : 12 Max. :30 Max. :200

(Other):511

The associated event coordinates are residence postcode centroids, projected in the Euro-

pean Terrestrial Reference System 1989 (in kilometer units) to enable Euclidean geometry.
See the spTransform-methods for how to project latitude and longitude coordinates into a
planar coordinate reference system (CRS). The data frame associated with these spatial co-
ordinates (si) contains a number of required variables and additional event marks (in the
notation of Section 1: ¶(ti, [si], ki, τi, δi, mi) : i = 1, . . . , n♢). For the IMD data, the event
time is measured in days since the beginning of the observation period 2002–2008 and is
subject to a tie-breaking procedure (described later). The tile column refers to the region
of the spatio-temporal grid where the event occurred and here contains the official key of the
administrative district of the patient’s residence. There are two types of events labeled as "B"

and "C", which refer to the serogroups of the two meningococcal finetypes B:P1.7-2,4:F1-5

and C:P1.5,2:F3-3 contained in the data. The eps.t and eps.s columns specify upper limits

https://CRAN.R-project.org/package=polyclip
https://CRAN.R-project.org/package=sp
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for temporal and spatial interaction, respectively. Here, the infectious period is assumed to
last a maximum of 30 days and spatial interaction is limited to a 200 km radius for all cases.
The latter has numerical advantages for a Gaussian interaction function f with a relatively
small standard deviation. For a power-law kernel, however, this restriction will be dropped
to enable occasional long-range transmission. The last two data attributes displayed in the
above event summary are covariates from the case reports: the gender and age group of the
patient.

For the observation region W, we use a polygon representation of Germany’s boundary. Since
the observation region defines the integration domain in the point process log-likelihood (4),
the more detailed the polygons of W are the longer it will take to fit a twinstim. It is
thus advisable to sacrifice some shape details for speed by reducing the polygon complexity,
e.g., by applying ms_simplify from the rmapshaper package (Teucher and Russell 2020).
Alternative tools in R are spatstat’s simplify.owin procedure (Baddeley, Rubak, and Turner
2015) and the function thinnedSpatialPoly in package maptools (Bivand and Lewin-Koh
2022), which implements the Douglas-Peucker reduction method. The surveillance package
already contains a simplified representation of Germany’s boundaries:

R> load(system.file("shapes", "districtsD.RData", package = "surveillance"))

This file contains both the SpatialPolygonsDataFrame districtsD of Germany’s 413 ad-
ministrative districts as at January 1, 2009, as well as their union stateD. These boundaries
are projected in the same CRS as the events data.

The stgrid input for the endemic model component is a data frame with (time-varying)
area-level covariates, e.g., socio-economic or ecological characteristics. In our example:

start stop tile area popdensity

1 0 31 01001 56.4 1557.1

2 0 31 01002 118.7 1996.6

3 0 31 01003 214.2 987.6

... ... ... ... ... ...

34690 2526 2557 16075 1148.5 79.2

34691 2526 2557 16076 843.5 133.6

34692 2526 2557 16077 569.1 181.5

Numeric (start,stop] columns index the time periods and the factor variable tile identifies
the regions of the grid. Note that the given time intervals (here: months) also define the
resolution of possible time trends and seasonality of the piecewise constant endemic intensity.
We choose monthly intervals to reduce package size and computational cost compared to the
weekly resolution originally used by Meyer et al. (2012) and Meyer and Held (2014). The
above stgrid data frame thus consists of 7 (years) times 12 (months) blocks of 413 (districts)
rows each. The area column gives the area of the respective tile in square kilometers
(compatible with the CRS used for events and W). A geographic representation of the regions
in stgrid is not required for model estimation, and is thus not part of the epidataCS class. In
our example, the area-level data only consists of the population density popdensity, whereas
Meyer et al. (2012) additionally incorporated (lagged) weekly influenza counts by district as
a time-dependent covariate.

https://CRAN.R-project.org/package=rmapshaper
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=maptools
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2.2. Data handling and visualization

The generated epidataCS object imdepi is a simple list of the checked ingredients events,
stgrid, W, qmatrix. Several methods for data handling and visualization are available for
such objects as listed in Table 1 and briefly presented in the remainder of this section.

Display Subset Extract Modify Convert Other

print [ nobs update as.epidata coerce

summary head marks untie epidataCS2sts initialize

plot tail getSourceDists show

animate subset slotsFromS3

as.stepfun

Table 1: Generic and non-generic functions applicable to epidataCS objects.

Printing an epidataCS object presents some metadata and the first 6 events by default:

R> imdepi

Observation period: 0 - 2557

Observation window (bounding box): [4031, 4672] x [2684, 3550]

Spatio-temporal grid (not shown): 84 time blocks x 413 tiles

Types of events: "B" "C"

Overall number of events: 636

coordinates time tile type eps.t eps.s sex agegrp BLOCK start popdensity

1 (4112, 3203) 0.2117 05554 B 30 200 male [3,19) 1 0 260.9

2 (4123, 3077) 0.7124 05382 C 30 200 male [3,19) 1 0 519.4

3 (4412, 2916) 5.5910 09574 B 30 200 female [19,Inf) 1 0 209.4

4 (4203, 2880) 7.1170 08212 B 30 200 female [3,19) 1 0 1665.6

5 (4128, 3223) 22.0595 05554 C 30 200 male [3,19) 1 0 260.9

6 (4090, 3178) 24.9544 05170 C 30 200 male [3,19) 1 0 454.7

[....]

During conversion to epidataCS, the last three columns BLOCK (time interval index), start

and popdensity have been merged from the checked stgrid to the events data frame.
The event marks including time and location can be extracted in a standard data frame by
marks(imdepi) – inspired by package spatstat – and this is summarized by summary(imdepi).

The number of potential sources of infection per event (denoted |.sources| in the above
output) is additionally summarized. It is determined by the events’ maximum ranges of inter-
action eps.t and eps.s. The event-specific set of potential sources is stored in the (hidden)
list imdepi$events$.sources (events are referenced by row index), and the event-specific
numbers of potential sources are stored in the summarized object as simdepi$nSources.

A simple plot of the number of infectives as a function of time (Figure 1) can be obtained by
the step function converter:

R> plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i",

+ xlab = "Time [days]", ylab = "Current number of infectives", main = "")

https://CRAN.R-project.org/package=spatstat
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Figure 1: Time course of the number of infectives assuming infectious periods of 30 days.

The plot-method for epidataCS offers aggregation of the events over time or space:

R> plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20))

R> plot(imdepi, "space", lwd = 2,

+ points.args = list(pch = c(1, 19), col = c("indianred", "darkblue")))

R> layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE)
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Figure 2: Occurrence of the two finetypes viewed in the temporal and spatial dimensions.
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The time-series plot (Figure 2a) shows the monthly aggregated number of cases by finetype
in a stacked histogram as well as each type’s cumulative number over time. The spatial plot
(Figure 2b) shows the observation window W with the locations of all cases (by type), where
the areas of the points are proportional to the number of cases at the respective location. Ad-
ditional shading by the population is possible and exemplified in help("plot.epidataCS").

The above static plots do not capture the space-time dynamics of epidemic spread. An
animation may provide additional insight and can be produced by the corresponding animate-
method. For instance, to look at the first year of the B-type in a weekly sequence of snapshots
in a web browser (using facilities of the animation package of Xie 2021):

R> animation::saveHTML(

+ animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7),

+ nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B")

Selecting events from epidataCS as for the animation above is enabled by the [- and subset-
methods, which return a new epidataCS object containing only the selected events.

A limited data sampling resolution may lead to tied event times or locations, which are in
conflict with a continuous spatio-temporal point process model. For instance, a temporal
residual analysis would suggest model deficiencies (Meyer et al. 2012, Figure 4), and a power-
law kernel for spatial interaction may diverge if there are events with zero distance to potential
source events (Meyer and Held 2014). The function untie breaks ties by random shifts. This
has already been applied to the event times in the provided imdepi data by subtracting a
U(0, 1)-distributed random number from the original dates. The event coordinates in the IMD
data are subject to interval censoring at the level of Germany’s postcode regions. A possible
replacement for the given centroids would thus be a random location within the corresponding
postcode area. Lacking a suitable shapefile, Meyer and Held (2014) shifted all locations by a
random vector with length up to half the observed minimum spatial separation:

R> eventDists <- dist(coordinates(imdepi$events))

R> minsep <- min(eventDists[eventDists > 0])

R> set.seed(321)

R> imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2))

Note that random tie-breaking requires sensitivity analyses as discussed by Meyer and Held
(2014), but these are skipped here for the sake of brevity.

The update-method is useful to change the values of the maximum interaction ranges eps.t

and eps.s, since it takes care of the necessary updates of the hidden auxiliary variables in
an epidataCS object. For unbounded spatial interaction:

R> imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf)

Last but not least, epidataCS can be aggregated to epidata (from vignette("twinSIR"))
or sts (from vignette("hhh4_spacetime")). The method as.epidata.epidataCS aggre-
gates events by region (tile), and the function epidataCS2sts yields counts by region and
time interval. The latter could be analyzed by an areal time-series model such as hhh4 (see
vignette("hhh4_spacetime")). We can also use sts visualizations, e.g. (Figure 3):

R> imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD)

R> plot(imdsts, type = observed ~ time)

R> plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000)

https://CRAN.R-project.org/package=animation
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Figure 3: IMD cases (joint types) aggregated as an sts object by month and district.

3. Modeling and inference

Having prepared the data as an object of class epidataCS, the function twinstim can be used
to perform likelihood inference for conditional intensity models of the form (1). The main
arguments for twinstim are the formulae of the endemic and epidemic linear predictors
(ν[s][t] = exp(endemic) and ηj = exp(epidemic)), and the spatial and temporal interaction
functions siaf (f) and tiaf (g), respectively. Both formulae are parsed internally using the
standard model.frame toolbox from package stats and thus can handle factor variables and
interaction terms. While the endemic linear predictor incorporates covariates from stgrid,
the epidemic formula may use both stgrid variables and event marks to be associated with
the force of infection. For the interaction functions, several alternatives are predefined as
listed in Table 2. They are applicable out-of-the-box and illustrated as part of the following
modeling exercise for the IMD data. Own interaction functions can also be implemented
following the structure described in help("siaf") and help("tiaf"), respectively.

Spatial (siaf.*) Temporal (tiaf.*)

constant constant

exponential exponential

gaussian step

powerlaw

powerlaw1

powerlawL

step

student

Table 2: Predefined spatial and temporal interaction functions.
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3.1. Basic example

To illustrate statistical inference with twinstim, we will estimate several models for the
simplified and “untied” IMD data presented in Section 2. In the endemic component, we
include the district-specific population density as a multiplicative offset, a (centered) time
trend, and a sinusoidal wave of frequency 2π/365 to capture seasonality, where the start

variable from stgrid measures time:

R> (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5),

+ period = 365, timevar = "start"))

~offset(log(popdensity)) + I(start/365 - 3.5) + sin(2 * pi *

start/365) + cos(2 * pi * start/365)

See Held and Paul (2012, Section 2.2) for how such sine/cosine terms reflect seasonality.
Because of the aforementioned integrations in the log-likelihood (4), it is advisable to first fit
an endemic-only model to obtain reasonable start values for more complex epidemic models:

R> imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0,

+ data = imdepi_untied, subset = !is.na(agegrp))

We exclude the single case with unknown age group from this analysis since we will later
estimate an effect of the age group on the force of infection.

Many of the standard functions to access model fits in R are also implemented for twinstim

fits (see Table 3). For example, we can produce the usual model summary:

R> summary(imdfit_endemic)

Call:

twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied,

subset = !is.na(agegrp))

Coefficients of the endemic component:

Estimate Std. Error z value Pr(>|z|)

h.(Intercept) -20.3683 0.0419 -486.24 < 2e-16 ***

h.I(start/365 - 3.5) -0.0444 0.0200 -2.22 0.027 *

h.sin(2 * pi * start/365) 0.2733 0.0576 4.75 2.0e-06 ***

h.cos(2 * pi * start/365) 0.3509 0.0581 6.04 1.5e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

No epidemic component.

AIC: 19166

Log-likelihood: -9579

Because of the aforementioned equivalence of the endemic component with a Poisson regres-
sion model, the coefficients can be interpreted as log rate ratios in the usual way. For instance,
the endemic rate is estimated to decrease by 1 - exp(coef(imdfit_endemic)[2]) = 4.3%
per year. Coefficient correlations can be retrieved via the argument correlation = TRUE in
the summary call just like for summary.glm, or via cov2cor(vcov(imdfit_endemic)).
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Display Extract Modify Other

print nobs update simulate

summary vcov add1 all.equal

xtable coeflist drop1 epitest

plot logLik stepComponent

intensityplot extractAIC

iafplot profile

checkResidualProcess residuals

terms

R0

intensity.twinstim

simpleR0

Table 3: Generic and non-generic functions applicable to twinstim objects. Note that there is
no need for specific coef, confint, AIC or BIC methods, since the respective default methods
from package stats apply outright.

We now update the endemic model to take additional spatio-temporal dependence between
events into account. Infectivity shall depend on the meningococcal finetype and the age
group of the patient, and is assumed to be constant over time (default), g(t) = I(0,30](t), with
a Gaussian distance-decay f(x) = exp

{

−x2/(2σ2)
}

. This model was originally selected by
Meyer et al. (2012) and can be fitted as follows:

R> imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp,

+ siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix"))

On Unix-alikes, the numerical integrations of f(∥s∥) in the log-likelihood and ∂f(∥s∥)
∂ log σ

in the
score function (note that σ is estimated on the log-scale) can be performed in parallel via
mclapply et al. from the base package parallel, here with cores = 2 processes.

Table 4 shows the output of twinstim’s xtable method (Dahl, Scott, Roosen, Magnusson,
and Swinton 2019) applied to the above model fit, providing a table of estimated rate ratios
for the endemic and epidemic effects. The alternative toLatex method simply translates the
summary table of coefficients to LATEX without exp-transformation. On the subject-matter
level, we can conclude from Table 4 that the meningococcal finetype of serogroup C is less
than half as infectious as the B-type, and that patients in the age group 3 to 18 years are
estimated to cause twice as many secondary infections as infants aged 0 to 2 years.

RR 95% CI p-value

h.I(start/365 - 3.5) 0.955 0.91–1.00 0.039
h.sin(2 * pi * start/365) 1.243 1.09–1.41 0.0008
h.cos(2 * pi * start/365) 1.375 1.21–1.56 <0.0001
e.typeC 0.402 0.24–0.68 0.0007
e.agegrp[3,19) 2.022 1.07–3.83 0.031
e.agegrp[19,Inf) 0.787 0.32–1.94 0.60

Table 4: Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic
(h.) and epidemic (e.) terms. This table was generated by xtable(imdfit_Gaussian).
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3.2. Model-based effective reproduction numbers

The event-specific reproduction numbers (2) can be extracted from fitted twinstim objects
via the R0 method. For the above IMD model, we obtain the following mean numbers of
secondary infections by finetype:

R> R0_events <- R0(imdfit_Gaussian)

R> tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean)

B C

0.21564 0.09542

Confidence intervals can be obtained via Monte Carlo simulation, where Equation 2 is repeat-
edly evaluated with parameters sampled from the asymptotic multivariate normal distribu-
tion of the maximum likelihood estimate. For this purpose, the R0-method takes an argument
newcoef, which is exemplified in help("R0").

3.3. Interaction functions

Figure 4 shows several estimated spatial interaction functions, which can be plotted by, e.g.,
plot(imdfit_Gaussian, "siaf").

0 10 20 30 40

0
e
+

0
0

2
e
−

0
5

4
e
−

0
5

Distance x from host [km]

e
γ 0

⋅f
(x

)

Power law

Exponential

Gaussian

Step (df=4)

Figure 4: Various estimates of spatial interaction (scaled by the epidemic intercept γ0).

The estimated standard deviation σ̂ of the Gaussian kernel is:

R> exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"],

+ confint(imdfit_Gaussian, parm = "e.siaf.1")))

Estimate 2.5 % 97.5 %

e.siaf.1 15.92 13.58 18.65

Meyer and Held (2014) found that a power-law decay of spatial interaction more appropriately
describes the spread of human infectious diseases. A power-law kernel concentrates on short-
range interaction, but also exhibits a heavier tail reflecting occasional transmission over large
distances. To estimate the power law f(x) = (x + σ)−d, we use the prepared eps.s = Inf

version of the epidataCS object, and update the model as follows:



14 Endemic-epidemic modeling of spatio-temporal point patterns

R> imdfit_powerlaw <- update(imdfit_Gaussian, siaf = siaf.powerlaw(),

+ data = imdepi_untied_infeps,

+ start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9))

To reduce the runtime of this example, we specified convenient start values for some param-
eters. The estimated parameters (σ̂, d̂) are:

R> exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")],

+ confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2"))))

Estimate 2.5 % 97.5 %

e.siaf.1 4.660 1.825 11.90

e.siaf.2 2.491 1.809 3.43

Sometimes σ is difficult to estimate, and also in this example, its confidence interval is rela-
tively large. The one-parameter version siaf.powerlaw1 can be used to estimate a power-law
decay with fixed σ = 1. A more common option is the exponential kernel f(x) = exp(−x/σ):

R> imdfit_exponential <- update(imdfit_Gaussian, siaf = siaf.exponential())

Table 2 also lists the step function kernel as an alternative, which is particularly useful for
two reasons. First, it is a more flexible approach since it estimates interaction between the
given knots without assuming an overall functional form. Second, the spatial integrals in the
log-likelihood can be computed analytically for the step function kernel, which therefore offers
a quick estimate of spatial interaction. We update the Gaussian model to use four steps at
log-equidistant knots up to an interaction range of 100 km:

R> imdfit_step4 <- update(imdfit_Gaussian,

+ siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100))

Figure 4 suggests that the estimated step function is in line with the power law. Note that
suitable knots for the step function could also be derived from quantiles of the observed
distances between events and their potential source events, e.g.:

R> quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100)

1% 2% 4% 8%

5.742 10.352 19.334 35.957

For the temporal interaction function g(t), model updates and plots are similarly possible,
e.g., using update(imdfit_Gaussian, tiaf = tiaf.exponential()). However, the events
in the IMD data are too rare to infer the time-course of infectivity with confidence.

3.4. Model selection

R> AIC(imdfit_endemic, imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4)
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df AIC

imdfit_endemic 4 19166

imdfit_Gaussian 9 18967

imdfit_exponential 9 18949

imdfit_powerlaw 10 18940

imdfit_step4 12 18933

Akaike’s Information Criterion (AIC) suggests superiority of the power-law vs. the exponen-
tial, Gaussian, and endemic-only models. The more flexible step function yields the best
AIC value, but its shape strongly depends on the chosen knots and is not guaranteed to be
monotonically decreasing. The function stepComponent – a wrapper around the step func-
tion from stats – can be used to perform AIC-based stepwise selection within a given model
component.

3.5. Model diagnostics

The element "fittedComponents" of a twinstim object contains the endemic and epidemic
values of the estimated intensity at each event occurrence. However, plots of the conditional
intensity (and its components) as a function of location or time provide more insight into
the fitted process. Evaluation of intensity.twinstim requires the model environment to be
stored with the fit. By default, model = FALSE in twinstim, but if the data are still available,
the model environment can also be added afterwards using the convenient update method:

R> imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE)

Figure 5 shows an intensityplot of the fitted “ground” intensity
∑2

k=1

∫

W
λ̂(s, t, k) ds:

R> intensityplot(imdfit_powerlaw, which = "total", aggregate = "time", types = 1:2)
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Figure 5: Fitted “ground” intensity process aggregated over space and both types.

The estimated endemic intensity component has also been added to the plot. It exhibits
strong seasonality and a slow negative trend. The proportion of the endemic intensity is rather
constant along time since no major outbreaks occurred. This proportion can be visualized
separately by specifying which = "endemic proportion" in the above call.
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Spatial intensityplots as in Figure 6 can be produced via aggregate = "space" and re-
quire a geographic representation of stgrid. The epidemic proportion is naturally high
around clusters of cases and even more so if the population density is low.

Another diagnostic tool is the function checkResidualProcess (Figure 7), which transforms
the temporal “residual process” in such a way that it exhibits a uniform distribution and lacks
serial correlation if the fitted model describes the true CIF well (see Ogata 1988, Section 3.3).

4. Simulation

To identify regions with unexpected IMD dynamics, Meyer et al. (2012) compared the ob-
served numbers of cases by district to the respective 2.5% and 97.5% quantiles of 100 simula-
tions from the selected model. Furthermore, simulations allow us to investigate the stochastic
volatility of the endemic-epidemic process, to obtain probabilistic forecasts, and to perform
parametric bootstrap of the spatio-temporal point pattern.

The simulation algorithm we apply is described in Meyer et al. (2012, Section 4). It requires a
geographic representation of the stgrid, as well as functionality for sampling locations from
the spatial kernel f2(s) := f(∥s∥). This is implemented for all predefined spatial interaction
functions listed in Table 2. Event marks are by default sampled from their respective empirical
distribution in the original data. The following code runs a single simulation over the last
year based on the estimated power-law model:

R> imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555,

+ data = imdepi_untied_infeps, tiles = districtsD)

This yields an object of the class simEpidataCS, which extends epidataCS. It carries addi-
tional components from the generating model to enable an R0-method and intensityplots
for simulated data. Figure 8 shows the cumulative number of cases from the simulation
appended to the first six years of data.

A special feature of such simulated epidemics is that the source of each event is known:

R> table(imdsim$events$source > 0, exclude = NULL)

FALSE TRUE <NA>

54 21 3

The stored source value is 0 for endemic events, NA for events of the prehistory but still
infective at t0, and otherwise corresponds to the row index of the infective source.
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Figure 6: Epidemic proportion of the fitted intensity process accumulated over time by type.
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Figure 7: checkResidualProcess(imdfit_powerlaw). The left-hand plot shows the ecdf of
the transformed residuals with a 95% confidence band obtained by inverting the corresponding
Kolmogorov-Smirnov test (no evidence for deviation from uniformity). The right-hand plot
suggests absence of serial correlation.
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Figure 8: Simulation-based forecast of the cumulative number of cases by finetype in the last
two years. The black lines correspond to the observed numbers.
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