
Implementation of SuSiE trend filtering

Kaiqian Zhang

June 26, 2022

1 Notation

We first describe the notation used in this text. We denote matrices by boldface uppercase letters
(A), vectors are denoted by boldface lowercase letters (a), and scalars are denoted by non-boldface
letters (a or A). All vectors are column-vectors. Lowercase letters may represent elements of a
vector or matrix if they have subscripts. For example, aij is the pi, jqth element of A, ai is the ith
element of a, and ai is either the ith row or ith column of A. For indexing, we will generally use
capital non-boldface letters to denote the total number of elements and their lowercase non-boldface
versions to denote the index. For example, i “ 1, . . . , I. We let Anˆp denote that A P Rnˆp. We
denote the matrix transpose by AT , the matrix inverse by A´1, and the matrix determinant by
detpAq. Finally, sets will be denoted by calligraphic letters (A).

2 Overview

Trend filtering is a useful statistical tool for nonparametric regression. Kim et al. [2009] first
proposed `1 trend filtering for estimating underlying piecewise linear trends in time series data.
This idea can be further extended to fit piecewise polynomial of degree k to the data. In their
paper, Kim et al. showed the equivalence between the `1 trend filtering and the `1-regularized
least squares problem. This motivates us to think about the connection between trend filtering and
sparse approximation in general.

3 Trend filtering and sparse regression

Trend filtering problem is defined mathematically as follows. For a given integer k ě 0, the kth
order trend filtering is defined by a penalized least squares optimization problem,

b̂ “ argmin
b

1

2
||y ´ b||22 `

nk

k!
λ||Dk`1b||1, (1)

where y “ ry1 . . . yns
T is an n vector of observations, λ is a tuning parameter, and Dk`1 is the

discrete difference operator of order k. When order k “ 0, D is defined

1

D1 “

»

—

—

—

–

´1 1 0 . . . 0 0
0 ´1 1 . . . 0 0
...

. . .

0 0 0 . . . ´1 1

fi

ffi

ffi

ffi

fl

P Rpn´1qˆn. (2)

In this case, the components of the trend filtering estimate form a piecewise constant structure,
with break points corresponding to the nonzero entries of D1b̂ “ pb̂2´ b̂1, . . . , b̂n´ b̂n´1q [Tibshirani,
2014]. And when k ě 1, the operator Dk`1 is defined recursively,

Dk`1 “ D1 ¨Dk P Rpn´k´1qˆn, (3)

where the dot product is matrix multiplication. Notice that D1 here in 3 is the pn´k´1qˆpn´kq
version of D1 described in 2.

Now we want to transform the trend filtering problem into a sparse regression problem. Let
β “ Dk`1b. Then if Dk`1 were invertibe, we could write b “ pDk`1q

´1β and the above problem
would become

β̂ “ argmin
β

1

2
||y ´ pDk`1q

´1β||22 `
nk

k!
λ||β||1. (4)

We can consider this a sparse regression with `1 regularization problem, where the design matrix
is Xk`1 “ pDk`1q

´1.

4 Modification of D

As we have seen, the trend filtering problem becomes a sparse regression with `1 regularization if
we consider the design matrix Xk`1 “ pDk`1q

´1. However, D1 P Rpn´1qˆn is not invertible, so is
Dk`1 for k “ 1, 2, . . . By observation, we complete D1 as a square and symmetric matrix

D̂1 “

»

—

—

—

—

—

–

´1 1 0 . . . 0 0
0 ´1 1 . . . 0 0
...

. . .

0 0 0 . . . ´1 1
0 0 0 . . . 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn. (5)

And for k ě 1, we obtain

D̂k`1 “ D̂1 ¨ D̂k P Rnˆn. (6)

We notice that, by this modification, D̂k`1 has k more rows added at the bottom without changing
any previous entry. With this modification, we are able to invert D̂k`1 and consider the inverse
matrix as a design matrix in the sparse regression.

2

5 Special structure of D̂´1

After determining the design matrix X in the sparse regression problem, we could apply SuSiE
algorithm to help us find a possible fit. Here, we denote Xk`1 “ pD̂k`1q

´1, where k is the order
of trend filtering. Rather than generating D̂´1 and set this as an X input, we exploit the special
structure of D̂´1 and perform SuSiE on this specific trend filtering problem with Opnq complexity.
We will talk about how to make different computations linear in complexity by utilizing the special
structure respectively.

6 Computation of Xb

In the trend filtering application, since Xk`1 “ pD̂k`1q
´1, we obtain

Xk`1b “ pD̂k`1q
´1b “ pD̂1 . . . D̂1

loooomoooon

k`1

q´1b (7)

“ pD̂1q
´1 . . . pD̂1q

´1
loooooooooomoooooooooon

k`1

b (8)

“ X1 . . . X1
loooomoooon

k`1

b. (9)

We notice that since

X1 “

»

—

—

—

—

—

–

´1 ´1 ´1 . . . ´1 ´1
0 ´1 ´1 . . . ´1 ´1
...

. . .

0 0 0 . . . ´1 ´1
0 0 0 . . . 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, (10)

X1b “ ´1 ¨ rb1 ` b2 ` ¨ ¨ ¨ ` bn, b2 ` ¨ ¨ ¨ ` bn, . . . , bn´1 ` bn, bns
T (11)

“ ´1 ¨ cumsumpreversepbqq. (12)

Let f : Rn Ñ Rn such that fpxq “ ´cumsumpreversepxqq for any x P Rn. Then

Xk`1b “ X1 . . . X1
loooomoooon

k`1

b “ f pk`1qpbq, (13)

where k is the order of trend filtering.

7 Computation of XTy

We consider XT
k`1y. Here Xk`1 “ pD̂k`1q

´1 in the trend filtering problem, and y is an n vector.
We have

3

XT
k`1y “ ppD̂k`1q

´1qTy “ ppD̂1 . . . D̂1
loooomoooon

k`1

q´1qTy (14)

“ ppD̂1q
´1qT . . . ppD̂1q

´1qT
loooooooooooooomoooooooooooooon

k`1

y (15)

“ XT
1 . . . X

T
1

looooomooooon

k`1

y. (16)

Similarly, we observe that since

XT
1 “

»

—

—

—

—

—

–

´1 0 0 . . . 0 0
´1 ´1 0 . . . 0 0
...

. . .

´1 ´1 ´1 . . . ´1 0
´1 ´1 ´1 . . . ´1 ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, (17)

XT
1 y “ ´1 ¨ ry1, y1 ` y2, . . . , y1 ` y2 ` ¨ ¨ ¨ ` yns

T (18)

“ ´1 ¨ cumsumpyq. (19)

Let g : Rn Ñ Rn such that gpxq “ ´cumsumpxq for any x P Rn. Then

XT
k`1y “ XT

1 . . . X
T
1

looooomooooon

k`1

y “ gpk`1qpyq, (20)

where k is the order of trend filtering.

8 Computation on pX2qT1; i.e., colSums(X2)

To compute pX2
k`1q

T1, let’s first explore the special structure of Xk`1 “ pD̂
pk`1qq´1 for k “ 0, 1, 2.

X1 “

»

—

—

—

—

—

–

´1 ´1 ´1 ´1 ´1 . . .
0 ´1 ´1 ´1 ´1 . . .
0 0 ´1 ´1 ´1 . . .
0 0 0 ´1 ´1 . . .
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, (21)

X2 “

»

—

—

—

—

—

–

1 2 3 4 5 6 . . .
0 1 2 3 4 5 . . .
0 0 1 2 3 4 . . .
0 0 0 1 2 3 . . .
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, (22)

4

X3 “

»

—

—

—

—

—

–

´1 ´3 ´6 ´10 ´15 . . .
0 ´1 ´3 ´6 ´10 . . .
0 0 ´1 ´3 ´6 . . .
0 0 0 ´1 ´3 . . .
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, (23)

Define a triangular rotate matrix Q P Rnˆn such that
(i) For any i, j ď n, Qij “ 0 if i ą j.
(ii) For any k ă n, Qab “ Qcd if b´ a “ d´ c “ k.
We observe that if X is a triangular rotate matrix, then

XT1 “ cumsumpX1.q. (24)

Since X2 is still a triangular rotate matrix, we obtain

pX2qT1 “ cumsumpX2
1.q. (25)

Since Xk`1 “ pD̂k`1q
´1 is a triangular rotate matrix,

pX2
k`1q

T1 “ cumsumppXk`1q
2
1.q. (26)

And, obviously, the first row of Xk`1 is

pXk`1q1. “

#

´1 if k “ 0

gpkqp1q if k ą 0.
(27)

9 Computation of µ; i.e., column means

For each column j “ 1, 2, . . . , n,
µj “ ErX.js, (28)

and µ “ rµ1, µ2, . . . , µns
T P Rn. Hence we get

µ “
1

n
XT

k`11 “
1

n
cumsumppXk`1q1.q, (29)

where pXk`1q1. is defined above in 8.

5

10 Computation of σ; i.e., column standard deviations

For each column j “ 1, 2, . . . , n,

σj “
b

ErX2
.js ´ ErX.js

2 (30)

“

g

f

f

e

1

n

n
ÿ

i“1

X2
ij ´ p

1

n

n
ÿ

i“1

Xijq
2. (31)

Hence, σ “ rσ1, σ2, . . . , σns
T P Rn becomes

σ “
a

ErX2s ´ ErXs2 (32)

“

c

1

n
colSumspX2q ´ p

1

n
colSumspXqq2 (33)

“

c

1

n
pX2qT1` p

1

n
XT1q2, (34)

where the first term involves 8 and the second term is computed in 9. Note that in the algorithm, we
set the column standard deviation 1 when the column has variance 0 for computation convenience.

11 Computation on pX̂2qT1; i.e., colSums(X̂2)

We want to compute colSums(X̂2), where X̂ is scaled by both column means µ “ rµ1, µ2, . . . , µns
T P

Rn and column standard deviations σ “ rσ1, σ2, . . . , σns
T P Rn. We define X̂ P Rnˆn such that for

each i “ 1, 2, . . . , n and j “ 1, 2, . . . , n,

X̂ij “ pXij ´ µjq{σj ,

where X “ Xk`1 “ pD̂k`1q
´1 if the order is k.

12 Conclusion

Computation details from section 6 to section 11 explain how we can benefit from the unique
structure of matrices from trend filtering problem. As shown by our formula, we do not need to
form any matrix and complete SuSiE algorithm with Opnq complexity.

References

S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. `1 trend filtering. SIAM Review, 51(2):339–360,
2009.

R. J. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. Annals of Statistics,
42(1):285–323, 2014.

6

