Package ‘tabnet’

October 11, 2021

Title Fit "TabNet' Models for Classification and Regression
Version 0.3.0

Description Implements the "TabNet' model by Sercan O. Arik et al (2019) <arXiv:1908.07442>
and provides a consistent interface for fitting and creating predictions. It's
also fully compatible with the 'tidymodels' ecosystem.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1

URL https://github.com/mlverse/tabnet

BugReports https://github.com/mlverse/tabnet/issues

Imports torch (>= 0.4.0), hardhat, magrittr, glue, progress, rlang,
methods, tibble, coro, vctrs

Suggests testthat, modeldata, recipes, parsnip, dials, withr, knitr,
rmarkdown, vip, tidyverse, ggplot2, dplyr, tidyr, purrr, tune,
workflows

VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no

Author Daniel Falbel [aut, cre],
RStudio [cph],
Christophe Regouby [ctb]

Maintainer Daniel Falbel <daniel@rstudio.com>
Repository CRAN
Date/Publication 2021-10-11 17:00:02 UTC

R topics documented:

autoplot.tabnet_explain L o
autoplot.tabnet_fit L.
decision_width e

https://arxiv.org/abs/1908.07442
https://github.com/mlverse/tabnet
https://github.com/mlverse/tabnet/issues

2 autoplot.tabnet_explain

resolve_data L e e 5
tabnet e e e e e e e 5
tabnet_config 7
tabnet_explain L 9
tabnet_fit e 10
tabnet_pretrain L. e e e e e e 12
Index 16

autoplot. tabnet_explain
Plot tabnet_explain mask importance heatmap

Description

Plot tabnet_explain mask importance heatmap

Usage

autoplot. tabnet_explain(
object,
type = c("mask_agg", "steps"),
quantile = 1,

Arguments
object A tabnet_explain object as a result of tabnet_explain().
type a character value. Either "mask_agg"” the default, for a single heatmap of ag-
gregated mask importance per predictor along the dataset, or "steps” for one
heatmap at each mask step.
quantile numerical value between 0 and 1. Provides quantile clipping of the mask values
not used.
Details

Plot the tabnet_explain object mask importance per variable along the predicted dataset. type="mask_agg"
output a single heatmap of mask aggregated values, type="steps” provides a plot faceted along

the n_steps mask present in the model. quantile=.995 may be used for strong outlier clipping,

in order to better highlight low values. quantile=1, the default, do not clip any values.

Value

A ggplot object.

autoplot.tabnet_fit 3

Examples
library(ggplot2)
data("attrition”, package = "modeldata")
attrition_fit <- tabnet_fit(Attrition ~. , data=attrition, epoch=15)

attrition_explain <- tabnet_explain(attrition_fit, attrition)
Plot the model aggregated mask interpretation heatmap
autoplot(attrition_explain)

autoplot.tabnet_fit Plot tabnet_fit model loss along epochs

Description

Plot tabnet_fit model loss along epochs

Usage
autoplot.tabnet_fit(object, ...)
autoplot.tabnet_pretrain(object, ...)
Arguments
object A tabnet_fit or tabnet_pretrain object as a result of tabnet_fit() or
tabnet_pretrain().
not used.
Details

Plot the training loss along epochs, and validation loss along epochs if any. A dot is added on
epochs where model snapshot is available, helping the choice of from_epoch value for later model
training resume.

Value

A ggplot object.

Examples

library(ggplot2)
data("attrition”, package = "modeldata")
attrition_fit <- tabnet_fit(Attrition ~. , data=attrition, valid_split=0.2, epoch=15)

4 decision_width

Plot the model loss over epochs
autoplot(attrition_fit)

decision_width Parameters for the tabnet model

Description

Parameters for the tabnet model

Usage

decision_width(range = c(8L, 64L), trans = NULL)
attention_width(range = c(8L, 64L), trans = NULL)
num_steps(range = c(3L, 10L), trans = NULL)

feature_reusage(range = c(1, 2), trans = NULL)

num_independent(range = c(1L, 5L), trans = NULL)
num_shared(range = c(1L, 5L), trans = NULL)

momentum(range = c(0.01, @.4), trans = NULL)

mask_type(values = c("sparsemax”, "entmax"))
Arguments
range the default range for the parameter value
trans whether to apply a transformation to the parameter
values possible values for factor parameters

These functions are used with tune grid functions to generate candidates.

Value

A dials parameter to be used when tuning TabNet models.

resolve_data

resolve_data Transforms input data into tensors

Description

Transforms input data into tensors

Usage

resolve_data(x, y)

Arguments
X a data frame
y a response vector
tabnet Parsnip compatible tabnet model
Description

Parsnip compatible tabnet model

Usage

tabnet(
mode = "unknown",
epochs = NULL,
penalty = NULL,
batch_size = NULL,
learn_rate = NULL,
decision_width = NULL,
attention_width = NULL,
num_steps = NULL,
feature_reusage = NULL,
virtual_batch_size = NULL,
num_independent = NULL,
num_shared = NULL,
momentum = NULL

6 tabnet

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

epochs (int) Number of training epochs.

penalty This is the extra sparsity loss coefficient as proposed in the original paper. The
bigger this coefficient is, the sparser your model will be in terms of feature se-
lection. Depending on the difficulty of your problem, reducing this value could
help.

batch_size (int) Number of examples per batch, large batch sizes are recommended. (de-
fault: 1024)

learn_rate initial learning rate for the optimizer.

decision_width (int) Width of the decision prediction layer. Bigger values gives more capacity
to the model with the risk of overfitting. Values typically range from 8 to 64.
attention_width
(int) Width of the attention embedding for each mask. According to the paper
n_d=n_a is usually a good choice. (default=8)
num_steps (int) Number of steps in the architecture (usually between 3 and 10)
feature_reusage
(float) This is the coefficient for feature reusage in the masks. A value close to
1 will make mask selection least correlated between layers. Values range from
1.0 to 2.0.
virtual_batch_size
(int) Size of the mini batches used for "Ghost Batch Normalization" (default=128)
num_independent
Number of independent Gated Linear Units layers at each step. Usual values
range from 1 to 5.

num_shared Number of shared Gated Linear Units at each step Usual values range from 1 to
5
momentum Momentum for batch normalization, typically ranges from 0.01 to 0.4 (default=0.02)
Value

A TabNet parsnip instance. It can be used to fit tabnet models using parsnip machinery.

Threading
TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads (1)
torch: :torch_set_num_interop_threads(1)

See Also

tabnet_fit

tabnet_config

Examples

if (torch::torch_is_installed()) {

library(parsnip)

data("ames", package = "modeldata")

model <- tabnet() %>%
set_mode("regression”) %>%
set_engine("torch”)

model %>%

fit(Sale_Price ~ ., data = ames)
3
tabnet_config Configuration for TabNet models
Description

Configuration for TabNet models

Usage

tabnet_config(
batch_size = 256,
penalty = 0.001,
clip_value = NULL,
loss = "auto”,
epochs = 5,
drop_last = FALSE,
decision_width = NULL,
attention_width = NULL,
num_steps = 3,
feature_reusage = 1.3,
mask_type = "sparsemax”,
virtual_batch_size = 128,
valid_split = 0,
learn_rate = 0.02,
optimizer = "adam”,
1r_scheduler = NULL,
lr_decay = 0.1,
step_size = 30,
checkpoint_epochs
cat_emb_dim = 1,
num_independent = 2,
num_shared = 2,
momentum = 0.02,
pretraining_ratio
verbose = FALSE,

1
-
S

0.5,

8 tabnet_config

device = "auto",
importance_sample_size = NULL
)
Arguments
batch_size (int) Number of examples per batch, large batch sizes are recommended. (de-
fault: 1024)
penalty This is the extra sparsity loss coefficient as proposed in the original paper. The
bigger this coefficient is, the sparser your model will be in terms of feature se-
lection. Depending on the difficulty of your problem, reducing this value could
help.
clip_value If a float is given this will clip the gradient at clip_value. Pass NULL to not clip.
loss (character or function) Loss function for training (default to mse for regression
and cross entropy for classification)
epochs (int) Number of training epochs.
drop_last (bool) Whether to drop last batch if not complete during training

decision_width (int) Width of the decision prediction layer. Bigger values gives more capacity
to the model with the risk of overfitting. Values typically range from 8 to 64.
attention_width
(int) Width of the attention embedding for each mask. According to the paper
n_d=n_a is usually a good choice. (default=8)

num_steps (int) Number of steps in the architecture (usually between 3 and 10)
feature_reusage
(float) This is the coefficient for feature reusage in the masks. A value close to

1 will make mask selection least correlated between layers. Values range from
1.0 to 2.0.

mask_type (character) Final layer of feature selector in the attentive_transformer block, ei-
ther "sparsemax” or "entmax”.Defaults to "sparsemax”.
virtual_batch_size
(int) Size of the mini batches used for "Ghost Batch Normalization" (default=128)

valid_split (float) The fraction of the dataset used for validation.
learn_rate initial learning rate for the optimizer.
optimizer the optimization method. currently only ’adam’ is supported, you can also pass

any torch optimizer function.

1r_scheduler if NULL, no learning rate decay is used. if "step" decays the learning rate by
1r_decay every step_size epochs. It can also be a torch::Ir_scheduler function
that only takes the optimizer as parameter. The step method is called once per
epoch.

1r_decay multiplies the initial learning rate by 1r_decay every step_size epochs. Un-
used if 1r_scheduler is a torch: :1r_scheduler or NULL.

step_size the learning rate scheduler step size. Unused if 1r_schedulerisatorch: :1r_scheduler
or NULL.

tabnet_explain 9

checkpoint_epochs
checkpoint model weights and architecture every checkpoint_epochs. (default
is 10). This may cause large memory usage. Use @ to disable checkpoints.
cat_emb_dim Embedding size for categorial features (default=1)
num_independent

Number of independent Gated Linear Units layers at each step. Usual values
range from 1 to 5.

num_shared Number of shared Gated Linear Units at each step Usual values range from 1 to
5
momentum Momentum for batch normalization, typically ranges from 0.01 to 0.4 (default=0.02)

pretraining_ratio
Ratio of features to mask for reconstruction during pretraining. Ranges from 0
to 1 (default=0.5)

verbose (bool) wether to print progress and loss values during training.

device the device to use for training. "cpu" or "cuda". The default ("auto") uses to
"cuda" if it’s available, otherwise uses "cpu".

importance_sample_size
sample of the dataset to compute importance metrics. If the dataset is larger than
1e5 obs we will use a sample of size 1e5 and display a warning.

Value

A named list with all hyperparameters of the TabNet implementation.

tabnet_explain Interpretation metrics from a TabNet model

Description

Interpretation metrics from a TabNet model

Usage

tabnet_explain(object, new_data)

Arguments

object a TabNet fit object

new_data a data.frame to obtain interpretation metrics.
Value

Returns a list with

* M_explain: the aggregated feature importance masks as detailed in TabNet’s paper.

» masks a list containing the masks for each step.

10 tabnet_fit

Examples

if (torch::torch_is_installed()) {
set.seed(2021)
n <- 1000

x <- data.frame(
x = runif(n),

y = runif(n),
z = runif(n)
)
y <= x$x

fit <- tabnet_fit(x, y, epochs = 20,
num_steps = 1,
batch_size = 512,
attention_width = 1,
num_shared = 1,
num_independent = 1)

ex <- tabnet_explain(fit, x)

tabnet_fit Tabnet model

Description

Fits the TabNet: Attentive Interpretable Tabular Learning model

Usage
tabnet_fit(x, ...)

Default S3 method:
tabnet_fit(x, ...)

S3 method for class 'data.frame'
tabnet_fit(

X)

Y,

tabnet_model = NULL,

config = tabnet_config(),

L

https://arxiv.org/abs/1908.07442

tabnet_fit 11

from_epoch = NULL
)

S3 method for class 'formula'
tabnet_fit(
formula,
data,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL
)

S3 method for class 'recipe'
tabnet_fit(

X,

data,

tabnet_model = NULL,

config = tabnet_config(),

<

from_epoch = NULL

)
Arguments
X Depending on the context:
¢ A data frame of predictors.
* A matrix of predictors.
* Arecipe specifying a set of preprocessing steps created from recipes: :recipe().
The predictor data should be standardized (e.g. centered or scaled). The model
treats categorical predictors internally thus, you don’t need to make any treat-
ment.
Model hyperparameters. Any hyperparameters set here will update those set by
the config argument. See tabnet_config() for a list of all possible hyperpa-
rameters.
y When x is a data frame or matrix, y is the outcome specified as:

¢ A data frame with 1 numeric column.
¢ A matrix with 1 numeric column.
¢ A numeric vector.

tabnet_model A previously fitted TabNet model object to continue the fitting on. if NULL (the
default) a brand new model is initialized.

config A set of hyperparameters created using the tabnet_config function. If no ar-
gument is supplied, this will use the default values in tabnet_config().

from_epoch When a tabnet_model is provided, restore the network weights from a specific
epoch. Default is last available checkpoint for restored model, or last epoch for
in-memory model.

12 tabnet_pretrain

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a recipe or formula is used, data is specified as:

* A data frame containing both the predictors and the outcome.

Value

A TabNet model object. It can be used for serialization, predictions, or further fitting.

Fitting a pre-trained model
When providing a parent tabnet_model parameter, the model fitting resumes from that model
weights at the following epoch:
* last fitted epoch for a model already in torch context
 Last model checkpoint epoch for a model loaded from file

* the epoch related to a checkpoint matching or preceding the from_epoch value if provided
The model fitting metrics append on top of the parent metrics in the returned TabNet model.

Threading
TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads(1)
torch: :torch_set_num_interop_threads(1)

Examples

if (torch::torch_is_installed()) {
data("ames”, package = "modeldata")

fit <- tabnet_fit(Sale_Price ~ ., data = ames, epochs = 1)
3
tabnet_pretrain Tabnet model
Description

Pretrain the TabNet: Attentive Interpretable Tabular Learning model on the predictor data exclu-
sively (unsupervised training).

https://arxiv.org/abs/1908.07442

tabnet_pretrain 13

Usage

tabnet_pretrain(x, ...)

Default S3 method:
tabnet_pretrain(x, ...)

S3 method for class 'data.frame'
tabnet_pretrain(
X,
Y,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL
)

S3 method for class 'formula'
tabnet_pretrain(
formula,
data,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL
)

S3 method for class 'recipe'
tabnet_pretrain(

X,

data,

tabnet_model = NULL,

config = tabnet_config(),

L

from_epoch = NULL

Arguments

X Depending on the context:
* A data frame of predictors.
* A matrix of predictors.

* A recipe specifying a set of preprocessing steps created from recipes: :recipe().

The predictor data should be standardized (e.g. centered or scaled). The model
treats categorical predictors internally thus, you don’t need to make any treat-
ment.

Model hyperparameters. Any hyperparameters set here will update those set by

14

Yy
tabnet_model

config

from_epoch

formula

data

Value

tabnet_pretrain

the config argument. See tabnet_config() for a list of all possible hyperpa-
rameters.

(optional) When x is a data frame or matrix, y is the outcome

A pretrained TabNet model object to continue the fitting on. if NULL (the default)
a brand new model is initialized.

A set of hyperparameters created using the tabnet_config function. If no ar-
gument is supplied, this will use the default values in tabnet_config().

When a tabnet_model is provided, restore the network weights from a specific
epoch. Default is last available checkpoint for restored model, or last epoch for
in-memory model.

A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

When a recipe or formula is used, data is specified as:

* A data frame containing both the predictors and the outcome.

A TabNet model object. It can be used for serialization, predictions, or further fitting.

outcome

Outcome value are accepted here only for consistent syntax with tabnet_fit, but by design the
outcome, if present, is ignored during pre-training.

pre-training from a previous model

When providing a parent tabnet_model parameter, the model pretraining resumes from that model
weights at the following epoch:

* last pretrained epoch for a model already in torch context

 Last model checkpoint epoch for a model loaded from file

* the epoch related to a checkpoint matching or preceding the from_epoch value if provided
The model pretraining metrics append on top of the parent metrics in the returned TabNet

model.

Threading

TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads(1)
torch: :torch_set_num_interop_threads(1)

tabnet_pretrain

Examples

if (torch::torch_is_installed()) {
data("ames"”, package = "modeldata”)
pretrained <- tabnet_pretrain(Sale_Price ~

}

., data = ames, epochs

»

15

Index

attention_width (decision_width), 4
autoplot.tabnet_explain, 2
autoplot.tabnet_fit, 3
autoplot.tabnet_pretrain
(autoplot.tabnet_fit), 3

decision_width, 4
feature_reusage (decision_width), 4

mask_type (decision_width), 4
momentum (decision_width), 4

num_independent (decision_width), 4
num_shared (decision_width), 4
num_steps (decision_width), 4

recipes::recipe(), 11,13
resolve_data, 5

tabnet, 5
tabnet_config, 7
tabnet_config(), 11, 14
tabnet_explain, 9
tabnet_explain(), 2
tabnet_fit, 10
tabnet_fit(), 3
tabnet_pretrain, 12
tabnet_pretrain(), 3
torch: :1r_scheduler, 8

16

	autoplot.tabnet_explain
	autoplot.tabnet_fit
	decision_width
	resolve_data
	tabnet
	tabnet_config
	tabnet_explain
	tabnet_fit
	tabnet_pretrain
	Index

