Package ‘tabr’

February 20, 2021
Version 0.4.5

Title Music Notation Syntax, Manipulation, Analysis and Transcription
inR

Description Provides a music notation syntax and a collection of music programming func-
tions for generating, manipulating, organizing and analyzing musical information in R.
The music notation framework facilitates creating and analyzing music data in notation form.
Music data can be viewed, manipulated and analyzed while in different forms of representa-
tion based around different data structures: strings and data frames.
Each representation offers advantages over the other for different use cases.
Music syntax can be entered directly and represented in character strings to minimize the format-
ting overhead of data entry by using simple data structures, for example when want-
ing to quickly enter and transcribe short pieces of music to sheet music or tablature.
The package contains functions for directly performing various mathematical, logical and orga-
nizational operations and musical transformations on special object classes that facilitate work-
ing with music data and notation.
The same music data can also be organized in tidy data frames, allowing for a more famil-
iar and powerful approach to the analysis of large amounts of structured music data.
Functions are available for mapping seamlessly between these data structures and their represen-
tations of musical information.
The package also provides API wrapper functions for transcribing musical representa-
tions in R into guitar tablature (""tabs") and basic sheet music using the 'LilyPond' back-
end (<http://lilypond.org>).
'LilyPond' is open source music engraving software for generating high quality sheet mu-
sic based on markup syntax.
The package generates 'LilyPond' files from R code and can pass them to 'LilyPond' to be ren-
dered into sheet music pdf files.
The package offers nominal MIDI file output support in conjunction with rendering sheet music.
The package can read MIDI files and attempts to structure the MIDI data to inte-
grate as best as possible with the data structures and functionality found throughout the package.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
ByteCompile true

URL https://github.com/leonawicz/tabr

https://github.com/leonawicz/tabr

2 R topics documented:

BugReports https://github.com/leonawicz/tabr/issues
Depends R (>=2.10)

SystemRequirements LilyPond v2.23.0+ (only needed for rendering sheet
music or writing MIDI files)

Imports magrittr, tibble, dplyr, purrr, tidyr, crayon, ggplot2

Suggests testthat, knitr, rmarkdown, covr, kableExtra, gridExtra,
htmltools, fansi, tuneR, png

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Matthew Leonawicz [aut, cre] (<https://orcid.org/0000-0001-9452-2771>)
Maintainer Matthew Leonawicz <mfleonawicz@gmail.com>

Repository CRAN

Date/Publication 2021-02-20 22:20:06 UTC

R topics documented:

append_phrases
articulations e
as_music_df e
chord-compare
chord-filter
chord-mapping
chords e e
chord_arpeggiate
chord_break
chord_def e
chord_invert
chord_is_major e
chord_set e
double-bracket
dyad e
freq ratio e e e
guitarChords
hp . e
intervals e e e e
interval_SEMItONESt e e e e e e e e e e e e
is_diatoniC
Keys . . e e
lilypond e
lilypond_root L
Ip_chord_ido
Iyrics . . o e
mainlntervals

https://github.com/leonawicz/tabr/issues

R topics documented: 3

midily e e e 35
miditab . . . L L e e e e e e e e e e e 37
mode-helpers 38
MUSIC . . v o v e e e e e e e e e e e e e e e e e e 40
music-helpers e e 42
NOLALE o i o e e e e e e e e e e e e e e e e e e 43
note-checks 44
NOLE-COBICE . &« v v v e v e 45
note-equivalence L e e e e e 47
note-logic L. 49
note-metadata L. L e e e e 50
NOLE-SUMMAIICS . . . &« & v v v v e o e e e e e e e e e e e e e e e e e e e 53
noteinfo L e 54
NOE_NEIAML v v v v e ettt e e e e e e e e e e e 55
note_SliCe e e 56
N_MEASUIES . .« v v v v o v v e e e e e e e e e e e e e e e e 58
phrase 59
phrase-checks e e 61
pitch_freq L e 63
Pitch_Seq e e e 64
plot_fretboard 65
PIOL_MUSIC o o e e e e e e 68
ratio_tO_CENLS o v v e e e e e e e e 71
read_midi L 72
render_chordchart e 73
render_MUSIC v vt e e e e e e e e e e e e e e 75
TEPCALS « « v v e 80
TESL. & v o e e e e e e e e 81
scale-deg e e 82
scale-helpers 84
scale_chords L e 86
SCOTE & & v v e e e e e e e e e e e e e e 87
sf phrase e 88
simplify_phrase 91
single-bracket 92
string_unfold e 93
tab . . e 94
tabr . .. e 97
tabr-C . . . e 98
tabr-head e 99
tabr-length 100
tabr-methods L. e e e e 101
12103) o X 104
tabr-rev L e e e 105
tabrSyntax e e 106
tabr_OpLioNS e e e e e e e e e 106
e . . e 107

4 append_phrases
track 109
trackbind L 111
TANSPOSE « . v v v v e 112
TUNINZS .« ¢ v v v o e 113
tuplet . ..o e 114
valid-noteinfo oL 115
valid-notes 116

Index 118

append_phrases Concatenate and repeat

Description

Helper functions for concatenating musical phrases and other strings together as well as repetition.
The functions pc and pn are based on base functions paste andrep, respectively, but are tailored
for efficiency in creating musical phrases.
Usage
pc(...)
pn(x, n = 1)

Arguments

character, phrase or non-phrase string.

X character, phrase or non-phrase string.
n integer, number of repetitions.

Details
These functions respect and retain the phrase class when applied to phrases. They are aggressive for
phrases and secondarily for noteworthy strings. Combining a phrase with a non-phrase string will
assume compatibility and result in a new phrase object. If no phrase objects are present, the presence
of any noteworthy string will in turn attempt to force conversion of all strings to noteworthy strings.
The aggressiveness provides convenience, but is counter to expected coercion rules. It is up to the
user to ensure all inputs can be forced into the more specific child class.
This is especially useful for repeated instances. This function applies to general slur notation as
well. Multiple input formats are allowed. Total number of note durations must be even because all
slurs require start and stop points.

Value

phrase on non-phrase character string, noteworthy string if applicable.

articulations

Examples

pc(8, "16-", "8*")

pn(1, 2)

x <- phrase("c ec'g' ec'g'", "4 4 2", "5 432 432")
y <- phrase(”"a", 1, 5)

pc(x, ¥)

pc(x, pn(y, 2))

pc(x, "r1") # add a simple rest instance
class(pc(x, y))

class(pn(y, 2))

class(pc(x, "r1"))

class(pn("r1"”, 2))

class(pc("r1", "r4"))

articulations Single note articulations and syntax

Description

A data frame containing categorized sets of articulations that can be used in phrase construction.

Usage

articulations

Format

A data frame with 3 column and 44 rows.

as_music_df Noteworthy string to data frame

Description

Convert a noteworthy string to a tibble data frame and include additional derivative variables.

Usage
as_music_df(
notes,
info = NULL,
key = NULL,
scale = "diatonic”,
chords = c("root", "list"”, "character"),

si_format = c("mmp_abb", "mmp"”, "ad_abb"”, "ad")

6 as_music_df

Arguments
notes character, a noteworthy string. Alternatively, a music object or a phrase object,
in which case info is ignored.
info NULL or character, a note info string.
key character, key signature, only required for inclusion of scale degrees.
scale character, defaults to "diatonic”. Only used in conjunction with key, this can
be used to alter scale degrees. Not any arbitrary combination of valid key and
valid scale is valid. See scale_degree.
chords character, how to structure columns containing multiple values per chord/row of
data frame. See details.
si_format character, format for scale intervals. See scale_interval.
Details

If info is provided or notes is a phrase object, the resulting data frame also contains note durations
and other info variables. The duration column is always included in the output even as a vector
of NAs when info = NULL. This makes it more explicit that a given music data frame was generated
without any time information for the timesteps. Other note info columns are not included in this
case.

For some derived column variables the root note (lowest pitch) in chord is used. This is done for
pitch intervals and scale intervals between adjacent timesteps. This also occurs for scale degrees.

chord = "root” additionally collapses columns like semitone, octave, and frequency to the value
for the root note so that all rows contain one numeric value. chord = "1ist" retains full information
as list columns. chord = "character” collapses into strings so that values are readily visible when
printing the table, but information is not stripped and can be recovered without recomputing from
the original pitches.

Value

a tibble data frame

Examples

n

Xx <-"a, b, cdefg#ftarac'e'ac'e' ¢c'rrra"

non

as_music_df(x, key = "c", scale = "major")
as_music_df(x, key =" scale = "harmonic_minor"”, si_format = "ad_abb")

n

am”,

a <- notate("8", "Start here.”)

time <- paste(a, "8"*2 16-_ 4.. 16(16)(2) 2 4. t8- t8 t8- 8[accent]*4 1")
dl <- as_music_df(x, time)

d1

Go directly from music object to data frame
ml <- as_music(x, time)

d2 <- as_music_df(m1)

identical(d1, d2)

Go directly from phrase object to data frame

chord-compare 7

pl <- phrase("”a b cgc'"”, "4-+ 4[accent] 2", 5)
identical (as_music_df (as_music("a4-+;5 b[accent] cgc'2")), as_music_df(p1))

chord-compare Rank, order and sort chords and notes

Description

Rank, order and sort chords and notes by various definitions.

Usage
chord_rank(notes, pitch = c("min", "mean”, "max"), ...)
chord_order(notes, pitch = c("min”, "mean”, "max"), ...)
chord_sort(notes, pitch = c("min”, "mean”, "max"), decreasing = FALSE, ...)
Arguments
notes character, a noteworthy string.
pitch character, how ranking of chords is determined; lowest pitch, mean pitch, or
highest pitch.
additional arguments passed to rank or order.
decreasing logical, sort in decreasing order.
Details

There are three options for comparing the relative pitch position of chords provided: comparison
of the lowest or root note of each chord, the highest pitch note, or taking the mean of all notes in a
chord.

Value

integer for rank and order, character for sort

Examples

X <- "a2 c a2 ceg ce_g cea”
chord_rank(x, "min")
chord_rank(x, "max")
chord_rank(x, "mean")

chord_order(x)
chord_order(x, "mean")
chord_sort(x, "mean")

8 chord-filter
chord-filter Extract notes from chords
Description
Filter or slice chords to extract individual notes.
Usage
chord_root(notes)
chord_top(notes)
chord_slice(notes, index)
Arguments
notes character, a noteworthy string.
index integer, the order of a note in a chord by pitch (not scale degrees).
Details
These functions extract notes from chords such as the root note, the highest pitch, specific position
among the notes by pitch, or trim chords to simplify them. They operate based only on ordered
pitches.
For chord_slice, any entry that is empty after slicing is dropped. An error is thrown is index is
completely out of bounds for all chords.
Value
a noteworthy string
Examples

x <- "a_2 ct#eg# e_gc egc,cc'”

chord_root(x)

chord_top(x)

identical(chord_slice(x, 1), chord_root(x))
chord_slice(x, 2)

chord_slice(x, 4)

chord_slice(x, 3:5)

chord-mapping

chord-mapping Chord mapping

Description

Helper functions for chord mapping.

Usage

gc_info(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,

open = NULL,
key = ”C”,
ignore_octave = TRUE

)

gc_fretboard(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,

open = NULL,
key = ”C”,
ignore_octave = TRUE

)

gc_notes_to_fb(
notes,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,
open = NULL

)

gc_notes(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,
open = NULL,

10 chord-mapping

key = ”C” ,
ignore_octave = TRUE

)
gc_is_known(notes)
gc_name_split(name)
gc_name_root (name)

gc_name_mod(name)

Arguments

name character, chord name in tabr format, e.g., "bM b_m b_m7#5", etc.

root_octave integer, optional filter for chords whose root note is in a set of octave numbers.
May be a vector.

root_fret integer, optional filter for chords whose root note matches a specific fret. May
be a vector.

min_fret integer, optional filter for chords whose notes are all at or above a specific fret.
May be a vector.

bass_string integer, optional filter for chords whose lowest pitch string matches a specific
string, 6, 5, or 4. May be a vector.

open logical, optional filter for open and movable chords. NULL retains both types.

key character, key signature, used to enforce type of accidentals.

ignore_octave logical, if TRUE, functions like gc_info and gc_fretboard return more results.

notes character, a noteworthy string.

Details

These functions assist with mapping between different information that define chords.

For gc_is_known, a check is done against chords in the guitarChords dataset. A simple notewor-
thy string is permitted, but any single-note entry will automatically yield a FALSE result.

gc_info returns a tibble data frame containing complete information for the subset of predefined
guitar chords specified by name and key. Any accidentals present in the chord root of name (but not
in the chord modifier, e.g., m7_5 or m7#5) are converted according to key if necessary. gc_notes and
gc_fretboard are wrappers around gc_info, which return noteworthy strings of chord notes and
a named vector of LilyPond fretboard diagram data, respectively. Note that although the input to
these functions can contain multiple chord names, whether as a vector or as a single space-delimited
string, the result is not intended to be of equal length. These functions filter guitarChords. The
result is the set of all chords matched by the supplied input filters.

gc_name_split splits a vector or space-delimited set of chord names into a tibble data frame con-
taining separate chord root and chord modifier columns. gc_name_root and gc_name_mod are
wrappers around this.

chords

Value

various, see details regarding each function.

Examples

gc_is_known("a b_,fb_d'f"'")

gc_name_root("a aM b_,m7#5")
gc_name_mod("a aM b_,m7#5")

gc_info("a") # a major chord, not a single note
gc_info("ceg a#m7_5") # only second entry is a guitar chord
gc_info("ceg a#tm7_5", key = "f")

gc_info("a,mc d f,")
gc_fretboard(”a,m ¢ d f,”, root_fret = 0:3)
gc_notes_to_fb("a,eac'e' cgc'e'g'")

x <- gc_notes("a, b,", root_fret = 0:2)
summary (x)

11

chords Chord constructors

Description

These functions construct basic chord string notation from root notes.

Usage
chord_min(notes, key = "c", octaves = "tick")
chord_maj(notes, key = "c", octaves = "tick")
chord_min7(notes, key = "c", octaves = "tick")
chord_dom7(notes, key = "c", octaves = "tick")
chord_7s5(notes, key = "c", octaves = "tick")
chord_maj7(notes, key = "c", octaves = "tick")
chord_min6(notes, key = "c", octaves = "tick")
chord_maj6(notes, key = "c", octaves = "tick")

n_n

chord_dim(notes, key = "c", octaves = "tick")

12

chord_dim7 (notes, key
chord_m7b5(notes, key
chord_aug(notes, key

chord_5(notes, key =

chord_sus2(notes, key
chord_sus4(notes, key
chord_dom9(notes, key
chord_7s9(notes, key

chord_maj9(notes, key
chord_add9(notes, key
chord_min9(notes, key
chord_madd9(notes, ke
chord_min11(notes, ke
chord_7s11(notes, key
chord_maj7s11(notes,

chord_11(notes, key =
chord_maj11(notes, ke
chord_13(notes, key =
chord_min13(notes, ke
chord_maj13(notes, ke

n_n

c,

xm(notes, key

n_n

c,

xM(notes, key

n_n

xm7 (notes, key = "c",

n_n

x7(notes, key = "c",

= "c", octaves = "tick")
= "c", octaves = "tick")
= "¢", octaves = "tick”)
"c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "¢", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick”)
y = "c", octaves = "tick")
y = "c”, octaves = "tick")
= "c", octaves = "tick")
key = "c"”, octaves = "tick")
"c", octaves = "tick")
y = "c", octaves = "tick")
"c", octaves = "tick”)
y = "c", octaves = "tick")
y = "c", octaves = "tick")
octaves = "tick")
octaves = "tick")
octaves = "tick")
octaves = "tick")

chords

chords

x7s5(notes, key = "c", octaves = "tick")
xM7(notes, key = "c", octaves = "tick")
xm6(notes, key = "c", octaves = "tick")
xM6(notes, key = "c", octaves = "tick")
xdim(notes, key = "c", octaves = "tick")
xdim7(notes, key = "c", octaves = "tick")
xm7b5(notes, key = "c", octaves = "tick")
xaug(notes, key = "c", octaves = "tick")
x5(notes, key = "c", octaves = "tick")
xs2(notes, key = "c", octaves = "tick")
xs4(notes, key = "c", octaves = "tick")
x9(notes, key = "c", octaves = "tick")
x7s9(notes, key = "c", octaves = "tick")
xM9(notes, key = "c", octaves = "tick")
xadd9(notes, key = "c", octaves = "tick")
xm9(notes, key = "c", octaves = "tick")
xma9(notes, key = "c", octaves = "tick")
xm11(notes, key = "c", octaves = "tick")
x7s11(notes, key = "c", octaves = "tick")
xM7s11(notes, key = "c", octaves = "tick")
x_11(notes, key = "c", octaves = "tick")
xM11(notes, key = "c", octaves = "tick")
x_13(notes, key = "c", octaves = "tick")

n.n

xml13(notes, key = "c", octaves = "tick")

13

xM13(notes, key = "c", octaves = "tick")
Arguments
notes character, a noteworthy string of chord root notes.
key key signature. See details.
octaves character, passed to transpose.
Details

chord_arpeggiate

Providing a key signature is used only to ensure flats or sharps for accidentals. An additional set of
aliases with efficient names, of the form x* where * is a chord modifier abbreviation, is provided to
complement the set of chord_x* functions.

These functions create standard chords, not the multi-octave spanning types of chords commonly

played on guitar.

Value

character

See Also

transpose

Examples

chord_min("d")
chord_maj("d")

xM("d")

xm("c f g")

xm("c, f, g,”, key = "e_")

chord_arpeggiate

Arpeggiate a chord

Description

Create an arpeggio from a chord.

Usage

chord_arpeggiate(
chord,
n=ao,

by = c("note", "chord"),

broken = FALSE,
collapse = FALSE

chord_break 15

Arguments
chord character, a single chord.
n integer, number of steps, negative indicates reverse direction (decreasing pitch).
by whether each of the n steps refers to individual notes in the chord (an inversion)
or raising the entire chord in its given position by one octave.
broken logical, return result as an arpeggio of broken chords.
collapse logical, collapse result into a single string ready for phrase construction.
Details

This function is based on chord_invert. If n = @ then chord is returned immediately; other argu-
ments are ignored.

Value

character

Examples

chord_arpeggiate("ce_gb_", 2)

chord_arpeggiate("ce_gb_", -2)

chord_arpeggiate(”"ce_gb_", 2, by = "chord")
chord_arpeggiate("ce_gb_", 1, broken = TRUE, collapse = TRUE)

chord_break Broken chords

Description

Convert chords in a noteworthy string or vector to broken chords.

Usage

chord_break(notes)

Arguments

notes character, noteworthy string that may contain chords.

Value

character

Examples

chord_break("c e g ceg ceg")

16 chord_def

chord_def Define chords

Description

Function for creating new chord definition tables.

Usage
chord_def(fret, id, optional = NA, tuning = "standard”, ...)
Arguments
fret integer vector defining fretted chord. See details.
id character, the chord type. See details.
optional NA when all notes required. Otherwise an integer vector giving the indices
offret that are considered optional notes for the chord.
tuning character, string tuning. See tunings for predefined tunings. Custom tunings
are specified with a similar value string.
additional arguments passed to transpose.
Details

This function creates a tibble data frame containing information defining various attributes of
chords. It is used to create the guitarChords dataset, but can be used to create other pre-defined
chord collections. The tibble has only one row, providing all information for the defined chord. The
user can decide which arguments to vectorize over when creating a chord collection. See examples.

This function uses a vector of fret integers (NA for muted string) to define a chord, in conjunction
with a string tuning (defaults to standard tuning, six-string guitar). fret is from lowest to highest
pitch strings, e.g., strings six through one.

The id is passed directly to the output. It represents the type of chord and should conform to
accepted tabr notation. See id column in guitar Chords for examples.

Note that the semitones column gives semitone intervals between chord notes. These count from
zero as the lowest pitch based on the tuning of the instrument, e.g., zero is E2 with standard guitar
tuning. To convert these semitone intervals to standard semitone values assigned to pitches, use
e.g., pitch_semitones("e2") (40) if that is the lowest pitch and add that value to the instrument
semitone interval values. This is the explanation, but doing this is not necessary. You can use
chord_semitones to compute semitones directly on pitches in a chord.

Value

a data frame

chord_invert 17

Examples

frets <- c(NA, 0, 2, 2, 1, @)
chord_def (frets, "m")
chord_def(frets, "m", 6)

purrr::map_dfr(c(@, 2, 3), ~chord_def(frets + .x, "m"))

chord_invert Chord inversion

Description

This function inverts a single chord given as a character string. If n = @, chord is returned imme-
diately. Otherwise, the notes of the chord are inverted. If abs(n) is greater than the number of
inversions (excluding root position), an error is thrown.

Usage

chord_invert(chord, n = @, limit = FALSE)

Arguments
chord character, a single chord.
n inversion.
limit logical, limit inversions in either direction to one less than the number of notes
in the chord.
Details

Note that chord_invert has no knowledge of whether a chord might be considered as in root
position or some inversion already, as informed by a key signature, chord name or user’s intent.
This function simply inverts what it receives, treating any defined chord string as in root position.

Octave number applies to this function. Chords should always be defined by notes of increasing
pitch. Remember that an unspecified octave number on a note is octave 3. When the chord is
inverted, it moves up the scale. The lowest note is moved to the top of the chord, increasing its
octave if necessary, to ensure that the note takes the lowest octave number while having the highest
pitch. The second lowest note becomes the lowest. It’s octave does not change. This pattern is
repeated for higher order inversions. The opposite happens if n is negative.

The procedure ensures that the resulting inverted chord is still defined by notes of increasing pitch.
However, if you construct an unusual chord that spans multiple octaves, the extra space will be
condensed by inversion.

Value

character

18 chord_is_major

Examples

chord_invert("ce_gb_", 3)

chord_is_major Check if chords are major or minor

Description

Check if chords are major or minor where possible.

Usage

chord_is_major(notes)

chord_is_minor(notes)

Arguments

notes character, a noteworthy string.

Details

These functions operate based only on ordered pitches. They do not recognize what a human
might interpret and name an inverted chord with a root other than the lowest pitch. This imposes
limitations on the utility of these functions, which scan the intervals for a minor or major third in a
chord whose notes are sorted by pitch.

In several cases including single notes or no major or minor third interval present, NA is returned.
TRUE or FALSE is only returned if such an interval is present. If more than one is present, it is based
on the lowest in pitch. It prioritizes major/minor and minor/major adjacent intervals (recognizing a
common triad). If these do not occur adjacent, the lowest third is selected. This is still imperfect,
but a useful method. Second and higher unknown chord inversions are problematic.

Value

logical vector

Examples

x <- "c cg, ce ce_ ceg ce_gb g,ce g,ce_ e_,g,c e_,g,ce_ e_,g,c"
chord_is_major(x)
identical(chord_is_major(x), !chord_is_minor(x))

chord_set 19

chord_set Generate a chord set

Description

Generate a chord set for a music score.

Usage

chord_set(x, id = NULL, n = 6)

Arguments
X character, n-string chord description from lowest to highest pitch, strings n
through 1. E.g., "x02210". You can use spaces or semicolons when 2-digit
fret numbers are present, e.g., "8 10 10 9 0”. Do not mix formats. Leading x
are inferred if the number of entries is less than n.
id character, the name of the chord in LilyPond readable format, e.g., "a:m". Ig-
nored if x is already a named vector.
n number of instrument strings.
Details

The chord set list returned by chord_set is only used for top center placement of a full set of chord
fretboard diagrams for a music score. chord_set returns a named list. The names are the chords
and the list elements are strings defining string and fret fingering readable by LilyPond. Multiple
chord positions can be defined for the same chord name. Instruments with a number of strings other
than six are not currently supported.

When defining chords, you may also wish to define rests or silent rests for chords that are to be
added to a score for placement above the staff in time, where no chord is to be played or explicitly
written. Therefore, there are occasions where you may pass chord names and positions that happen
to include entries r and/or s as NA as shown in the example. These two special cases are passed
through by chord_set but are ignored when the chord chart is generated.

Value

a named list.

Examples

chord_names <- c("e:m", "c", "d", "e:m", "d", "r", "s")
chord_position <- c("997x", "5553x", "7775x", "000220", "2320xx", NA, NA)
chord_set(chord_position, chord_names)

20

double-bracket

double-bracket

Double bracket methods for tabr classes

Description

Double bracket indexing and assignment. See tabr-methods for more details on methods for tabr

classes.

Usage

S3 method for
x[[i]1]

S3 method for
x[[i]1]

S3 method for
x[[i]1]

S3 method for
x[[i]]

S3 replacement
x[[1]1] <- value

S3 replacement
x[[i]] <- value

S3 replacement
x[[i1] <- value

S3 replacement
x[[i]] <- value

Arguments

X object.

i index.

value values to assign at index.
See Also

class

class

class

class

"noteworthy’

'noteinfo’

'music’

'lyrics'

method for class

method for class

method for class

method for class

tabr-methods, note-metadata

"noteworthy’

'noteinfo’

'music’

"lyrics'

dyad 21

Examples

noteworthy class examples

x <- as_noteworthy("a, b, c ce_g")

x[[3]]

x[[2]] <- paste@(transpose(x[2], 1), "~")
X

noteinfo class examples

x <- as_noteinfo(c(”4-", "t8(", "t8)", "t8x"))
x[[3]]

x[[31] <= c("t81")

X

music class examples

x <- as_music("c,~4 c,1 c'e_'g'4-.x2")
x[[31]

x[[3]] <- "c'e'g'8"

X

dyad Construct a dyad

Description

Construct a dyad given one note, an interval, and a direction.

Usage
dyad(
notes,
interval,
reverse = FALSE,
octaves = c("tick"”, "integer"),
accidentals = c("flat”, "sharp"),
key = NULL
)
Arguments
notes character, a noteworthy string, single notes only, no chords. Number of timesteps
must equal the length of interval.
interval integer or character vector; semitones or interval ID, respectively. See details.
reverse logical, reverse the transposition direction. Useful when interval is character.

octaves, accidentals, key
See transpose.

22 freq_ratio

Details

The interval may be specified by semitones of by common interval name or abbreviation. See
examples. For a complete list of valid interval names and abbreviations see mainIntervals. key
enforces the use of sharps or flats. This function is based on transpose. notes and interval may
be vectors, but must be equal length. Recycling occurs only if one argument is scalar.

Value
character
See Also
mainIntervals
Examples
dyad("a", 4)
x <= c¢("minor third”, "m3", "augmented second”, "A2")
dyad("a", x)

dyad("c'", x, reverse = TRUE)

X <_ C(HM3H’ I1m3ll’ Ilm3ll’ IIM3II, IIM3N, Nm3”, 1lm3ll>
dyad(letters[c(3:7, 1, 2)]1, x)

X <_ C(HP1 H’ I1m3ll’ IIM3II, IIP4II, ”P5”, "P8“, 1IM9M)
dyad("c", x)

dyad(”"c", x, reverse = TRUE)

dyad(lld ell, Nm3ll)

freq_ratio Frequency ratios

Description

Obtain frequency ratios data frame.

Usage
freg_ratio(x, ...)
Arguments
X noteworthy or music object, or a numeric vector or list of numeric vectors for

frequencies.

additional arguments: ratios, which is one of "all” (default), "root”, or
"range" for filtering results. For frequency input, you may also specify octaves
and accidentals. See details and examples.

guitarChords 23

Details

This generic function returns a data frame of frequency ratios from a vector or list of frequencies, a
noteworthy object, or a music object. For frequency inputs, a list can be used to represent multiple
timesteps. Octave numbering and accidentals are inferred from noteworthy and music objects, but
can be specified for frequency. See examples.

By default ratios are returned for all combinations of intervals in each chord (ratios = "all").
ratios = "root" filters the result to only include chord ratios with respect to the root note of each
chord. ratios = "range” filters to only the chord ratio between the root and highest note.

Value

a tibble data frame

Examples

x <- as_music("c4 e_ g ce_g")
(fr <- freg_ratio(x))

X <- music_notes(x)
identical(fr, freq_ratio(x))

x <- chord_freq(x)
identical(fr, freq_ratio(x))

freq_ratio(x, accidentals = "sharp")
freg_ratio(x, ratios = "root")
freqg_ratio(x, ratios = "range")
guitarChords Predefined guitar chords
Description

A data frame containing information for many predefined guitar chords.

Usage

guitarChords

Format

A data frame with 12 columns and 3,967 rows

24 intervals

hp Hammer ons and pull offs

Description

Helper function for generating hammer on and pull off syntax.

Usage
hp(...)
Arguments
character, note durations. Numeric is allowed for lists of single inputs. See
examples.
Details

This is especially useful for repeated instances. This function applies to general slur notation as
well. Multiple input formats are allowed. Total number of note durations must be even because all
slurs require start and stop points.

Value

character.

Examples

hp(16, 16)
hp("16 16")
hp("16 8 16", "8 16 8")

intervals Interval helpers

Description

Helper functions for musical intervals defined by two notes.

intervals 25

Usage

pitch_interval(notesl, notes2, use_root = TRUE)
pitch_diff(notes, use_root = TRUE, n = 1, trim = FALSE)

scale_interval(

notes1,

notes2,

use_root = TRUE,

format = c("mmp_abb”, "mmp”, "ad_abb", "ad")
)

scale_diff/(
notes,
use_root = TRUE,
n=1,
trim = FALSE,
format = c("mmp_abb”, "mmp", "ad_abb", "ad")

tuning_intervals(tuning = "standard")

Arguments

use_root logical, use lowest pitch in chord for pitch intervals or scale intervals between
adjacent timesteps. Otherwise intervals involving chords are NA.

notes, notes1, notes2
character, a noteworthy string. notes1 and notes2 must have equal number of

timesteps.
n integer, size of lag.
trim logical, trim the n leading NA values from lagged intervals.
format character, format of the scale notation: major/minor/perfect, augmented/diminished,
and respective abbreviations. See argument options in defaults.
tuning character, string tuning.
Details

Numeric intervals are directional. pitch_interval returns the signed number of semitones defin-
ing the distance between two notes. Named scale intervals are names only. Use pitch for direction.

scale_interval returns a character string that provides the named main interval, simple or com-
pound, defined by the two notes. This function will return NA for any uncommon out of range large
interval not listed as a named interval in mainIntervals.

pitch_interval and scale_interval compute intervals element-wise between two noteworthy
strings. pitch_diff and scale_diff work similarly but compute lagged intervals on the elements
in notes.

26 interval_semitones

Value

a musical interval, integer or character depending on the function.

See Also

mainIntervals

Examples

pitch_interval("b"”, "c4")

pitch_interval("c, e_, g_, a,", "e_, g_, a, c")
pitch_interval("c r", "dfa d")

pitch_interval("c r", "dfa d”, use_root = FALSE)
scale_interval("c", "e_")

scale_interval("ceg”, "egd'")

x <- "a, b, cde f g ac'e' ac' e'"
pitch_diff(x)

pitch_diff(x, use_root = FALSE)

scale_diff(x)

scale_diff(x, n = 2, trim = TRUE, use_root = FALSE)

Lagged intervals respect rest timesteps.

All timestep position including rests are retained.
But the lag-n difference skips rest entries.
x<-"a,crrrrg"

pitch_diff(x)

scale_diff(x)

pitch_diff(x, n = 2)

scale_diff(x, n = 2)

pitch_diff(x, n = 2, trim = TRUE)

scale_diff(x, n = 2, trim = TRUE)
interval_semitones Interval semitones

Description
Convert named intervals to numbers of semitones. For a complete list of valid interval names and
abbreviations see mainIntervals. interval may be a vector.

Usage

interval_semitones(interval)

Arguments

interval character, interval ID. See details.

is_diatonic 27

Value

integer

See Also

mainIntervals

Examples

x <= c("minor third”, "m3", "augmented second”, "A2")
y <_ C(IVP-I II, Ilmzll’ IIMZII, Ilm3ll, VIMBVI, VIP4VI, IITTII’ IIPSII)
interval_semitones(x)
interval_semitones(y)

is_diatonic Check if notes and chords are diatonic

Description

Check if notes and chords are diatonic in a given key.

Usage
is_diatonic(notes, key = "c")
Arguments
notes character, a noteworthy string.
key character, key signature.
Details

This function is a wrapper around is_in_scale. To check if individual notes are in a scale, see
note_in_scale.

Value

logical

See Also

is_in_scale

Examples

is_diatonic("ceg ace ce_g", "c")
is_diatonic(c("r", "d", "dfa", "df#a"), "d")

28 keys

keys Key signatures

Description

Helper functions for key signature information.

Usage
keys(type = c("all”, "sharp", "flat"))

key_is_natural (key)
key_is_sharp(key)
key_is_flat(key)
key_n_sharps(key)
key_n_flats(key)
key_is_major(key)

key_is_minor(key)

Arguments
type character, defaults to "all”.
key character, key signature.
Details

The keys function returns a vector of valid key signature IDs. These IDs are how key signatures are
specified throughout tabr, including in the other helper functions here via key. Like the other func-
tions here, key_is_sharp and key_is_f1lat are for key signatures, not single pitches whose sharp
or flat status is always self-evident from their notation. Major and minor keys are also self-evident
from their notation, but key_is_major and key_is_minor can still be useful when programming.

Value

character vector.

Examples
keys()
key_is_natural(c("c”, "am", "c#"))
x <= c("a”, "e_")

key_is_sharp(x)

lilypond

key_is_flat(x)
key_n_sharps(x)
key_n_flats(x)

29

lilypond

Save score to LilyPond file

Description

Write a score to a LilyPond format (. 1y) text file for later use by LilyPond or subsequent editing

outside of R.

Usage

lilypond(
score,
file,
key = "c",
time = "4/4",

tempo = "2 = 60",

header = NULL
paper = NULL,
string_names
endbar = "|.
midi = TRUE,

n

’

= NULL,

’

colors = NULL,
crop_png = TRUE,
simplify = TRUE

Arguments

score
file

key
time
tempo
header
paper

string_names

endbar

midi

a score object.

character, LilyPond output file ending in .1ly. May include an absolute or rela-
tive path.

character, key signature, e.g., c, b_, f#m, etc.

character, defaults to "4/4".

character, defaults to "2 = 60".

a named list of arguments passed to the header of the LilyPond file. See details.
a named list of arguments for the LilyPond file page layout. See details.

label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

character, the global end bar.

logical, add midi inclusion specification to LilyPond file.

30 lilypond

colors a named list of LilyPond element color overrides. See details.
crop_png logical, alter template for cropped height. See details.
simplify logical, uses simplify_phrase to convert to simpler, more efficient LilyPond
syntax.
Details

This function only writes a LilyPond file to disk. It does not require a LilyPond installation. It
checks for the version number of an installation, but LilyPond is not required to be found.

This function can be used directly but is commonly used by render_x functions, which call this
function internally to create the LilyPond file and then call LilyPond to render that file to sheet
music.

Value

nothing returned; a file is written.

Header options
All header list elements are character strings. The options for header include:

e title

* subtitle
* composer
e album

e arranger
e instrument
* meter

* opus

* piece

* poet

e copyright

e tagline

Paper options

All paper list elements are numeric except page_numbers and print_first_page_number, which
are logical. page_numbers = FALSE suppresses all page numbering. When page_numbers = TRUE,
you can set print_first_page_number = FALSE to suppress printing of only the first page number.
first_page_number is the number of the first page, defaulting to 1, and determines all subsequent
page numbers. These arguments correspond to LilyPond paper block variables.

The options for paper include the following and have the following default values if not provided:

* textheight = 220
e linewidth =150

lilypond 31

e indent =0

* fontsize =10

e page_numbers = TRUE

e print_first_page_number = TRUE
* first_page_number =1

PNG-related options

By default crop_png = TRUE. This alters the template so that when the LilyPond output file is cre-
ated, it contains specifications for cropping the image to the content when that file is rendered by
LilyPond to png. The image will have its width and height automatically cropped rather than retain
the standard page dimensions. This only applies to png outputs made from the LilyPond file, not
pdf. The argument is also ignored if explicitly providing textheight to paper. You may still pro-
vide linewidth to paper if you find you need to increase it beyond the default 150mm, generally
as a result of using a large fontsize. Various render_x functions that wrap 1ilypond make use
of this argument as well.

Color options

You can provide a named list of global color overrides for various sheet music elements with the
colors argument of 1ilypond or one of the associated rendering functions.
By default, everything is black. Overrides are only inserted into the generated LilyPond file if given.
Values are character; either the hex color or a named R color. The named list options include:

e color

* background

* staff

e time

e clef

* bar

* beam

* head

e stem

e accidental

e slur

* tabhead

e lyrics
color is a global font color for the entire score. It affects staff elements and header elements.
It does not affect everything, e.g., page numbers. background controls the background color of
the entire page. Do not use this if making a transparent background png with the transparent
argument available in the various render_x* functions. The other options are also global but override

color. You can change the color of elements broadly with color and then change the color of
specific elements using the other options.

There are currently some limitations. Specifically, if you provide any background color override,
most header elements will not display.

32 lilypond_root

See Also

tab, render_chordchart, midily

Examples

x <- phrase(”c ec'g' ec'g'”, "4 4 2", "5 432 432")
x <- track(x)

x <- score(x)

outfile <- file.path(tempdir(), "out.ly")
lilypond(x, outfile)

lilypond_root LilyPond installation information

Description

Details about local LilyPond installation and package API.

Usage

lilypond_root()
lilypond_version()

tabr_lilypond_api()

Details

Version information and installation directory are returned if the installation can be found. The
LilyPond API references the currently loaded version of tabr.

Value

a message or system standard output.

Examples

lilypond_root()
lilypond_version()
tabr_lilypond_api()

Ip_chord_id

33

1p_chord_id LilyPond chord notation

Description

Obtain LilyPond quasi-chord notation.

Usage

lp_chord_id(root, chord, exact = FALSE,

1p_chord_mod(root, chord, exact = FALSE,

Arguments
root character, root note.
chord character, tabr format chord name.
exact logical, return a more exact LilyPond chord representation.
additional arguments passed to transpose.
Details

These functions take a tabr syntax representation of a chord name and convert it to quasi-LilyPond
syntax; "quasi" because the result still uses _ for flats and # for sharps, whereas LilyPond itself uses
es and is (mostly). This is the format used by tabr functions involved in communicating with
LilyPond for music transcription, and they make these final conversions on the fly. This can be
overridden with exact = TRUE.

Value

character

Examples

lp_chord_id("a a a", "m M m7_5")
lp_chord_mod("a a a", "m M m7_5")
lp_chord_id("a a a", "m M m7_5", exact = TRUE)
lp_chord_mod("a a a", "m M m7_5", exact = TRUE)

34 Iyrics

lyrics Create lyrics and check lyrics string validity

Description

Functions for creating and checking lyrics objects.

Usage
lyrical(x)

as_lyrics(x, format = NULL)
is_lyrics(x)

lyrics_template(x, format = NULL)

Arguments
X character or lyrics object. For 1yrics_template, an integer or one of the classes
noteworthy, noteinfo or music to derive the number of timesteps from.
format NULL or character, the timestep delimiter format, "space” or "vector".
Details

The lyrics class is a simple class for arranging lyrics text by timestep. Its structure and behavior
aligns with that of the classes noteworthy, noteinfo and music.

lyrical is a trivial function that returns a scalar logical result essentially for any object that inherits
from character, though this check may become more specific in the future.

as_lyrics can be used to coerce to the 1lyrics class. Coercion will fail if the string is not lyrical.
The lyrics class has its own print and summary methods.

When format = NULL, the timestep delimiter format is inferred from the lyrical string input.

Value

depends on the function

Examples

space-delimited lyrics; use periods for timesteps with no lyric
x <- "These are the ly- rics . . . to this song”

is_lyrics(x)

lyrical(x)

as_lyrics(x)

character vector; empty, period or NA for no lyric
x <= c("These”, "are”, "the”, "ly-", "rics”,

mainlntervals 35

IIII’ II'H’ NA’ Iltoll’ chis”, "SOng”) #
as_lyrics(x)

generate empty lyrics object from noteworthy, noteinfo or music object
notes <- as_noteworthy("c d ed cr*x3 egc'")
x <- lyrics_template(notes)

X
x[1:5] <- strsplit("These are the ly- rics”, " ")[[11]
x[9:11] <- c("to”, "this", "song")

X
summary (x)
attributes(x)
mainIntervals Main musical intervals
Description

A data frame containing descriptions of the main intervals, simple and compound.

Usage

mainIntervals

Format

A data frame with 5 columns and 26 rows

midily Convert MIDI to LilyPond file

Description

Convert a MIDI file (.mid) to a LilyPond format (. 1y) text file.

Usage

midily(
midi_file,
file,
key = "c",
absolute
quantize
explicit

FALSE,
NULL,
FALSE,

36 midily

start_quant = NULL,
allow_tuplet = c("4x2/3", "8x2/3", "16%2/3"),
lyric = FALSE

)
Arguments
midi_file character, MIDI file (.mid). May include an absolute or relative path.
file LilyPond output file ending in . ly.
key key signature, defaults to "c".
absolute logical, print absolute pitches.
quantize integer, duration, quantize notes on duration.
explicit logical, print explicit durations.
start_quant integer, duration, quantize note starts on the duration.

allow_tuplet character vector, allow tuplet durations. See details.

lyric logical, treat all text as lyrics.

Details

Under development/testing. See warning and details below.

This function is a wrapper around the midi2ly command line utility provided by LilyPond. It
inherits all the limitations thereof. LilyPond is not intended to be used to produce meaningful
sheet music from arbitrary MIDI files. While 1ilypond converts R code score objects to LilyPond
markup directly, MIDI conversion to LilyPond markup by midily requires LilyPond.

WARNING: Even though the purpose of the command line utility is to convert an existing MIDI file
to a LilyPond file, it nevertheless generates a LilyPond file that specifies inclusion of MIDI output.
This means when you subsequently process the LilyPond file with LilyPond or if you use miditab
to go straight from your MIDI file to pdf output, the command line tool will also produce a MIDI
file output. It will overwrite your original MIDI file if it has the same file name and location! The
next version of this function will add an default argument midi_out = FALSE to remove this from
the generated LilyPond file. If TRUE and the basename of midi_file matches the basename of
file, then file will be renamed, the basename appended with a -1.

allow_tuplets = NULL to disallow all tuplets. Fourth, eighth and sixteenth note triplets are allowed.
The format is a character vector where each element is durationx*numerator/denominator, no
spaces. See default argument.

On Windows systems, it may be necessary to specify a path in tabr_options to both midi2ly and

python if they are not already successfully set as follows. On package load, tabr will attempt to

check for midi2ly.exe at C:/ProgramFiles (x86)/LilyPond/usr/bin/midi2ly.py and simi-

larly for the python. exe that ships with LilyPond at C: /Program Files (x86)/LilyPond/usr/bin/python.exe.
If this is not where LilyPond is installed, then LilyPond and Python need to be provided to tabr_options

or added to the system PATH variable.

Value

nothing returned; a file is written.

miditab 37

See Also
miditab, tab, 1ilypond

Examples
Not run:
if(tabr_options()$midi2ly !'= ""){
midi <- system.file("example.mid"”, package = "tabr")

outfile <- file.path(tempdir(), "out.ly")
midily(midi, outfile) # requires LilyPond installation

}

End(Not run)

miditab Convert MIDI to tablature

Description

Convert a MIDI file to sheet music/guitar tablature.

Usage
miditab(midi_file, file, keep_ly = FALSE, details = FALSE, ...)
Arguments
midi_file character, MIDI file (.mid). May include an absolute or relative path.
file character, output file ending in .pdf or .png.
keep_ly logical, keep LilyPond file.
details logical, set to TRUE to print LilyPond log output to console. Windows only.
additional arguments passed to midily.
Details

Under development/testing. See warning and details below.

Convert a MIDI file to a pdf or png music score using the LilyPond music engraving program.
Output format is inferred from file extension. This function is a wrapper around midily, the
function that converts the MIDI file to a LilyPond (. 1y) file using a LilyPond command line utility.

WARNING: Even though the purpose of the command line utility is to convert an existing MIDI file
to a LilyPond file, it nevertheless generates a LilyPond file that specifies inclusion of MIDI output.
This means when you subsequently process the LilyPond file with LilyPond or if you use miditab
to go straight from your MIDI file to pdf output, the command line tool will also produce a MIDI
file output. It will overwrite your original MIDI file if it has the same file name and location! The
next version of this function will add an default argument midi_out = FALSE to remove this from

38 mode-helpers

the generated LilyPond file. If TRUE and the basename of midi_file matches the basename of
file, then file will be renamed, the basename appended with a -1.

On Windows systems, it may be necessary to specify a path in tabr_options to both midi2ly and

python if they are not already successfully set as follows. On package load, tabr will attempt to

check for midi2ly.exe at C:/Program Files (x86)/LilyPond/usr/bin/midi2ly.py and simi-

larly for the python. exe that ships with LilyPond at C: /Program Files (x86)/LilyPond/usr/bin/python.exe.
If this is not where LilyPond is installed, then LilyPond and Python need to be provided to tabr_options

or added to the system PATH variable.

Value

nothing returned; a file is written.

See Also

midily, tab, 1ilypond

Examples

Not run:
if(tabr_options()$midi2ly != ""){

midi <- system.file("example.mid”, package = "tabr")

outfile <- file.path(tempdir(), "out.pdf")

miditab(midi, outfile, details = FALSE) # requires LilyPond installation
3

End(Not run)

mode-helpers Mode helpers

Description

Helper functions for working with musical modes.

Usage

modes(mode = c("all”, "major"”, "minor"))
is_mode(notes, ignore_octave = FALSE)
mode_rotate(notes, n = @, ignore_octave = FALSE)

mode_modern
mode = "ionian”,
key = “C",
collapse = FALSE,

ignore_octave = FALSE

mode-helpers 39

n_n

mode_ionian(key = "c", collapse

FALSE, ignore_octave = FALSE)

n.n

c", collapse

mode_dorian(key FALSE, ignore_octave = FALSE)

n_n

mode_phrygian(key = "c", collapse = FALSE, ignore_octave = FALSE)

mode_lydian(key = "c", collapse = FALSE, ignore_octave = FALSE)

mode_mixolydian(key = "c", collapse = FALSE, ignore_octave = FALSE)

mode_aeolian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_locrian(key = "c", collapse = FALSE, ignore_octave = FALSE)
Arguments
mode character, which mode.
notes character, for mode, may be a noteworthy string of seven notes, space- or vector-
delimited.

ignore_octave logical, strip octave numbering from modes not rooted on C.

n integer, degree of rotation.

key character, key signature.

collapse logical, collapse result into a single string ready for phrase construction.
Details

For valid key signatures, see keys.

Modern modes based on major scales are available by key signature using the mode_* functions.
The seven modes can be listed with modes. Noteworthy strings of proper length can be checked to
match against a mode with is_mode. Modes can be rotated with mode_rotate, a wrapper around
note_rotate.

Value

character

See Also

keys, scale-helpers

Examples

modes ()

mode_dorian("c")

mode_modern("dorian”, "c")
mode_modern("dorian”, "c", ignore_octave = TRUE)

n

40

music

identical (mode_rotate(mode_ionian("c"), 1), mode_dorian("d"))
identical(
mode_rotate(mode_ionian("c", ignore_octave = TRUE), 1),
mode_dorian("d"”, ignore_octave = TRUE)

)

x <- sapply(modes(), mode_modern, ignore_octave = TRUE)
setNames(data.frame(t(x)), as.roman(1:7))

music Create music objects and check music string validity

Description

Check whether a string is comprised exclusively of valid syntax for music strings. A music object
can be built from such a string. It combines a noteworthy string and a note info string.

Usage

musical (x)

as_music(
notes,
info = NULL,
lyrics = NA,
key = "c¢",
time = "4/4",
tempo = "2 = 60",
accidentals = NULL,
format = NULL,
labels = NULL,
at = seq_along(labels)

is_music(x)

music_split(x)

Arguments
X character or music, a string to be coerced or an existing music object.
notes, info noteworthy and note info strings. For as_music, a complete music string is
assumed for notes when info = NULL.
lyrics optional 1lyrics object or NA, attached to output as an attribute.
key character, store the key signature as a music attribute. Defaults to "c". See

details.

music 41

time character, store the time signature as a music attribute. Defaults to "4/4". See
details.
tempo character, defaults to "2 = 60". See details.
accidentals NULL or character, represent accidentals, "flat” or "sharp”.
format NULL or character, the timestep delimiter format, "space” or "vector".
labels character, text annotations to attach to timesteps using notate.
at integer, timesteps for labels, defaults to starting from time one.
Details

With note info strings, you are required to enter something at every timestep, even if it is only the
duration. This makes sense because if you do not enter something, there is simply no indication of a
timestep. A nice feature of music strings is that explicit timesteps are achieved just by having notes
present, allowing you to leave out durations entirely when they repeat, inheriting them from the
previous timestep where duration was given explicitly. There is no need to enter the same number
across consecutive timesteps; the first will suffice and the rest are automatically filled in for you
when the object is constructed.

musical returns a scalar logical result indicating whether all timesteps contain exclusively valid
entries.

as_music can be used to coerce to the music class. Coercion will fail if the string is not musical.
The music class has its own print and summary methods. music objects are primarily intended
to represent an aggregation of a noteworthy object and a noteinfo. You can optionally fold in a
lyrics object as well. However, for music data analysis, any operations will involve first splitting
the object into its component parts. The value of this class is for the more efficient data entry it
provides.

When accidentals or format are NULL, these settings are inferred from the musical string input.
When mixed formats are present, flats are the default for accidentals.

Other attributes are attached to amusic object. key uses the tabr syntax, e.g., "c”, "b_", "f#m", etc.
time and tempo use the LilyPond string format. For music programming and analysis, key, time
and tempo can most likely be ignored. They are primarily relevant when rendering a music snippet
directly from a music object with LilyPond. These additional attributes provide more complete
context for the rendered sheet music.

If you plan to render music snippets from a music object that you are defining from a new character
string, and the context you have in mind is a stringed and fretted instrument like guitar, you can
specify string numbers at the end of each timestep with numbers following a semicolon delimiter.
This would still precede any * timestep multiplier number. See examples.

Note that if you convert a music object to a phrase object, you are changing contexts. The phrase
object is the simplest LilyPond-format music structure. Coercion with phrase strips all attributes
of a music object and retains only notes, note info and string numbers.

Value

depends on the function

See Also

music-helpers, note-checks, note-metadata, note-summaries, note-coerce

42 music-helpers

Examples

note durations inherit from previous timestep if missing

X <- "a#4-+ b_[staccato] c,x d''t8(e)(g_')- a4 c,e_,g, ce_g4. a~8 al”
is_music(x)

musical (x)

X <- as_music(x)

is_music(x)

X

y <- lyrics_template(x)

y[3:8] <- strsplit("These are some song ly- rics”, " ")[[1]1]
y

x <- as_music(x, lyrics =y, accidentals = "sharp")

summary (x)

Starting string = 5: use ';5'. Carries over until an explicit change.

X <- "a,4;5x5 b,4-+ c4[staccato] cgc'e'~4 cgc'e'l e'4;2 ¢';3 g;4 c;5 ce'1;51"
X <- as_music_df(as_music(x))

x$string

music-helpers Accessing music object values and attributes

Description

Helper functions for accessing music object values and attributes.
Usage

music_notes(x)

music_info(x)

music_strings(x)

music_key(x)

music_time(x)

music_tempo(x)

music_lyrics(x)

Arguments

X music object.

notate 43

Details

Note that while lyrics always shows as an attribute even when NA, strings is completely absent as
a value if it was not part of the object construction from a new character string.

Value

depends on the function

See Also

music, note-checks, note-metadata, note-summaries, note-coerce

Examples

Starting string = 5: use ';5'. Carries over until an explicit change.
X <- "a,4;5%5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 ¢';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- lyrics_template(x)
y[3:8] <- strsplit(”"These are some song ly- rics”, " ")[[1]1]
y

X <- as_music(x, lyrics =y)
attributes(x)
music_split(x)

music_notes(x)
music_info(x)
music_key(x)
music_time(x)
music_tempo(x)
music_lyrics(x)
music_strings(x)

notate Add text to music staff

Description

Annotate a music staff, vertically aligned above or below the music staff at a specific note/time.

Usage

notate(x, text, position = "top")

44 note-checks

Arguments

X character.

text character.

position character, top or bottom.
Details

This function binds text annotation in LilyPond syntax to a note’s associated info entry. Tech-
nically, the syntax is a hybrid form, but is later updated safely and unambiguously to LilyPond
syntax with respect to the rest of the note info substring when it is fed to phrase for musical phrase
assembly.

Value

a character string.

Examples

notate("8"”, "Solo")
phrase("c'~ ¢' d' e'", pc(notate(8, "First solo"”), "8 8 4."), "5 55 5")

note-checks Basic noteworthy string checks

Description

The simplest functions for inspecting noteworthy strings to see if their notes have certain properties.
Usage

note_is_accidental (notes)

note_is_natural(notes)

note_is_flat(notes)

note_is_sharp(notes)

note_has_accidental(notes)

note_has_natural(notes)

note_has_flat(notes)

note_has_sharp(notes)

note-coerce 45

Arguments

notes character, a noteworthy string.

Details

Note that these functions are the weakest in terms of checking noteworthiness. They are simple
regular expression-based wrappers. They are often used internally by more complex functions
without wasting computational overhead on performing input validity checks, but they are exported
from the package for user convenience. Their results will only make sense on strings that you define
in accordance with noteworthy string rules.

The note_is_x functions return a logical vector with length equal to the number of timesteps in
notes. The note_has_x* functions summarize these to a single logical value.

Value

logical

See Also

note-metadata, note-summaries, note-coerce, valid-notes

Examples

n

X <= "r a_2 a a#' s
note_has_accidental (x)
note_has_natural(x)
note_has_flat(x)
note_has_sharp(x)
note_is_accidental(x)
note_is_natural(x)
note_is_flat(x)
note_is_sharp(x)
note_has_tick(x)
note_has_integer(x)
note_is_tick(x)
note_is_integer(x)
note_has_rest(x)
note_is_rest(x)

note-coerce Basic noteworthy strings formatting and coercion helpers

Description

Helper functions for setting formatting attributes of noteworthy strings including representation of
timesteps, octaves and accidentals.

46 note-coerce
Usage

naturalize(notes, type = c("both”, "flat", "sharp"))

sharpen_flat(notes)

flatten_sharp(notes)

note_set_key(notes, key = "c")

as_tick_octaves(notes)

as_integer_octaves(notes)

as_space_time(x)

as_vector_time(x)

pretty_notes(notes, ignore_octave = TRUE)

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
type character, type of note to naturalize.
key character, key signature to coerce any accidentals to the appropriate form for the
key. May also specify "sharp” or "flat".
X for generic functions: notes, info or music string.

ignore_octave logical, strip any octave notation that may be present, returning only the basic
notes without explicit pitch.

Details

For sharpen_flat and flatten_sharp, sharpening flats and flattening sharps refer to inverting
their respective notation, not to raising or lowering a flatted or sharped note by one semitone. For
the latter, use naturalize, which removes flat and/or sharp notation from a string. note_set_key
is used for coercing a noteworthy string to a specific and consistent notation for accidentals based on
a key signature. This is a wrapper around sharpen_flat and flatten_sharp. as_tick_octaves,
as_integer_octaves, as_space_time and as_vector_time similarly affect octave and timestep
format. For simultaneous control over the representation of timesteps, octave numbering and acci-
dentals, all three are available as arguments to as_noteworthy.

Value

character

A note on generic functions

as_space_time and as_vector_time are generic since they apply clearly to and are useful for not
only noteworthy strings, but also note info and music objects. If x is still a simple character string,

note-equivalence 47

these functions attempt to guess which of the three it is. It is recommended to set the class before
using these functions.

There are many package functions that operate on noteworthy strings that could in concept work
on music objects, but the expectation is that sound and time/info are disentangled. The music
class is convenient for data entry, e.g., for transcription purposes, but it is not sensible to perform
data analysis with quantities like pitch and time tightly bound together. This would only lead to
repetitive deconstructions and reconstructions of music class objects. Most functions that operate
on noteworthy strings or note info strings strictly apply to one or the other. Generic functions
are reserved for only the most fundamental and generally applicable metadata retrieval and format
coercion.

See Also

note-checks, note-metadata, note-summaries, valid-notes

Examples

X <- "e_2 a_, b_, c#ftta#t c#t'f#'at'"'"
note_set_key(x, "f")

note_set_key(x, "g")
as_tick_octaves(x)
as_integer_octaves(x)

y <- as_vector_time(x)
is_vector_time(y)
is_space_time(as_space_time(y))

naturalize(x)
naturalize(x, "sharp")
sharpen_flat(x)
flatten_sharp(x)
pretty_notes(x)

note-equivalence Note, pitch and chord equivalence

Description

Helper functions to check the equivalence of two noteworthy strings, and other related functions.

Usage
note_is_equal(notesl, notes2, ignore_octave = TRUE)
note_is_identical(notesl1, notes2, ignore_octave = TRUE)

pitch_is_equal(notes1, notes2)

pitch_is_identical(notesl, notes2)

48 note-equivalence

octave_is_equal(notesl, notes2)

octave_is_identical(notesl1, notes2, single_octave = FALSE)

Arguments
notesi character, noteworthy string, space-delimited or vector of individual entries.
notes2 character, noteworthy string, space-delimited or vector of individual entries.

ignore_octave logical, ignore octave position when considering equivalence.

single_octave logical, for octave equality, require all notes share the same octave. See details.

Details

Noteworthy strings may contain notes, pitches and chords. Noteworthy strings are equal if they
sound the same. This means that if one string contains Eb (e_) and the other contains D# (d#) then
the two strings may be equal, but they are not identical.

pitch_is_equal and pitch_is_identical perform these respective tests of equivalence on both
notes and chords. These are the strictest functions in terms of equivalent sound because pitch
includes the octave number.

note_is_equal and note_is_identical are similar but include a default argument ignore_octave
= TRUE, focusing only on the notes and chords. This allows an even more relaxed definition of equiv-
alence. Setting this argument to FALSE is the same as calling the pitch_is_x variant.

Chords can be checked the same as notes. Every timestep in the sequence is checked pairwise
between notel and note2.

These functions will return TRUE or FALSE for every timestep in a sequence. If the two noteworthy
strings do not contain the same number of notes at a specific step, such as a single note compared
to a chord, this yields a FALSE value, even in a case of an octave dyad with octave number ignored.
If the two sequences have unequal length NA is returned. These are bare minimum requirements for
equivalence. See examples.

octave_is_equal and octave_is_identical allow much weaker forms of equivalence in that
they ignore notes completely. These functions are only concerned with comparing the octave num-
bers spanned by any pitches present at each timestep. When checking for equality, octave_is_equal
only looks at the octave number associated with the first note at each step, e.g., only the root note
of a chord. octave_is_identical compares all octaves spanned at a given timestep.

It does not matter when comparing two chords that they may be comprised of a different numbers
of notes. If the set of unique octaves spanned by one chord is identical to the set spanned by the
other, they are considered to have identical octave coverage. For example, alb2c3 is identical to
d1e1f2g3. To be equal, it only matters that the two chords begin with x1, where x is any note. Al-
ternatively, for octave_is_identical only, setting single_octave = TRUE additionally requires
that all notes from both chords being compared at a given timestep share a single octave.

Value

logical

note-logic

Examples

x <- "b_2 ce_g"

y <- "b_ cd#g"
note_is_equal(x, y)
note_is_identical(x, y)

x <- "b_2 ce_g"

y <= "b_2 cd#g"
pitch_is_equal(x, y)
pitch_is_identical(x, y)

same number of same notes, same order: unequal sequence length
X <- "b_2 ce_g b_"

y <= "b_2 ce_gb_"

note_is_equal(x, y)

same number of same notes, order, equal length: unequal number per timestep
X <= "b_2 ce_g b_"
y <= "b_2 ce_ gb_"
note_is_equal(x, y)

x <= "al b_2 alb2c3 alb4 glalb1”

y <- "a_2 g#2 dlelf2g3 alb2b4 dlel”
octave_is_equal(x, y)

octave_is_identical(x, y)
octave_is_identical(x, y, single_octave = TRUE)

note-logic Relational operators for noteworthy class

Description

Relational operators for comparing two noteworthy class objects.

Usage
S3 method for class 'noteworthy'

el == e2

S3 method for class 'noteworthy'
el 1= e2

S3 method for class 'noteworthy'
el < e2

S3 method for class 'noteworthy'
el <= e2

50 note-metadata

S3 method for class 'noteworthy
el > e2

S3 method for class 'noteworthy

el >= e2
Arguments
el noteworthy string.
e2 noteworthy string.
Details

Equality is assessed in the same manner as used for note_sort when sorting pitches. What matters
is the underlying semitone value associated with each pitch, not the string notation such as flat
vs. sharp (see pitch_is_identical). When comparing chords, or a chord vs. a single note,
comparison favors the root. Comparison is made of the respective lowest pitches, then proceeds to
the next pitch if equal.

For these operators, the objects on the left and right side of the operator must both be noteworthy
or an error is returned.

The examples include a chord with its pitches entered out of pitch order. This does not affect the
results because pitches within chords are sorted before note to note comparisons at each timestep
are done between el and e2.

Value

logical vector

Examples

<- as_noteworthy("f# a d'f#'a' d'f#'a'")
<- as_noteworthy("g_ b f#'a'd' d'd''")

=y
<y
>y
<=y
>=y

X X X X X X < X

note-metadata Noteworthy string metadata

Description

Inspect basic metadata for noteworthy strings.

note-metadata 51

Usage
n_steps(x)
n_notes(notes)
n_chords(notes)
n_octaves(notes)
chord_size(notes)
octave_type(notes)
accidental_type(x)
time_format(x)
is_space_time(x)
is_vector_time(x)
note_is_tick(notes)
note_is_integer(notes)
note_has_tick(notes)
note_has_integer(notes)
note_is_rest(notes)

note_has_rest(notes)

Arguments

X for generic functions: notes, info or music string.

notes character, a noteworthy string, space-delimited or vector of individual entries.
Details

These functions inspect the basic metadata of noteworthy strings. For functions that perform basic
checks on strings, see note-checks.

The n_* functions give summary totals of the number of timesteps, number of individual note (non-
chord) timesteps, number of chord time steps, and the number of distinct octaves present across
timesteps.

Functions pertaining to type or format of a noteworthy string provide information on how a par-
ticular string is defined, e.g. time_format. Note that the result pertains to true noteworthy-

52

note-metadata

class objects. If inspecting a standard character string, the result pertains to post-conversion to the
noteworthy class and does not necessarily reflect what is found in notes verbatim. See examples.

Value

varies by function

A note on generic functions

n_steps and the three time format functions are generic since they apply clearly to and are useful
for not only noteworthy strings, but also note info, music, and lyrics objects. If x is still a simple
character string, these functions attempt to guess if it is noteworthy, note info, or music. Lyrics
content is arbitrary so is never considered for a simple character string. Best practice is to set the
class before using these functions anyway.

There are many package functions that operate on noteworthy strings that could in concept also
work on music objects, but the expectation is that sound and time/info are disentangled for analysis.
The music class is convenient and relatively efficient data entry, e.g., for transcription purposes, but
it is not sensible to perform data analysis with quantities like pitch and time tightly bound together
in a single string. This would only lead to repetitive deconstructions and reconstructions of music
class objects.

The music class is intended to be a transient class such as during data import, data entry, or data
export. Most functions that operate on noteworthy strings or note info strings strictly apply to one
or the other. Generic functions are reserved for only the most fundamental and generally applicable
metadata retrieval and format coercion.

See Also

tabr-methods, note-checks, note-summaries, note-coerce, valid-notes

Examples

x <- "e_2 a_, c#f#a#t”
n_steps(x)

n_notes(x)
n_chords(x)
n_octaves(x)
chord_size(x)

Type is mixed in \code{x} but is inferred under default conversion rules.
These check \code{x} once validated and coerced to 'noteworthy' class.
octave_type(x)

accidental_type(x)

The default is tick octaves and flats

as_noteworthy(x)

time_format(x)
is_space_time(x)
is_vector_time(x)

note-summaries 53

note-summaries Noteworthy string summaries

Description

Basic summary functions for noteworthy strings.

Usage

tally_notes(notes, rests = FALSE)
tally_pitches(notes, rests = FALSE)
octaves(notes)

tally_octaves(notes)
distinct_notes(notes, rests = FALSE)
distinct_pitches(notes, rests = FALSE)
distinct_octaves(notes)
pitch_range(notes)
semitone_range(notes)
semitone_span(notes)
octave_range(notes)

octave_span(notes)

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
rests logical, include rests r and silent rests s in tally.

Details

These functions provide basic summaries of noteworthy strings.

Returned object depends on the nature of the function. It can be integers, logical, character. Results
can be a vector of equal length of a single value summary.

Use the tally_=* and distinct_x* functions specifically for summaries of unique elements.

distinct_notes and distinct_pitches filter a noteworthy string to its unique elements, respec-
tively. These functions return another noteworthy string.

*_span functions are just the size of a range, e.g., semitone_range and semitone_span.

54 noteinfo

Value

varies by function

See Also

note-checks, note-metadata, note-coerce, valid-notes

Examples

X <= "r s e_2 a_, ctfttatt"
tally_notes(x)
tally_pitches(x)
octaves(x)
tally_octaves(x)
distinct_notes(x)
distinct_pitches(x)
distinct_octaves(x)

pitch_range(x)
semitone_range(x)
semitone_span(x)
octave_range(x)
octave_span(x)

noteinfo Note info helpers

Description

Functions for working with note info strings.

Usage

info_duration(x)
info_slur_on(x)
info_slur_off(x)
info_slide(x)
info_bend(x)
info_dotted(x)
info_single_dotted(x)

info_double_dotted(x)

note_ngram 55

info_annotation(x)

info_articulation(x)

Arguments
X character, note info string normally accompanying a noteworthy string for build-
ing phrase objects. x may also be a phrase object.
Details

If x is a phrase object, there are some parsing limitations such as tuplets and repeats.

Value

character

See Also

valid-noteinfo

Examples

a <- notate("t8x", "Start here")

notes <- "a, b, cde fg#t arac'e' ac'e' c' rx3 ac'e'~ ac'e'”
info <- paste(a, "t8x t8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8%4 1 1")
x <- as_music(notes, info)

data.frame(
duration = info_duration(x),
slur_on = info_slur_on(x),
slur_off = info_slur_off(x),
slide = info_slide(x),
bend = info_bend(x),
dotted = info_dotted(x),
dottedl = info_single_dotted(x),
dotted2 = info_double_dotted(x),
annotation = info_annotation(x),
articulation = info_articulation(x)

note_ngram Note/chord n-gram

Description

Convert a noteworthy string to a list of noteworthy n-grams.

56 note_slice

Usage

note_ngram(notes, n = 2, tally = FALSE, rests = FALSE)

Arguments
notes a noteworthy string.
n Number of grams. Must be >= 1 and <= number of timesteps in notes.
tally logical, tally n-grams in a data frame. Otherwise a list.
rests logical, exclude rests. Affects the number of timesteps.
Value

list of noteworthy objects or a tibble

Examples

x <- as_noteworthy("c r ceg dfa ceg dfa")
note_ngram(x)

(x <- note_ngram(x, tally = TRUE))
x$ngram <- as.character(x$ngram)

X

note_slice Slice, sort, rotate, shift and arpeggiate notes

Description

Helper functions for indexing and moving notes within noteworthy strings.

Usage

note_slice(notes, ...)
note_sort(notes, decreasing = FALSE)
note_rotate(notes, n = 0)
note_shift(notes, n = @)

note_arpeggiate(notes, n = @, step = 12)

note_slice 57

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
For note_slice, an integer or logical vector.
decreasing logical, short in decreasing order.
n integer, number of rotations or extensions of note sequence. See details.
step integer, number of semitone steps from the first (or last) note in notes at which
to begin repeating the shifted notes sequence as an arpeggio. See examples.
arpeggio.
Details

note_slice subsets the timesteps of a noteworthy string by integer index or logical vector of length
equal to the number of timesteps.

note_sort sorts the timesteps of a noteworthy string by pitch. When a tie exists by root note, the
next note in chords are compared, if they exist. For example, a, sorts lower than a, ce.

note_rotate simply rotates anything space-delimited or vectorized in place. It allows chords.
Octave numbering is ignored if present.

For note_shift the entire sequence is shifted up or down in pitch, as if inverting a broken chord. If
notes contains chords, they are broken into successive notes. Then all notes are ordered by pitch.
Finally shifting occurs.

Instead of a moving window, note_arpeggiate grows its sequence from the original set of timesteps
by repeating the entire sequence n times (n must be positive). Each repeated sequence contributing
to the arpeggio is offset by step semitones from the original. step can be negative. It defaults to
12, increasing all notes by one octave.

Value

character

Examples

X <- "bd'f#' a c'e'g' b bac'g' gd'g'd"""
note_sort(x)
note_sort(x, decreasing = TRUE)

X <- "e_2 a_, ctftatt"
note_slice(x, 2:3)
note_slice(x, c(FALSE, TRUE, TRUE))

note_rotate(x, 1)

note_shift("c e g", 1)
note_shift("c e g", -4)

note_arpeggiate("c e g ceg”, 3)
note_arpeggiate("c e g", 3, step = -12)
note_arpeggiate(”"g e c”, 3, step = -12)

58 n_measures

note_arpeggiate("c e_ g_ a", 3, step = 3)

note_arpeggiate(”"c a g_ e_", 3, step = -3)

n_measures Summarize rhythm and time of music objects

Description

These functions assist with summarizing temporal data for music objects.
Usage

n_measures(x)

n_beats(x, unit = 4)

steps_per_measure(x)

bpm(x, unit = 4, tempo = NULL)

seconds(x, tempo = NULL)

seconds_per_measure(x, tempo = NULL)

seconds_per_step(x, tempo = NULL)

steps_start_time(x, tempo = NULL)
Arguments

X note info or music object.

unit character, or an equivalent integer. A beat unit. See details.

tempo character, LilyPond format tempo, e.g., "4 = 120" is 120 quarter note beats per

minute.

Details

These functions also work with the simpler noteinfo class, though some functions require you to

provide additional arguments.

Functions that deal with real time require a known tempo, which music objects have. The simpler
note info object does not contain this information. You can provide a value to the tempo argument
of such functions. This overrides the tempo of x if a music object. But the reason to use tempo is to
provide one when x is a note info object. By default tempo = NULL, in which case it will derive the

value from the music object or return an error for note info objects.

n_measures gives the total number of measures covered by all timesteps. Functions providing the
number of beats and beats per minute both take a unit, defaulting to 4 for quarter note beats. The
unit can be any even beat, triplet beat, dotted, or double dotted beat, from "t32" up to 1.

The number of timesteps starting in each measure is obtained with steps_per_measure.

phrase 59

Value

depends on function

Examples

a <- notate("t8x", "Start here")

notes <- "a, b, cde fg#t arac'e' ac'e' c' rx3 ac'e'~ ac'e'”
info <- paste(a, "t8x t8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8x4 1 1")
info <- as_noteinfo(info)

X <- as_music(notes, info)

n_measures(info) # fraction indicates incomplete final measure
n_measures(x)

n_beats(x)
n_beats(x, 1)
n_beats(x, "t16")

bpm(x)
bpm(x, "t8")
seconds(x)

seconds(info, "4 = 120")
seconds(info, "2 = 60")
seconds(x, "4 = 100")

steps_per_measure(x)
seconds_per_measure(x)
seconds_per_step(x)
steps_start_time(x)

phrase Create a musical phrase

Description

Create a musical phrase from character strings that define notes, note metadata, and optionally
explicit strings fretted. The latter can be used to ensure proper tablature layout.

Usage

phrase(notes, info = NULL, string = NULL, bar = NULL)

p(notes, info = NULL, string = NULL, bar = NULL)

60 phrase
Arguments
notes, info noteworthy and note info strings. When info = NULL, it is assumed that notes
refers to a music object or string formatted as such.
string space-delimited character string or vector (or integer vector if simple string num-
bers). This is an optional argument that specifies which instrument strings to
play for each specific timestep. Otherwise NULL.
bar character or NULL (default). Terminates the phrase with a bar or bar check. See
details. Also see the LilyPond help documentation on bar notation for all the
valid options.
Details

A phrase object combines a valid string of notes with a corresponding valid string of note info. The
only required note info is time, but other information can be included as well. You do not need to
input an existing noteworthy class object and noteinfo class object, but both inputs must be valid
and thus coercible to these classes. This is similar to how the music class works. The difference
with phrase objects is that they are used to create LilyPond syntax analogous to what a music object
contains.

Note that if you convert a music object to a phrase object, you are changing contexts. The phrase
object is the simplest LilyPond-format music structure. Coercion with phrase strips all attributes
of a music object and retains only notes, note info and string numbers.

See the help documentation on noteworthy, noteinfo, and music classes for an understanding of
the input data structures. The function p is a convenient shorthand wrapper for phrase.

If a string is provided to bar, it is interpreted as LilyPond bar notation. E.g., bar =" |" adds the
LilyPond syntax \bar "|" to the end of a phrase. If only a bar check is desired, use bar = TRUE.
FALSE is treated as NULL for completeness.

Value

a phrase.

See Also

valid-notes, valid-noteinfo, music

Examples

[N]

phrase("c ec'g' ec'g'", "4- 4 2") # no string arg (not recommended for tabs)
phrase("c ecd4gd4 ec4gd”, "4 4 2") # same as above

phrase("c b, c", "4. 8(8)", "5 5 5") # direction implies hammer on
phrase("b2 ¢ d”, "4(4)- 2", "5 5 5") # hammer and slide

phrase("c ec'g' ec'g'”, "1 1 1", "5 432 432")

p("c ec'g' ec'g'", 1, "5 4 4") # same as above

n<-"a, b,cdefgefga~a"
i <-"8-8 8 8-. t8(t8)(t8) t16(t16)(t16) 8 1"

phrase-checks 61

m <- as_music(n, i)

x <= p(n, 1)
X
identical(x, p(m))

X <- "a,4;5x5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
p(x)
identical(p(x), p(as_music(x)))

x <= p("a b", 2, bar = "|.")
x2 <= pc(p("a b", 2), "\\bar "[."")
identical(x, x2)

phrase-checks Phrase validation and coercion

Description

These helper functions add some validation checks for phrase and candidate phrase objects.

Usage

as_phrase(phrase)

phrasey(phrase)

notify(phrase)

phrase_notes(phrase, collapse = TRUE)
phrase_info(phrase, collapse = TRUE, annotations = TRUE)

phrase_strings(phrase, collapse = FALSE)

notable(phrase)
Arguments
phrase phrase object or character string (candidate phrase).
collapse logical, collapse result into a single string ready for phrase construction.
annotations logical, strip any text annotations from the note info converted from phrase.
Details

Use these functions with some caution. They are not intended for strictness and perfection. phrasey
checks whether an object is weakly phrase-like and returns TRUE or FALSE. It can be used to safe-
guard against the most obvious cases of phrase not containing valid phrase syntax when program-
ming. However, it may also be limiting. Use wear sensible.

62

phrase-checks

as_phrase coerces an object to a phrase object if possible. This function performs an internal
phrasey check.

notify attempts to decompose a phrase object back to its original input vectors consisting of notes,
note info, and optionally, instrument string numbering. If successful, it returns a tibble data frame
with columns: notes, info, string.

Unless decomposing very simple phrases, this function is likely to reveal limitations. Complex
phrase objects constructed originally with phrase can be challenging to deconstruct in a one to one
manner. Information may be lost, garbled, or the function may fail. For example, this function is
not advanced enough to unravel repeat notation or tuplets.

notable returns TRUE or FALSE regarding whether a phrase can be converted back to character
string inputs, not necessarily with complete correctness, but without simple failure. It checks for
phrasiness. Then it tries to call notify and returns FALSE gracefully if that call throws an exception.

Value

see details for each function’s purpose and return value.

Examples

Create a list of phrase objects

pl <- phrase("c ec'g' ec'g'", "4 4 2") # no string numbers (not recommended)
p2 <- phrase("c ec4g4 ec4gd”, "4 4 2") # same as above

p3 <- phrase(”"c b, c", "4. 8(8)", "5 5 5") # direction implies hammer on
p4 <- phrase("b2 c d", "4(4)- 2", "5 5 5") # hammer and slide

p5 <- phrase(”"c ec'g'~ ec'g'"”, 1, "5 432 432") # tied chord

x <- list(pl, p2, p3, p4, p5)

Check if phrases and strings are phrasey

sapply(x, phrasey)
sapply(as.character(x), phrasey, USE.NAMES = FALSE)

Coerce character string representation to phrase and compare with original
y <- lapply(as.character(x), as_phrase)
identical(x, y)

Check if notable

sapply(x, notable)

notable(p(”a b c¢", 1))

notable(”"a b x") # note: not constructible as a phrase in the first place

Notify phrases
d <- do.call(rbind, lapply(x, notify))
d

Wrappers around notify extract components, default to collapsed strings
phrase_notes(p5)

phrase_info(p5)

phrase_strings(p5)

If phrase decomposition works well, coercion is one to one
x2 <- lapply(x,

pitch_freq 63

function(x) p(phrase_notes(x), phrase_info(x), phrase_strings(x))

)
identical(x, x2)

pitch_freq Pitch conversions

Description

Convert between pitches, chords, semitones and frequencies.

Usage

pitch_freq(notes, a4 = 440)
pitch_semitones(notes)
chord_freq(notes, a4 = 440)
chord_semitones(notes)

freqg_pitch(
freq,
octaves = c("tick”, "integer"),
accidentals = c("flat”, "sharp"),
collapse = FALSE,
a4 = 440

freg_semitones(freq, a4 = 440)

semitone_pitch(
semitones,
octaves = c("tick”, "integer"),
accidentals = c("flat”, "sharp"),
collapse = FALSE

semitone_freq(semitones, a4 = 440)

Arguments
notes character, noteworthy string, space-delimited or vector of individual entries. See
details.
a4 the fixed frequency of the A above middle C, typically 440 Hz.
freq numeric vector, frequencies in Hz.

octaves NULL or character, "tick” or "integer" octave numbering in result.

64 pitch_seq

accidentals NULL or character, represent accidentals, "flat” or "sharp”.
collapse logical, collapse result into a single string. key and style.
semitones integer values of pitches.

Details

Frequencies are in Hertz. Values are based on the 12-tone equal-tempered scale. When converting
an arbitrary frequency to pitch, it is rounded to the nearest pitch. pitch_freqand pitch_semitones
strictly accept single notes in noteworthy strings and return numeric vectors. chord_freq and
chord_semitones accept any noteworthy string and always return a list. These are provided so that
all functions are type-safe. See examples.

Value

integer, numeric or noteworthy vector

Examples

X <- "a e4 a4 e5 ab"
y <- pitch_freq(x)
y

freg_semitones(y)
freq_pitch(y)

identical(as_noteworthy(x), freq_pitch(y, "integer"”, collapse = TRUE))

s <- pitch_semitones(x)
s
semitone_pitch(s)

x <- "a, a,ct#e”
chord_semitones(x)
chord_freq(x)

pitch_seq Create a sequence from pitch notation

Description

Create a noteworthy string of a sequence of consecutive pitches.

Usage

pitch_seq(x, y, key = NULL, scale = NULL, format = c("space”, "vector"))

plot_fretboard

Arguments

X

y
key

scale

format

Details

65

character, valid pitch notation, e.g., "a2" or "a, ".

character, same as x for the sequence x:y. If a number, the length of the se-
quence from x and the sign of y determines the direction.

character, key signature for a diatonic sequence. key = NULL (default) results in
a chromatic sequence.

character, if you want to use a different scale in conjunction with the key/root
note, you can provide it, e.g., scale = "harmonic minor". Ignored if key =
NULL.

character, the timestep delimiter format, "space” or "vector”.

Note that all pitches resulting from the defined sequence must be in the semitone range 0-131 or an

error is thrown.

If not using a chromatic sequence and x (or y if also a pitch) is not part of the key signature or scale,
the sequence is internally bound. See examples.

Format of accidentals in the result is prioritized by the scale and key, the key when no scale is given,
then x (and y if also a pitch), and finally defaults to flats if ambiguous.

Value

noteworthy

Examples

chromatic sequence (default)

pitch_seq("a,

" 13)

pitch_seq("c5", -2)
pitch_seq("c", "b")

diatonic sequence
pitch_seq("c", 8, key = "c")
pitch_seq("c", 8, "am")

pitch_seq("c#,", "a#t'",

n

am::)

combine with alternative scale

pitch_seq("a", 8,

n n

am”, "harmonic minor")

plot_fretboard

Chord and fretboard diagram plots

Description

Create a fretboard diagram for a single chord or a general progression.

66

Usage

plot_fretboard(

)

string,

fret,

labels = NULL,

mute = FALSE,
label_size = 10,
label_color = "white",
point_size = 10,
point_color = "black"”,
point_fill = "black",
group = NULL,
horizontal = FALSE,
left_handed = FALSE,
fret_range = NULL,

accidentals = c("flat”, "sharp"),

tuning = "standard”,
show_tuning = FALSE,
asp = NULL,
base_size = 20

plot_chord(

chord,

labels = NULL,
label_size = 10,
label_color = "white”,
point_size = 10,
point_color = "black”,
point_fill = "black”,
group = NULL,
horizontal = FALSE,
left_handed = FALSE,
fret_range = NULL,

accidentals = c("flat”, "sharp"),

tuning = "standard”,
show_tuning = FALSE,
asp = NULL,
base_size = 20

Arguments

string
fret
labels

mute

integer or as a space-delimited character string; fret numbers.
character, optional text labels, must be one for every point.

logical vector or specific integer indices, which notes to mute.

plot_fretboard

integer or as a space-delimited character string; instrument string numbers.

plot_fretboard 67

label_size numeric, size of fretted note labels.

label_color character, label color.

point_size numeric, size of fretted note points.

point_color character, point color.

point_fill character, point fill color.

group optional vector to facet by.

horizontal logical, directional orientation.

left_handed logical, handedness orientation.

fret_range fret limits, if not NULL, overrides limits derived from fret.

accidentals character, when labels = "notes" represent accidentals: "flat"” or "sharp”.
tuning explicit tuning, e.g., "e,a,d gb e'", or a pre-defined tuning. See details.
show_tuning logical, show tuning of each string.

asp numeric, aspect ratio, overrides default aspect ratio derived from number of

strings and frets.

base_size base size for ggplot2: :theme_void.
chord character, a single chord given in fret notation. See details.
Details

These functions are under development and subject to change. They each return a ggplot object.

Use plot_chord to create a fretboard diagram of a specific chord. plot_chord accepts a char-
acter string in simple fretboard format, e.g., chord = "x02210". Zero is allowed in place of "0".
This only works when no spaces or semicolons are detected. The function checks for spaces first,
then semicolons, to split fret numbers. Do not mix formats. For example, you can use chord =
"x02210", chord="x 810 10 9 8" or chord = "x;8;10;10;9;8". Trailing delimiters are ignored
(LilyPond format: "x;8;10;10;9;8;"). If there are fewer fret values than there are strings on the
instrument, as inferred from tuning, then muted strings, x, are inferred for the remaining lower-
pitch strings.

plot_fretboard produces a more general fretboard diagram plot. It is intended for scales, arpeg-
gios and other patterns along the fretboard. For this function, provide vectors of string and fret
numbers. mute is available but not as applicable for this function. For single chord diagrams, use
plot_chord.

Number of strings is derived from tuning. See tunings for pre-defined tunings and examples of
explicit tunings. tuning affects point labels when labels = "notes”.

Value

a ggplot object

68 plot_music

Examples

General patterns: scale shifting exercise

string <- c(6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3,3, 3,2,2,2,1,1,1)
fret <- "24524524679679791079 10" # string input accepted
plot_fretboard(string, fret, labels = "notes”)

Single chord diagrams

open chord

idx <= c(1, 1, 2, 2, 2, 1)

fill <- c("white"”, "black”)[idx]

lab_col <- c("black”, "white")[idx]

plot_chord("x02210", "notes"”, label_color = lab_col, point_fill = fill)

moveable chord
plot_chord("”355433", horizontal = TRUE, show_tuning = TRUE)

plot_chord("0231") # leading x inferred; same as plot_chord(”xx0321")

plot_chord(”10 12 13 11", fret_range = c(10, 14))

plot_music Plot sheet music snippet with LilyPond

Description

These functions are wrappers around the render_music_* functions. They abstract the process of
rendering a sheet music snippet to png and loading the rendered image back into R to be displayed
as a plot in an open graphics device or inserted into an R Markdown code chunk.

Usage

plot_music(
music,
clef = "treble”,
tab = FALSE,
tuning = "standard”,
string_names = NULL,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,
res = 300

plot_music_tc(
music,
header = NULL,
paper = NULL,

plot_music

colors = NULL,
transparent = FALSE,
res = 300

)

plot_music_bc(
music,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,
res = 300

)

plot_music_tab(
music,
clef = NA,
tuning = "standard”,
string_names = NULL,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,

res = 300

)

plot_music_guitar(
music,
tuning = "standard”,

string_names = NULL,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,

res = 300

)

plot_music_bass(
music,
tuning = "bass”,

string_names = FALSE,
header = NULL,

paper = NULL,

colors = NULL,
transparent = FALSE,
res = 300

70 plot_music

Arguments
music a music object.
clef character, include a music staff with the given clef. NA to suppress. See track
for details.
tab logical, include tablature staff. NA to suppress. See track.
tuning character, string tuning, only applies to tablature. See track.

string_names label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

header anamed list of arguments passed to the header of the LilyPond file. See 1ilypond
details.

paper a named list of arguments for the LilyPond file page layout. See 1ilypond
details.

colors a named list of LilyPond element color global overrides. See 1ilypond for
details.

transparent logical, transparent background for intermediate png file.

res numeric, resolution, png only. Defaults to 300.

Details

While these functions abstract away the details of the process, this is not the same as making the
plot completely in R. R is only displaying the intermediary png file. LilyPond is required to engrave
the sheet music.

For R Markdown you can alternatively render the png using the corresponding render_music_x
function and then place it in the document explicitly using knitr: : include_graphics. See render_music
for more details.

Value

a plot

See Also

render_music, phrase, track, score, lilypond, tab

Examples

X <- "a,4;5x5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- "a,,4;3x5 b, ,4- c,4 c,g,c~4 c,g,cl c4;1 g,;2 c,;3 g,;2 c,c1;31"
y <- as_music(y)

Not run:

if(tabr_options()$lilypond != ""){ # requires LilyPond installation
plot_music(x)
plot_music(x, "treble_8", tab = TRUE)

ratio_to_cents 71

plot_music_tc(x)
plot_music_bc(x)

plot_music_tab(x)

plot_music_guitar(x)
plot_music_bass(y)

End(Not run)

ratio_to_cents Convert between chord frequency ratios and cents

Description

Convert between frequency ratios and logarithmic cents

Usage

ratio_to_cents(x, y = NULL)

cents_to_ratio(x)

Arguments

X a vector of ratios if y = NULL, otherwise frequencies. Cents for cents_to_ratio.

y if not NULL, frequencies and the ratios are given by y / x.

Value

numeric

Examples

ratio_to_cents(c(@0.5, 1, 1.5, 2))
cents_to_ratio(c(-1200, @, 701.955, 1200))

72 read_midi

read_midi Read, inspect and convert MIDI file contents

Description

Read MIDI file into a data frame and inspect the music data with supporting functions.
Usage

read_midi(file, ticks_per_qtr = 480)

midi_metadata(x)

midi_notes(x, channel = NULL, track = NULL, noteworthy = TRUE)

midi_time(x)

midi_key(x)

ticks_to_duration(x, ticks_per_qtr = 480)

duration_to_ticks(x, ticks_per_qtr = 480)
Arguments

file character, path to MIDI file.

ticks_per_qtr ticks per quarter note. Used to compute durations from MIDI file ticks.

X a data frame returned by read_midi. An integer vector for ticks_to_duration;
a character vector (may be a space-delimited string) for duration_to_ticks.

channel, track integer, filter rows on channel or track.

noteworthy logical, convert to noteworthy and noteinfo data.

Details

The read_midi function wraps around tuneR::readMidi by Uwe Ligges and Johanna Mielke.
midi_notes is a work in progress, but converts MIDI data to noteworthy strings and note info
formats. This makes it easy to analyze, transform and edit the music data as well as render it to
sheet music and a new MIDI file.

read_midi does not parse the ticks per quarter note from the MIDI file input at this time. It must
be specified with ticks_per_qtr

Value

a tibble data frame

render_chordchart

Examples

ticks_to_duration(c(120, 160))

ticks_to_duration(c(128, 192, 512), ticks_per_qtr = 384)
duration_to_ticks(c("t8", "8", "8.", "8.."))
duration_to_ticks(c("t8 8 8. 8.."), ticks_per_qtr = 384)

file <- system.file("example2.mid"”, package = "tabr")
if(require("tuneR”)){
X <- read_midi(file, ticks_per_qgtr = 384)
midi_metadata(x)
midi_time(x)
midi_key(x)
midi_notes(x, channel = @, noteworthy = FALSE)

(x <= midi_notes(x, channel = 0))
(x <= as_music(x$pitch, x$duration))

requires LilyPond installation
if(tabr_options()$lilypond != ""){
out <- file.path(tempdir(), "out.pdf")
phrase(x) %>% track_bc() %>% score() %>% tab(out, details = FALSE)
}
3

render_chordchart Render a chord chart with LilyPond

Description

Render a standalone chord chart of chord fretboard diagrams with LilyPond for a set of chords.

Usage
render_chordchart(
chords,
file,
size = 1.2,
header = NULL,
paper = NULL,

colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
details = FALSE

74

Arguments

chords

file

size

header
paper
colors
crop_png
transparent

res

keep_ly
details

Details

render_chordchart

named character vector of valid formatting for LilyPond chord names and val-
ues. See examples.

output file.

numeric, size of fretboard diagrams (relative to paper font size). Use this to
scale diagrams up or down.

a named list of arguments passed to the header of the LilyPond file. See details.
a named list of arguments for the LilyPond file page layout. See details.
reserved; not yet implemented for this function.

logical, see 1ilypond for details.

logical, transparent background, png only.

numeric, resolution, png only. transparent = TRUE may fail when res exceeds
~150.

logical, keep intermediate LilyPond file.
logical, set to TRUE to print LilyPond log output to console. Windows only.

This function uses a generates a LilyPond template for displaying only a fretboard diagram chart. It
then passes the file to LilyPond for rendering. To plot specific fretboard diagrams in R using ggplot
and with greater control, use plot_fretboard.

The options for paper include the following and have the following default values if not provided.

* textheight =220
e linewidth =150

e indent=0

e fontsize=10

* page_numbers = FALSE

e print_first_page_number = TRUE

e first_page_

number =1

fontsize only controls the global font size. If you want to scale the size of the fretboard diagrams
up or down use the the size argument rather than this paper value.

Note that chord chart output must fit on a single page. If the full set of chord diagrams does not fit
on one page then diagrams will be clipped in the rendered output. Use size to keep the output to
one page or make multiple sheets separately.

Value

writes files to disk

See Also

plot_fretboard, 1ilypond, tab

render_music 75

Examples

suppressPackageStartupMessages(library(dplyr))

chords <- filter(
guitarChords, root %in% c("c", "f") & id %in% c("7", "M7", "m7") &
lgrepl("#", notes) & root_fret <= 12) %>%
arrange(root, id)

chords <- setNames(chords$fretboard, chords$lp_name)

head(chords)

requires LilyPond installation
if(tabr_options()$lilypond != ""){
outfile <- file.path(tempdir(), "out.pdf")
hdr <- list(
title = "Dominant 7th, major 7th and minor 7th chords”,
subtitle = "C and F root”
)
render_chordchart(chords, outfile, 2, hdr, list(textheight = 175))
3

render_music Render sheet music snippet with LilyPond

Description

Render a sheet music/tablature snippet from a music object with LilyPond.

Usage
render_music(
music,
file,
clef = "treble",
tab = FALSE,
tuning = "standard”,

string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_tc(
music,

76

)

file,

header = NULL,
paper = NULL,
midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_bc(

)

music,
file,
header = NULL,
paper = NULL,
midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_tab(

)

music,

file,

clef = NA,

tuning = "standard”,
string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_guitar(

music,

file,

tuning = "standard”,
string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

render_music

render_music

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

)
render_music_bass(
music,
file,
tuning = "bass”,

string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

77

Arguments
music
file
clef

tab
tuning

string_names

a music object.
character, output file ending in .pdf or .png.

character, include a music staff with the given clef. NA to suppress. See track
for details.

logical, include tablature staff. NA to suppress. See track.
character, string tuning, only applies to tablature. See track.

label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.
anamed list of arguments passed to the header of the LilyPond file. See 1ilypond

a named list of arguments for the LilyPond file page layout. See lilypond

logical, also output an corresponding MIDI file.

a named list of LilyPond element color global overrides. See 1lilypond for

logical, transparent background, png only.

numeric, resolution, png only. transparent = TRUE may fail when res exceeds

logical, keep the intermediary LilyPond file.

header

details.
paper

details.
midi
colors

details.
transparent
res

~150.
keep_ly
simplify

logical, uses simplify_phrase to convert to simpler, more efficient LilyPond
syntax.

78 render_music

Details

These functions allow you to render short, simple snippets of sheet music directly from a music
object. This is useful when you do not need to build up from phrases to tracks to a full score.
They treat music as a single voice for a single track. This simplifies the possible output but is very
convenient when this is all you need.

These functions abstract the following pipeline,
music %>% phrase() %>% track() %>% score() %>% render_*()
for this simple edge case and directly expose the most relevant arguments.

All header list elements are character strings. The options for header include:

e title

* subtitle

* composer

* album

* arranger

e instrument

* meter

* opus

* piece

* poet

e copyright

e tagline
All paper list elements are numeric except page_numbers and print_first_page_number, which
are logical. page_numbers = FALSE suppresses all page numbering. When page_numbers = TRUE,
you can set print_first_page_number = FALSE to suppress printing of only the first page number.

first_page_number is the number of the first page, defaulting to 1, and determines all subsequent
page numbers. These arguments correspond to LilyPond paper block variables.

The options for paper include the following and have the following default values if not provided:

e textheight = 220
e linewidth =150
* indent =20
» fontsize =20
e page_numbers = FALSE
e print_first_page_number = TRUE
e first_page_number =1
textheight = 150 is the default, but for music snippet rendering, a value must be provided explic-

itly via paper when rendering to png. Otherwise for png outputs the height is cropped automatically
rather than remaining a full page. See 1ilypond for details.

render_music 79

Passing arguments to header can completely or partially prevent cropping in both direction, which
must then be done manually with linewidth and textheight. This is all based on underlying
LilyPond behavior.

If music contains lyrics and there are rests in the note sequence, note-lyric alignment is maintained
automatically when these functions remove the lyric timesteps corresponding to the rests prior to
sending to LilyPond. LilyPond skips rests when engraving lyrics and expects a shortened lyrics
sequence in comparison to how tabr matches by timestep including rests. This is in contrast to
track, for which you have to shorten the lyrics object yourself prior to combining with a phrase
object that has rests.

Value

nothing returned; a file is written.

See Also

plot_music, phrase, track, score, lilypond, tab

Examples

x <- "a,4;5%5 b,- c cgc'e'~ cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- "a,,4;3*5 b,,- ¢, c,g,c~ c,g,cl c4;1 g,;2 ¢,;3 g,;2 c,cl;31"
y <- as_music(y)

z <- as_music("a,4 b, r ¢~ c2 d", lyrics = as_lyrics("A2 B2 . C3 . D3"))

Not run:

if(tabr_options()$lilypond != ""){ # requires LilyPond installation
outfile <- file.path(tempdir(), "out.pdf")
render_music(x, outfile)

outfile <- file.path(tempdir(), "out.png")
render_music(x, outfile, "treble_8", tab = TRUE)

render_music_tc(x, outfile)
render_music_bc(x, outfile)

render_music_tab(x, outfile)
render_music_guitar(x, outfile)
render_music_bass(y, outfile)

lyrics example
render_music_guitar(z, outfile)

}

End(Not run)

80 repeats

repeats Repeat phrases

Description

Create a repeat section in LilyPond readable format.

Usage

rp(phrase, n = 1)
pct(phrase, n = 1, counter = FALSE, step = 1, reset = TRUE)

volta(phrase, n = 1, endings = NULL, silent = FALSE)

Arguments
phrase a phrase object or equivalent string to be repeated.
n integer, number of repeats of phrase (one less than the total number of plays).
counter logical, if TRUE, print the percent repeat counter above the staff, applies only to
measure repeats of more than two repeats (n > 2).
step integer, print the measure percent repeat counter above the staff only at every
step measures when counter = TRUE.
reset logical, percent repeat counter and step settings are only applied to the single
pct call and are reset afterward. If reset = FALSE, the settings are left open to
apply to any subsequent percent repeat sections in a track.
endings a single phrase or a list of phrases, alternate endings.
silent if TRUE, no text will be printed above the staff at the beginning of a volta sec-
tion.See details.
Details

These functions wraps a phrase object or a character string in LilyPond repeat syntax. The most
basic is rp for basic wrapping a LilyPond unfold repeat tag around a phrase. This repeats the phrase
n times, but it is displayed in the engraved sheet music fully written out as a literal propagation of
the phrase with no repeat notation used to reduce redundant presentation. The next is pct, which
wraps a percent repeat tag around a phrase. This is displayed in sheet music as percent repeat
notation whose specific notation changes based on the length of the repeated section of music, used
for beats or whole measures. volta wraps a phrase in a volta repeat tag, used for long repeats of
one or more full measures or bars of music, optionally with alternate endings.

Note that basic strings should still be interpretable as a valid musical phrase by LilyPond and such
strings will be coerced to the phrase class by these functions. For example, a one-measure rest,
"r1", does not need to be a phrase object to work with these functions, nor does any other character
string explicitly written out in valid LilyPond syntax. As always, see the LilyPond documentation
if you are not familiar with LilyPond syntax.

rest 81

VOLTA REPEAT: When silent = TRUE there is no indication of the number of plays above the
staff at the start of the volta section. This otherwise happens automatically when the number of
repeats is greater than one and no alternate endings are included (which are already numbered).
This override creates ambiguity on its own, but is important to use multiple staves are present and
another staff already displays the text regarding the number or plays. This prevents printing the
same text above every staff.

PERCENT REPEAT: As indicated in the parameter descriptions, the arguments counter and step
only apply to full measures or bars of music. It does not apply to shorter beats that are repeated
using pct.

Value

a phrase.

See Also

phrase

Examples

x <- phrase(”c ec'g' ec'g'"”, "4 4 2", "5 432 432")
el <- phrase("a", 1, 5) # ending 1
e2 <- phrase("b", 1, 5) # ending 2

rp(x) # simple unfolded repeat, one repeat or two plays
rp(x, 3) # three repeats or four plays

pct(x) # one repeat or two plays
pct(x, 9, TRUE, 5) # 10 plays, add counter every 5 steps
pct(x, 9, TRUE, 5, FALSE) # as above, but do not reset counter settings

volta(x) # one repeat or two plays

volta(x, 1, list(el, e2)) # one repeat with alternate ending

volta(x, 4, list(el, e2)) # multiple repeats with only one alternate ending
volta(x, 4) # no alternates, more than one repeat

rest Create rests

Description

Create multiple rests efficiently with a simple wrapper around rep using the times argument.

Usage

rest(x, n =1)

82

Arguments

X integer, duration.

n integer, number of repetitions.
Value

a character string.

Examples

rest(c(1, 8), c(1, 4))

scale-deg

scale-deg

Scale degrees and mappings

Description

These functions assist with mapping between scale degrees, notes and chords.

Usage

scale_degree(
notes,
key = "c",
scale = "diatonic”,
use_root = TRUE,
strict_accidentals =
naturalize = FALSE,

roman = FALSE

scale_note(deg, key = "c", scale = "diatonic”, collapse = FALSE,

note_in_scale(
notes,
key = IICH’
scale = "diatonic”,
use_root = TRUE,

strict_accidentals

chord_degree(
notes,
key = ”C”,
scale = "diatonic”,
strict_accidentals

naturalize = FALSE,

TRUE,

TRUE

TRUE,

scale-deg 83

roman = FALSE

)

is_in_scale(notes, key = "c", scale = "diatonic”, strict_accidentals = TRUE)
Arguments

notes character, a string of notes.

key character, key signature (or root note) for scale, depending on the type of scale.

scale character, the suffix of a supported scale_=* function.

use_root logical, use lowest pitch in chord. Otherwise yield an NA in output.

strict_accidentals
logical, whether representation must match key and scale. See details.

naturalize logical, whether to naturalize any sharps or flats before obtaiuning the scale
degree.

roman logical, return integer scale degrees as Roman numerals.

deg integer, roman class, or character roman, the scale degree.

collapse logical, collapse result into a single string ready for phrase construction.

additional arguments passed to the scale function, e.g., sharp = FALSE for scale_chromatic.

Details

Obtain the scale degree of a note in a supported scale with scale_degree. This function works on
any noteworthy string. It ignores octave numbering. Rests and any note not explicitly in the scale
return NA. If deg is greater than the number of degrees in the scale, it is recycled, e.g., in C major 8
starts over as C.

By default, flats and sharps checked strictly against the scale. Setting strict_accidentals =
FALSE will convert any flats or sharps present, if necessary based on the combination of key signa-
ture and scale. The chromatic scale is a special case where strict accidental is always ignored.

Not any arbitrary combination of valid key and valid scale is valid. For example, key = "am” and
scale = "harmonic" is valid, but not with key = "a".

note_in_scale is a wrapper around scale_degree. To check if full chords are diatonic to the
scale, see is_diatonic.

The inverse of scale_degree is scale_note, for obtaining the note associated with a scale degree.
This could be done simply by calling a scale_* function and indexing its output directly, but this
wrapper is provided to complement scale_degree. Additionally, it accepts the common Roman
numeral input for the degree. This can be with the roman class or as a character string. Degrees
return NA if outside the scale degree range.

Value

integer, or roman class if roman = TRUE for scale_degree. character for scale_note.

See Also

scale-helpers, is_diatonic

84

Examples

scale_degree("r c, e3 g~ g s g
note_in_scale("r c, e3 g~ g s

scale_degree("c e g", roman =

scale_degree("c c# d_ e", key
scale_degree("c c# d_ e", key

scale_degree("c, e_3 g' f#ac#”
scale_degree("c, e_3 g' f#ac#"

scale_degree("c# d_e_' e4 f f
scale_note(1:3, key = "am")

scale_note(c(1, 3, 8), "d", co
all(sapply(list(4, "IV", as.rol

x <- "d dfa df#a f#ac#"
chord_degree(x, "d")
is_in_scale(x, "d")

scale-helpers

ceg")
g# ceg”)

TRUE)

= "d")
= "d", strict_accidentals = FALSE)

, use_root = FALSE)
, haturalize = TRUE) # lowest chord pitch: c#

g", key = "c#", scale = "chromatic")

llapse = TRUE)
man(4)), scale_note) == "f")

scale-helpers Scale h

elpers

Description

Helper functions for working with musical scales.

Usage
scale_diatonic(key = "c", ¢
scale_major(key = "c", coll
scale_minor(key = "am”, col

scale_harmonic_minor(key =
scale_hungarian_minor(key =

scale_melodic_minor(
key = "am",
descending = FALSE,
collapse = FALSE,
ignore_octave = FALSE

)

ollapse = FALSE, ignore_octave = FALSE)
apse = FALSE, ignore_octave = FALSE)

lapse = FALSE, ignore_octave = FALSE)

n n

am"”, collapse = FALSE, ignore_octave = FALSE)

n n

am”, collapse = FALSE, ignore_octave = FALSE)

scale-helpers 85

scale_jazz_minor(key = "am", collapse = FALSE, ignore_octave = FALSE)

scale_chromatic(

n_n

root = "c",

collapse = FALSE,
sharp = TRUE,
ignore_octave = FALSE

Arguments

key character, key signature.
collapse logical, collapse result into a single string ready for phrase construction.

ignore_octave logical, strip octave numbering from scales not rooted on C.

descending logical, return the descending scale, available as a built-in argument for the
melodic minor scale, which is different in each direction.
root character, root note.
sharp logical, accidentals in arbitrary scale output should be sharp rather than flat.
Details

For valid key signatures, see keys.

Value

character

See Also

keys, mode-helpers

Examples
scale_diatonic(key = "dm")
scale_minor(key = "dm")

scale_major(key = "d")
scale_chromatic(root = "a")

scale_harmonic_minor("am"
scale_hungarian_minor("am")

identical(scale_melodic_minor("”am"), scale_jazz_minor("am"))
rev(scale_melodic_minor("am”, descending = TRUE))
scale_jazz_minor("am")

86 scale_chords

scale_chords Diatonic chords

Description

Obtain an ordered sequence of the diatonic chords for a given scale, as triads or sevenths.

Usage
scale_chords(
root = "c”,
scale = "major”,

type = c("triad”, "seventh"),
collapse = FALSE

)
Arguments

root character, root note or starting position of scale.

scale character, a valid named scale, referring to one of the existing scale_* func-

tions.

type character, type of chord, triad or seventh.

collapse logical, collapse result into a single string ready for phrase construction.
Value

character
Examples

scale_chords("c", "major")

scale_chords("”a", "minor")

scale_chords("a", "harmonic minor")

scale_chords("a"”, "melodic minor")

scale_chords("a", "jazz minor")

scale_chords(”a", "hungarian minor")

scale_chords("c", "major"”, "seventh”, collapse = TRUE)

scale_chords(”a", "minor"”, "seventh”, collapse = TRUE)

score 87

score Create a music score

Description

Create a music score from a collection of tracks.

Usage

score(track, chords = NULL, chord_seq = NULL)

Arguments
track a track table consisting of one or more tracks.
chords an optional named list of chords and respective fingerings generated by chord_set,
for inclusion of a top center chord diagram chart.
chord_seq an optional named vector of chords and their durations, for placing chord dia-
grams above staves in time.
Details

Score takes track tables generated by track and fortifies them as a music score. It optionally binds
tracks with a set of chord diagrams. There may be only one track in track as well as no chord
information passed, but for consistency score is still required to fortify the single track as a score
object that can be rendered by tab.

Value

a tibble data frame

See Also

phrase, track, trackbind

Examples

x <- phrase(”"c ec'g' ec'g'”, "4 4 2", "5 432 432")
x <= track(x)
score(x)

88 sf_phrase

sf_phrase Create a musical phrase from string/fret combinations

Description

Create a musical phrase from character strings that define string numbers, fret numbers and note
metadata. This function is a wrapper around phrase. It allows for specifying string/fret combina-
tions instead of unambiguous pitch as is used by phrase. In order to remove ambiguity, it is critical
to specify the instrument string tuning and key signature. It essentially uses string and fret in
combination with a known tuning and key signature to generate notes for phrase. info is passed
straight through to phrase, as is string once it is done being used to help derive notes.

Usage
sf_phrase(
string,
fret = NULL,
info = NULL,
key = ”C“ ,
tuning = "standard”,
to_notes = FALSE,
bar = NULL
)
sfp(
string,
fret = NULL,
info = NULL,
key = IICH s
tuning = "standard”,
to_notes = FALSE,
bar = NULL
)
sf_note(...)
sfn(...)
Arguments
string character, space-delimited or vector. String numbers associated with notes. Al-
ternatively, provide all information here in a single space-delimited string and
ignore fret and info. See details.
fret character, space-delimited or vector (or integer vector) of fret numbers associ-
ated with notes. Same number of timesteps as string.
info character, space-delimited or vector (or integer vector if simple durations) giving

metadata associated with notes. Same number of timesteps as string.

sf_phrase 89

key character, key signature or just specify “sharp” or "flat”.
tuning character, instrument tuning.
to_notes logical, return only the mapped notes character string rather than the entire

phrase object.

bar character or NULL (default). Terminates the phrase with a bar or bar check. See
details for phrase. Also see the LilyPond help documentation on bar notation
for all the valid options.

arguments passed to sf_phrase.

Details

See the main function phrase for general details on phrase construction.

Value

a phrase.

Comparison with phrase

This function is a wrapper function for users not working with musical notes (what to play), but
rather just position on the guitar neck (where to play). This approach has conveniences, but is more
limiting. In order to remove ambiguity, it is necessary to specify the instrument tuning and the key
signature.

In the standard approach with phrase you specify what to play; specifying exactly where to play is
optional, but highly recommended (by providing string). With sf_phrase, the string argument
is of course required along with fret. But any time the tuning changes, this "where to play" method
breaks down and must be redone. It is more robust to provide the string and pitch rather than the
string and fret. The key is additionally important because it is the only way to indicate if accidentals
should be notated as sharps or flats.

This wrapper also increases redundancy and typing. In order to specify rests r, silent rests s, and tied
notes ~, these must now be providing in parallel in both the string and fret arguments, whereas
in the standard method using phrase, they need only be provided once to notes. A mismatch will
throw an error. Despite the redundancy, this is helpful for ensuring proper match up between string
and fret, which is essentially a dual entry method that aims to reduce itself inside sf_phrase to a
single notes string that is passed internally to phrase.

The important thing to keep in mind is that by its nature, this method of writing out music does not
lend itself well to high detail. Tabs that are informed by nothing but string and fret number remove
a lot of important information, and those that attempt to compensate with additional symbols in
say, an ascii tab, are difficult to read. This wrapper function providing this alternative input method
to phrase does its job of allowing users to create phrase objects that are equivalent to standard
phrase-generated objects, including rests and ties. But practice and comfort working with phrase
is is highly recommended for greater control of development support.

The function sfp is a convenient shorthand wrapper for sf_phrase. sf_note and the alias sfn are
wrappers around sf_phrase that force to_notes = TRUE.

90 sf_phrase

Single-string input

Another way to use sf_phrase is to provide all musical input to string and ignore fret and
info as explicit arguments. Providing all three explicit arguments more closely mimics the inputs
of phrase and is useful when you have this information as three independent sources. However,
in some cases the single-argument input method can reduce typing, though this depends on the
phrase. More importantly, it allow you to reason about your musical inputs by time step rather
than by argument. If you provide all three components as a single character string to the string
argument, leaving both fret and info as NULL, then sf_phrase will decompose string into its
three component parts internally.

There are some rules for single-argument input. The three components are separated by semicolons
as "string;fret;info”. For example, "3;7x7;4" means begin on the third string (infer higher
number strings muted). The frets are 7th and 7th, meaning two notes are played. When an x is
present in the second entry it means a string is not played. This is how it is inferred that the string
numbers starting from the third string are strings 3 and 1 rather than 3 and 2 in this example. The
4 indicates a quarter note since it is part of the third entry where the additional info is specified.
This is contextual. For example, an x here would still indicate a dead note, rather than an unplayed
string in the second entry, so this is contextual.

A bonus when using this input method is that explicit string and info values persist from one
timestep to the next. Neither needs to be provided again until there is a change in value. For
example, "3;7x7;4 7x7 ;7x7;1" repeats the string and info values from timestep one for timestep
two. In timestep three, string numbers repeat again, but the duration changes from quarter note to
whole note.

Note that except when both string and info are repeating and only fret numbers are provided (see
timestep two above), two semicolons must be present so that it is unambiguous whether the sole
missing component is a string or info (see timestep three).

Ambiguity would arise from a case like "4 ;4" without the second semicolon. This type of indexing
was chosen over using two different delimiters.

If arest, r or s, is provided for the fret entry, then the string entry is ignored. When using this
input method, ties ~ are given in the info entry.

See the examples for a comparison of two identical phrases specified using both input methods for
sf_phrase.

See Also

phrase

Examples

sf_phrase(”5 4 3 2 1", "1 333 1", "8x4 1", key = "b_")

sf_phrase(”6 6 12 1 21", "133211 355333 11 (13) (13)(13)", "4 4 8 8 4",
key = "f")

sfp("6%2 1%4", "000232x2 2*%4", "4 4 8x4", tuning = "dropD"”, key = "d")

compare with single-argument input

s <- "3%5 53~%3 543x2 643"

f <- "987x2 775 553 335 77~%3 545 325 210"
i <= "2%x3 4. 16 4.x3 4%x3"

simplify_phrase 91

p1 <- sfp(s, f, i)

Nominally shorter syntax, but potentially much easier to reason about
p2 <- sfp("”3;987;2*2 775 ;553;4. ;335;16 5;7x7;4.~*3 ;545;4 325 6;2x10;")

identical(p1, p2)

simplify_phrase Simplify the LilyPond syntax of a phrase

Description

This function can be used to simplify the LilyPond syntax of a phrase. Not intended for direct use.
See details.

Usage
simplify_phrase(phrase)

Arguments

phrase a phrase object.

Details

This function not intended to be used directly, but is available so that you can see how LilyPond syn-
tax for phrases will be transformed by default in the process of creating a LilyPond file. This func-
tion is used by the 1ilypond function and associated render_* functions. When using 1ilypond
directly, this can be controlled by the simplify argument.

The result of this function is a character string containing simpler, more efficient LilyPond syntax.
It can be coerced back to a phrase with as_phrase, but its print method colors will no longer display
properly. More importantly, this simplification removes any possibility of transforming the phrase
back to its original inputs. The more complex but nicely structured original representation does
a better job at maintaining reasonable possibility of one to one transformation between a phrase
object and the inputs that it was built from.

Value

character

Examples

notes <- "a~ a b c' c'e'g'~ c'e'g""
info <- "8.. 8..-. 8- 8-* 4. 4."
(x <= p(notes, info))
as_phrase(simplify_phrase(x))

(x <= p(notes, info, 5))
as_phrase(simplify_phrase(x))

92

single-bracket

single-bracket

Single bracket methods for tabr classes

Description

Single bracket indexing and assignment. See tabr-methods for more details on methods for tabr

classes.

Usage

S3 method for
x[i]

S3 method for
x[i]

S3 method for
x[i]

S3 method for
x[i]

S3 replacement
x[i] <- value

S3 replacement
x[i] <- value

S3 replacement
x[i] <- value

S3 replacement
x[i] <- value

Arguments

X object.

i index.

value values to assign at index.
See Also

tabr-methods, note

class 'noteworthy'’

class 'noteinfo'

class 'music'

class 'lyrics'

method for class

method for class

method for class

method for class

-metadata

"noteworthy’

'noteinfo’

'music’

"lyrics'

string_unfold 93
Examples
noteworthy class examples
x <- as_noteworthy("a, b, c ce_g d4f#4a4")
x[3:4]
x[-2]
x[2] <- paste@(transpose(x[2], 1), "~")
X
noteinfo class examples
x <- as_noteinfo(c("4-", "t8(", "t8)", "t8x", "8"", "16"))
x[2:4]
x[-1]
x[5:6] <= c("16"", "8")
X
K[x == "4-"]
music class examples
X <- as_music("c,~4 c,1 c'e_'g'4-.%4")
x[1:3]
x[-c(1:2)]
x[3:6] <- "c'e'g'8"
X
string_unfold Fold and unfold strings
Description
Fold or unfold a string on the expansion operator.
Usage
string_unfold(x)
string_fold(x, n = 3)
Arguments
X character string, should be valid notes or note info such as beats.
n integer, minimum number of consecutive repeated values to warrant folding,
defaults to 3.
Details

These function work on arbitrary stings. They do not perform a noteworthy check. This allows
them to work for info strings as well. Make sure your strings are properly formatted. string_fold

always collapses the output string as space-delimited.

94

Value

character

Examples

time <- "8%3 16 4.. 16 16 2 2 4. 8 4 4 8x4 1"
x <- string_unfold(time)

X

string_fold(x) == time

n ' d

tab

notes <- "a, b, cde fg#tarac'e' ac' e ¢'rrra
x <- string_fold(notes)
X
string_unfold(x) == notes
tab Render sheet music with LilyPond
Description

Render sheet music/tablature from a music score with LilyPond.

Usage

tab(
score,
file,
key = "c",
time = "4/4",
tempo = "2 = 60",
header = NULL,
paper = NULL,
string_names = NULL,
endbar = "|."
midi = TRUE,
colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,
keep_ly = FALSE,
simplify = TRUE,
details = FALSE

’

render_tab(
score,
file,

tab

)

key = "c",

time = "4/4",

tempo = "2 = 60",
header = NULL,

paper = NULL,
string_names = NULL,
endbar = "|.",

midi = TRUE,

colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE,
details = FALSE

render_score(

)

render_midi(score, file, key =

score,
file,

key = "c",

time = "4/4",

tempo = "2 = 60",
header = NULL,

paper = NULL,

endbar = "|.",
colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE,
details = FALSE

Arguments

score

file

key
time

tempo

a score object.

95

"c”, time = "4/4", tempo = "2 = 60")

character, output file ending in .pdf or .png for sheet music or tablature for

score. May include an absolute or relative path. For render_midi, a file ending

in .mid.

character, key signature, e.g., ¢, b_, f#m, etc.
character, defaults to "4/4".

character, defaults to "2 = 60". Set to NULL to suppress display of the time sig-

nature in the output.

96

tab

header anamed list of arguments passed to the header of the LilyPond file. See 1ilypond
for details.
paper a named list of arguments for the LilyPond file page layout. See 1ilypond for

string_names

details.

label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

endbar character, the global end bar.

midi logical, output midi file in addition to sheet music.

colors a named list of LilyPond element color overrides. See 1ilypond for details.

crop_png logical, see 1ilypond for details.

transparent logical, transparent background, png only.

res numeric, resolution, png only. transparent = TRUE may fail when res exceeds
~150.

keep_ly logical, keep the intermediary LilyPond file.

simplify logical, uses simplify_phrase to convert to simpler, more efficient LilyPond
syntax for the LilyPond file before rendering it.

details logical, set to TRUE to print LilyPond log output to console. Windows only.

Details

Generate a pdf or png of a music score using the LilyPond music engraving program. Output
format is inferred from file extension. This function is a wrapper around 1ilypond, the function
that creates the LilyPond (. ly) file.

render_score renders score to pdf or png. render_midi renders a MIDI file based on score.
This is still done via LilyPond. The sheet music is created automatically in the process behind the
scenes but is deleted and only the MIDI output is retained.

The original tab or render_tab (equivalent) produces both the sheet music and the MIDI file out-
put by default and includes other arguments such as the tablature-relevant argument string_names.
This is the all-purpose function. Also use this when you intend to create both a sheet music docu-
ment and a MIDI file.

Remember that whether a track contains a tablature staff, standard music staff, or both, is defined
in each individual track object contained in score. It is the contents you have assembled in score
that dictate what render function you should use. render_tab is general and always works, but
render_score would not be the best choice when a tablature staff is present unless you accept the
default string naming convention.

render_midi is different from midily and miditab, whose purpose is to create sheet music from
an existing MIDI file using a LilyPond command line utility.

For Windows users, add the path to the LilyPond executable to the system path variable. For
example, if the file is at C: /Program Files (x86)/LilyPond/usr/bin/1lilypond.exe, then add
C:/ProgramFiles (x86)/LilyPond/usr/bin to the system path.

Value

nothing returned; a file is written.

tabr 97

See Also

lilypond, render_chordchart, miditab

Examples
if(tabr_options()$lilypond != ""){
x <= phrase(”c ec'g' ec'g'”, "4 4 2", "5 432 432")

x <- track(x)

x <- score(x)

outfile <- file.path(tempdir(), "out.pdf")
tab(x, outfile) # requires LilyPond installation

3
tabr tabr: Music notation syntax, manipulation, analysis and transcription
in R.
Description

The tabr package provides a music notation syntax and a collection of music programming func-
tions for generating, manipulating, organizing and analyzing musical information in R.

Details

The music notation framework facilitates creating and analyzing music data in notation form. Music
data can be viewed, manipulated and analyzed while in different forms of representation based
around different data structures: strings and data frames. Each representation offers advantages
over the other for different use cases. Music syntax can be entered directly and represented in
character strings to minimize the formatting overhead of data entry by using simple data structures,
for example when wanting to quickly enter and transcribe short pieces of music to sheet music or
tablature. The package contains functions for directly performing various mathematical, logical
and organizational operations and musical transformations on special object classes that facilitate
working with music data and notation. The same music data can also be organized in tidy data
frames, allowing for a more familiar and powerful approach to the analysis of large amounts of
structured music data. Functions are available for mapping seamlessly between these data structures
and their representations of musical information. The package also provides API wrapper functions
for transcribing musical representations in R into guitar tablature ("tabs") and basic sheet music
using the LilyPond backend <http://lilypond.org>.

LilyPond is an open source music engraving program for generating high quality sheet music based
on markup syntax. The package generates LilyPond files from R code and can pass them to Lily-
Pond to be rendered into sheet music pdf files.

While LilyPond caters to sheet music in general and tabr can be used to create basic sheet music,
the transcription functions focus on leveraging LilyPond specifically for creating quality guitar
tablature.

The package offers nominal MIDI file output support in conjunction with rendering sheet music.
The package can read MIDI files and attempts to structure the MIDI data to integrate as best as
possible with the data structures and functionality found throughout the package.

98 tabr-c

tabr offers a useful but limited LilyPond API and is not intended to access all LilyPond function-
ality from R, nor is transcription via the API the entire scope of tabr. If you are only creating sheet
music on a case by case basis, write your own LilyPond files manually. There is no need to use
tabr or limit yourself to its existing LilyPond APIL. If you are generating music notation program-
matically, tabr provides the ability to do so in R and has the added benefit of converting what you
write in R code to the LilyPond file format to be rendered as printable guitar tablature.

While LilyPond is listed as a system requirement for tabr, you can use the package for music
analysis without installing LilyPond if you do not intend to render tabs.

tabr-c Concatenate for tabr classes

Description

Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods
for more details on methods for tabr classes.

Usage
S3 method for class 'noteworthy'
c(...)
S3 method for class 'noteinfo'
c(...)
S3 method for class 'music'
c(...)
S3 method for class 'lyrics'
c(...)
S3 method for class 'phrase'
c(...)

Arguments

objects.
See Also

tabr-methods, note-metadata

tabr-head 99

Examples

noteworthy class examples
x <- "a b c"

c(x, x)

c(as_noteworthy(x), x)

noteinfo class examples
X <= "4- t8(t8)(t8) 4x2"
c(as_noteinfo(x), x)

music class examples
x <= "c,~4 c,1 c'e_"'g'4-.%x2"
c(as_music(x), x)

phrase class examples
c(phrase(x), x)

tabr-head Head and tail for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
head(x, ...)

S3 method for class 'noteinfo'
head(x, ...)

S3 method for class 'music'
head(x, ...)

S3 method for class 'lyrics'
head(x, ...)

S3 method for class 'noteworthy'
tail(x, ...)

S3 method for class 'noteinfo’
tail(x, ...)

S3 method for class 'music'
tail(x, ...)

100 tabr-length

S3 method for class 'lyrics'

tail(x, ...)
Arguments
X object.
number of elements to return.
See Also

tabr-methods, note-metadata

Examples

noteworthy class examples
x<-"abcdefg"
head(x, 2)
head(as_noteworthy(x), 2)
tail(as_noteworthy(x), 2)

noteinfo class examples
X <= "4x 4-.%8 2 4"
head(as_noteinfo(x))
tail(as_noteinfo(x))

music class examples

x <- "c,~4 c,1 c'e_"'g'4-."
head(as_music(x), 2)
tail(as_music(x), 2)

tabr-length Length for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
length(x)

S3 method for class 'noteinfo’
length(x)

S3 method for class 'music'
length(x)

tabr-methods 101

S3 method for class 'lyrics'
length(x)

Arguments

X object.

See Also

tabr-methods, note-metadata

Examples

noteworthy class examples

x <- "ab c"

length(x)

length(as_noteworthy(x))
length(as_noteworthy("a b*2 c*x2"))

noteinfo class examples
x <= "4- t8(t8)(t8) 4x2"
length(x)
length(as_noteinfo(x))

music class examples

x <= "c,~4 c,1 c'e_'g"'4-.%4"
length(x)
length(as_music(x))

tabr-methods Summary of implemented S3 generic methods

Description

Several methods are implemented for the classes noteworthy, noteinfo, music and lyrics. See
further below for details on limited implementations for the phrase class.

Arguments
X object.
i index.
value values to assign at index.
additional arguments.
Details

In addition to custom print and summary methods, the following methods have been implemented
for all four classes: [, [<-, [[, [[<-, length, c, rep, rev, head and tail. Logical operators are
also implemented for noteworthy strings.

102 tabr-methods

Methods length and c

The implementation of length is equivalent to n_steps. They access the same attribute, returning
the number of timesteps in the object. This gives the same result even when the underlying string is
in space-delimited format. To obtain the character string length, coerce with as.character or any
other function that would have the same effect.

The implementation of ¢ for these classes is strict and favors the object class in question. This is
different from how ¢ might normally behave, coercing objects of different types such as numeric
and character to character.

For these four classes, c is strict in that it will return an error if attempting to concatenate one of
these classes with any other class besides character. This includes each other. While it would be
possible to coerce a music object down to a noteworthy object or a noteinfo object, this is the
opposite of the aggressive coercion these classes are intended to have with c so this is not done.

While other classes such as numeric immediately return an error, any concatenation with character
strings attempts to coerce each character string present to the given class. If coercion fails for any
character class object, the usual error is returned concerning invalid notes or note info present. If
coercion succeeds for all character strings, the result of c is to concatenate the timesteps of all
objects passed to it. The output is a new noteworthy, noteinfo ormusic object.

Methods rep rev head and tail

The rep function is similar to c except that it never has to consider other classes. You could pass
a vector of objects to rep, but doing so with ¢ will already have resolved all objects to the single
class. Again, what matters is not the underlying length or elements in the character vector the class
is built upon, but the timesteps. rep will extend x in terms of timesteps. You can also provide the
each or times arguments.

rev, head and tail work similarly, based on the sequence of timesteps, not the character vector
length.

Remember that this accounts not only for vectors of length one that contain multiple timesteps
in space-delimited time format, but also that multiple timesteps can be condensed even in space-
delimited time format with the * expansion operator. For example, "a'*4 b'*2" has six timesteps
in this form as well as in vector form. The object length is neither one nor two. All of these generic
method implementations work in this manner.

Square brackets

Single and double bracket subsetting by index work similarly to what occurs with lists. Single
bracket subsetting returns the same object, but only containing the indexed timesteps. Double
bracket subsetting only operates on a single timestep and extracts the character string value.

For assignment, single and double brackets change the value at timesteps and return the same object,
but again double brackets only allow indexing a single timestep. Double bracket indexing is mostly
useful for combining the steps of extracting a single value and discarding the special class in one
command.

Limited phrase implementations

Methods implemented for the phrase are limited to ¢ and rep. Due to the complex LilyPond syntax,
applying most of the functions above directly to phrases is problematic. c is implemented like it

tabr-methods 103

is for the other classes. rep is restricted in that it can only repeat the entire phrase sequence, not
the timesteps within. However, you can convert a phrase class back to noteworthy and noteinfo
objects (under reasonable conditions). See notifly.

One exception made for phrase with respect to concatenation is that an attempt to concatenate any
combination of phrase and music objects, in any order, results in coercion to a new phrase. This
happens even in a case where the first object in the sequence is a music object (thus calling c.music
rather than c.phrase). It will subsequently fall back to c.phrase in that case.

See Also

note-logic, note-metadata

Examples

noteworthy class examples
x <- as_noteworthy("a, b, c ce_g d4f#4a4")

X
x[3:4]

x[-2]

x[2] <- paste@(transpose(x[2], 1), "~")
X

length(x) # equal to number of timesteps
c(x, x)

tail(rep(x, times = c(1, 2, 1, 3, 1)))

noteinfo class examples

x <- as_noteinfo(c("4-", "t8(", "t8)", "t8x", "8*", "16"))
X

x[2:4]

x[-1]

x[5:6] <= c("16"", "8")

X

x[x == "4-"]

c(x[1], x[2]1) == c(x[1:2])

head(rep(x, each = 2))

music class examples

x <- as_music("c,~4 c,1 c'e_'g'4-.x4")
X

x[1:3]

x[-c(1:2)]

x[3:6] <- "c'e'g'8"

X

c(x[1], x[11) == x[c(1, 1]

rev(x)

x[[3]1]
x[[31] <= "b_t8"
X

104 tabr-rep

tabr-rep Repeat for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
rep(x, ...)

S3 method for class 'noteinfo'
rep(x, ...)

S3 method for class 'music'
rep(x, ...)

S3 method for class 'lyrics'
rep(x, ...)

S3 method for class 'phrase'

rep(x, ...)
Arguments
X object.
additional arguments. Not accepted for phrase objects.
See Also

tabr-methods, note-metadata

Examples

noteworthy class examples
x <- "abc"

rep(x, 2)
rep(as_noteworthy(x), 2)

noteinfo class examples
X <= "4x 4-.%2 2"
rep(as_noteinfo(x), times = c(2, 1, 1, 2))

music class examples
x <- "c,~4 c,1 c'e_"'g'4-."
rep(as_music(x), each = 2)

tabr-rev 105

phrase class examples
rep(phrase(x), 2)

tabr-rev Reverse for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods
for more details on methods for tabr classes.

Usage
S3 method for class 'noteworthy'

rev(x)

S3 method for class 'noteinfo’
rev(x)

S3 method for class 'music'
rev(x)

S3 method for class 'lyrics'
rev(x)
Arguments

X object.

See Also

tabr-methods, note-metadata

Examples

noteworthy class examples
x <- "ab c"

rev(x)
rev(as_noteworthy(x))

noteinfo class examples
X <= "4x 4-.%2 2"
rev(as_noteinfo(x))

music class examples
x <- "c,~4 c,1 c'e_"'g'4-."
rev(as_music(x))

106 tabr_options

tabrSyntax tabr syntax

Description

A data frame containing descriptions of syntax used in phrase construction in tabr.

Usage

tabrSyntax

Format

A data frame with 3 columns for syntax description, operators and examples.

tabr_options Options

Description

Options for tabr package.

Usage

tabr_options(...)

Arguments

a list of options.

Details

Currently only 1ilypond, midi2ly and python are used. On Windows systems, if the system path
for lilypond.exe, midi2ly and python.exe are not stored in the system PATH environmental variable,
they must be provided by the user after loading the package.

Value

The function prints all set options if called with no arguments. When setting options, nothing is
returned.

Examples

tabr_options()
lilypond_path <- "C:/Program Files (x86)/LilyPond/usr/bin/1lilypond.exe”
tabr_options(lilypond = lilypond_path)

tie

107

tie Tied notes

Description

Tie notes efficiently.

Usage

tie(x)

untie(x)

Arguments

X character, a single chord.

Details

This function is useful for bar chords.

Value

a character string.

Examples

tie("e,b,eghe'")

to_tabr Music notation syntax converters

Description

Convert alternative representations of music notation to tabr syntax.

Usage

to_tabr(id, ...)

n_n

from_chorrrds(x, key = "c", guitar

FALSE, gc_args

from_music21(x, accidentals = c("flat”, "sharp"), output = c("music”, "list"))

108 to_tabr

Arguments
id character, suffix of from_x function, e.g., "chorrrds”
arguments passed to the function matched by id.
X character, general syntax input. See details and examples for how inputs are
structured for each converter.
key key signature, used to enforce consistent use of flats or sharps.
guitar logical, attempt to match input chords to known guitar chords in guitarChords.
Otherwise by default standard piano chords of consecutive pitches covering min-
imum pitch range are returned.
gc_args named list of additional arguments passed to gc_info, used when guitar =
TRUE.
accidentals character, represent accidentals, "flat"” or "sharp”.
output character, type of output when multiple options are available.
Details

These functions convert music notation from other data sources into the style used by tabr for
music analysis and sheet music transcription.

Value

noteworthy string for chorrrds; music string or list for music21.

Syntax converter for chorrrds

The input x is a character vector of chords output from the chorrrds package, as shown in the
examples. Output is a noteworthy string object.

Some sources do not offer as complete or explicit information in order to make sheet music. How-
ever, what is available in those formats is converted to the extent possible and available function
arguments can allow the user to add some additional specification. Different input syntax makes
use of a different syntax converter. Depending on the format, different arguments may be available
and/or required. The general wrapper function for all of the available syntax converters is to_tabr.
This function takes an id argument for the appropriate converter function. See examples.

For example, output from the chorrrds package that scrapes chord information from the Cifraclub
website only provides chords, not note for note transcription data for any particular instrument.
This means the result of syntax conversion still yields only chords, which is fine for data analysis
but doesn’t add anything useful for sheet music transcription.

The input in this case also does not specify distinct pitches by assigning octaves numbers to a
chord’s notes, not even the root note. It remains up to the user if they want to apply the information.
By default, every chord starts in octave three. It is also ambiguous how the chord is played since all
that is provided is a generic chord symbol. By default a standard chord is constructed if it can be
determined.

Setting guitar = TRUE switches to using the guitarChords dataset to find matching guitar chords
using gc_info, which can be provided additional arguments in a named list to gc_args. For guitar,
this allows some additional control over the actual structure of the chord, its shape and position on

track 109

the guitar neck. The options will never work perfectly for all chords in chords, but at a minimum,
typical default component pitches will be determined and returned in tabr notation style.

Syntax converter for music21

The input x is a character vector of in music21 tiny notation syntax, as shown in the examples.
Default output is a music object. Setting output = "1ist"” returns a list of three elements: a note-
worthy string, a note info string, and the time signature.

The recommendation for music21 syntax is to keep it simple. Do not use the letter n for explicit
natural notes. Do not add text annotations such as lyrics. Double flats and sharps are not supported.
The examples demonstrate what is currently supported.

Examples

chorrrds package output

chords <- c("Bb"”, "Bbm", "Bbm7", "Bbm7(b5)", "Bb7(#5)/G", "Bb7(#5)/Ab")
from_chorrrds(chords)

to_tabr(id = "chorrrds”, x = chords)

from_chorrrds(chords, guitar = TRUE)
to_tabr(id = "chorrrds”, x = chords, guitar = TRUE)

music21 tiny notation
X <- "4/4 CCH#FF4.. trip{c#8eg# d'- e-' f ga'} D4~# D E F r B16"
from_music21(x)

from_music21(x, accidentals = "sharp")
from_music21(x, output = "list")
track Create a music track
Description

Create a music track from a collection of musical phrases.

Usage

track(
phrase,
clef = "treble_8",
key = NA,
tab = TRUE,
tuning = "standard”,
voice = 1,
lyrics = NA

110 track

track_guitar(
phrase,
clef = "treble_8",
key = NA,
tab = TRUE,
tuning = "standard”,
voice = 1,
lyrics = NA
)

track_tc(phrase, key = NA, voice = 1, lyrics = NA)

NA)

1, lyrics

track_bc(phrase, key = NA, voice

track_bass(phrase, key = NA, voice = 1, lyrics = NA)

Arguments
phrase a phrase object.
clef character, include a music staff with the given clef. NA to suppress. See details.
key character, key signature for music staff. See details.
tab logical, include tablature staff. NA to suppress.
tuning character, pitches describing the instrument string tuning or a predefined tuning
ID (see tunings). Defaults to standard guitar tuning; not relevant if tablature
staff is suppressed.
voice integer, ID indicating the unique voice phrase belongs to within a single track
(another track may share the same tab/music staff but have a different voice ID).
Up to two voices are supported per track.
lyrics a lyrics object or NA. See details.
Details

Musical phrases generated by phrase are fortified in a track table. All tracks are stored as track
tables, one per row, even if that table consists of a single track. track creates a single-entry track
table. See trackbind for merging single tracks into a multi-track table. This is row binding that
also properly preserves phrase and track classes.

There are various track_x* functions offering sensible defaults based on the function suffix. The
original track function is equivalent to track_guitar. See examples. Setting clef =NA or tab
= NA suppresses the music staff or tablature staff, respectively. By default key = NA, in which case
its inherits the global key from the key argument of various sheet music rendering functions. If
planning to bind two tracks as one where they are given voice = 1 and voice = 2, respectively, they
must also have a common key, even if key = NA.

lyrics should only be used for simple tracks that do not contain repeats. You also need to ensure
the timesteps for lyrics align with those of phrase in advance. Additionally, LilyPond does not
engrave lyrics at rests or tied notes (excluding first note in tied sequence) so if Therefore, if phrase

trackbind 111

contains rests and tied notes then the lyrics object should be subset to exclude these timesteps as
well. This is in contrast to using render_music#* functions, which handle this automatically for
music objects.

Value

a tibble data frame

See Also

phrase, score

Examples

x <- phrase("c ec'g' ec'g'", "4 4 2", "5 4 4")

track(x) # same as track_guitar(x); 8va treble clef above tab staff
track_tc(x) # treble clef sheet music, no tab staff

track_bc(x) # bass clef sheet music, no tab staff

x <- phrase("c, g,c g,c", "4 42", "3 22")
track_bass(x) # includes tab staff and standard bass tuning

trackbind Bind track tables

Description

Bind together track tables by row.

Usage
trackbind(..., id)

Arguments
single-entry track data frames.
id integer, ID vector indicating distinct tracks corresponding to distinct sheet music
staves. See details.
Details

This function appends multiple track tables into a single track table for preparation of generating a
multi-track score. id is used to separate staves in the sheet music/tablature output. A track’s voice
is used to separate distinct voices within a common music staff.

If not provided, id automatically propagates 1:n for n tracks passed to ... when binding these
tracks together. This expresses the default assumption of one staff or music/tab staff pair per track.
This is the typical use case.

112

transpose

Some tracks represent different voices that share the same staff. These should be assigned the same
id, in which case you must provide the id argument. Up to two voices per track are supported. An
error will be thrown if any two tracks have both the same voice and the same id. The pair must
be unique. E.g., provide id = c(1,1) when you have two tracks with voice equal to 1 and 2. See

examples.

Note that the actual ID values assigned to each track do not matter; only the order in which tracks
are bound, first to last.

Value

a tibble data frame

See Also

phrase, track, score

Examples

x <- phrase("c ec'g' ec'g'", "4 4 2", "5 432 432")

x1 <- track(x)

x2 <- track(x, voice = 2)
trackbind(x1, x1)
trackbind(x1, x2, id = c(1, 1))
transpose Transpose pitch
Description
Transpose pitch by a number of semitones.
Usage
transpose(notes, n = @, octaves = NULL, accidentals = NULL, key = NULL)

tp(notes, n = 0

Arguments

notes

n

octaves
accidentals

key

, octaves = NULL, accidentals = NULL, key = NULL)

character, a noteworthy string.

integer, positive or negative number of semitones to transpose.

NULL or character, "tick” or "integer" octave numbering in result.
NULL or character, represent accidentals, "flat” or "sharp”.

NULL or character, use a key signature to specify and override accidentals.
Ignored if ¢ or am.

tunings 113

Details

This function transposes the pitch of notes in a noteworthy string.

Transposing is not currently supported on a phrase object. The notes in a phrase object have al-
ready been transformed to LilyPond syntax and mixed with other potentially complex information.
Transposing is intended to be done on a string of notes prior to passing it to phrase. It will work
on strings that use either integer or tick mark octave numbering formats and flats or sharps, in any
combination. The transposed result conforms according to the function arguments. When integer
octaves are returned, all 3s are dropped since the third octave is implicit in LilyPond.

When octaves, accidentals and key are NULL, formatting is inferred from notes. When mixed
formats are present, tick format is the default for octave numbering and flats are the default for
accidentals.

Value

character

Examples

transpose(”a_3 b_4 c5", 0)

tp("a_3 b_4 c5", -1)

tp("a_3 b_4 c5", 1)

tp("a#3 b4 c#5", 11)

tp("a#3 b4 c#5", 12)

tp("r s a#3 b4 c#5”, 13)

tp("a b' c#''", 2, "integer"”, "flat")
tp("a, b ceg”, 2, "tick"”, "sharp")

tunings Predefined instrument tunings

Description
A data frame containing some predefined instrument tunings commonly used for guitar, bass, man-
dolin, banjo, ukulele and orchestral instruments.

Usage

tunings

Format

A data frame with 2 columns for the tuning ID and corresponding pitches and 32 rows for all
predefined tunings.

114 tuplet

tuplet Tuplets

Description

Helper function for generating tuplet syntax.

Usage
tuplet(x, n, string = NULL, a = 3, b = 2)

triplet(x, n, string = NULL)

Arguments
X noteworthy string or phrase object.
n integer, duration of each tuplet note, e.g., 8 for 8th note tuplet.
string, character, optional string or vector with same number of timesteps as x that
specifies which strings to play for each specific note. Only applies when x is a
noteworthy string.
a integer, notes per tuplet.
integer, beats per tuplet.
Details

This function gives control over tuplet construction. The default arguments a = 3 and b = 2 generates
a triplet where three triplet notes, each lasting for two thirds of a beat, take up two beats. n is used to
describe the beat duration with the same fraction-of-measure denominator notation used for notes
in tabr phrases, e.g., 16th note triplet, 8th note triplet, etc.

If you provide a note sequence for multiple tuplets in a row of the same type, they will be connected
automatically. It is not necessary to call tuplet each time when the pattern is constant. If you
provide a complete phrase object, it will simply be wrapped in the tuplet tag, so take care to ensure
the phrase contents make sense as part of a tuplet.

Value

phrase

Examples

tuplet(”c c# d", 8)
triplet("c c# d”, 8)
tuplet("c c# d c c#t d”", 4, a =6, b = 4)

p1 <- phrase("c c# d", "8-. 8(8)", "5x3")
tuplet(pl, 8)

valid-noteinfo 115

valid-noteinfo Check note info validity

Description

Check whether a note info string is comprised exclusively of valid note info syntax. noteinfo
returns a scalar logical result indicating whether the entire set contains exclusively valid entries.

Usage

informable(x, na.rm = FALSE)
as_noteinfo(x, format = NULL)

is_noteinfo(x)

Arguments

X character, a note info string.

na.rm remove NAs.

format NULL or character, the timestep delimiter format, "space” or "vector"”.
Details

as_noteinfo can be used to coerce to the noteinfo class. Coercion will fail if the string is has any
syntax that is not valid for note info. Using the noteinfo class is generally not needed by the user
during an interactive session, but is available and offers its own print and summary methods for
note info strings. The class is often used by other functions, and functions that output a note info
string attach the noteinfo class.

When format = NULL, the timestep delimiter format is inferred from the note info string input.
When unclear, such as with phrase objects, the default is space-delimited time.
Value

depends on the function

See Also

noteinfo, valid-notes

Examples

a <- notate("8x", "Start here")
x <- paste(a, "8[stacatto] 8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8*x4 1 1")

informable(x) # is it of 'noteinfo' class; a validity check for any string
x <- as_noteinfo(x) # coerce to 'noteinfo' class

116 valid-notes

is_noteinfo(x) # check for 'noteinfo' class
X

summary (x)

valid-notes Check note and chord validity

Description

Check whether a string is comprised exclusively of valid note and/or chord syntax. is_note and
is_chord are vectorized and their positive results are mutually exclusive. noteworthy is also
vectorized and performs both checks, but it returns a scalar logical result indicating whether the
entire set contains exclusively valid entries.

Usage

is_note(x, na.rm = FALSE)

is_chord(x, na.rm = FALSE)

noteworthy(x, na.rm = FALSE)

as_noteworthy(x, octaves = NULL, accidentals = NULL, format = NULL)

is_noteworthy(x)

Arguments
X character, a noteworthy string.
na.rm remove NAs.
octaves NULL or character, "tick"” or "integer" octave numbering in result.
accidentals NULL or character, represent accidentals, "flat"” or "sharp”.
format NULL or character, the timestep delimiter format, "space” or "vector"”.
Details

as_noteworthy can be used to coerce to the noteworthy class. Coercion will fail if the string is
not noteworthy. While many functions will work on simple character strings and, if their syntax is
valid, coerce them to the 'noteworthy’ class, it is recommended to use this class. Not all functions
are so aggressive, and several generic methods are implemented for the class. It also offers its own
print and summary methods for noteworthy strings. An added benefit to using as_noteworthy
is to conform all notes in a noteworthy string to specific formatting for accidentals and octave
numbering. Functions that output a noteworthy string attach the noteworthy class.

When octaves, accidentals, and format are NULL, formatting is inferred from the noteworthy
string input. When mixed formats are present, tick format is the default for octave numbering and
flats are the default for accidentals.

valid-notes 117

Value

depends on the function

See Also

note-checks, note-metadata, note-summaries, note-coerce

Examples

x <- "a# b_c, d'' e3 g_4 A m c2e_2g2 cegh” # includes invalid syntax
data.frame(

x = strsplit(x, " ")[[1]],

note = is_note(x),

chord = is_chord(x),

either = noteworthy(x))

is_diatonic("ace ac#e d e_", "c")

x <- "a# b_ c,~c, d'' e3 g_4 c2e_2g2"

noteworthy(x) # is it noteworthy; a validity check for any string

x <- as_noteworthy(x) # coerce to 'noteworthy' class, conform formatting
is_noteworthy(x) # check for 'noteworthy' class

X

summary (x)

x <- as_noteworthy(x, format = "vector”, octaves = "integer”,
accidentals = "flat")

X

summary (x)

Index

!=.noteworthy (note-logic), 49
* datasets

articulations, 5

guitarChords, 23

mainIntervals, 35

tabrSyntax, 106

tunings, 113
<.noteworthy (note-logic), 49
<=.noteworthy (note-logic), 49
==.noteworthy (note-logic), 49
>.noteworthy (note-logic), 49
>=.noteworthy (note-logic), 49
[.1lyrics (single-bracket), 92
[.music (single-bracket), 92
[.noteinfo (single-bracket), 92
[.noteworthy (single-bracket), 92
[<-.lyrics (single-bracket), 92
[<-.music (single-bracket), 92
[<-.noteinfo (single-bracket), 92
[<-.noteworthy (single-bracket), 92
[[.lyrics (double-bracket), 20
[[.music (double-bracket), 20
[[.noteinfo (double-bracket), 20
[[.noteworthy (double-bracket), 20
[[<-.lyrics (double-bracket), 20
[[<-.music (double-bracket), 20
[[<-.noteinfo (double-bracket), 20
[[<-.noteworthy (double-bracket), 20

accidental_type (note-metadata), 50
append_phrases, 4

articulations, 5
as_integer_octaves (note-coerce), 45
as_lyrics (lyrics), 34

as_music (music), 40

as_music_df, 5

as_noteinfo (valid-noteinfo), 115
as_noteworthy, 46

as_noteworthy (valid-notes), 116
as_phrase (phrase-checks), 61

118

as_space_time (note-coerce), 45
as_tick_octaves (note-coerce), 45
as_vector_time (note-coerce), 45

bpm (n_measures), 58

.lyrics (tabr-c), 98
.music (tabr-c), 98
.noteinfo (tabr-c), 98
.noteworthy (tabr-c), 98
.phrase (tabr-c), 98
cents_to_ratio(ratio_to_cents), 71
chord-compare, 7
chord-filter, 8
chord-mapping, 9

chord_11 (chords), 11
chord_13 (chords), 11
chord_5 (chords), 11
chord_7s11 (chords), 11
chord_7s5 (chords), 11
chord_7s9 (chords), 11
chord_add9 (chords), 11
chord_arpeggiate, 14
chord_aug (chords), 11
chord_break, 15

chord_def, 16

chord_degree (scale-deg), 82
chord_dim (chords), 11
chord_dim7 (chords), 11
chord_dom7 (chords), 11
chord_dom9 (chords), 11
chord_freq (pitch_freq), 63
chord_invert, 17
chord_is_major, 18
chord_is_minor (chord_is_major), 18
chord_m7b5 (chords), 11
chord_madd9 (chords), 11
chord_maj (chords), 11
chord_maj11 (chords), 11
chord_maji13 (chords), 11

O o0 o0 o0

INDEX

chord_maj6 (chords), 11
chord_maj7 (chords), 11
chord_maj7s11 (chords), 11
chord_maj9 (chords), 11
chord_min (chords), 11
chord_min11 (chords), 11
chord_min13 (chords), 11
chord_min6 (chords), 11
chord_min7 (chords), 11
chord_min9 (chords), 11
chord_order (chord-compare), 7
chord_rank (chord-compare), 7
chord_root (chord-filter), 8
chord_semitones, /16
chord_semitones (pitch_freq), 63
chord_set, 19

chord_size (note-metadata), 50
chord_slice (chord-filter), 8
chord_sort (chord-compare), 7
chord_sus?2 (chords), 11
chord_sus4 (chords), 11
chord_top (chord-filter), 8
chords, 11

distinct_notes (note-summaries), 53
distinct_octaves (note-summaries), 53
distinct_pitches (note-summaries), 53
double-bracket, 20
duration_to_ticks (read_midi), 72
dyad, 21

flatten_sharp (note-coerce), 45
freq_pitch (pitch_freq), 63
freg_ratio, 22

freg_semitones (pitch_freq), 63
from_chorrrds (to_tabr), 107
from_music21 (to_tabr), 107

gc_fretboard (chord-mapping), 9
gc_info, 108

gc_info (chord-mapping), 9
gc_is_known (chord-mapping), 9
gc_name_mod (chord-mapping), 9
gc_name_root (chord-mapping), 9
gc_name_split (chord-mapping), 9
gc_notes (chord-mapping), 9
gc_notes_to_fb (chord-mapping), 9
guitarChords, 23, 108

head.lyrics (tabr-head), 99

119

head.music (tabr-head), 99
head.noteinfo (tabr-head), 99
head.noteworthy (tabr-head), 99
hp, 24

info_annotation (noteinfo), 54
info_articulation (noteinfo), 54
info_bend (noteinfo), 54
info_dotted (noteinfo), 54
info_double_dotted (noteinfo), 54
info_duration (noteinfo), 54
info_single_dotted (noteinfo), 54
info_slide (noteinfo), 54
info_slur_off (noteinfo), 54
info_slur_on (noteinfo), 54
informable (valid-noteinfo), 115
interval_semitones, 26
intervals, 24

is_chord (valid-notes), 116
is_diatonic, 27, 83

is_in_scale, 27

is_in_scale (scale-deg), 82
is_lyrics (lyrics), 34

is_mode (mode-helpers), 38
is_music (music), 40

is_note (valid-notes), 116
is_noteinfo (valid-noteinfo), 115
is_noteworthy (valid-notes), 116
is_space_time (note-metadata), 50
is_vector_time (note-metadata), 50

key_is_flat (keys), 28
key_is_major (keys), 28
key_is_minor (keys), 28
key_is_natural (keys), 28
key_is_sharp (keys), 28
key_n_flats (keys), 28
key_n_sharps (keys), 28
keys, 28, 39, 85

length.lyrics (tabr-length), 100
length.music (tabr-length), 100
length.noteinfo (tabr-length), 100
length.noteworthy (tabr-length), 100
lilypond, 29, 36-38, 70, 74, 79, 96, 97
lilypond_root, 32

lilypond_version (1lilypond_root), 32
1p_chord_id, 33

1p_chord_mod (1p_chord_id), 33

120

lyrical (lyrics), 34
lyrics, 34
lyrics_template (lyrics), 34

mainIntervals, 22, 25-27, 35
midi_key (read_midi), 72
midi_metadata (read_midi), 72
midi_notes (read_midi), 72
midi_time (read_midi), 72
midily, 32, 35, 37, 38

miditab, 37, 37, 97

mode-helpers, 38

mode_aeolian (mode-helpers), 38
mode_dorian (mode-helpers), 38
mode_ionian (mode-helpers), 38
mode_locrian (mode-helpers), 38
mode_lydian (mode-helpers), 38
mode_mixolydian (mode-helpers), 38
mode_modern (mode-helpers), 38
mode_phrygian (mode-helpers), 38
mode_rotate (mode-helpers), 38
modes (mode-helpers), 38

music, 40, 43, 60

music-helpers, 42

music_info (music-helpers), 42
music_key (music-helpers), 42
music_lyrics (music-helpers), 42
music_notes (music-helpers), 42
music_split (music), 40
music_strings (music-helpers), 42
music_tempo (music-helpers), 42
music_time (music-helpers), 42
musical (music), 40

n_beats (n_measures), 58
n_chords (note-metadata), 50
n_measures, 58

n_notes (note-metadata), 50
n_octaves (note-metadata), 50
n_steps (note-metadata), 50
naturalize (note-coerce), 45
notable (phrase-checks), 61
notate, 43

note-checks, 44
note-coerce, 45
note-equivalence, 47
note-logic, 49
note-metadata, 50
note-summaries, 53

INDEX

note_arpeggiate (note_slice), 56
note_has_accidental (note-checks), 44
note_has_f1lat (note-checks), 44
note_has_integer (note-metadata), 50
note_has_natural (note-checks), 44
note_has_rest (note-metadata), 50
note_has_sharp (note-checks), 44
note_has_tick (note-metadata), 50
note_in_scale, 27

note_in_scale (scale-deg), 82
note_is_accidental (note-checks), 44
note_is_equal (note-equivalence), 47
note_is_flat (note-checks), 44
note_is_identical (note-equivalence), 47
note_is_integer (note-metadata), 50
note_is_natural (note-checks), 44
note_is_rest (note-metadata), 50
note_is_sharp (note-checks), 44
note_is_tick (note-metadata), 50
note_ngram, 55

note_rotate (note_slice), 56
note_set_key (note-coerce), 45
note_shift (note_slice), 56
note_slice, 56

note_sort, 50

note_sort (note_slice), 56

noteinfo, 54, 115

noteworthy (valid-notes), 116

notify, 103

notify (phrase-checks), 61

octave_is_equal (note-equivalence), 47

octave_is_identical (note-equivalence),
47

octave_range (note-summaries), 53

octave_span (note-summaries), 53

octave_type (note-metadata), 50

octaves (note-summaries), 53

p (phrase), 59

pc (append_phrases), 4

pct (repeats), 80

phrase, 59, 70, 79, 81, 87-90, 110-112
phrase-checks, 61

phrase_info (phrase-checks), 61
phrase_notes (phrase-checks), 61
phrase_strings (phrase-checks), 61
phrasey (phrase-checks), 61
pitch_diff (intervals), 24

INDEX

pitch_freq, 63
pitch_interval (intervals), 24

pitch_is_equal (note-equivalence), 47

pitch_is_identical, 50

pitch_is_identical (note-equivalence),

47
pitch_range (note-summaries), 53
pitch_semitones (pitch_freq), 63
pitch_seq, 64
plot_chord (plot_fretboard), 65
plot_fretboard, 65, 74
plot_music, 68, 79
plot_music_bass (plot_music), 68
plot_music_bc (plot_music), 68
plot_music_guitar (plot_music), 68
plot_music_tab (plot_music), 68
plot_music_tc (plot_music), 68
pn (append_phrases), 4
pretty_notes (note-coerce), 45

ratio_to_cents, 71
read_midi, 72
render_chordchart, 32, 73, 97
render_midi (tab), 94
render_music, 70,75

render_music_bass (render_music), 75

render_music_bc (render_music), 75

render_music_guitar (render_music), 75

render_music_tab (render_music), 75
render_music_tc (render_music), 75
render_score (tab), 94

render_tab (tab), 94

rep.lyrics (tabr-rep), 104
rep.music (tabr-rep), 104
rep.noteinfo (tabr-rep), 104
rep.noteworthy (tabr-rep), 104
rep.phrase (tabr-rep), 104
repeats, 80

rest, 81

rev.lyrics (tabr-rev), 105
rev.music (tabr-rev), 105
rev.noteinfo (tabr-rev), 105
rev.noteworthy (tabr-rev), 105

rp (repeats), 80

scale-deg, 82

scale-helpers, 84

scale_chords, 86

scale_chromatic (scale-helpers), 84

121

scale_degree, 6

scale_degree (scale-deg), 82

scale_diatonic (scale-helpers), 84

scale_diff (intervals), 24

scale_harmonic_minor (scale-helpers), 84

scale_hungarian_minor (scale-helpers),
84

scale_interval, 6

scale_interval (intervals), 24

scale_jazz_minor (scale-helpers), 84

scale_major (scale-helpers), 84

scale_melodic_minor (scale-helpers), 84

scale_minor (scale-helpers), 84

scale_note (scale-deg), 82

score, 70,79,87, 111, 112

seconds (n_measures), 58

seconds_per_measure (n_measures), 58

seconds_per_step (n_measures), 58

semitone_freq (pitch_freq), 63

semitone_pitch (pitch_freq), 63

semitone_range (note-summaries), 53

semitone_span (note-summaries), 53

sf_note (sf_phrase), 88

sf_phrase, 88

sfn (sf_phrase), 88

sfp (sf_phrase), 88

sharpen_flat (note-coerce), 45

simplify_phrase, 91

single-bracket, 92

steps_per_measure (n_measures), 58

steps_start_time (n_measures), 58

string_fold (string_unfold), 93

string_unfold, 93

tab, 32, 37, 38, 70, 74, 79, 87, 94
tabr, 97

tabr-c, 98

tabr-head, 99

tabr-length, 100

tabr-methods, 101

tabr-rep, 104

tabr-rev, 105
tabr_lilypond_api (1lilypond_root), 32
tabr_options, 106

tabrSyntax, 106

tail.lyrics (tabr-head), 99
tail.music (tabr-head), 99
tail.noteinfo (tabr-head), 99
tail.noteworthy (tabr-head), 99

122

tally_notes (note-summaries), 53
tally_octaves (note-summaries), 53
tally_pitches (note-summaries), 53
ticks_to_duration (read_midi), 72
tie, 107

time_format (note-metadata), 50
to_tabr, 107

tp (transpose), 112

track, 70, 79, 87, 109, 112
track_bass (track), 109

track_bc (track), 109

track_guitar (track), 109

track_tc (track), 109

trackbind, 87, 110, 111

transpose, 14,21, 112

triplet (tuplet), 114
tuning_intervals (intervals), 24
tunings, 67, 110, 113

tuplet, 114

untie (tie), 107

valid-noteinfo, 115
valid-notes, 116
volta (repeats), 80

x5 (chords), 11

x7 (chords), 11
x7s11 (chords), 11
x7s5 (chords), 11
x7s9 (chords), 11
x9 (chords), 11
x_11 (chords), 11
x_13 (chords), 11
xadd9 (chords), 11
xaug (chords), 11
xdim (chords), 11
xdim7 (chords), 11
XM (chords), 11

xm (chords), 11
xM11 (chords), 11
xm11 (chords), 11
xM13 (chords), 11
xm13 (chords), 11
xM6 (chords), 11
xmé (chords), 11
xM7 (chords), 11
xm7 (chords), 11
xm7b5 (chords), 11

INDEX

xM7s11 (chords), 11
xM9 (chords), 11
xm9 (chords), 11
xma9 (chords), 11
xs2 (chords), 11
xs4 (chords), 11

	append_phrases
	articulations
	as_music_df
	chord-compare
	chord-filter
	chord-mapping
	chords
	chord_arpeggiate
	chord_break
	chord_def
	chord_invert
	chord_is_major
	chord_set
	double-bracket
	dyad
	freq_ratio
	guitarChords
	hp
	intervals
	interval_semitones
	is_diatonic
	keys
	lilypond
	lilypond_root
	lp_chord_id
	lyrics
	mainIntervals
	midily
	miditab
	mode-helpers
	music
	music-helpers
	notate
	note-checks
	note-coerce
	note-equivalence
	note-logic
	note-metadata
	note-summaries
	noteinfo
	note_ngram
	note_slice
	n_measures
	phrase
	phrase-checks
	pitch_freq
	pitch_seq
	plot_fretboard
	plot_music
	ratio_to_cents
	read_midi
	render_chordchart
	render_music
	repeats
	rest
	scale-deg
	scale-helpers
	scale_chords
	score
	sf_phrase
	simplify_phrase
	single-bracket
	string_unfold
	tab
	tabr
	tabr-c
	tabr-head
	tabr-length
	tabr-methods
	tabr-rep
	tabr-rev
	tabrSyntax
	tabr_options
	tie
	to_tabr
	track
	trackbind
	transpose
	tunings
	tuplet
	valid-noteinfo
	valid-notes
	Index

