
Package ‘targets’
August 5, 2022

Title Dynamic Function-Oriented 'Make'-Like Declarative Workflows

Description As a pipeline toolkit for Statistics and data science in R,
the 'targets' package brings together function-oriented programming and
'Make'-like declarative workflows.
It analyzes the dependency relationships among the tasks of a workflow,
skips steps that are already up to date, runs the necessary
computation with optional parallel workers, abstracts files as
R objects, and provides tangible evidence that the results match
the underlying code and data. The methodology in this package
borrows from GNU 'Make' (2015, ISBN:978-9881443519)
and 'drake' (2018, <doi:10.21105/joss.00550>).

Version 0.13.1

License MIT + file LICENSE

URL https://docs.ropensci.org/targets/,

https://github.com/ropensci/targets

BugReports https://github.com/ropensci/targets/issues

Depends R (>= 3.5.0)

Imports base64url (>= 1.4), callr (>= 3.4.3), cli (>= 2.0.2),
codetools (>= 0.2.16), data.table (>= 1.12.8), digest (>=
0.6.25), igraph (>= 1.2.5), knitr (>= 1.34), R6 (>= 2.4.1),
rlang (>= 1.0.0), stats, tibble (>= 3.0.1), tidyselect (>=
1.1.0), tools, utils, vctrs (>= 0.2.4), withr (>= 2.4.0), yaml
(>= 2.2.1)

Suggests arrow (>= 3.0.0), bs4Dash (>= 0.5.0), clustermq (>=
0.8.95.1), curl (>= 4.3), DT (>= 0.14), dplyr (>= 1.0.0), fst
(>= 0.9.2), future (>= 1.19.1), future.batchtools (>= 0.9.0),
future.callr (>= 0.6.0), gargle (>= 1.2.0), googleCloudStorageR
(>= 0.7.0), gt (>= 0.2.2), keras (>= 2.2.5.0), markdown (>=
1.1), rmarkdown (>= 2.4), paws (>= 0.1.11), pingr (>= 2.0.1),
pkgload (>= 1.1.0), processx (>= 3.4.3), qs (>= 0.24.1), reprex
(>= 2.0.0), rstudioapi (>= 0.11), shiny (>= 1.5.0), shinybusy
(>= 0.2.2), shinyWidgets (>= 0.5.4), testthat (>= 3.0.0), torch
(>= 0.1.0), usethis (>= 1.6.3), visNetwork (>= 2.0.9)

1

https://doi.org/10.21105/joss.00550
https://docs.ropensci.org/targets/
https://github.com/ropensci/targets
https://github.com/ropensci/targets/issues

2 R topics documented:

Encoding UTF-8

Language en-US

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.2.1

NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Matthew T. Warkentin [ctb],
Mark Edmondson [ctb] (<https://orcid.org/0000-0002-8434-3881>),
Samantha Oliver [rev] (<https://orcid.org/0000-0001-5668-1165>),
Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Eli Lilly and Company [cph]

Maintainer William Michael Landau <will.landau@gmail.com>

Repository CRAN

Date/Publication 2022-08-05 13:00:02 UTC

R topics documented:
targets-package . 4
tar_active . 5
tar_assert . 6
tar_branches . 8
tar_branch_index . 9
tar_branch_names . 10
tar_branch_names_raw . 11
tar_built . 12
tar_call . 13
tar_cancel . 14
tar_canceled . 15
tar_condition . 16
tar_config_get . 17
tar_config_set . 18
tar_config_unset . 21
tar_cue . 23
tar_definition . 25
tar_delete . 26
tar_deps . 27
tar_deps_raw . 28
tar_destroy . 29
tar_dir . 30
tar_edit . 31
tar_engine_knitr . 31
tar_envir . 33
tar_envvars . 34

https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0002-8434-3881
https://orcid.org/0000-0001-5668-1165
https://orcid.org/0000-0002-8890-5116

R topics documented: 3

tar_errored . 36
tar_exist_meta . 37
tar_exist_objects . 37
tar_exist_process . 38
tar_exist_progress . 39
tar_exist_script . 40
tar_format . 41
tar_github_actions . 43
tar_glimpse . 44
tar_group . 46
tar_helper . 48
tar_helper_raw . 49
tar_interactive . 50
tar_invalidate . 50
tar_language . 52
tar_load . 53
tar_load_everything . 54
tar_load_globals . 56
tar_load_raw . 57
tar_make . 59
tar_make_clustermq . 61
tar_make_future . 64
tar_manifest . 66
tar_mermaid . 68
tar_meta . 71
tar_name . 74
tar_network . 75
tar_newer . 77
tar_noninteractive . 79
tar_objects . 79
tar_older . 80
tar_option_get . 82
tar_option_reset . 83
tar_option_set . 84
tar_outdated . 90
tar_path . 92
tar_pattern . 93
tar_pid . 95
tar_poll . 96
tar_process . 97
tar_progress . 99
tar_progress_branches . 100
tar_progress_summary . 101
tar_prune . 103
tar_read . 104
tar_read_raw . 106
tar_renv . 107
tar_reprex . 109

4 targets-package

tar_resources . 110
tar_resources_aws . 112
tar_resources_clustermq . 114
tar_resources_feather . 115
tar_resources_fst . 117
tar_resources_future . 118
tar_resources_gcp . 119
tar_resources_parquet . 121
tar_resources_qs . 122
tar_resources_url . 123
tar_script . 124
tar_seed . 126
tar_sitrep . 127
tar_skipped . 130
tar_source . 131
tar_started . 132
tar_store . 133
tar_target . 134
tar_target_raw . 139
tar_test . 143
tar_timestamp . 144
tar_timestamp_raw . 145
tar_toggle . 147
tar_traceback . 148
tar_unscript . 149
tar_validate . 150
tar_visnetwork . 151
tar_watch . 154
tar_watch_server . 158
tar_watch_ui . 159
tar_workspace . 160
tar_workspaces . 162
use_targets . 163
use_targets_rmd . 165

Index 167

targets-package targets: Dynamic Function-Oriented Make-Like Declarative Pipelines
for R

Description

As a pipeline toolkit for Statistics and data science in R, the targets package brings together
function-oriented programming and Make-like declarative pipelines. It analyzes the dependency
relationships among the tasks of a workflow, skips steps that are already up to date, runs the neces-
sary computations with optional parallel workers, abstracts files as R objects, and provides tangible

tar_active 5

evidence that the results match the underlying code and data. The methodology in this package bor-
rows from GNU Make (2015, ISBN:978-9881443519) and drake (2018, doi:10.21105/joss.00550).

See Also

Other help: tar_reprex(), use_targets_rmd(), use_targets()

tar_active Show if the pipeline is running.

Description

Return TRUE if called in a target or _targets.R and the pipeline is running.

Usage

tar_active()

Value

Logical of length 1, TRUE if called in a target or _targets.R and the pipeline is running (FALSE
otherwise).

See Also

Other utilities: tar_call(), tar_cancel(), tar_definition(), tar_envir(), tar_group(),
tar_name(), tar_path(), tar_seed(), tar_source(), tar_store()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_active() # FALSE
tar_script({

message("Pipeline running? ", tar_active())
tar_target(x, tar_active())

})
tar_manifest() # prints "Pipeline running? FALSE"
tar_make() # prints "pipeline running? TRUE"
tar_read(x) # TRUE
})
}

https://doi.org/10.21105/joss.00550

6 tar_assert

tar_assert Assertions

Description

These functions assert the correctness of user inputs and generate custom error conditions as needed.
Useful for writing packages built on top of targets.

Usage

tar_assert_chr(x, msg = NULL)

tar_assert_dbl(x, msg = NULL)

tar_assert_df(x, msg = NULL)

tar_assert_equal_lengths(x, msg = NULL)

tar_assert_envir(x, msg = NULL)

tar_assert_expr(x, msg = NULL)

tar_assert_flag(x, choices, msg = NULL)

tar_assert_file(x)

tar_assert_finite(x, msg = NULL)

tar_assert_function(x, msg = NULL)

tar_assert_function_arguments(x, args, msg = NULL)

tar_assert_ge(x, threshold, msg = NULL)

tar_assert_identical(x, y, msg = NULL)

tar_assert_in(x, choices, msg = NULL)

tar_assert_not_dirs(x, msg = NULL)

tar_assert_not_dir(x, msg = NULL)

tar_assert_not_in(x, choices, msg = NULL)

tar_assert_inherits(x, class, msg = NULL)

tar_assert_int(x, msg = NULL)

tar_assert 7

tar_assert_internet(msg = NULL)

tar_assert_lang(x, msg = NULL)

tar_assert_le(x, threshold, msg = NULL)

tar_assert_list(x, msg = NULL)

tar_assert_lgl(x, msg = NULL)

tar_assert_name(x)

tar_assert_named(x, msg = NULL)

tar_assert_names(x, msg = NULL)

tar_assert_nonempty(x, msg = NULL)

tar_assert_not_expr(x, msg = NULL)

tar_assert_nzchar(x, msg = NULL)

tar_assert_package(package)

tar_assert_path(path, msg = NULL)

tar_assert_match(x, pattern, msg = NULL)

tar_assert_nonmissing(x, msg = NULL)

tar_assert_positive(x, msg = NULL)

tar_assert_scalar(x, msg = NULL)

tar_assert_target(x, msg = NULL)

tar_assert_target_list(x)

tar_assert_true(x, msg = NULL)

tar_assert_unique(x, msg = NULL)

tar_assert_unique_targets(x)

Arguments

x R object, input to be validated. The kind of object depends on the specific
assertion function called.

8 tar_branches

msg Character of length 1, a message to be printed to the console if x is invalid.

choices Character vector of choices of x for certain assertions.

args Character vector of expected function argument names. Order matters.

threshold Numeric of length 1, lower/upper bound for assertions like tar_assert_le()/tar_assert_ge().

y R object, value to compare against x.

class Character vector of expected class names.

package Character of length 1, name of an R package.

path Character, file path.

pattern Character of length 1, a grep pattern for certain assertions.

See Also

Other utilities to extend targets: tar_condition, tar_dir(), tar_language, tar_test()

Examples

tar_assert_chr("123")
try(tar_assert_chr(123))

tar_branches Reconstruct the branch names and the names of their dependencies.

Description

Given a branching pattern, use available metadata to reconstruct branch names and the names of
each branch’s dependencies. The metadata of each target must already exist and be consistent with
the metadata of the other targets involved.

Usage

tar_branches(name, pattern, store = targets::tar_config_get("store"))

Arguments

name Symbol, name of the target.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_branch_index 9

Details

The results from this function can help you retroactively figure out correspondences between up-
stream branches and downstream branches. However, it does not always correctly predict what
the names of the branches will be after the next run of the pipeline. Dynamic branching happens
while the pipeline is running, so we cannot always know what the names of the branches will be in
advance (or even how many there will be).

Value

A tibble with one row per branch and one column for each target (including the branched-over
targets and the target with the pattern.)

See Also

Other branching: tar_branch_index(), tar_branch_names_raw(), tar_branch_names(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(z, head(LETTERS, 2)),
tar_target(dynamic, c(x, y, z), pattern = cross(z, map(x, y)))

)
}, ask = FALSE)
tar_make()
tar_branches(dynamic, pattern = cross(z, map(x, y)))
})
}

tar_branch_index Integer branch indexes

Description

Get the integer indexes of individual branch names within their corresponding dynamic branching
targets.

Usage

tar_branch_index(names, store = targets::tar_config_get("store"))

10 tar_branch_names

Arguments

names Character vector of branch names

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A named integer vector of branch indexes.

See Also

Other branching: tar_branch_names_raw(), tar_branch_names(), tar_branches(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(4)),
tar_target(y, 2 * x, pattern = map(x)),
tar_target(z, y, pattern = map(y))

)
}, ask = FALSE)
tar_make()
names <- c(

tar_meta(y, children)$children[[1]][c(2, 3)],
tar_meta(z, children)$children[[1]][2]

)
names
tar_branch_index(names) # c(2, 3, 2)
})
}

tar_branch_names Branch names

Description

Get the branch names of a dynamic branching target using numeric indexes.

Usage

tar_branch_names(name, index, store = targets::tar_config_get("store"))

tar_branch_names_raw 11

Arguments

name Symbol, name of the dynamic branching target (pattern).

index Integer vector of branch indexes.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of branch names.

See Also

Other branching: tar_branch_index(), tar_branch_names_raw(), tar_branches(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(4)),
tar_target(y, 2 * x, pattern = map(x)),
tar_target(z, y, pattern = map(y))

)
}, ask = FALSE)
tar_make()
tar_branch_names(z, c(2, 3))
})
}

tar_branch_names_raw Branch names (raw version)

Description

Get the branch names of a dynamic branching target using numeric indexes. Same as tar_branch_names()
except name is a character of length 1.

Usage

tar_branch_names_raw(name, index, store = targets::tar_config_get("store"))

12 tar_built

Arguments

name Character of length 1, name of the dynamic branching target (pattern).

index Integer vector of branch indexes.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of branch names.

See Also

Other branching: tar_branch_index(), tar_branch_names(), tar_branches(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(w, 1),
tar_target(x, seq_len(4)),
tar_target(y, 2 * x, pattern = map(x)),
tar_target(z, y, pattern = map(y))

)
}, ask = FALSE)
tar_make()
tar_branch_names_raw("z", c(2, 3))
})
}

tar_built List built targets.

Description

List targets whose progress is "built".

Usage

tar_built(names = NULL, store = targets::tar_config_get("store"))

tar_call 13

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of built targets.

See Also

Other progress: tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_started(), tar_watch_server(),
tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_built()
tar_built(starts_with("y_")) # see also all_of()
})
}

tar_call Identify the called targets function.

Description

Get the name of the currently running targets interface function. Returns NULL if not invoked
inside a target or _targets.R (i.e. if not directly invoked by tar_make(), tar_visnetwork(),
etc.).

Usage

tar_call()

14 tar_cancel

Value

Character of length 1, name of the currently running targets interface function. For example,
suppose you have a call to tar_call() inside a target or _targets.R. Then if you run tar_make(),
tar_call() will return "tar_make".

See Also

Other utilities: tar_active(), tar_cancel(), tar_definition(), tar_envir(), tar_group(),
tar_name(), tar_path(), tar_seed(), tar_source(), tar_store()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_call() # NULL
tar_script({

message("called function: ", tar_call())
tar_target(x, tar_call())

})
tar_manifest() # prints "called function: tar_manifest"
tar_make() # prints "called function: tar_make"
tar_read(x) # "tar_make"
})
}

tar_cancel Cancel a target mid-build under a custom condition.

Description

Cancel a target while its command is running if a condition is met.

Usage

tar_cancel(condition = TRUE)

Arguments

condition Logical of length 1, whether to cancel the target.

Details

Must be invoked by the target itself. tar_cancel() cannot interrupt a target from another process.

See Also

Other utilities: tar_active(), tar_call(), tar_definition(), tar_envir(), tar_group(),
tar_name(), tar_path(), tar_seed(), tar_source(), tar_store()

tar_canceled 15

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(x, tar_cancel(1 > 0)))
tar_make() # Should cancel target x.
})
}

tar_canceled List canceled targets.

Description

List targets whose progress is "canceled".

Usage

tar_canceled(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of canceled targets.

See Also

Other progress: tar_built(), tar_errored(), tar_poll(), tar_progress_branches(), tar_progress_summary(),
tar_progress(), tar_skipped(), tar_started(), tar_watch_server(), tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)

16 tar_condition

}, ask = FALSE)
tar_make()
tar_canceled()
tar_canceled(starts_with("y_")) # see also all_of()
})
}

tar_condition Conditions

Description

These functions throw custom targets-specific error conditions. Useful for error handling in pack-
ages built on top of targets.

Usage

tar_message_run(...)

tar_throw_file(...)

tar_throw_run(...)

tar_throw_validate(...)

tar_warn_deprecate(...)

tar_warn_run(...)

tar_warn_validate(...)

tar_error(message, class)

tar_warning(message, class)

tar_message(message, class)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

message Character of length 1, text of the message.

class Character vector of S3 classes of the message.

See Also

Other utilities to extend targets: tar_assert, tar_dir(), tar_language, tar_test()

tar_config_get 17

Examples

try(tar_throw_validate("something is not valid"))

tar_config_get Get configuration settings.

Description

Read the custom settings for the current project in the optional YAML configuration file.

Usage

tar_config_get(
name,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

name Character of length 1, name of the specific configuration setting to retrieve.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

The value of the configuration setting from the YAML configuration file (default: _targets.yaml)
or the default value if the setting is not available. The data type of the return value depends on your
choice of name.

18 tar_config_set

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_set(), tar_config_unset(), tar_envvars(), tar_option_get(),
tar_option_reset(), tar_option_set()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # "_targets"
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_make() # Writes to the custom data store identified in _targets.yaml.
tar_read(x) # tar_read() knows about _targets.yaml too.
file.exists("_targets") # FALSE
file.exists(store_path) # TRUE
})
}

tar_config_set Set configuration settings.

Description

tar_config_set() writes special custom settings for the current project to an optional YAML
configuration file.

tar_config_set 19

Usage

tar_config_set(
inherits = NULL,
reporter_make = NULL,
reporter_outdated = NULL,
store = NULL,
shortcut = NULL,
script = NULL,
workers = NULL,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

inherits Character of length 1, name of the project from which the current project should
inherit configuration settings. The current project is the project argument,
which defaults to Sys.getenv("TAR_PROJECT", "main"). If the inherits ar-
gument NULL, the inherits setting is not modified. Use tar_config_unset()
to delete a setting.

reporter_make Character of length 1, reporter argument to tar_make() and related functions
that run the pipeline. If the argument NULL, the setting is not modified. Use
tar_config_unset() to delete a setting.

reporter_outdated

Character of length 1, reporter argument to tar_outdated() and related func-
tions that do not run the pipeline. If the argument NULL, the setting is not modi-
fied. Use tar_config_unset() to delete a setting.

store Character of length 1, path to the data store of the pipeline. If NULL, the store
setting is left unchanged in the YAML configuration file (default: _targets.yaml).
Usually, the data store lives at _targets. Set store to a custom directory to
specify a path other than _targets/. The path need not exist before the pipeline
begins, and it need not end with "_targets", but it must be writeable. For opti-
mal performance, choose a storage location with fast read/write access. If the
argument NULL, the setting is not modified. Use tar_config_unset() to delete
a setting.

shortcut logical of length 1, default shortcut argument to tar_make() and related func-
tions. If the argument NULL, the setting is not modified. Use tar_config_unset()
to delete a setting.

script Character of length 1, path to the target script file that defines the pipeline
(_targets.R by default). This path should be either an absolute path or a path
relative to the project root where you will call tar_make() and other functions.
When tar_make() and friends run the script from the current working directory.
If the argument NULL, the setting is not modified. Use tar_config_unset() to
delete a setting.

workers Positive numeric of length 1, workers argument of tar_make_clustermq()
and related functions that run the pipeline with parallel computing among tar-

20 tar_config_set

gets. If the argument NULL, the setting is not modified. Use tar_config_unset()
to delete a setting.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

NULL (invisibly)

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_get(), tar_config_unset(), tar_envvars(), tar_option_get(),
tar_option_reset(), tar_option_set()

tar_config_unset 21

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # NULL (data store defaults to "_targets/")
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_make() # Writes to the custom data store identified in _targets.yaml.
tar_read(x) # tar_read() knows about _targets.yaml too.
file.exists("_targets") # FALSE
file.exists(store_path) # TRUE
})
}

tar_config_unset Unset configuration settings.

Description

Unset (i.e. delete) one or more custom settings for the current project from the optional YAML
configuration file. After that, tar_option_get() will return the original default values for those
settings for the project.

Usage

tar_config_unset(
names = character(0),
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

names Character vector of configuration settings to delete from the current project.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

22 tar_config_unset

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

NULL (invisibly)

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".
2. Other projects do not inherit from the default project‘ automatically.
3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_envvars(), tar_option_get(),
tar_option_reset(), tar_option_set()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # "_targets"
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_config_unset("store")
tar_config_get("store") # _targets
})
}

tar_cue 23

tar_cue Declare the rules that cue a target.

Description

Declare the rules that mark a target as outdated.

Usage

tar_cue(
mode = c("thorough", "always", "never"),
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE

)

Arguments

mode Cue mode. If "thorough", all the cues apply unless individually suppressed. If
"always", then the target always runs. If "never", then the target does not run
unless the metadata does not exist or the last run errored.

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

Target invalidation rules

targets uses internal metadata and special cues to decide whether a target is up to date (can skip)
or is outdated/invalidated (needs to rerun). By default, targets moves through the following list of
cues and declares a target outdated if at least one is cue activated.

1. There is no metadata record of the target.

2. The target errored last run.

3. The target has a different class than it did before.

24 tar_cue

4. The cue mode equals "always".
5. The cue mode does not equal "never".
6. The command metadata field (the hash of the R command) is different from last time.
7. The depend metadata field (the hash of the immediate upstream dependency targets and global

objects) is different from last time.
8. The storage format is different from last time.
9. The iteration mode is different from last time.

10. A target’s file (either the one in _targets/objects/ or a dynamic file) does not exist or
changed since last time.

The user can suppress many of the above cues using the tar_cue() function, which creates the cue
argument of tar_target(). Cues objects also constitute more nuanced target invalidation rules.
The tarchetypes package has many such examples, including tar_age(), tar_download(),
tar_cue_age(), tar_cue_force(), and tar_cue_skip().

Dependency-based invalidation and user-defined functions

If the cue of a target has depend = TRUE (default) then the target is marked invalidated/outdated
when its upstream dependencies change. A target’s dependencies include upstream targets, user-
defined functions, and other global objects populated in the target script file (default: _targets.R).
To determine if a given dependency changed since the last run of the pipeline, targets computes
hashes. The hash of a target is computed on its files in storage (usually a file in _targets/objects/).
The hash of a non-function global object dependency is computed directly on its in-memory data.
User-defined functions are hashed in the following way:

1. Deparse the function with targets:::tar_deparse_safe(). This function computes a string
representation of the function body and arguments. This string representation is invariant to
changes in comments and whitespace, which means trivial changes to formatting do not cue
targets to rerun.

2. Manually remove any literal pointers from the function string using targets:::mask_pointers().
Such pointers arise from inline compiled C/C++ functions.

3. Using static code analysis (i.e. tar_deps(), which is based on codetools::findGlobals())
identify any user-defined functions and global objects that the current function depends on.
Append the hashes of those dependencies to the string representation of the current function.

4. Compute the hash of the final string representation using targets:::digest_chr64().

Above, (3) is important because user-defined functions have dependencies of their own, such as
other user-defined functions and other global objects. (3) ensures that a change to a function’s
dependencies invalidates the function itself, which in turn invalidates any calling functions and any
targets downstream with the depend cue turned on.

See Also

Other targets: tar_format(), tar_target_raw(), tar_target()

Examples

The following target will always run when the pipeline runs.
x <- tar_target(x, download_data(), cue = tar_cue(mode = "always"))

tar_definition 25

tar_definition For developers only: get the definition of the current target.

Description

For developers only: get the full definition of the target currently running. This target definition is
the same kind of object produced by tar_target().

Usage

tar_definition(
default = targets::tar_target_raw("target_name", quote(identity()))

)

Arguments

default Environment, value to return if tar_definition() is called on its own outside
a targets pipeline. Having a default lets users run things without tar_make(),
which helps peel back layers of code and troubleshoot bugs.

Details

Most users should not use tar_definition() because accidental modifications could break the
pipeline. tar_definition() only exists in order to support third-party interface packages, and
even then the returned target definition is not modified..

Value

If called from a running target, tar_definition() returns the target object of the currently running
target. See the "Target objects" section for details.

Target objects

Functions like tar_target() produce target objects, special objects with specialized sets of S3
classes. Target objects represent skippable steps of the analysis pipeline as described at https:
//books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.
org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_envir(), tar_group(), tar_name(),
tar_path(), tar_seed(), tar_source(), tar_store()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

26 tar_delete

Examples

class(tar_definition())
tar_definition()$settings$name
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(

tar_target(x, tar_definition()$settings$memory, memory = "transient")
)
tar_make(x)
tar_read(x)
})
}

tar_delete Delete locally stored target return values.

Description

Delete the return values of targets in _targets/objects/. but keep the records in _targets/meta/meta.

Usage

tar_delete(names, cloud = TRUE, store = targets::tar_config_get("store"))

Arguments

names Names of the targets to remove from _targets/objects/. You can supply
symbols or tidyselect helpers like all_of() and starts_with().

cloud Logical of length 1, whether to delete objects from the cloud if applicable (e.g.
AWS, GCP). If FALSE, files are not deleted from the cloud.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If you have a small number of data-heavy targets you need to discard to conserve storage, this
function can help. Local external files files (i.e. format = "file" and repository = "local") are
not deleted. For targets with repository not equal "local", tar_delete() attempts to delete the
file and errors out if the deletion is unsuccessful. If deletion fails, either log into the cloud platform
and manually delete the file (e.g. the AWS web console in the case of repository = "aws") or call
tar_invalidate() on that target so that targets does not try to delete the object. For patterns
recorded in the metadata, all the branches will be deleted. For patterns no longer in the metadata,
branches are left alone.

tar_deps 27

See Also

Other clean: tar_destroy(), tar_invalidate(), tar_prune()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
tar_delete(starts_with("y")) # Only deletes y1 and y2.
tar_make() # y1 and y2 rebuild but return same values, so z is up to date.
})
}

tar_deps Code dependencies

Description

List the dependencies of a function or expression.

Usage

tar_deps(expr)

Arguments

expr A quoted R expression or function.

Details

targets detects the dependencies of commands using static code analysis. Use tar_deps() to run
the code analysis and see the dependencies for yourself.

Value

Character vector of the dependencies of a function or expression.

See Also

Other inspect: tar_deps_raw(), tar_manifest(), tar_network(), tar_outdated(), tar_sitrep(),
tar_validate()

28 tar_deps_raw

Examples

tar_deps(x <- y + z)
tar_deps({

x <- 1
x + a

})
tar_deps(function(a = b) map_dfr(data, ~do_row(.x)))

tar_deps_raw Code dependencies (raw version)

Description

Same as tar_deps() except expr must already be an unquoted function or expression object.

Usage

tar_deps_raw(expr)

Arguments

expr An R expression object or function.

Value

Character vector of the dependencies of a function or expression.

See Also

Other inspect: tar_deps(), tar_manifest(), tar_network(), tar_outdated(), tar_sitrep(),
tar_validate()

Examples

tar_deps_raw(quote(x <- y + z))
tar_deps_raw(

quote({
x <- 1
x + a

})
)
tar_deps_raw(function(a = b) map_dfr(data, ~do_row(.x)))

tar_destroy 29

tar_destroy Destroy all or part of the data store.

Description

Destroy all or part of the data store written by tar_make() and similar functions.

Usage

tar_destroy(
destroy = c("all", "cloud", "local", "meta", "process", "progress", "objects",

"scratch", "workspaces"),
ask = NULL,
store = targets::tar_config_get("store")

)

Arguments

destroy Character of length 1, what to destroy. Choices:

• "all": destroy the entire data store (default: _targets/) including cloud
data.

• "cloud": just try to delete cloud data, e.g. target data from targets with
tar_target(..., repository = "aws").

• "local": all the local files in the data store but nothing on the cloud.
• "meta": just delete the metadata file at meta/meta in the data store, which

invalidates all the targets but keeps the data.
• "process": just delete the progress data file at meta/process in the data

store, which resets the metadata of the main process.
• "progress": just delete the progress data file at meta/progress in the data

store, which resets the progress tracking info.
• "objects": delete all the target return values in objects/ in the data store

but keep progress and metadata. Dynamic files are not deleted this way.
• "scratch": temporary files saved during tar_make() that should automat-

ically get deleted except if R crashed.
• "workspaces": compressed files in workspaces/ in the data store with the

saved workspaces of targets. See tar_workspace() for details.

ask Logical of length 1, whether to pause with a menu prompt before deleting
files. To disable this menu, set the TAR_ASK environment variable to "false".
usethis::edit_r_environ() can help set environment variables.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

30 tar_dir

Details

tar_destroy() is a hard reset. Use it if you intend to start the pipeline from scratch without any
trace of a previous run in _targets/. Global objects and dynamic files outside the data store are
unaffected.

Value

Nothing.

See Also

Other clean: tar_delete(), tar_invalidate(), tar_prune()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)), ask = FALSE)
tar_make() # Creates the _targets/ data store.
tar_destroy()
print(file.exists("_targets")) # Should be FALSE.
})
}

tar_dir Execute code in a temporary directory.

Description

Runs code inside a new tempfile() directory in order to avoid writing to the user’s file space.
Used in examples and tests in order to comply with CRAN policies.

Usage

tar_dir(code)

Arguments

code User-defined code.

Value

Return value of the user-defined code.

See Also

Other utilities to extend targets: tar_assert, tar_condition, tar_language, tar_test()

tar_edit 31

Examples

tar_dir(file.create("only_exists_in_tar_dir"))
file.exists("only_exists_in_tar_dir")

tar_edit Open the target script file for editing.

Description

Open the target script file for editing. Requires the usethis package.

Usage

tar_edit(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

The target script file is an R code file that defines the pipeline. The default path is _targets.R, but
the default for the current project can be configured with tar_config_set().

See Also

Other scripts: tar_github_actions(), tar_helper_raw(), tar_helper(), tar_renv(), tar_script()

tar_engine_knitr Target Markdown knitr engine

Description

knitr language engine that runs {targets} code chunks in Target Markdown.

Usage

tar_engine_knitr(options)

Arguments

options A named list of knitr chunk options.

32 tar_engine_knitr

Value

Character, output generated from knitr::engine_output().

Target Markdown interactive mode

Target Markdown has two modes:

1. Non-interactive mode. This is the default when you run knitr::knit() or rmarkdown::render().
Here, the code in {targets} code chunks gets written to special script files in order to set up
a targets pipeline to run later.

2. Interactive mode: here, no scripts are written to set up a pipeline. Rather, the globals or targets
in question are run in the current environment and the values are assigned to that environment.

The mode is interactive if !isTRUE(getOption("knitr.in.progress")), is TRUE. The knitr.in.progress
option is TRUE when you run knitr::knit() or rmarkdown::render() and NULL if you are run-
ning one chunk at a time interactively in an integrated development environment, e.g. the note-
book interface in RStudio: https://bookdown.org/yihui/rmarkdown/notebook.html. You can
choose the mode with the tar_interactive chunk option. (In targets 0.6.0, tar_interactive
defaults to interactive() instead of !isTRUE(getOption("knitr.in.progress")).)

Target Markdown chunk options

Target Markdown introduces the following knitr code chunk options. Most other standard knitr
code chunk options should just work in non-interactive mode. In interactive mode, not all

• tar_globals: Logical of length 1, whether to define globals or targets. If TRUE, the chunk
code defines functions, objects, and options common to all the targets. If FALSE or NULL
(default), then the chunk returns formal targets for the pipeline.

• tar_interactive: Logical of length 1, whether to run in interactive mode or non-interactive
mode. See the "Target Markdown interactive mode" section of this help file for details.

• tar_name: name to use for writing helper script files (e.g. _targets_r/targets/target_script.R)
and specifying target names if the tar_simple chunk option is TRUE. All helper scripts and tar-
get names must have unique names, so please do not set this option globally with knitr::opts_chunk$set().

• tar_script: Character of length 1, where to write the target script file in non-interactive
mode. Most users can skip this option and stick with the default _targets.R script path.
Helper script files are always written next to the target script in a folder with an "_r" suffix.
The tar_script path must either be absolute or be relative to the project root (where you call
tar_make() or similar). If not specified, the target script path defaults to tar_config_get("script")
(default: _targets.R; helpers default: _targets_r/). When you run tar_make() etc. with
a non-default target script, you must select the correct target script file either with the script
argument or with tar_config_set(script = ...). The function will source() the script
file from the current working directory (i.e. with chdir = FALSE in source()).

• tar_simple: Logical of length 1. Set to TRUE to define a single target with a simplified inter-
face. In code chunks with tar_simple equal to TRUE, the chunk label (or the tar_name chunk
option if you set it) becomes the name, and the chunk code becomes the command. In other
words, a code chunk with label targetname and command mycommand() automatically gets
converted to tar_target(name = targetname, command = mycommand()). All other argu-
ments of tar_target() remain at their default values (configurable with tar_option_set()
in a tar_globals = TRUE chunk).

https://bookdown.org/yihui/rmarkdown/notebook.html

tar_envir 33

See Also

https://books.ropensci.org/targets/literate-programming.html

Other Target Markdown: tar_interactive(), tar_noninteractive(), tar_toggle()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
Register the engine.
if (requireNamespace("knitr", quietly = TRUE)) {

knitr::knit_engines$set(targets = targets::tar_engine_knitr)
}
Then, {targets} code chunks in a knitr report will run
as described at
<https://books.ropensci.org/targets/literate-programming.html>.
}

tar_envir For developers only: get the environment of the current target.

Description

For developers only: get the environment where a target runs its command. Designed to be called
while the target is running. The environment inherits from tar_option_get("envir").

Usage

tar_envir(default = parent.frame())

Arguments

default Environment, value to return if tar_envir() is called on its own outside a
targets pipeline. Having a default lets users run things without tar_make(),
which helps peel back layers of code and troubleshoot bugs.

Details

Most users should not use tar_envir() because accidental modifications to parent.env(tar_envir())
could break the pipeline. tar_envir() only exists in order to support third-party interface pack-
ages, and even then the returned environment is not modified.

Value

If called from a running target, tar_envir() returns the environment where the target runs its
command. If called outside a pipeline, the return value is whatever the user supplies to default
(which defaults to parent.frame()).

https://books.ropensci.org/targets/literate-programming.html

34 tar_envvars

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_group(),
tar_name(), tar_path(), tar_seed(), tar_source(), tar_store()

Examples

tar_envir()
tar_envir(default = new.env(parent = emptyenv()))
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(x, tar_envir(default = parent.frame())))
tar_make(x)
tar_read(x)
})
}

tar_envvars Show targets environment variables.

Description

Show all the special environment variables available for customizing targets.

Usage

tar_envvars(unset = "")

Arguments

unset Character of length 1, value to return for any environment variable that is not
set.

Details

You can customize the behavior of targets with special environment variables. The sections in this
help file describe each environment variable, and the tar_envvars() function lists their current
values.

If you modify environment variables, please set them in project-level .Renviron file so you do not
lose your configuration when you restart your R session. Modify the project-level .Renviron file
with usethis::edit_r_environ(scope = "project"). Restart your R session after you are done
editing.

For targets that run on parallel workers created by tar_make_clustermq() or tar_make_future(),
only the environment variables listed by tar_envvars() are specifically exported to the targets.
For all other environment variables, you will have to set the values manually, e.g. a project-level
.Renviron file (for workers that have access to the local file system).

tar_envvars 35

Value

A data frame with one row per environment variable and columns with the name and current value
of each. An unset environment variable will have a value of "" by default. (Customize with the
unset argument).

TAR_ASK

The TAR_ASK environment variable accepts values "true" and "false". If TAR_ASK is not set, or
if it is set to "true", then targets asks permission in a menu before overwriting certain files,
such as the target script file (default: _targets.R) in tar_script(). If TAR_ASK is "false", then
targets overwrites the old files with the new ones without asking. Once you are comfortable
with tar_script(), tar_github_actions(), and similar functions, you can safely set TAR_ASK
to "false" in either a project-level or user-level .Renviron file.

TAR_CONFIG

The TAR_CONFIG environment variable controls the file path to the optional YAML configuration
file with project settings. See the help file of tar_config_set() for details.

TAR_PROJECT

The TAR_PROJECT environment variable sets the name of project to set and get settings when work-
ing with the YAML configuration file. See the help file of tar_config_set() for details.

TAR_WARN

The TAR_WARN environment variable accepts values "true" and "false". If TAR_WARN is not set, or
if it is set to "true", then targets throws warnings in certain edge cases, such as target/global name
conflicts and dangerous use of devtools::load_all(). If TAR_WARN is "false", then targets
does not throw warnings in these cases. These warnings can detect potentially serious issues with
your pipeline, so please do not set TAR_WARN unless your use case absolutely requires it.

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_config_unset(), tar_option_get(),
tar_option_reset(), tar_option_set()

Examples

tar_envvars()

36 tar_errored

tar_errored List errored targets.

Description

List targets whose progress is "errored".

Usage

tar_errored(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of errored targets.

See Also

Other progress: tar_built(), tar_canceled(), tar_poll(), tar_progress_branches(), tar_progress_summary(),
tar_progress(), tar_skipped(), tar_started(), tar_watch_server(), tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_errored()
tar_errored(starts_with("y_")) # see also all_of()
})
}

tar_exist_meta 37

tar_exist_meta Check if target metadata exists.

Description

Check if the target metadata file _targets/meta/meta exists for the current project.

Usage

tar_exist_meta(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_objects(), tar_exist_process(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_meta()

tar_exist_objects Check if local output data exists for one or more targets.

Description

Check if output target data exists in either _targets/objects/ or the cloud for one or more targets.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

38 tar_exist_process

Usage

tar_exist_objects(
names,
cloud = TRUE,
store = targets::tar_config_get("store")

)

Arguments

names Character vector of target names.

cloud Logical of length 1, whether to include cloud targets in the output (e.g. tar_target(...,
repository = "aws")).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If a target has no metadata or if the repository argument of tar_target() was set to "local",
then the _targets/objects/ folder is checked. Otherwise, if there is metadata and repsitory is
not "local", then tar_exist_objects() checks the cloud repository selected.

Value

Logical of length length(names), whether each given target has an existing file in either _targets/objects/
or the cloud.

See Also

Other existence: tar_exist_meta(), tar_exist_process(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_objects(c("target1", "target2"))

tar_exist_process Check if process metadata exists.

Description

Check if the process metadata file _targets/meta/process exists for the current project.

Usage

tar_exist_process(store = targets::tar_config_get("store"))

tar_exist_progress 39

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_process()

tar_exist_progress Check if progress metadata exists.

Description

Check if the progress metadata file _targets/meta/progress exists for the current project.

Usage

tar_exist_progress(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

40 tar_exist_script

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_process(), tar_exist_script()

Examples

tar_exist_progress()

tar_exist_script Check if the target script file exists.

Description

Check if the target script file exists for the current project. The target script is _targets.R by
default, but the path can be configured for the current project using tar_config_set().

Usage

tar_exist_script(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_process(), tar_exist_progress()

Examples

tar_exist_script()

tar_format 41

tar_format Define a custom target storage format.

Description

Define a custom target storage format for the format argument of tar_target() or tar_option_set().

Usage

tar_format(
read = function(path) {

readRDS(path)
},
write = function(object, path) {

saveRDS(object = object, file = path, version =
3L)

},
marshal = function(object) {

identity(object)
},
unmarshal = function(object) {

identity(object)
},
repository = NULL

)

Arguments

read A function with a single argument named path. This function should read and
return the target stored at the file in the argument. It should have no side effects.
See the "Format functions" section for specific requirements.

write A function with two arguments: object and path, in that order. This function
should save the R object object to the file path at path and have no other side
effects. The return value does not matter. See the "Format functions" section for
specific requirements.

marshal A function with a single argument named object. This function should marshal
the R object and return an in-memory object that can be exported to remote par-
allel workers. It should not read or write any persistent files. See the Marshalling
section for details. See the "Format functions" section for specific requirements.

unmarshal A function with a single argument named object. This function should unmar-
shal the (marshalled) R object and return an in-memory object that is appropriate
and valid for use on a parallel worker. It should not read or write any persistent
files. See the Marshalling section for details. See the "Format functions" section
for specific requirements.

repository Deprecated. Use the repository argument of tar_target() or tar_option_set()
instead.

42 tar_format

Value

A character string of length 1 encoding the custom format. You can supply this string directly to
the format argument of tar_target() or tar_option_set().

Marshalling

If an object can only be used in the R session where it was created, it is called "non-exportable".
Examples of non-exportable R objects are Keras models, Torch objects, xgboost matrices, xml2
documents, rstan model objects, sparklyr data objects, and database connection objects. These
objects cannot be exported to parallel workers (e.g. for tar_make_future()) without special treat-
ment. To send an non-exportable object to a parallel worker, the object must be marshalled: con-
verted into a form that can be exported safely (similar to serialization but not always the same).
Then, the worker must unmarshal the object: convert it into a form that is usable and valid in
the current R session. Arguments marshal and unmarshal of tar_format() let you control how
marshalling and unmarshalling happens.

Format functions

In tar_format(), functions like read, write, marshal, and unmarshal must be perfectly pure and
perfectly self-sufficient. They must load or namespace all their own packages, and they must not
depend on any custom user-defined functions or objects in the global environment of your pipeline.
targets converts each function to and from text, so it must not rely on any data in the closure. This
disqualifies functions produced by Vectorize(), for example.

See Also

Other targets: tar_cue(), tar_target_raw(), tar_target()

Examples

The following target is equivalent to
tar_target(name, command(), format = "keras"):
tar_target(

name,
command(),
format = tar_format(
read = function(path) {

keras::load_model_hdf5(path)
},
write = function(object, path) {

keras::save_model_hdf5(object = object, filepath = path)
},
marshal = function(object) {

keras::serialize_model(object)
},
unmarshal = function(object) {

keras::unserialize_model(object)
}

)
)

tar_github_actions 43

tar_github_actions Set up GitHub Actions to run a targets pipeline

Description

Writes a GitHub Actions workflow file so the pipeline runs on every push to GitHub. Historical
runs accumulate in the targets-runs branch, and the latest output is restored before tar_make()
so up-to-date targets do not rerun.

Usage

tar_github_actions(
path = file.path(".github", "workflows", "targets.yaml"),
ask = NULL

)

Arguments

path Character of length 1, file path to write the GitHub Actions workflow file.

ask Logical, whether to ask before writing if the workflow file already exists. If
NULL, defaults to Sys.getenv("TAR_ASK"). (Set to "true" or "false" with
Sys.setenv()). If ask and the TAR_ASK environment variable are both indeter-
minate, defaults to interactive().

Details

Steps to set up continuous deployment:

1. Ensure your pipeline stays within the resource limitations of GitHub Actions and reposito-
ries, both for storage and compute. For storage, you may wish to reduce the burden with an
alternative repository (e.g. tar_target(..., repository = "aws")).

2. Ensure Actions are enabled in your GitHub repository. You may have to visit the Settings tab.

3. Call targets::tar_renv(extras = character(0)) to expose hidden package dependen-
cies.

4. Set up renv for your project (with renv::init() or renv::snapshot()). Details at https:
//rstudio.github.io/renv/articles/ci.html.

5. Commit the renv.lock file to the main (recommended) or master Git branch.

6. Run tar_github_actions() to create the workflow file. Commit this file to main (recom-
mended) or master in Git.

7. Push your project to GitHub. Verify that a GitHub Actions workflow runs and pushes results
to targets-runs. Subsequent runs will only recompute the outdated targets.

Value

Nothing (invisibly). This function writes a GitHub Actions workflow file as a side effect.

https://rstudio.github.io/renv/articles/ci.html
https://rstudio.github.io/renv/articles/ci.html

44 tar_glimpse

See Also

Other scripts: tar_edit(), tar_helper_raw(), tar_helper(), tar_renv(), tar_script()

Examples

tar_github_actions(tempfile())

tar_glimpse Visualize an abridged fast dependency graph.

Description

Analyze the pipeline defined in the target script file (default: _targets.R) and visualize the di-
rected acyclic graph of targets. Unlike tar_visnetwork(), tar_glimpse() does not account for
metadata or progress information, which means the graph renders faster. Also, tar_glimpse()
omits functions and other global objects by default (but you can include them with targets_only
= FALSE).

Usage

tar_glimpse(
targets_only = TRUE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
level_separation = NULL,
degree_from = 1L,
degree_to = 1L,
zoom_speed = 1,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL to
check/build all the targets (default). Otherwise, you can supply symbols or tidys-
elect helpers like starts_with(). Applies to ordinary targets (stem) and whole
dynamic branching targets (patterns) but not individual dynamic branches.

tar_glimpse 45

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like all_of() and starts_with().

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

zoom_speed Positive numeric of length 1, scaling factor on the zoom speed. Above 1 zooms
faster than default, below 1 zooms lower than default.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.
envir An environment, where to run the target R script (default: _targets.R) if

callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

46 tar_group

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A visNetwork HTML widget object.

See Also

Other visualize: tar_mermaid(), tar_visnetwork()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_glimpse()
tar_glimpse(allow = starts_with("y")) # see also all_of()
})
}

tar_group Group a data frame to iterate over subsets of rows.

Description

Like dplyr::group_by(), but for patterns. tar_group() allows you to map or cross over subsets
of data frames. Requires iteration = "group" on the target. See the example.

Usage

tar_group(x)

tar_group 47

Arguments

x Grouped data frame from dplyr::group_by()

Details

The goal of tar_group() is to post-process the return value of a data frame target to allow down-
stream targets to branch over subsets of rows. It takes the groups defined by dplyr::group_by()
and translates that information into a special tar_group is a column. tar_group is a vector of
positive integers from 1 to the number of groups. Rows with the same integer in tar_group belong
to the same group, and branches are arranged in increasing order with respect to the integers in
tar_group. The assignment of tar_group integers to group levels depends on the orderings in-
side the grouping variables and not the order of rows in the dataset. dplyr::group_keys() on the
grouped data frame shows how the grouping variables correspond to the integers in the tar_group
column.

Value

A data frame with a special tar_group column that targets will use to find subsets of your data
frame.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_name(), tar_path(), tar_seed(), tar_source(), tar_store()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
The tar_group() function simply creates
a tar_group column to partition the rows
of a data frame.
data.frame(

x = seq_len(6),
id = rep(letters[seq_len(3)], each = 2)

) %>%
dplyr::group_by(id) %>%
tar_group()

We use tar_group() below to branch over
subsets of a data frame defined with dplyr::group_by().
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({
library(dplyr)
list(

tar_target(
data,
data.frame(

x = seq_len(6),
id = rep(letters[seq_len(3)], each = 2)

) %>%
group_by(id) %>%
tar_group(),

48 tar_helper

iteration = "group"
),
tar_target(

sums,
sum(data$x),
pattern = map(data),
iteration = "vector"

)
)
})
tar_make()
tar_read(sums) # Should be c(3, 7, 11).
})
}

tar_helper Write a helper R script.

Description

Write a helper R script for a targets pipeline. Could be supporting functions or the target script
file (default: _targets.R) itself.

Usage

tar_helper(path = NULL, code = NULL, tidy_eval = TRUE, envir = parent.frame())

Arguments

path Character of length 1, path to write (or overwrite) code. If the parent directory
does not exist, tar_helper_raw() creates it.

code Quoted code to write to path. tar_helper() overwrites the file if it already
exists.

tidy_eval Logical, whether to use tidy evaluation on code. If turned on, you can substitute
expressions and symbols using !! and !!!. See examples below.

envir Environment for tidy evaluation.

Details

tar_helper() is a specialized version of tar_script() with flexible paths and tidy evaluation.

Value

NULL (invisibly)

See Also

Other scripts: tar_edit(), tar_github_actions(), tar_helper_raw(), tar_renv(), tar_script()

tar_helper_raw 49

Examples

Without tidy evaluation:
path <- tempfile()
tar_helper(path, x <- 1)
writeLines(readLines(path))
With tidy evaluation:
y <- 123
tar_helper(path, x <- !!y)
writeLines(readLines(path))

tar_helper_raw Write a helper R script (raw version).

Description

Write a helper R script for a targets pipeline. Could be supporting functions or the target script
file (default: _targets.R) itself.

Usage

tar_helper_raw(path = NULL, code = NULL)

Arguments

path Character of length 1, path to write (or overwrite) code. If the parent directory
does not exist, tar_helper_raw() creates it.

code Expression object. tar_helper_raw() deparses and writes this code to a file at
path, overwriting it if the file already exists.

Details

tar_helper_raw() is a specialized version of tar_script() with flexible paths and tidy evalu-
ation. It is like tar_helper() except that code is an "evaluated" argument rather than a quoted
one.

Value

NULL (invisibly)

See Also

Other scripts: tar_edit(), tar_github_actions(), tar_helper(), tar_renv(), tar_script()

Examples

path <- tempfile()
tar_helper_raw(path, quote(x <- 1))
writeLines(readLines(path))

50 tar_invalidate

tar_interactive Run if Target Markdown interactive mode is on.

Description

In Target Markdown, run the enclosed code only if interactive mode is activated. Otherwise, do not
run the code.

Usage

tar_interactive(code)

Arguments

code R code to run if Target Markdown interactive mode is turned on.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

Value

If Target Markdown interactive mode is turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

See Also

Other Target Markdown: tar_engine_knitr(), tar_noninteractive(), tar_toggle()

Examples

tar_interactive(message("In interactive mode."))

tar_invalidate Delete one or more metadata records (e.g. to rerun a target).

Description

Delete the metadata of records in _targets/meta/meta but keep the return values of targets in
_targets/objects/.

Usage

tar_invalidate(names, store = targets::tar_config_get("store"))

tar_invalidate 51

Arguments

names Names of the targets to remove from the metadata list. You can supply symbols
or tidyselect helpers like all_of() and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

This function forces one or more targets to rerun on the next tar_make(), regardless of the cues and
regardless of how those targets are stored. After tar_invalidate(), you will still be able to locate
the data files with tar_path() and manually salvage them in an emergency. However, tar_load()
and tar_read() will not be able to read the data into R, and subsequent calls to tar_make()
will attempt to rerun those targets. For patterns recorded in the metadata, all the branches will be
invalidated. For patterns no longer in the metadata, branches are left alone.

Value

NULL (invisibly).

See Also

Other clean: tar_delete(), tar_destroy(), tar_prune()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
tar_invalidate(starts_with("y")) # Only invalidates y1 and y2.
tar_make() # y1 and y2 rerun but return same values, so z is up to date.
})
}

52 tar_language

tar_language Language

Description

These functions help with metaprogramming in packages built on top of targets.

Usage

tar_deparse_language(expr)

tar_deparse_safe(expr, collapse = "\n", backtick = TRUE)

tar_tidy_eval(expr, envir, tidy_eval)

tar_tidyselect_eval(names_quosure, choices)

Arguments

expr A language object to modify or deparse.
collapse Character of length 1, delimiter in deparsing.
backtick logical indicating whether symbolic names should be enclosed in backticks if

they do not follow the standard syntax.
envir An environment to find objects for tidy evaluation.
tidy_eval Logical of length 1, whether to apply tidy evaluation.
names_quosure An rlang quosure with tidyselect expressions.
choices A character vector of choices for character elements returned by tidy evaluation.

Details

• tar_deparse_language() is a wrapper around tar_deparse_safe() which leaves character
vectors and NULL objects alone, which helps with subsequent user input validation.

• tar_deparse_safe() is a wrapper around base::deparse() with a custom set of fast default
settings and guardrails to ensure the output always has length 1.

• tar_tidy_eval() applies tidy evaluation to a language object and returns another language
object.

• tar_tidyselect_eval() applies tidyselect selection with some special guardrails around
NULL inputs.

See Also

Other utilities to extend targets: tar_assert, tar_condition, tar_dir(), tar_test()

Examples

tar_deparse_language(quote(run_model()))

tar_load 53

tar_load Load the values of targets.

Description

Load the return values of targets into the current environment (or the environment of your choosing).
For a typical target, the return value lives in a file in _targets/objects/. For dynamic files (i.e.
format = "file") the paths loaded in place of the values. tar_load_everything() is shorthand
for tar_load(everything()) to load all targets.

Usage

tar_load(
names,
branches = NULL,
meta = tar_meta(targets_only = TRUE, store = store),
strict = TRUE,
silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets to load. You may supply tidyselect helpers like all_of()
and starts_with(). Names are selected from the metadata in _targets/meta,
which may include errored targets.

branches Integer of indices of the branches to load for any targets that are patterns.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

strict Logical of length 1, whether to error out if one of the selected targets is in
the metadata but cannot be loaded. Set to FALSE to just load the targets in the
metadata that can be loaded and skip the others.

silent Logical of length 1. Only relevant when strict is FALSE. If silent is FALSE
and strict is FALSE, then a message will be printed if a target is in the metadata
but cannot be loaded. However, load failures will not stop other targets from
being loaded.

envir Environment to put the loaded targets.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

54 tar_load_everything

Value

Nothing.

Limited scope

tar_read() and tar_load() are only for exploratory analysis and literate programming, and
tar_read_raw() and tar_load_raw() are only for exploratory analysis. targets automatically
loads the correct dependencies into memory when the pipeline is running, so invoking these func-
tions from inside a target is rarely advisable.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_meta(), tar_objects(), tar_pid(),
tar_process(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
ls() # Does not have "y1", "y2", or "z".
tar_load(starts_with("y"))
ls() # Has "y1" and "y2" but not "z".
tar_load(all_of("z"))
ls() # Has "y1", "y2", and "z".
})
}

tar_load_everything Load the values of all available targets.

Description

Shorthand for tar_load(everything()) to load all targets with entries in the metadata.

Usage

tar_load_everything(
branches = NULL,
meta = tar_meta(targets_only = TRUE, store = store),
strict = TRUE,

tar_load_everything 55

silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

Arguments

branches Integer of indices of the branches to load for any targets that are patterns.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

strict Logical of length 1, whether to error out if one of the selected targets is in
the metadata but cannot be loaded. Set to FALSE to just load the targets in the
metadata that can be loaded and skip the others.

silent Logical of length 1. Only relevant when strict is FALSE. If silent is FALSE
and strict is FALSE, then a message will be printed if a target is in the metadata
but cannot be loaded. However, load failures will not stop other targets from
being loaded.

envir Environment to put the loaded targets.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Nothing.

Limited scope

tar_read() and tar_load() are only for exploratory analysis and literate programming, and
tar_read_raw() and tar_load_raw() are only for exploratory analysis. targets automatically
loads the correct dependencies into memory when the pipeline is running, so invoking these func-
tions from inside a target is rarely advisable.

See Also

Other data: tar_load_raw(), tar_load(), tar_meta(), tar_objects(), tar_pid(), tar_process(),
tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(

56 tar_load_globals

tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
ls() # Does not have "y1", "y2", or "z".
tar_load_everything()
ls() # Has "y1", "y2", and "z".
})
}

tar_load_globals Load globals for debugging, testing, and prototyping

Description

Load user-defined packages, functions, global objects, and settings defined in the target script file
(default: _targets.R). This function is for debugging, testing, and prototyping only. It is not
recommended for use inside a serious pipeline or to report the results of a serious pipeline.

Usage

tar_load_globals(
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

envir Environment to source the target script (default: _targets.R). Defaults to the
calling environment.

script Character of length 1, path to the target script file that defines the pipeline
(_targets.R by default). This path should be either an absolute path or a path
relative to the project root where you will call tar_make() and other functions.
When tar_make() and friends run the script from the current working directory.
If the argument NULL, the setting is not modified. Use tar_config_unset() to
delete a setting.

Details

This function first sources the target script file (default: _targets.R) to loads all user-defined func-
tions, global objects, and settings into the current R process. Then, it loads all the packages defined
in tar_option_get("packages") (default: (.packages())) using library() with lib.loc de-
fined in tar_option_get("library") (default: NULL).

Value

NULL (invisibly).

tar_load_raw 57

See Also

Other debug: tar_traceback(), tar_workspaces(), tar_workspace()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set(packages = "callr")
analyze_data <- function(data) {
summary(data)

}
list(

tar_target(x, 1 + 1),
tar_target(y, 1 + 1)

)
}, ask = FALSE)
tar_load_globals()
print(analyze_data)
print("callr" %in% (.packages()))
})
}

tar_load_raw Load the values of targets (raw version).

Description

Same as tar_load() except names is a character vector. Do not use in knitr or R Markdown
reports with tarchetypes::tar_knit() or tarchetypes::tar_render().

Usage

tar_load_raw(
names,
branches = NULL,
meta = tar_meta(store = store),
strict = TRUE,
silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

Arguments

names Character vector, names of the targets to load. Names are expected to appear
in the metadata in _targets/meta. Any target names not in the metadata are
ignored.

58 tar_load_raw

branches Integer of indices of the branches to load for any targets that are patterns.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

strict Logical of length 1, whether to error out if one of the selected targets is in
the metadata but cannot be loaded. Set to FALSE to just load the targets in the
metadata that can be loaded and skip the others.

silent Logical of length 1. Only relevant when strict is FALSE. If silent is FALSE
and strict is FALSE, then a message will be printed if a target is in the metadata
but cannot be loaded. However, load failures will not stop other targets from
being loaded.

envir Environment to put the loaded targets.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Nothing.

Limited scope

tar_read() and tar_load() are only for exploratory analysis and literate programming, and
tar_read_raw() and tar_load_raw() are only for exploratory analysis. targets automatically
loads the correct dependencies into memory when the pipeline is running, so invoking these func-
tions from inside a target is rarely advisable.

See Also

Other data: tar_load_everything(), tar_load(), tar_meta(), tar_objects(), tar_pid(),
tar_process(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
tar_load_raw(all_of(c("y1", "y2")))
y1

tar_make 59

y2
})
}

tar_make Run a pipeline of targets.

Description

Run the pipeline you defined in the targets script file (default: _targets.R). tar_make() runs
the correct targets in the correct order and stores the return values in _targets/objects/. Use
tar_read() to read a target back into R, and see https://docs.ropensci.org/targets/reference/
index.html#clean to manage output files.

Usage

tar_make(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets to build or check. Set to NULL to check/build all the tar-
gets (default). Otherwise, you can supply tidyselect helpers like all_of()
and starts_with(). Because tar_make() and friends run the pipeline in a
new R session, if you pass a character vector to a tidyselect helper, you will
need to evaluate that character vector early with !!, e.g. tar_make(names =
all_of(!!your_vector)). Applies to ordinary targets (stem) and whole dy-
namic branching targets (patterns) but not to individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of
up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

• "silent": print nothing.

https://docs.ropensci.org/targets/reference/index.html#clean
https://docs.ropensci.org/targets/reference/index.html#clean

60 tar_make

• "summary": print a running total of the number of each targets in each
status category (queued, started, skipped, build, canceled, or errored). Also
show a timestamp ("%H:%M %OS2" strptime() format) of the last time the
progress changed and printed to the screen.

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or are
skipped.

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

tar_make_clustermq 61

See Also

Other pipeline: tar_make_clustermq(), tar_make_future()

Examples

tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(tar_target(x, 1 + 1))

})
tar_make()
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
prefix <- "y"
tar_make(starts_with(!!prefix)) # Only builds y1 and y2.
})

tar_make_clustermq Run a pipeline of targets in parallel with persistent clustermq work-
ers.

Description

This function is like tar_make() except that targets run in parallel with persistent clustermq work-
ers. It requires that you set global options like clustermq.scheduler and clustermq.template
inside the target script file (default: _targets.R). clustermq is not a strict dependency of targets,
so you must install clustermq yourself.

Usage

tar_make_clustermq(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
workers = targets::tar_config_get("workers"),
log_worker = FALSE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

62 tar_make_clustermq

Arguments

names Names of the targets to build or check. Set to NULL to check/build all the tar-
gets (default). Otherwise, you can supply tidyselect helpers like all_of()
and starts_with(). Because tar_make() and friends run the pipeline in a
new R session, if you pass a character vector to a tidyselect helper, you will
need to evaluate that character vector early with !!, e.g. tar_make(names =
all_of(!!your_vector)). Applies to ordinary targets (stem) and whole dy-
namic branching targets (patterns) but not to individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of
up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

• "silent": print nothing.
• "summary": print a running total of the number of each targets in each

status category (queued, started, skipped, build, canceled, or errored). Also
show a timestamp ("%H:%M %OS2" strptime() format) of the last time the
progress changed and printed to the screen.

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or are
skipped.

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

workers Positive integer, number of persistent clustermq workers to create.

log_worker Logical, whether to write a log file for each worker. Same as the log_worker
argument of clustermq::Q() and clustermq::workers().

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

tar_make_clustermq 63

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To use with a cluster, you will need to set the global options clustermq.scheduler and clustermq.template
inside the target script file (default: _targets.R). To read more about configuring clustermq for
your scheduler, visit https://mschubert.github.io/clustermq/articles/userguide.html#
configuration # nolint and navigate to the appropriate link under "Setting up the scheduler".
Wildcards in the template file are filled in with elements from tar_option_get("resources").

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

See Also

Other pipeline: tar_make_future(), tar_make()

Examples

if (!identical(tolower(Sys.info()[["sysname"]]), "windows")) {
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

options(clustermq.scheduler = "multiprocess") # Does not work on Windows.
tar_option_set()
list(tar_target(x, 1 + 1))

}, ask = FALSE)
tar_make_clustermq()
})
}
}

https://mschubert.github.io/clustermq/articles/userguide.html#configuration
https://mschubert.github.io/clustermq/articles/userguide.html#configuration

64 tar_make_future

tar_make_future Run a pipeline of targets in parallel with transient future workers.

Description

This function is like tar_make() except that targets run in parallel with transient future workers. It
requires that you declare your future::plan() inside the target script file (default: _targets.R).
future is not a strict dependency of targets, so you must install future yourself.

Usage

tar_make_future(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
workers = targets::tar_config_get("workers"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets to build or check. Set to NULL to check/build all the tar-
gets (default). Otherwise, you can supply tidyselect helpers like all_of()
and starts_with(). Because tar_make() and friends run the pipeline in a
new R session, if you pass a character vector to a tidyselect helper, you will
need to evaluate that character vector early with !!, e.g. tar_make(names =
all_of(!!your_vector)). Applies to ordinary targets (stem) and whole dy-
namic branching targets (patterns) but not to individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of
up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

• "silent": print nothing.
• "summary": print a running total of the number of each targets in each

status category (queued, started, skipped, build, canceled, or errored). Also
show a timestamp ("%H:%M %OS2" strptime() format) of the last time the
progress changed and printed to the screen.

tar_make_future 65

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or are
skipped.

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

workers Positive integer, maximum number of transient future workers allowed to run
at any given time.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To configure tar_make_future() with a computing cluster, see the future.batchtools package
documentation.

66 tar_manifest

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

See Also

Other pipeline: tar_make_clustermq(), tar_make()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

future::plan(future::multiprocess, workers = 2)
list(
tar_target(x, 1 + 1),
tar_target(y, 1 + 1)

)
}, ask = FALSE)
tar_make_future()
})
}

tar_manifest Produce a data frame of information about your targets.

Description

Along with tar_visnetwork() and tar_glimpse(), tar_manifest() helps check that you con-
structed your pipeline correctly.

Usage

tar_manifest(
names = NULL,
fields = c("name", "command", "pattern"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

names Names of the targets to show. Set to NULL to show all the targets (default).
Otherwise, you can supply symbols, a character vector, or tidyselect helpers
like all_of() and starts_with().

tar_manifest 67

fields Names of the fields, or columns, to show. Set to NULL to show all the fields (de-
fault). Otherwise, you can supply symbols, a character vector, or tidyselect
helpers like starts_with(). Set to NULL to print all the fields. The name of the
target is always included as the first column regardless of the selection. Possible
fields are below. All of them can be set in tar_target(), tar_target_raw(),
or tar_option_set().

• name: Name of the target.
• command: the R command that runs when the target builds.
• pattern: branching pattern of the target, if applicable.
• format: Storage format.
• repository: Storage repository.
• iteration: Iteration mode for branching.
• error: Error mode, what to do when the target fails.
• memory: Memory mode, when to keep targets in memory.
• storage: Storage mode for high-performance computing scenarios.
• retrieval: Retrieval mode for high-performance computing scenarios.
• deployment: Where/whether to deploy the target in high-performance com-

puting scenarios.
• priority: Numeric of length 1 between 0 and 1. Controls which targets get

deployed first when multiple competing targets are ready simultaneously.
Targets with priorities closer to 1 get built earlier (and polled earlier in
tar_make_future()).

• resources: A list of target-specific resource requirements for tar_make_future().
• cue_mode: Cue mode from tar_cue().
• cue_depend: Depend cue from tar_cue().
• cue_expr: Command cue from tar_cue().
• cue_file: File cue from tar_cue().
• cue_format: Format cue from tar_cue().
• cue_repository: Repository cue from tar_cue().
• cue_iteration: Iteration cue from tar_cue().
• packages: List columns of packages loaded before building the target.
• library: List column of library paths to load the packages.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

68 tar_mermaid

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Value

A data frame of information about the targets in the pipeline. Rows appear in topological order (the
order they will run without any influence from parallel computing or priorities).

See Also

Other inspect: tar_deps_raw(), tar_deps(), tar_network(), tar_outdated(), tar_sitrep(),
tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2),
tar_target(m, z, pattern = map(z)),
tar_target(c, z, pattern = cross(z))

)
}, ask = FALSE)
tar_manifest()
tar_manifest(fields = c("name", "command"))
tar_manifest(fields = "command")
tar_manifest(fields = starts_with("cue"))
})
}

tar_mermaid mermaid.js dependency graph.

tar_mermaid 69

Description

Visualize the dependency graph with a static mermaid.js graph.

Usage

tar_mermaid(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
outdated = TRUE,
label = NULL,
legend = TRUE,
color = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL to
check/build all the targets (default). Otherwise, you can supply symbols or tidys-
elect helpers like starts_with(). Applies to ordinary targets (stem) and whole
dynamic branching targets (patterns) but not individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed

70 tar_mermaid

up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like all_of() and starts_with().

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and build progress.

label Character vector of one or more aesthetics to add to the vertex labels. Can
contain "time" to show total runtime, "size" to show total storage size, or
"branches" to show the number of branches in each pattern. You can choose
multiple aesthetics at once, e.g. label = c("time", "branches"). All are dis-
abled by default because they clutter the graph.

legend Logical of length 1, whether to display the legend.

color Logical of length 1, whether to color the graph vertices by status.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value

tar_meta 71

of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

mermaid.js is a JavaScript library for constructing static visualizations of graphs.

Value

A character vector of lines of code of the mermaid.js graph. You can visualize the graph by copying
the text into a public online mermaid.js editor or a mermaid GitHub code chunk (https://github.blog/2022-02-14-include-diagrams-markdown-files-mermaid/).
nolint

See Also

Other visualize: tar_glimpse(), tar_visnetwork()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
})
Copy the text into a mermaid.js online editor
or a mermaid GitHub code chunk:
tar_mermaid()
})
}

tar_meta Read a project’s metadata.

Description

Read the metadata of all recorded targets and global objects.

Usage

tar_meta(
names = NULL,
fields = NULL,
targets_only = FALSE,

72 tar_meta

complete_only = FALSE,
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_meta() only returns metadata
on these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with(). If NULL, all names are selected.

fields Optional, names of columns/fields to select. If supplied, tar_meta() only re-
turns the selected metadata columns. If NULL, all fields are selected. You can
supply symbols or tidyselect helpers like all_of() and starts_with(). The
name column is always included first no matter what you select. Choices:

• name: name of the target or global object.
• type: type of the object: either "function" or "object" for global objects,

and "stem", "branch", "map", or "cross" for targets.
• data: hash of the output data.
• command: hash of the target’s deparsed command.
• depend: hash of the immediate upstream dependencies of the target.
• seed: random number generator seed with which the target was built. A tar-

get’s random number generator seed is a deterministic function of its name.
In this way, each target runs with a reproducible seed so someone else run-
ning the same pipeline should get the same results, and no two targets in the
same pipeline share the same seed. (Even dynamic branches have different
names and thus different seeds.) You can recover the seed of a completed
target with tar_meta(your_target, seed) and run set.seed() on the
result to locally recreate the target’s initial RNG state.

• path: A list column of paths to target data. Usually, each element is a
single path, but there could be multiple paths per target for dynamic files
(i.e. tar_target(format = "file")).

• time: POSIXct object with the time the target’s data in storage was last
modified. If the target stores no local file, then the time stamp corre-
sponds to the time the target last ran successfully. Only targets that run
commands have time stamps: just non-branching targets and individual dy-
namic branches. Displayed in the current time zone of the system. If there
are multiple outputs for that target, as with file targets, then the maximum
time is shown.

• size: hash of the sum of all the bytes of the files at path.
• bytes: total file size in bytes of all files in path.
• format: character, one of the admissible data storage formats. See the
format argument in the tar_target() help file for details.

• iteration: character, either "list" or "vector" to describe the iteration
and aggregation mode of the target. See the iteration argument in the
tar_target() help file for details.

• parent: for branches, name of the parent pattern.
• children: list column, names of the children of targets that have them.

These include buds of stems and branches of patterns.

tar_meta 73

• seconds: number of seconds it took to run the target.

• warnings: character string of warning messages from the last run of the
target.

• error: character string of the error message if the target errored.

targets_only Logical, whether to just show information about targets or also return metadata
on functions and other global objects.

complete_only Logical, whether to return only complete rows (no NA values).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

A metadata row only updates when the target is built. tar_progress() shows information on
targets that are running. That is why the number of branches may disagree between tar_meta()
and tar_progress() for actively running pipelines.

Value

A data frame with one row per target/object and the selected fields.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_objects(), tar_pid(),
tar_process(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_meta()
tar_meta(starts_with("y_")) # see also all_of()
})
}

74 tar_name

tar_name Get the name of the target currently running.

Description

Get the name of the target currently running.

Usage

tar_name(default = "target")

Arguments

default Character, value to return if tar_name() is called on its own outside a targets
pipeline. Having a default lets users run things without tar_make(), which
helps peel back layers of code and troubleshoot bugs.

Value

Character of length 1. If called inside a pipeline, tar_name() returns name of the target currently
running. Otherwise, the return value is default.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_group(), tar_path(), tar_seed(), tar_source(), tar_store()

Examples

tar_name()
tar_name(default = "custom_target_name")
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(x, tar_name()), ask = FALSE)
tar_make()
tar_read(x)
})
}

tar_network 75

tar_network Return the vertices and edges of a pipeline dependency graph.

Description

Analyze the pipeline defined in the target script file (default: _targets.R) and return the vertices
and edges of the directed acyclic graph of dependency relationships.

Usage

tar_network(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = NULL,
outdated = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
imported global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL to
check/build all the targets (default). Otherwise, you can supply symbols or tidys-
elect helpers like starts_with(). Applies to ordinary targets (stem) and whole
dynamic branching targets (patterns) but not individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

76 tar_network

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like all_of() and starts_with().

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and build progress.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.

• "forecast": print running totals of the checked and outdated targets found
so far.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_newer 77

Value

A list with two data frames: vertices and edges. The vertices data frame has one row per target
with fields to denote the type of the target or object (stem, branch, map, cross, function, or object)
and the target’s status (up to date, outdated, started, canceled, or errored). The edges data frame has
one row for every edge and columns to and from to mark the starting and terminating vertices.

See Also

Other inspect: tar_deps_raw(), tar_deps(), tar_manifest(), tar_outdated(), tar_sitrep(),
tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_network(targets_only = TRUE)
})
}

tar_newer List new targets

Description

List all the targets whose last successful run occurred after a certain point in time.

Usage

tar_newer(
time,
names = NULL,
inclusive = FALSE,
store = targets::tar_config_get("store")

)

Arguments

time A POSIXct object of length 1, time threshold. Targets newer than this time stamp
are returned. For example, if time = Sys.time - as.difftime(1, units = "weeks")
then tar_newer() returns targets newer than one week ago.

78 tar_newer

names Names of eligible targets. Targets excluded from names will not be returned even
if they are newer than the given time. You can supply symbols or tidyselect
helpers like all_of() and starts_with(). If NULL, all names are eligible.

inclusive Logical of length 1, whether to include targets built at exactly the time given.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Only applies to targets with recorded time stamps: just non-branching targets and individual dy-
namic branches. As of targets version 0.6.0, these time stamps are available for these targets
regardless of storage format. Earlier versions of targets do not record time stamps for remote
storage such as format = "url" or repository = "aws" in tar_target().

Value

A character vector of names of old targets with recorded timestamp metadata.

See Also

Other time: tar_older(), tar_timestamp_raw(), tar_timestamp()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(tar_target(x, seq_len(2)))
}, ask = FALSE)
tar_make()
targets newer than 1 week ago
tar_newer(Sys.time() - as.difftime(1, units = "weeks"))
targets newer than 1 week from now
tar_newer(Sys.time() + as.difftime(1, units = "weeks"))
Everything is still up to date.
tar_make()
Invalidate all targets targets newer than 1 week ago
so they run on the next tar_make().
invalidate_these <- tar_newer(Sys.time() - as.difftime(1, units = "weeks"))
tar_invalidate(all_of(invalidate_these))
tar_make()
})
}

tar_noninteractive 79

tar_noninteractive Run if Target Markdown interactive mode is not on.

Description

In Target Markdown, run the enclosed code only if interactive mode is not activated. Otherwise, do
not run the code.

Usage

tar_noninteractive(code)

Arguments

code R code to run if Target Markdown interactive mode is not turned on.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

Value

If Target Markdown interactive mode is not turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

See Also

Other Target Markdown: tar_engine_knitr(), tar_interactive(), tar_toggle()

Examples

tar_noninteractive(message("Not in interactive mode."))

tar_objects List saved targets

Description

List targets currently saved to _targets/objects/ or the cloud. Does not include local files with
tar_target(..., format = "file", repository = "local").

80 tar_older

Usage

tar_objects(
names = NULL,
cloud = TRUE,
store = targets::tar_config_get("store")

)

Arguments

names Optional tidyselect selector such as all_of() or starts_with() to return a
tactical subset of target names. If NULL, all names are selected.

cloud Logical of length 1, whether to include cloud targets in the output (e.g. tar_target(...,
repository = "aws")).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Character vector of targets saved to _targets/objects/.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_meta(), tar_pid(),
tar_process(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(tar_target(x, "value"))
}, ask = FALSE)
tar_make()
tar_objects()
tar_objects(starts_with("x")) # see also all_of()
})
}

tar_older List old targets

Description

List all the targets whose last successful run occurred before a certain point in time. Combine with
tar_invalidate(), you can use tar_older() to automatically rerun targets at regular intervals.
See the examples for a demonstration.

tar_older 81

Usage

tar_older(
time,
names = NULL,
inclusive = FALSE,
store = targets::tar_config_get("store")

)

Arguments

time A POSIXct object of length 1, time threshold. Targets older than this time stamp
are returned. For example, if time = Sys.time() - as.difftime(1, units =
"weeks") then tar_older() returns targets older than one week ago.

names Names of eligible targets. Targets excluded from names will not be returned even
if they are old. You can supply symbols or tidyselect helpers like all_of()
and starts_with(). If NULL, all names are eligible.

inclusive Logical of length 1, whether to include targets built at exactly the time given.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Only applies to targets with recorded time stamps: just non-branching targets and individual dy-
namic branches. As of targets version 0.6.0, these time stamps are available for these targets
regardless of storage format. Earlier versions of targets do not record time stamps for remote
storage such as format = "url" or repository = "aws" in tar_target().

Value

A character vector of names of old targets with recorded timestamp metadata.

See Also

Other time: tar_newer(), tar_timestamp_raw(), tar_timestamp()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(tar_target(x, seq_len(2)))
}, ask = FALSE)
tar_make()
targets older than 1 week ago
tar_older(Sys.time() - as.difftime(1, units = "weeks"))
targets older than 1 week from now

82 tar_option_get

tar_older(Sys.time() + as.difftime(1, units = "weeks"))
Everything is still up to date.
tar_make()
Invalidate all targets targets older than 1 week from now
so they run on the next tar_make().
invalidate_these <- tar_older(Sys.time() + as.difftime(1, units = "weeks"))
tar_invalidate(all_of(invalidate_these))
tar_make()
})
}

tar_option_get Get a target option.

Description

Get a target option. These options include default arguments to tar_target() such as packages,
storage format, iteration type, and cue. Needs to be called before any calls to tar_target() in
order to take effect.

Usage

tar_option_get(name = NULL, option = NULL)

Arguments

name Character of length 1, name of an option to get. Must be one of the argument
names of tar_option_set().

option Deprecated, use the name argument instead.

Details

This function goes well with tar_target_raw() when it comes to defining external interfaces on
top of the targets package to create pipelines.

Value

Value of a target option.

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_config_unset(), tar_envvars(),
tar_option_reset(), tar_option_set()

tar_option_reset 83

Examples

tar_option_get("format") # default format before we set anything
tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset the format
tar_target(x, 1)$settings$format
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set(cue = tar_cue(mode = "always")) # All targets always run.
list(tar_target(x, 1), tar_target(y, 2))

})
tar_make()
tar_make()
})
}

tar_option_reset Reset all target options.

Description

Reset all target options you previously chose with tar_option_set(). These options are mostly
configurable default arguments to tar_target() and tar_target_raw().

Usage

tar_option_reset()

Value

NULL (invisibly).

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_config_unset(), tar_envvars(),
tar_option_get(), tar_option_set()

Examples

tar_option_get("format") # default format before we set anything
tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset all options
tar_target(x, 1)$settings$format

84 tar_option_set

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set(cue = tar_cue(mode = "always"))
tar_option_reset() # Undo option above.
list(tar_target(x, 1), tar_target(y, 2))

})
tar_make()
tar_make()
})
}

tar_option_set Set target options.

Description

Set target options, including default arguments to tar_target() such as packages, storage format,
iteration type, and cue. Only the non-null arguments are actually set as options. See currently set
options with tar_option_get(). To use tar_option_set() effectively, put it in your workflow’s
target script file (default: _targets.R) before calls to tar_target() or tar_target_raw().

Usage

tar_option_set(
tidy_eval = NULL,
packages = NULL,
imports = NULL,
library = NULL,
envir = NULL,
format = NULL,
repository = NULL,
iteration = NULL,
error = NULL,
memory = NULL,
garbage_collection = NULL,
deployment = NULL,
priority = NULL,
backoff = NULL,
resources = NULL,
storage = NULL,
retrieval = NULL,
cue = NULL,
debug = NULL,
workspaces = NULL,
workspace_on_error = NULL

)

tar_option_set 85

Arguments

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

imports Character vector of package names to track global dependencies. For exam-
ple, if you write tar_option_set(imports = "yourAnalysisPackage") early
in your target script file (default: _targets.R) then tar_make() will automat-
ically rerun or skip targets in response to changes to the R functions and ob-
jects defined in yourAnalysisPackage. Does not account for low-level com-
piled code such as C/C++ or Fortran. If you supply multiple packages, e.g.
tar_option_set(imports = c("p1", "p2")), then the objects in p1 override
the objects in p2 if there are name conflicts. Similarly, objects in tar_option_get("envir")
override everything in tar_option_get("imports").

library Character vector of library paths to try when loading packages.

envir Environment containing functions and global objects common to all targets in
the pipeline. The envir argument of tar_make() and related functions always
overrides the current value of tar_option_get("envir") in the current R ses-
sion just before running the target script file, so whenever you need to set an al-
ternative envir, you should always set it with tar_option_set() from within
the target script file. In other words, if you call tar_option_set(envir =
envir1) in an interactive session and then tar_make(envir = envir2, callr_function
= NULL), then envir2 will be used.
If envir is the global environment, all the promise objects are diffused before
sending the data to parallel workers in tar_make_future() and tar_make_clustermq(),
but otherwise the environment is unmodified. This behavior improves perfor-
mance by decreasing the size of data sent to workers.
If envir is not the global environment, then it should at least inherit from
the global environment or base environment so targets can access attached
packages. In the case of a non-global envir, targets attempts to remove
potentially high memory objects that come directly from targets. That in-
cludes tar_target() objects of class "tar_target", as well as objects of class
"tar_pipeline" or "tar_algorithm". This behavior improves performance
by decreasing the size of data sent to workers.
Package environments should not be assigned to envir. To include package
objects as upstream dependencies in the pipeline, assign the package to the
packages and imports arguments of tar_option_set().

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.

86 tar_option_set

• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:
• "vector": branching happens with vctrs::vec_slice() and aggregation

happens with vctrs::vec_c().
• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:
• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.
deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_option_set 87

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

backoff Numeric of length 1, must be greater than or equal to 0.01. Maximum upper
bound of the random polling interval for the priority queue (seconds). In high-
performance computing (e.g. tar_make_clustermq() and tar_make_future())
it can be expensive to repeatedly poll the priority queue if no targets are ready to
process. The number of seconds between polls is runif(1, 0.001, max(backoff,
0.001 * 1.5 ^ index)), where index is the number of consecutive polls so far
that found no targets ready to skip or run. (If no target is ready, index goes
up by 1. If a target is ready, index resets to 0. For more information on
exponential, backoff, visit https://en.wikipedia.org/wiki/Exponential_
backoff). Raising backoff is kinder to the CPU etc. but may incur delays in
some instances.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff

88 tar_option_set

debug Character vector of names of targets to run in debug mode. To use effectively,
you must set callr_function = NULL and restart your R session just before run-
ning. You should also tar_make(), tar_make_clustermq(), or tar_make_future().
For any target mentioned in debug, targets will force the target to build locally
(with tar_cue(mode = "always") and deployment = "main" in the settings)
and pause in an interactive debugger to help you diagnose problems. This is like
inserting a browser() statement at the beginning of the target’s expression, but
without invalidating any targets.

workspaces Character vector of target names. Could be non-branching targets, whole dy-
namic branching targets, or individual branch names. tar_make() and friends
will save workspace files for these targets even if the targets are skipped. Workspace
files help with debugging. See tar_workspace() for details about workspaces.

workspace_on_error

Logical of length 1, whether to save a workspace file for each target that throws
an error. Workspace files help with debugging. See tar_workspace() for de-
tails about workspaces.

Value

NULL (invisibly).

Storage formats

• "rds": Default, uses saveRDS() and readRDS(). Should work for most objects, but slow.
• "qs": Uses qs::qsave() and qs::qread(). Should work for most objects, much faster than
"rds". Optionally set the preset for qsave() through tar_resources() and tar_resources_qs().

• "feather": Uses arrow::write_feather() and arrow::read_feather() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_feather() through tar_resources() and tar_resources_feather().
Requires the arrow package (not installed by default).

• "parquet": Uses arrow::write_parquet() and arrow::read_parquet() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_parquet() through tar_resources() and tar_resources_parquet().
Requires the arrow package (not installed by default).

• "fst": Uses fst::write_fst() and fst::read_fst(). Much faster than "rds", but the
value must be a data frame. Optionally set the compression level for fst::write_fst()
through tar_resources() and tar_resources_fst(). Requires the fst package (not in-
stalled by default).

• "fst_dt": Same as "fst", but the value is a data.table. Optionally set the compression
level the same way as for "fst".

• "fst_tbl": Same as "fst", but the value is a tibble. Optionally set the compression level
the same way as for "fst".

• "keras": Uses keras::save_model_hdf5() and keras::load_model_hdf5(). The value
must be a Keras model. Requires the keras package (not installed by default).

• "torch": Uses torch::torch_save() and torch::torch_load(). The value must be an
object from the torch package such as a tensor or neural network module. Requires the
torch package (not installed by default).

tar_option_set 89

• "file": A dynamic file. To use this format, the target needs to manually identify or save
some data and return a character vector of paths to the data (must be a single file path if
repository is not "local"). (These paths must be existing files and nonempty directories.)
Then, targets automatically checks those files and cues the appropriate build decisions if
those files are out of date. Those paths must point to files or directories, and they must not
contain characters | or *. All the files and directories you return must actually exist, or else
targets will throw an error. (And if storage is "worker", targets will first stall out trying
to wait for the file to arrive over a network file system.) If the target does not create any files,
the return value should be character(0).
If repository is not "local" and format is "file", then the character vector returned by
the target must be of length 1 and point to a single file. (Directories and vectors of multiple
file paths are not supported for dynamic files on the cloud.) That output file is uploaded to the
cloud and tracked for changes where it exists in the cloud. The local file is deleted after the
target runs.

• "url": A dynamic input URL. For this storage format, repository is implicitly "local",
URL format is like format = "file" except the return value of the target is a URL that already
exists and serves as input data for downstream targets. Optionally supply a custom curl
handle through tar_resources() and tar_resources_url(). in new_handle(), nobody
= TRUE is important because it ensures targets just downloads the metadata instead of the
entire data file when it checks time stamps and hashes. The data file at the URL needs to have
an ETag or a Last-Modified time stamp, or else the target will throw an error because it cannot
track the data. Also, use extreme caution when trying to use format = "url" to track uploads.
You must be absolutely certain the ETag and Last-Modified time stamp are fully updated and
available by the time the target’s command finishes running. targets makes no attempt to
wait for the web server.

• A custom format can be supplied with tar_format(). For this choice, it is the user’s respon-
sibility to provide methods for (un)serialization and (un)marshaling the return value of the
target.

• The formats starting with "aws_" are deprecated as of 2022-03-13 (targets version > 0.10.0). For cloud storage integration, use the repos-
itory‘ argument instead.

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_config_unset(), tar_envvars(),
tar_option_get(), tar_option_reset()

Examples

tar_option_get("format") # default format before we set anything
tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset the format
tar_target(x, 1)$settings$format
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set(cue = tar_cue(mode = "always")) # All targets always run.

90 tar_outdated

list(tar_target(x, 1), tar_target(y, 2))
})
tar_make()
tar_make()
})
}

tar_outdated Check which targets are outdated.

Description

Checks for outdated targets in the pipeline, targets that will be rerun automatically if you call
tar_make() or similar. See tar_cue() for the rules that decide whether a target needs to rerun.

Usage

tar_outdated(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
branches = FALSE,
targets_only = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets. tar_outdated() will check these targets and all upstream
ancestors in the dependency graph. Set names to NULL to check/build all the tar-
gets (default). Otherwise, you can supply symbols or tidyselect helpers like
all_of() and starts_with(). Applies to ordinary targets (stem) and whole
dynamic branching targets (patterns) but not to individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

branches Logical of length 1, whether to include branch names. Including branches could
get cumbersome for large pipelines. Individual branch names are still omitted
when branch-specific information is not reliable: for example, when a pattern
branches over an outdated target.

tar_outdated 91

targets_only Logical of length 1, whether to just restrict to targets or to include functions and
other global objects from the environment created by running the target script
file (default: _targets.R).

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Requires that you define a pipeline with a target script file (default: _targets.R). (See tar_script()
for details.)

Value

Names of the outdated targets.

92 tar_path

See Also

Other inspect: tar_deps_raw(), tar_deps(), tar_manifest(), tar_network(), tar_sitrep(),
tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)))
tar_outdated()
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_outdated()
})
}

tar_path Identify the file path where a target will be stored.

Description

Identify the file path where a target will be stored after the target finishes running in the pipeline.

Usage

tar_path(
name = NULL,
default = NA_character_,
create_dir = FALSE,
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of a target. If NULL, tar_path() returns the path of the target
currently running in a pipeline.

default Character, value to return if tar_path() is called on its own outside a targets
pipeline. Having a default lets users run things without tar_make(), which
helps peel back layers of code and troubleshoot bugs.

create_dir Logical of length 1, whether to create dirname(tar_path()) in tar_path()
itself. This is useful if you are writing to tar_path() from inside a storage =
"none" target and need the parent directory of the file to exist.

tar_pattern 93

store Character of length 1, path to the data store if tar_path() is called outside a
running pipeline. If tar_path() is called inside a running pipeline, this argu-
ment is ignored and actual the path to the running pipeline’s data store is used
instead.

Value

Character, file path of the return value of the target. If not called from inside a running tar-
get, tar_path(name = your_target) just returns _targets/objects/your_target, the file path
where your_target will be saved unless format is equal to "file" or any of the supported cloud-
based storage formats.

For non-cloud storage formats, if you call tar_path() with no arguments while target x is running,
the name argument defaults to the name of the running target, so tar_path() returns _targets/objects/x.

For cloud-backed formats, tar_path() returns the path to the staging file in _targets/scratch/.
That way, even if you select a cloud repository (e.g. tar_target(..., repository = "aws",
storage = "none")) then you can still manually write to tar_path(create_dir = TRUE) and the
targets package will automatically hash it and upload it to the AWS S3 bucket. This does not
apply to format = "file", where you would never need storage = "none" anyway.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_group(), tar_name(), tar_seed(), tar_source(), tar_store()

Examples

tar_path()
tar_path(your_target)
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(returns_path, tar_path()), ask = FALSE)
tar_make()
tar_read(returns_path)
})
}

tar_pattern Emulate dynamic branching.

Description

Emulate the dynamic branching process outside a pipeline. tar_pattern() can help you under-
stand the overall branching structure that comes from the pattern argument of tar_target().

Usage

tar_pattern(pattern, ..., seed = 0L)

94 tar_pattern

Arguments

pattern Function call with the pattern specification.

... Named integers, each of length 1. Each name is the name of a dependency
target, and each integer is the length of the target (number of branches or slices).
Names must be unique.

seed Integer of length 1, random number generator seed to emulate the pattern re-
producibly. (The sample() pattern is random). In a real pipeline, the seed is
automatically generated from the target name in deterministic fashion.

Details

Dynamic branching is a way to programmatically create multiple new targets based on the values
of other targets, all while the pipeline is running. Use the pattern argument of tar_target() to
get started. pattern accepts a function call composed of target names and any of the following
patterns:

• map(): iterate over one or more targets in sequence.

• cross(): iterate over combinations of slices of targets.

• slice(): select one or more slices by index, e.g. slice(x, index = c(3, 4)) selects the
third and fourth slice or branch of x.

• head(): restrict branching to the first few elements.

• tail(): restrict branching to the last few elements.

• sample(): restrict branching to a random subset of elements.

Value

A tibble showing the kinds of dynamic branches that tar_target() would create in a real pipeline
with the given pattern. Each row is a dynamic branch, each column is a dependency target, and
each element is the name of an upstream bud or branch that the downstream branch depends on.
Buds are pieces of non-branching targets ("stems") and branches are pieces of patterns. The returned
bud and branch names are not the actual ones you will see when you run the pipeline, but they do
communicate the branching structure of the pattern.

See Also

Other branching: tar_branch_index(), tar_branch_names_raw(), tar_branch_names(), tar_branches()

Examples

To use dynamic map for real in a pipeline,
call map() in a target's pattern.
The following code goes at the bottom of
your target script file (default: `_targets.R`).
list(

tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(dynamic, c(x, y), pattern = map(x, y)) # 2 branches

)

tar_pid 95

Likewise for more complicated patterns.
list(

tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(z, head(LETTERS, 2)),
tar_target(dynamic, c(x, y, z), pattern = cross(z, map(x, y))) #4 branches

)
But you can emulate dynamic branching without running a pipeline
in order to understand the patterns you are creating. Simply supply
the pattern and the length of each dependency target.
The returned data frame represents the branching structure of the pattern:
One row per new branch, one column per dependency target, and
one element per bud/branch in each dependency target.
tar_pattern(

cross(x, map(y, z)),
x = 2,
y = 3,
z = 3

)
tar_pattern(

head(cross(x, map(y, z)), n = 2),
x = 2,
y = 3,
z = 3

)

tar_pid Get main process ID.

Description

Get the process ID (PID) of the most recent main R process to orchestrate the targets of the current
project.

Usage

tar_pid(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

96 tar_poll

Details

The main process is the R process invoked by tar_make() or similar. If callr_function is not
NULL, this is an external process, and the pid in the return value will not agree with Sys.getpid()
in your current interactive session. The process may or may not be alive. You may want to check it
with ps::ps_is_running(ps::ps_handle(targets::tar_pid())) before running another call
to tar_make() for the same project.

Value

Integer with the process ID (PID) of the most recent main R process to orchestrate the targets of the
current project.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_meta(), tar_objects(),
tar_process(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
Sys.getpid()
tar_pid() # Different from the current PID.
})
}

tar_poll Repeatedly poll progress in the R console.

Description

Print the information in tar_progress_summary() at regular intervals.

Usage

tar_poll(
interval = 1,
timeout = Inf,
fields = c("skipped", "started", "built", "errored", "canceled", "since"),
store = targets::tar_config_get("store")

)

tar_process 97

Arguments

interval Number of seconds to wait between iterations of polling progress.

timeout How many seconds to run before exiting.

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_started(), tar_watch_server(),
tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(100)),
tar_target(y, Sys.sleep(0.1), pattern = map(x))

)
}, ask = FALSE)
px <- tar_make(callr_function = callr::r_bg, reporter = "silent")
tar_poll()
})
}

tar_process Get main process info.

Description

Get info on the most recent main R process to orchestrate the targets of the current project.

Usage

tar_process(names = NULL, store = targets::tar_config_get("store"))

98 tar_process

Arguments

names Optional, names of the data points to return. If supplied, tar_process() returns
only the rows of the names you select. You can supply symbols or tidyselect
helpers like all_of() and starts_with(). If NULL, all names are selected.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

The main process is the R process invoked by tar_make() or similar. If callr_function is not
NULL, this is an external process, and the pid in the return value will not agree with Sys.getpid()
in your current interactive session. The process may or may not be alive. You may want to check
the status with tar_pid() %in% ps::ps_pids() before running another call to tar_make() for the
same project.

Value

A data frame with metadata on the most recent main R process to orchestrate the targets of the
current project. The output includes the pid of the main process.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_meta(), tar_objects(),
tar_pid(), tar_read_raw(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_process()
tar_process(pid)
})
}

tar_progress 99

tar_progress Read progress.

Description

Read a project’s target progress data for the most recent run of tar_make() or similar. Only the
most recent record is shown.

Usage

tar_progress(
names = NULL,
fields = "progress",
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_progress() only returns progress
information on these targets. You can supply symbols or tidyselect helpers
like all_of() and starts_with().

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame with one row per target and the following columns:

• name: name of the target.

• type: type of target: "stem" for non-branching targets, "pattern" for dynamically branching
targets, and "branch" for dynamic branches.

• parent: name of the target’s parent. For branches, this is the name of the associated pattern.
For other targets, the pattern is just itself.

• branches: number of dynamic branches of a pattern. 0 for non-patterns.

• progress: the most recent progress update of that target. Could be "started", "built",
"skipped", "canceled", or "errored".

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_skipped(), tar_started(), tar_watch_server(), tar_watch_ui(),
tar_watch()

100 tar_progress_branches

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_progress()
tar_progress(starts_with("y_")) # see also all_of()
})
}

tar_progress_branches Tabulate the progress of dynamic branches.

Description

Read a project’s target progress data for the most recent run of the pipeline and display the tabulated
status of dynamic branches. Only the most recent record is shown.

Usage

tar_progress_branches(
names = NULL,
fields = NULL,
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_progress() only returns progress
information on these targets. You can supply symbols or tidyselect helpers
like starts_with().

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_progress_summary 101

Value

A data frame with one row per target per progress status and the following columns.

• name: name of the pattern.

• progress: progress status: "started", "built", "cancelled", or "errored".

• branches: number of branches in the progress category.

• total: total number of branches planned for the whole pattern. Values within the same pattern
should all be equal.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_summary(),
tar_progress(), tar_skipped(), tar_started(), tar_watch_server(), tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, x, pattern = map(x)),
tar_target(z, stopifnot(y < 1.5), pattern = map(y))

)
}, ask = FALSE)
try(tar_make())
tar_progress_branches()
})
}

tar_progress_summary Summarize target progress.

Description

Summarize the progress of a run of the pipeline.

Usage

tar_progress_summary(
fields = c("skipped", "started", "built", "errored", "canceled", "since"),
store = targets::tar_config_get("store")

)

102 tar_progress_summary

Arguments

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame with one row and the following optional columns that can be selected with fields.
(time is omitted by default.)

• started: number of targets that started and did not (yet) finish.

• built: number of targets that completed without error or cancellation.

• errored: number of targets that threw an error.

• canceled: number of canceled targets (see tar_cancel()).

• since: how long ago progress last changed (Sys.time() - time).

• time: the time when the progress last changed (modification timestamp of the _targets/meta/progress
file).

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress(), tar_skipped(), tar_started(), tar_watch_server(), tar_watch_ui(), tar_watch()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, x, pattern = map(x)),
tar_target(z, stopifnot(y < 1.5), pattern = map(y), error = "continue")

)
}, ask = FALSE)
try(tar_make())
tar_progress_summary()
})
}

tar_prune 103

tar_prune Remove targets that are no longer part of the pipeline.

Description

Remove target values from _targets/objects/ and the cloud and remove target metadata from
_targets/meta/meta for targets that are no longer part of the pipeline.

Usage

tar_prune(
cloud = TRUE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

cloud Logical of length 1, whether to delete objects from the cloud if applicable (e.g.
AWS, GCP). If FALSE, files are not deleted from the cloud.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.
envir An environment, where to run the target R script (default: _targets.R) if

callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

104 tar_read

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

This is useful if you recently worked through multiple changes to your project and are now trying to
discard irrelevant data while keeping the results that still matter. Global objects and local files with
format = "file" outside the data store are unaffected. Also removes _targets/scratch/, which
is only needed while tar_make(), tar_make_clustermq(), or tar_make_future() is running.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

See Also

Other clean: tar_delete(), tar_destroy(), tar_invalidate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
Remove some targets from the pipeline.
tar_script(list(tar_target(y1, 1 + 1)), ask = FALSE)
Keep only the remaining targets in the data store.
tar_prune()
})
}

tar_read Read a target’s value from storage.

Description

Read a target’s return value from its file in _targets/objects/. For dynamic files (i.e. format =
"file") the paths are returned.

tar_read 105

Usage

tar_read(
name,
branches = NULL,
meta = tar_meta(store = store),
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target to read.

branches Integer of indices of the branches to load if the target is a pattern.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

The target’s return value from its file in _targets/objects/, or the paths to the custom files and
directories if format = "file" was set.

Limited scope

tar_read() and tar_load() are only for exploratory analysis and literate programming, and
tar_read_raw() and tar_load_raw() are only for exploratory analysis. targets automatically
loads the correct dependencies into memory when the pipeline is running, so invoking these func-
tions from inside a target is rarely advisable.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_meta(), tar_objects(),
tar_pid(), tar_process(), tar_read_raw()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)), ask = FALSE)
tar_make()
tar_read(x)
})
}

106 tar_read_raw

tar_read_raw Read a target’s value from storage (raw version)

Description

Like tar_read() except name is a character string. Do not use in knitr or R Markdown reports
with tarchetypes::tar_knit() or tarchetypes::tar_render().

Usage

tar_read_raw(
name,
branches = NULL,
meta = tar_meta(store = store),
store = targets::tar_config_get("store")

)

Arguments

name Character, name of the target to read.

branches Integer of indices of the branches to load if the target is a pattern.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

The target’s return value from its file in _targets/objects/, or the paths to the custom files and
directories if format = "file" was set.

Limited scope

tar_read() and tar_load() are only for exploratory analysis and literate programming, and
tar_read_raw() and tar_load_raw() are only for exploratory analysis. targets automatically
loads the correct dependencies into memory when the pipeline is running, so invoking these func-
tions from inside a target is rarely advisable.

See Also

Other data: tar_load_everything(), tar_load_raw(), tar_load(), tar_meta(), tar_objects(),
tar_pid(), tar_process(), tar_read()

tar_renv 107

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)), ask = FALSE)
tar_make()
tar_read_raw("x")
})
}

tar_renv Set up package dependencies for compatibility with renv

Description

Write package dependencies to a script file (by default, named _targets_packages.R in the root
project directory). Each package is written to a separate line as a standard library() call (e.g.
library(package)) so renv can identify them automatically.

Usage

tar_renv(
extras = c("bs4Dash", "clustermq", "future", "gt", "markdown", "pingr", "rstudioapi",

"shiny", "shinybusy", "shinyWidgets", "visNetwork"),
path = "_targets_packages.R",
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

extras Character vector of additional packages to declare as project dependencies.

path Character of length 1, path to the script file to populate with library() calls.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

108 tar_renv

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

This function gets called for its side-effect, which writes package dependencies to a script for com-
patibility with renv. The generated file should not be edited by hand and will be overwritten each
time tar_renv() is called.

The behavior of renv is to create and manage a project-local R library and keep a record of project
dependencies in a file called renv.lock. To identify dependencies, renv crawls through code
to find packages explicitly mentioned using library(), require(), or ::. However, targets
manages packages in a way that hides dependencies from renv. tar_renv() finds package depen-
dencies that would be otherwise hidden to renv because they are declared using the targets API.
Thus, calling tar_renv this is only necessary if using tar_option_set() or tar_target() to use
specialized storage formats or manage packages.

With the script written by tar_renv(), renv is able to crawl the file to identify package dependen-
cies (with renv::dependencies()). tar_renv() only serves to make your targets project com-
patible with renv, it is still the users responsibility to call renv::init() and renv::snapshot()
directly to initialize and manage a project-local R library. This allows your targets pipeline to
have its own self-contained R library separate from your standard R library. See https://rstudio.
github.io/renv/index.html for more information.

Value

Nothing, invisibly.

See Also

https://rstudio.github.io/renv/articles/renv.html

Other scripts: tar_edit(), tar_github_actions(), tar_helper_raw(), tar_helper(), tar_script()

Examples

tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({
tar_option_set(packages = c("tibble", "qs"))
list()

}, ask = FALSE)
tar_renv()

https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/articles/renv.html

tar_reprex 109

writeLines(readLines("_targets_packages.R"))
})
tar_option_reset()

tar_reprex Reproducible example of targets with reprex

Description

Create a reproducible example of a targets pipeline with the reprex package.

Usage

tar_reprex(pipeline = tar_target(example_target, 1), run = tar_make(), ...)

Arguments

pipeline R code for the target script file _targets.R. library(targets) is automati-
cally written at the top.

run R code to inspect and run the pipeline.

... Named arguments passed to reprex::reprex().

Details

The best way to get help with an issue is to create a reproducible example of the problem and post
it to https://github.com/ropensci/targets/discussions tar_reprex() facilitates this pro-
cess. It is like reprex::reprex({targets::tar_script(...); tar_make()}), but more conve-
nient.

Value

A character vector of rendered the reprex, invisibly.

See Also

Other help: targets-package, use_targets_rmd(), use_targets()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_reprex(

pipeline = {
list(

tar_target(data, data.frame(x = sample.int(1e3))),
tar_target(summary, mean(data$x, na.rm = TRUE))

)
},
run = {

https://github.com/ropensci/targets/discussions

110 tar_resources

tar_visnetwork()
tar_make()

}
)
}

tar_resources Target resources

Description

Create a resources argument for tar_target() or tar_option_set().

Usage

tar_resources(
aws = tar_option_get("resources")$aws,
clustermq = tar_option_get("resources")$clustermq,
feather = tar_option_get("resources")$feather,
fst = tar_option_get("resources")$fst,
future = tar_option_get("resources")$future,
gcp = tar_option_get("resources")$gcp,
parquet = tar_option_get("resources")$parquet,
qs = tar_option_get("resources")$qs,
url = tar_option_get("resources")$url

)

Arguments

aws Output of function tar_resources_aws(). Amazon Web Services (AWS) S3
storage settings for tar_target(..., repository = "aws"). See the cloud
storage section of https://books.ropensci.org/targets/data.html for de-
tails for instructions.

clustermq Output of function tar_resources_clustermq(). Optional clustermq set-
tings for tar_make_clustermq(), including the log_worker and template ar-
guments of clustermq::workers().

feather Output of function tar_resources_feather(). Non-default arguments to arrow::read_feather()
and arrow::write_feather() for arrow/feather-based storage formats. Ap-
plies to all formats ending with the "_feather" suffix. For details on formats,
see the format argument of tar_target().

fst Output of function tar_resources_fst(). Non-default arguments to fst::read_fst()
and fst::write_fst() for fst-based storage formats. Applies to all formats
ending with "fst" in the name. For details on formats, see the format argument
of tar_target().

https://books.ropensci.org/targets/data.html

tar_resources 111

future Output of function tar_resources_future(). Optional future settings for
tar_make_future(), including the resources argument of future::future(),
which can include values to insert in template placeholders in future.batchtools
template files. This is how to supply the resources argument of future::future()
for targets. Resources supplied through future::plan() and future::tweak()
are completely ignored.

gcp Output of function tar_resources_gcp(). Google Cloud Storage bucket set-
tings for tar_target(..., repository = "gcp"). See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for in-
structions.

parquet Output of function tar_resources_parquet(). Non-default arguments to arrow::read_parquet()
and arrow::write_parquet() for arrow/parquet-based storage formats. Ap-
plies to all formats ending with the "_parquet" suffix. For details on formats,
see the format argument of tar_target().

qs Output of function tar_resources_qs(). Non-default arguments to qs::qread()
and qs::qsave() for qs-based storage formats. Applies to all formats end-
ing with the "_qs" suffix. For details on formats, see the format argument of
tar_target().

url Output of function tar_resources_url(). Non-default settings for storage for-
mats ending with the "_url" suffix. These settings include the curl handle for
extra control over HTTP requests. For details on formats, see the format argu-
ment of tar_target().

Value

A list of objects of class "tar_resources" with non-default settings of various optional backends
for data storage and high-performance computing.

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(),

https://books.ropensci.org/targets/data.html

112 tar_resources_aws

tar_resources_qs(), tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
resources = tar_resources(

qs = tar_resources_qs(preset = "fast"),
future = tar_resources_future(resources = list(n_cores = 1))

)
)

tar_resources_aws Target resources: Amazon Web Services (AWS) S3 storage

Description

Create the aws argument of tar_resources() to specify optional settings to AWS for tar_target(...,
repository = "aws"). See the format argument of tar_target() for details.

Usage

tar_resources_aws(
bucket = targets::tar_option_get("resources")awsbucket,
prefix = targets::tar_option_get("resources")awsprefix,
region = targets::tar_option_get("resources")awsregion,
part_size = targets::tar_option_get("resources")awspart_size,
endpoint = targets::tar_option_get("resources")awsendpoint,
...

)

Arguments

bucket Character of length 1, name of an existing bucket to upload and download the
return values of the affected targets during the pipeline.

prefix Character of length 1, "directory path" in the bucket where the target return
values are stored. Defaults to targets::tar_path_objects_dir_cloud().

region Character of length 1, AWS region containing the S3 bucket. Set to NULL to use
the default region.

part_size Positive numeric of length 1, number of bytes for each part of a multipart upload.
(Except the last part, which is the remainder.) In a multipart upload, each part
must be at least 5 MB. The default value of the part_size argument is 5 * (2 ^
20).

tar_resources_aws 113

endpoint Character of length 1, URL endpoint for S3 storage. Defaults to the Amazon
AWS endpoint if NULL. Example: To use the S3 protocol with Google Cloud
Storage, set endpoint = "https://storage.googleapis.com" and region =
"auto". Also make sure to create HMAC access keys in the Google Cloud Stor-
age console (under Settings => Interoperability) and set the AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY environment variables accordingly. After that,
you should be able to use S3 storage formats with Google Cloud storage buck-
ets. There is one limitation, however: even if your bucket has object versioning
turned on, targets may fail to record object versions. Google Cloud Storage in
particular has this incompatibility.

... Named arguments to functions in paws::s3() to manage S3 storage. The docu-
mentation of these specific functions is linked from https://paws-r.github.
io/docs/s3/. The configurable functions themselves are:

• paws::s3()$head_object()

• paws::s3()$get_object()

• paws::s3()$delete_object()

• paws::s3()$put_object()

• paws::s3()$create_multipart_upload()

• paws::s3()$abort_multipart_upload()

• paws::s3()$complete_multipart_upload()

• paws::s3()$upload_part() The named arguments in ... must not be
any of "bucket", "Bucket", "key", "Key", "prefix", "region", "part_size",
"endpoint", "version", "VersionId", "body", "Body", "metadata",
"Metadata", "UploadId", "MultipartUpload", or "PartNumber".

Details

See the cloud storage section of https://books.ropensci.org/targets/data.html for details
for instructions.

Value

Object of class "tar_resources_aws", to be supplied to the aws argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,

https://paws-r.github.io/docs/s3/
https://paws-r.github.io/docs/s3/
https://books.ropensci.org/targets/data.html

114 tar_resources_clustermq

options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_clustermq(), tar_resources_feather(), tar_resources_fst(),
tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
repository = "aws",
resources = tar_resources(
aws = tar_resources_aws(bucket = "yourbucketname"),
qs = tar_resources_qs(preset = "fast")

)
)

tar_resources_clustermq

Target resources: clustermq high-performance computing

Description

Create the clustermq argument of tar_resources() to specify optional high-performance com-
puting settings for tar_make_clustermq(). For details, see the documentation of the clustermq
R package and the corresponding argument names in this help file.

Usage

tar_resources_clustermq(
template = targets::tar_option_get("resources")$clustermq$template

)

Arguments

template Named list, template argument to clustermq::workers(). Defaults to an
empty list.

Value

Object of class "tar_resources_clustermq", to be supplied to the clustermq argument of tar_resources().

tar_resources_feather 115

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_feather(), tar_resources_fst(),
tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
resources = tar_resources(
clustermq = tar_resources_clustermq(template = list(n_cores = 2))

)
)

tar_resources_feather Target resources: feather storage formats

Description

Create the feather argument of tar_resources() to specify optional settings for feather data frame
storage formats powered by the arrow R package. See the format argument of tar_target() for
details.

Usage

tar_resources_feather(
compression = targets::tar_option_get("resources")$feather$compression,
compression_level = targets::tar_option_get("resources")$feather$compression_level

)

116 tar_resources_feather

Arguments

compression Character of length 1, compression argument of arrow::write_feather().
Defaults to "default".

compression_level

Numeric of length 1, compression_level argument of arrow::write_feather().
Defaults to NULL.

Value

Object of class "tar_resources_feather", to be supplied to the feather argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_fst(),
tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "feather",
resources = tar_resources(
feather = tar_resources_feather(compression = "lz4")

)
)

tar_resources_fst 117

tar_resources_fst Target resources: fst storage formats

Description

Create the fst argument of tar_resources() to specify optional settings for big data frame storage
formats powered by the fst R package. See the format argument of tar_target() for details.

Usage

tar_resources_fst(compress = targets::tar_option_get("resources")fstcompress)

Arguments

compress Numeric of length 1, compress argument of fst::write_fst(). Defaults to
50.

Value

Object of class "tar_resources_fst", to be supplied to the fst argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

118 tar_resources_future

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "fst_tbl",
resources = tar_resources(
fst = tar_resources_fst(compress = 100)

)
)

tar_resources_future Target resources: future high-performance computing

Description

Create the future argument of tar_resources() to specify optional high-performance computing
settings for tar_make_future(). This is how to supply the resources argument of future::future()
for targets. Resources supplied through future::plan() and future::tweak() are completely
ignored. For details, see the documentation of the future R package and the corresponding argu-
ment names in this help file.

Usage

tar_resources_future(
plan = NULL,
resources = targets::tar_option_get("resources")$future$resources

)

Arguments

plan A future::plan() object or NULL, a target-specific future plan. Defaults to
NULL.

resources Named list, resources argument to future::future(). This argument is not
supported in some versions of future. For versions of future where resources
is not supported, instead supply resources to future::tweak() and assign the
returned plan to the plan argument of tar_resources_future(). The default
value of resources in tar_resources_future() is an empty list.

Value

Object of class "tar_resources_future", to be supplied to the future argument of tar_resources().

tar_resources_gcp 119

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
resources = tar_resources(
future = tar_resources_future(resources = list(n_cores = 2))

)
)

tar_resources_gcp Target resources: Google Cloud Platform (GCP) Google Cloud Stor-
age (GCS)

Description

Create the gcp argument of tar_resources() to specify optional settings for Google Cloud Storage
for targets with tar_target(..., repository = "gcp"). See the format argument of tar_target()
for details.

Usage

tar_resources_gcp(
bucket = targets::tar_option_get("resources")gcpbucket,
prefix = targets::tar_option_get("resources")gcpprefix,

120 tar_resources_gcp

predefined_acl = targets::tar_option_get("resources")gcppredefined_acl,
verbose = targets::tar_option_get("resources")gcpverbose

)

Arguments

bucket Character of length 1, name of an existing bucket to upload and download the
return values of the affected targets during the pipeline.

prefix Character of length 1, "directory path" in the bucket where the target return
values are stored. Defaults to targets::tar_path_objects_dir_cloud().

predefined_acl Character of length 1, user access to the object. See ?googleCloudStorageR::gcs_upload
for possible values. Defaults to "private".

verbose Logical of length 1, whether to print extra messages like progress bars during
uploads and downloads. Defaults to FALSE.

Details

See the cloud storage section of https://books.ropensci.org/targets/data.html for details
for instructions.

Value

Object of class "tar_resources_gcp", to be supplied to the gcp argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_future(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url(), tar_resources()

https://books.ropensci.org/targets/data.html

tar_resources_parquet 121

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
repository = "gcp",
resources = tar_resources(
gcp = tar_resources_gcp(bucket = "yourbucketname"),
qs = tar_resources_qs(preset = "fast")

)
)

tar_resources_parquet Target resources: parquet storage formats

Description

Create the parquet argument of tar_resources() to specify optional settings for parquet data
frame storage formats powered by the arrow R package. See the format argument of tar_target()
for details.

Usage

tar_resources_parquet(
compression = targets::tar_option_get("resources")$parquet$compression,
compression_level = targets::tar_option_get("resources")$parquet$compression_level

)

Arguments

compression Character of length 1, compression argument of arrow::write_parquet().
Defaults to "snappy".

compression_level

Numeric of length 1, compression_level argument of arrow::write_parquet().
Defaults to NULL.

Value

Object of class "tar_resources_parquet", to be supplied to the parquet argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

122 tar_resources_qs

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_future(), tar_resources_gcp(), tar_resources_qs(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(
name,
command(),
format = "parquet",
resources = tar_resources(

parquet = tar_resources_parquet(compression = "lz4")
)

)

tar_resources_qs Target resources: qs storage formats

Description

Create the qs argument of tar_resources() to specify optional settings for big data storage for-
mats powered by the qs R package. See the format argument of tar_target() for details.

Usage

tar_resources_qs(preset = targets::tar_option_get("resources")qspreset)

Arguments

preset Character of length 1, preset argument of qs::qsave(). Defaults to "high".

Value

Object of class "tar_resources_qs", to be supplied to the qs argument of tar_resources().

tar_resources_url 123

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(),
tar_resources_url(), tar_resources()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
resources = tar_resources(
qs = tar_resources_qs(preset = "fast")

)
)

tar_resources_url Target resources: URL storage formats

Description

Create the url argument of tar_resources() to specify optional settings for URL storage formats.
See the format argument of tar_target() for details.

Usage

tar_resources_url(handle = targets::tar_option_get("resources")urlhandle)

Arguments

handle Object returned by curl::new_handle or NULL. Defaults to NULL.

124 tar_script

Value

Object of class "tar_resources_url", to be supplied to the url argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(),
tar_resources_fst(), tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(),
tar_resources_qs(), tar_resources()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "url",
resources = tar_resources(

url = tar_resources_url(handle = curl::new_handle())
)

)
}

tar_script Write a target script file.

Description

The tar_script() function is a convenient way to create the required target script file (default:
_targets.R) in the current working directory. It always overwrites the existing target script, and it
requires you to be in the working directory where you intend to write the file, so be careful. See the
"Target script" section for details.

tar_script 125

Usage

tar_script(
code = NULL,
library_targets = TRUE,
ask = NULL,
script = targets::tar_config_get("script")

)

Arguments

code R code to write to the target script file. If NULL, an example target script file is
written instead.

library_targets

logical, whether to write a library(targets) line at the top of the target script
file automatically (recommended). If TRUE, you do not need to explicitly put
library(targets) in code.

ask Logical, whether to ask before writing if the target script file already exists. If
NULL, defaults to Sys.getenv("TAR_ASK"). (Set to "true" or "false" with
Sys.setenv()). If ask and the TAR_ASK environment variable are both indeter-
minate, defaults to interactive().

script Character of length 1, where to write the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R.

Value

NULL (invisibly).

Target script file

Every targets project requires a target script file. The target script file is usually a file called
_targets.R Functions tar_make() and friends look for the target script and run it to set up the
pipeline just prior to the main task. Every target script file should run the following steps in the
order below: 1. Package: load the targets package. This step is automatically inserted at the top
of the target script file produced by tar_script() if library_targets is TRUE, so you do not need
to explicitly include it in code. 1. Globals: load custom functions and global objects into memory.
Usually, this section is a bunch of calls to source() that run scripts defining user-defined functions.
These functions support the R commands of the targets. 2. Options: call tar_option_set() to
set defaults for targets-specific settings such as the names of required packages. Even if you have
no specific options to set, it is still recommended to call tar_option_set() in order to register the
proper environment. 3. Targets: define one or more target objects using tar_target(). 4. Pipeline:
call list() to bring the targets from (3) together in a pipeline object. Every target script file must
return a pipeline object, which usually means ending with a call to list(). In practice, (3) and (4)
can be combined together in the same function call.

See Also

Other scripts: tar_edit(), tar_github_actions(), tar_helper_raw(), tar_helper(), tar_renv()

126 tar_seed

Examples

tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script() # Writes an example target script file.
Writes a user-defined target script:
tar_script({

x <- tar_target(x, 1 + 1)
tar_option_set()
list(x)

}, ask = FALSE)
writeLines(readLines("_targets.R"))
})

tar_seed Get the random number generator seed of the target currently running.

Description

Get the random number generator seed of the target currently running.

Usage

tar_seed(default = 1L)

Arguments

default Integer, value to return if tar_seed() is called on its own outside a targets
pipeline. Having a default lets users run things without tar_make(), which
helps peel back layers of code and troubleshoot bugs.

Details

A target’s random number generator seed is a deterministic function of its name. In this way, each
target runs with a reproducible seed so someone else running the same pipeline should get the same
results, and no two targets in the same pipeline share the same seed. (Even dynamic branches have
different names and thus different seeds.) You can retrieve the seed of a completed target with
tar_meta(your_target, seed) and run set.seed() on the result to locally recreate the target’s
initial RNG state.

Value

Integer of length 1. If invoked inside a targets pipeline, the return value is the seed of the target
currently running, which is a deterministic function of the target name. Otherwise, the return value
is default.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_group(), tar_name(), tar_path(), tar_source(), tar_store()

tar_sitrep 127

Examples

tar_seed()
tar_seed(default = 123L)
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(returns_seed, tar_seed()), ask = FALSE)
tar_make()
tar_read(returns_seed)
})
}

tar_sitrep Show the cue-by-cue status of each target.

Description

For each target, report which cues are activated. Except for the never cue, the target will rerun
in tar_make() if any cue is activated. The target is suppressed if the never cue is TRUE. See
tar_cue() for details.

Usage

tar_sitrep(
names = NULL,
fields = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_sitrep() only returns meta-
data on these targets. You can supply symbols or tidyselect helpers like
starts_with().

fields Optional, names of columns/fields to select. If supplied, tar_sitrep() only
returns the selected metadata columns. You can supply symbols or tidyselect
helpers like all_of() and starts_with(). The name column is always in-
cluded first no matter what you select. Choices:

• name: name of the target or global object.
• record: Whether the record cue is activated: TRUE if the target is not in the

metadata (tar_meta()), or if the target errored during the last tar_make(),
or if the class of the target changed.

128 tar_sitrep

• always: Whether mode in tar_cue() is "always". If TRUE, tar_make()
always runs the target.

• never: Whether mode in tar_cue() is "never". If TRUE, tar_make() will
only run if the record cue activates.

• command: Whether the target’s command changed since last time. Al-
ways TRUE if the record cue is activated. Otherwise, always FALSE if the
command cue is suppressed.

• depend: Whether the data/output of at least one of the target’s dependencies
changed since last time. Dependencies are targets, functions, and global
objects directly upstream. Call tar_outdated(targets_only = FALSE)
or tar_visnetwork(targets_only = FALSE) to see exactly which depen-
dencies are outdated. Always NA if the record cue is activated. Otherwise,
always FALSE if the depend cue is suppressed.

• format: Whether the storage format of the target is different from last time.
Always NA if the record cue is activated. Otherwise, always FALSE if the
format cue is suppressed.

• repository: Whether the storage repository of the target is different from
last time. Always NA if the record cue is activated. Otherwise, always
FALSE if the format cue is suppressed.

• iteration: Whether the iteration mode of the target is different from last
time. Always NA if the record cue is activated. Otherwise, always FALSE if
the iteration cue is suppressed.

• file: Whether the file(s) with the target’s return value are missing or dif-
ferent from last time. Always NA if the record cue is activated. Otherwise,
always FALSE if the file cue is suppressed.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Use with caution. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

tar_sitrep 129

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Caveats:

• tar_cue() allows you to change/suppress cues, so the return value will depend on the settings
you supply to tar_cue().

• If a pattern tries to branches over a target that does not exist in storage, then the branches are
omitted from the output.

• tar_sitrep() is myopic. It only considers what happens to the immediate target and its
immediate upstream dependencies, and it makes no attempt to propagate invalidation down-
stream.

Value

A data frame with one row per target/object and one column per cue. Each element is a logical
to indicate whether the cue is activated for the target. See the field argument in this help file for
details.

See Also

Other inspect: tar_deps_raw(), tar_deps(), tar_manifest(), tar_network(), tar_outdated(),
tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.

130 tar_skipped

tar_script({
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_sitrep()
tar_meta(starts_with("y_")) # see also all_of()
})
}

tar_skipped List skipped targets.

Description

List targets whose progress is "skipped".

Usage

tar_skipped(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of skipped targets.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_started(), tar_watch_server(), tar_watch_ui(),
tar_watch()

tar_source 131

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_skipped()
tar_skipped(starts_with("y_")) # see also all_of()
})
}

tar_source Run R scripts.

Description

Run all the R scripts in a directory in the environment specified.

Usage

tar_source(files = "R", envir = targets::tar_option_get("envir"))

Arguments

files Character vector of file and directory paths to look for R scripts to run.

envir Environment to run the scripts. Defaults to tar_option_get("envir"), the
environment of the pipeline.

Details

tar_source() is a convenient way to load R scripts in _targets.R to make custom functions
available to the pipeline. tar_source() recursively looks for files ending in .R or .r, and it runs
each with eval(parse(text = readLines(script_file, warn = FALSE)), envir).

Value

NULL (invisibly)

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_group(), tar_name(), tar_path(), tar_seed(), tar_store()

132 tar_started

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
Running in tar_dir(), these files are written in tempdir().
dir.create("R")
writeLines("f <- function(x) x + 1", file.path("R", "functions.R"))
tar_script({

tar_source()
list(tar_target(x, f(1)))

})
tar_make()
tar_read(x) # 2
})
}

tar_started List started targets.

Description

List targets whose progress is "started".

Usage

tar_started(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like all_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of started targets.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_watch_server(), tar_watch_ui(),
tar_watch()

tar_store 133

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_started()
tar_started(starts_with("y_")) # see also all_of()
})
}

tar_store Current data store path

Description

Identify the file path to the data store of the pipeline currently running.

Usage

tar_store()

Value

Character, file path to the data store of the pipeline currently running. If called outside of the
pipeline currently running, tar_store() returns tar_config_get("store").

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_envir(),
tar_group(), tar_name(), tar_path(), tar_seed(), tar_source()

Examples

tar_store()
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(x, tar_store()), ask = FALSE)
store <- tempfile()
tar_make(store = store)
tar_read(x, store = store)
})
}

134 tar_target

tar_target Declare a target.

Description

A target is a single step of computation in a pipeline. It runs an R command and returns a value.
This value gets treated as an R object that can be used by the commands of targets downstream.
Targets that are already up to date are skipped. See the user manual for more details.

Usage

tar_target(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

tar_target 135

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

136 tar_target

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.
deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

tar_target 137

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object. Users should not modify these directly, just feed them to list() in your target
script file (default: _targets.R).

Target objects

Functions like tar_target() produce target objects, special objects with specialized sets of S3
classes. Target objects represent skippable steps of the analysis pipeline as described at https:
//books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.
org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Storage formats

• "rds": Default, uses saveRDS() and readRDS(). Should work for most objects, but slow.

• "qs": Uses qs::qsave() and qs::qread(). Should work for most objects, much faster than
"rds". Optionally set the preset for qsave() through tar_resources() and tar_resources_qs().

• "feather": Uses arrow::write_feather() and arrow::read_feather() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_feather() through tar_resources() and tar_resources_feather().
Requires the arrow package (not installed by default).

• "parquet": Uses arrow::write_parquet() and arrow::read_parquet() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_parquet() through tar_resources() and tar_resources_parquet().
Requires the arrow package (not installed by default).

• "fst": Uses fst::write_fst() and fst::read_fst(). Much faster than "rds", but the
value must be a data frame. Optionally set the compression level for fst::write_fst()
through tar_resources() and tar_resources_fst(). Requires the fst package (not in-
stalled by default).

• "fst_dt": Same as "fst", but the value is a data.table. Optionally set the compression
level the same way as for "fst".

• "fst_tbl": Same as "fst", but the value is a tibble. Optionally set the compression level
the same way as for "fst".

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

138 tar_target

• "keras": Uses keras::save_model_hdf5() and keras::load_model_hdf5(). The value
must be a Keras model. Requires the keras package (not installed by default).

• "torch": Uses torch::torch_save() and torch::torch_load(). The value must be an
object from the torch package such as a tensor or neural network module. Requires the
torch package (not installed by default).

• "file": A dynamic file. To use this format, the target needs to manually identify or save
some data and return a character vector of paths to the data (must be a single file path if
repository is not "local"). (These paths must be existing files and nonempty directories.)
Then, targets automatically checks those files and cues the appropriate build decisions if
those files are out of date. Those paths must point to files or directories, and they must not
contain characters | or *. All the files and directories you return must actually exist, or else
targets will throw an error. (And if storage is "worker", targets will first stall out trying
to wait for the file to arrive over a network file system.) If the target does not create any files,
the return value should be character(0).
If repository is not "local" and format is "file", then the character vector returned by
the target must be of length 1 and point to a single file. (Directories and vectors of multiple
file paths are not supported for dynamic files on the cloud.) That output file is uploaded to the
cloud and tracked for changes where it exists in the cloud. The local file is deleted after the
target runs.

• "url": A dynamic input URL. For this storage format, repository is implicitly "local",
URL format is like format = "file" except the return value of the target is a URL that already
exists and serves as input data for downstream targets. Optionally supply a custom curl
handle through tar_resources() and tar_resources_url(). in new_handle(), nobody
= TRUE is important because it ensures targets just downloads the metadata instead of the
entire data file when it checks time stamps and hashes. The data file at the URL needs to have
an ETag or a Last-Modified time stamp, or else the target will throw an error because it cannot
track the data. Also, use extreme caution when trying to use format = "url" to track uploads.
You must be absolutely certain the ETag and Last-Modified time stamp are fully updated and
available by the time the target’s command finishes running. targets makes no attempt to
wait for the web server.

• A custom format can be supplied with tar_format(). For this choice, it is the user’s respon-
sibility to provide methods for (un)serialization and (un)marshaling the return value of the
target.

• The formats starting with "aws_" are deprecated as of 2022-03-13 (targets version > 0.10.0). For cloud storage integration, use the repos-
itory‘ argument instead.

See Also

Other targets: tar_cue(), tar_format(), tar_target_raw()

Examples

Defining targets does not run them.
data <- tar_target(target_name, get_data(), packages = "tidyverse")
analysis <- tar_target(analysis, analyze(x), pattern = map(x))
Pipelines accept targets.
pipeline <- list(data, analysis)
Tidy evaluation

tar_target_raw 139

tar_option_set(envir = environment())
n_rows <- 30L
data <- tar_target(target_name, get_data(!!n_rows))
print(data)
Disable tidy evaluation:
data <- tar_target(target_name, get_data(!!n_rows), tidy_eval = FALSE)
print(data)
tar_option_reset()
In a pipeline:
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target(x, 1 + 1), ask = FALSE)
tar_make()
tar_read(x)
})
}

tar_target_raw Define a target using unrefined names and language objects.

Description

tar_target_raw() is just like tar_target() except it avoids non-standard evaluation for the ar-
guments: name is a character string, command and pattern are language objects, and there is no
tidy_eval argument. Use tar_target_raw() instead of tar_target() if you are creating entire
batches of targets programmatically (metaprogramming, static branching).

Usage

tar_target_raw(
name,
command,
pattern = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
deps = NULL,
string = NULL,
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),

140 tar_target_raw

cue = targets::tar_option_get("cue")
)

Arguments

name Character of length 1, name of the target. A target name must be a valid name
for a symbol in R, and it must not start with a dot. Subsequent targets can refer to
this name symbolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command Similar to the command argument of tar_target() except the object must al-
ready be an expression instead of informally quoted code. base::expression()
and base::quote() can produce such objects.

pattern Similar to the pattern argument of tar_target() except the object must al-
ready be an expression instead of informally quoted code. base::expression()
and base::quote() can produce such objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

deps Optional character vector of the adjacent upstream dependencies of the target,
including targets and global objects. If NULL, dependencies are resolved auto-
matically as usual.

string Optional string representation of the command. Internally, the string gets hashed
to check if the command changed since last run, which helps targets decide
whether the target is up to date. External interfaces can take control of string
to ignore changes in certain parts of the command. If NULL, the strings is just
deparsed from command (default).

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://books.ropensci.org/targets/data.html

tar_target_raw 141

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

142 tar_target_raw

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object. Users should not modify these directly, just feed them to list() in your target
script file (default: _targets.R). See the "Target objects" section for details.

Target objects

Functions like tar_target() produce target objects, special objects with specialized sets of S3
classes. Target objects represent skippable steps of the analysis pipeline as described at https:
//books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.
org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

tar_test 143

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other targets: tar_cue(), tar_format(), tar_target()

Examples

The following are equivalent.
y <- tar_target(y, sqrt(x), pattern = map(x))
y <- tar_target_raw("y", expression(sqrt(x)), expression(map(x)))
Programmatically create a chain of interdependent targets
target_list <- lapply(seq_len(4), function(i) {

tar_target_raw(
letters[i + 1],
substitute(do_something(x), env = list(x = as.symbol(letters[i])))

)
})
print(target_list[[1]])
print(target_list[[2]])

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(tar_target_raw("x", quote(1 + 1)), ask = FALSE)
tar_make()
tar_read(x)
})
}

tar_test Test code in a temporary directory.

Description

Runs a test_that() unit test inside a temporary directory to avoid writing to the user’s file space.
This helps ensure compliance with CRAN policies. Also isolates tar_option_set() options and
environment variables specific to targets and skips the test on Solaris. Useful for writing tests for
targetopia packages (extensions to targets tailored to specific use cases).

Usage

tar_test(label, code)

Arguments

label Character of length 1, label for the test.

code User-defined code for the test.

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/
https://wlandau.github.io/targetopia/

144 tar_timestamp

Value

NULL (invisibly).

See Also

Other utilities to extend targets: tar_assert, tar_condition, tar_dir(), tar_language

Examples

tar_test("example test", {
testing_variable_cafecfcb <- "only defined inside tar_test()"
file.create("only_exists_in_tar_test")

})
exists("testing_variable_cafecfcb")
file.exists("only_exists_in_tar_test")

tar_timestamp Get the timestamp(s) of a target.

Description

Get the timestamp associated with a target’s last successful run.

Usage

tar_timestamp(
name = NULL,
format = NULL,
tz = NULL,
parse = NULL,
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target. If NULL (default) then tar_timestamp() will at-
tempt to return the timestamp of the target currently running. Must be called
inside a target’s command or a supporting function in order to work.

format Deprecated in targets version 0.6.0 (2021-07-21).

tz Deprecated in targets version 0.6.0 (2021-07-21).

parse Deprecated in targets version 0.6.0 (2021-07-21).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_timestamp_raw 145

Details

tar_timestamp() checks the metadata in _targets/meta/meta, not the actual returned data of the
target. The timestamp depends on the storage format of the target. If storage is local, e.g. formats
like "rds" and "file", then the time stamp is the latest modification time of the target data files
at the time the target last successfully ran. For non-local storage as with repository = "aws" and
format = "url", targets chooses instead to simply record the time the target last successfully ran.

Value

If the target is not recorded in the metadata or cannot be parsed correctly, then tar_timestamp()
returns a POSIXct object at 1970-01-01 UTC.

See Also

Other time: tar_newer(), tar_older(), tar_timestamp_raw()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(tar_target(x, 1))
}, ask = FALSE)
tar_make()
Get the timestamp.
tar_timestamp(x)
We can use the timestamp to cancel the target
if it already ran within the last hour.
Be sure to set `cue = tar_cue(mode = "always")`
if you want the target to always check the timestamp.
tar_script({

list(
tar_target(
x,
tar_cancel((Sys.time() - tar_timestamp()) < 3600),
cue = tar_cue(mode = "always")

)
)}, ask = FALSE)
tar_make()
})
}

tar_timestamp_raw Get the timestamp(s) of a target (raw version).

Description

Get the time that a target last ran successfully.

146 tar_timestamp_raw

Usage

tar_timestamp_raw(
name = NULL,
format = NULL,
tz = NULL,
parse = NULL,
store = targets::tar_config_get("store")

)

Arguments

name Character of length 1, name of the target.

format Deprecated in targets version 0.6.0 (2021-07-21).

tz Deprecated in targets version 0.6.0 (2021-07-21).

parse Deprecated in targets version 0.6.0 (2021-07-21).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

tar_timestamp_raw() is like tar_timestamp() except it accepts a character string for name in-
stead of a symbol. tar_timestamp_raw() checks the metadata in _targets/meta/meta, not the
actual data. Time stamps are recorded only for targets that run commands: just non-branching
targets and individual dynamic branches.

Value

If the target is not recorded in the metadata or cannot be parsed correctly, then tar_timestamp_raw()
returns a POSIXct object at 1970-01-01 UTC.

See Also

Other time: tar_newer(), tar_older(), tar_timestamp()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

list(tar_target(x, 1))
}, ask = FALSE)
tar_make()
Get the timestamp.
tar_timestamp_raw("x")
We can use the timestamp to cancel the target
if it already ran within the last hour.

tar_toggle 147

Be sure to set `cue = tar_cue(mode = "always")`
if you want the target to always check the timestamp.
tar_script({

list(
tar_target(
x,
tar_cancel((Sys.time() - tar_timestamp_raw()) < 3600),
cue = tar_cue(mode = "always")

)
)}, ask = FALSE)
tar_make()
})
}

tar_toggle Choose code to run based on Target Markdown mode.

Description

Run one piece of code if Target Markdown mode interactive mode is turned on and another piece
of code otherwise.

Usage

tar_toggle(interactive, noninteractive)

Arguments

interactive R code to run if Target Markdown interactive mode is activated.

noninteractive R code to run if Target Markdown interactive mode is not activated.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

Value

If Target Markdown interactive mode is not turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

See Also

Other Target Markdown: tar_engine_knitr(), tar_interactive(), tar_noninteractive()

148 tar_traceback

Examples

tar_toggle(
message("In interactive mode."),
message("Not in interactive mode.")

)

tar_traceback Get a target’s traceback

Description

Return the saved traceback of a target. Assumes the target errored out in a previous run of the
pipeline with workspaces enabled for that target. See tar_workspace() for details.

Usage

tar_traceback(
name,
envir = NULL,
packages = NULL,
source = NULL,
characters = getOption("width"),
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target whose workspace to read.

envir Deprecated in targets > 0.3.1 (2021-03-28).

packages Logical, whether to load the required packages of the target.

source Logical, whether to run the target script file (default: _targets.R) to load user-
defined global object dependencies into envir. If TRUE, then envir should ei-
ther be the global environment or inherit from the global environment.

characters Positive integer. Each line of the traceback is shortened to this number of char-
acters.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Character vector, the traceback of a failed target if it exists.

tar_unscript 149

See Also

Other debug: tar_load_globals(), tar_workspaces(), tar_workspace()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tmp <- sample(1)
tar_script({

tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "loaded"),
tar_target(y, stop(x))

)
}, ask = FALSE)
try(tar_make())
tar_traceback(y, characters = 60)
})
}

tar_unscript Remove target script helper files.

Description

Remove target script helper files (default: _targets_r/) that were created by Target Markdown.

Usage

tar_unscript(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

Target Markdown code chunks create R scripts in a folder called _targets_r/ in order to aid the
automatically supplied _targets.R file. Over time, the number of script files starts to build up, and
targets has no way of automatically removing helper script files that are no longer necessary. To
keep your pipeline up to date with the code chunks in the Target Markdown document(s), it is good
practice to call tar_unscript() at the beginning of your first Target Markdown document. That
way, extraneous/discarded targets are automatically removed from the pipeline when the document
starts render.

150 tar_validate

If the target script is at some alternative path, e.g. custom/script.R, the helper scripts are in
custom/script_r/. tar_unscript() works on the helper scripts as long as your project configu-
ration settings correctly identify the correct target script.

Value

NULL (invisibly).

Examples

tar_dir({ # tar_dir() runs code from a temporary directory.
tar_unscript()
})

tar_validate Validate a pipeline of targets.

Description

Inspect the pipeline for issues and throw an error or warning if a problem is detected.

Usage

tar_validate(
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before

tar_visnetwork 151

running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

See Also

Other inspect: tar_deps_raw(), tar_deps(), tar_manifest(), tar_network(), tar_outdated(),
tar_sitrep()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script(list(tar_target(x, 1 + 1)), ask = FALSE)
tar_validate()
})
}

tar_visnetwork visNetwork dependency graph.

Description

Visualize the pipeline dependency graph with a visNetwork HTML widget.

152 tar_visnetwork

Usage

tar_visnetwork(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
outdated = TRUE,
label = NULL,
level_separation = NULL,
degree_from = 1L,
degree_to = 1L,
zoom_speed = 1,
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL to
check/build all the targets (default). Otherwise, you can supply symbols or tidys-
elect helpers like starts_with(). Applies to ordinary targets (stem) and whole
dynamic branching targets (patterns) but not individual dynamic branches.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like all_of() and starts_with().

tar_visnetwork 153

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and build progress.

label Character vector of one or more aesthetics to add to the vertex labels. Can
contain "time" to show total runtime, "size" to show total storage size, or
"branches" to show the number of branches in each pattern. You can choose
multiple aesthetics at once, e.g. label = c("time", "branches"). All are dis-
abled by default because they clutter the graph.

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

zoom_speed Positive numeric of length 1, scaling factor on the zoom speed. Above 1 zooms
faster than default, below 1 zooms lower than default.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.
callr_function A function from callr to start a fresh clean R process to do the work. Set to

NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.
envir An environment, where to run the target R script (default: _targets.R) if

callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

154 tar_watch

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A visNetwork HTML widget object.

See Also

Other visualize: tar_glimpse(), tar_mermaid()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
})
tar_visnetwork()
tar_visnetwork(allow = starts_with("y")) # see also all_of()
})
}

tar_watch Shiny app to watch the dependency graph.

Description

Launches a background process with a Shiny app that calls tar_visnetwork() every few seconds.
To embed this app in other apps, use the Shiny module in tar_watch_ui() and tar_watch_server().

tar_watch 155

Usage

tar_watch(
seconds = 10,
seconds_min = 1,
seconds_max = 60,
seconds_step = 1,
targets_only = FALSE,
exclude = ".Random.seed",
outdated = FALSE,
label = NULL,
level_separation = 150,
degree_from = 1L,
degree_to = 1L,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main"),
height = "650px",
display = "summary",
displays = c("summary", "branches", "progress", "graph", "about"),
background = TRUE,
browse = TRUE,
host = getOption("shiny.host", "127.0.0.1"),
port = getOption("shiny.port", targets::tar_random_port()),
verbose = TRUE,
supervise = TRUE,
poll_connection = TRUE,
stdout = "|",
stderr = "|"

)

Arguments

seconds Numeric of length 1, default number of seconds between refreshes of the graph.
Can be changed in the app controls.

seconds_min Numeric of length 1, lower bound of seconds in the app controls.

seconds_max Numeric of length 1, upper bound of seconds in the app controls.

seconds_step Numeric of length 1, step size of seconds in the app controls.

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

exclude Character vector of nodes to omit from the graph.

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and build progress.

label Label argument to tar_visnetwork().

156 tar_watch

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

height Character of length 1, height of the visNetwork widget and branches table.

display Character of length 1, which display to show first.

displays Character vector of choices for the display. Elements can be any of "graph",
"summary", "branches", or "about".

background Logical, whether to run the app in a background process so you can still use the
R console while the app is running.

browse Whether to open the app in a browser when the app is ready. Only relevant if
background is TRUE.

host Character of length 1, IPv4 address to listen on. Only relevant if background is
TRUE.

port Positive integer of length 1, TCP port to listen on. Only relevant if background
is TRUE.

verbose whether to print a spinner and informative messages. Only relevant if background
is TRUE.

tar_watch 157

supervise Whether to register the process with a supervisor. If TRUE, the supervisor will
ensure that the process is killed when the R process exits.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the main process.

stdout The name of the file the standard output of the child R process will be written
to. If the child process runs with the --slave option (the default), then the com-
mands are not echoed and will not be shown in the standard output. Also note
that you need to call print() explicitly to show the output of the command(s).

stderr The name of the file the standard error of the child R process will be written
to. In particular message() sends output to the standard error. If nothing was
sent to the standard error, then this file will be empty. This argument can be the
same file as stdout, in which case they will be correctly interleaved. If this is
the string "2>&1", then standard error is redirected to standard output.

Details

The controls of the app are in the left panel. The seconds control is the number of seconds between
refreshes of the graph, and the other settings match the arguments of tar_visnetwork().

Value

A handle to callr::r_bg() background process running the app.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_started(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

sleep_run <- function(...) {
Sys.sleep(10)

}
list(

tar_target(settings, sleep_run()),
tar_target(data1, sleep_run(settings)),
tar_target(data2, sleep_run(settings))

)
}, ask = FALSE)
Launch the app in a background process.
tar_watch(seconds = 10, outdated = FALSE, targets_only = TRUE)
Run the pipeline.
tar_make()
})
}

158 tar_watch_server

tar_watch_server Shiny module server for tar_watch()

Description

Use tar_watch_ui() and tar_watch_server() to include tar_watch() as a Shiny module in an
app.

Usage

tar_watch_server(
id,
height = "650px",
exclude = ".Random.seed",
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

id Character of length 1, ID corresponding to the UI function of the module.
height Character of length 1, height of the visNetwork widget and branches table.
exclude Character vector of nodes to omit from the graph.
config Character of length 1, file path of the YAML configuration file with targets

project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

A Shiny module server.

tar_watch_ui 159

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_started(), tar_watch_ui(),
tar_watch()

tar_watch_ui Shiny module UI for tar_watch()

Description

Use tar_watch_ui() and tar_watch_server() to include tar_watch() as a Shiny module in an
app.

Usage

tar_watch_ui(
id,
label = "tar_watch_label",
seconds = 10,
seconds_min = 1,
seconds_max = 60,
seconds_step = 1,
targets_only = FALSE,
outdated = FALSE,
label_tar_visnetwork = NULL,
level_separation = 150,
degree_from = 1L,
degree_to = 1L,
height = "650px",
display = "summary",
displays = c("summary", "branches", "progress", "graph", "about")

)

Arguments

id Character of length 1, ID corresponding to the UI function of the module.

label Label for the module.

seconds Numeric of length 1, default number of seconds between refreshes of the graph.
Can be changed in the app controls.

seconds_min Numeric of length 1, lower bound of seconds in the app controls.

seconds_max Numeric of length 1, upper bound of seconds in the app controls.

seconds_step Numeric of length 1, step size of seconds in the app controls.

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

160 tar_workspace

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and build progress.

label_tar_visnetwork

Character vector, label argument to tar_visnetwork().

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

height Character of length 1, height of the visNetwork widget and branches table.

display Character of length 1, which display to show first.

displays Character vector of choices for the display. Elements can be any of "graph",
"summary", "branches", or "about".

Value

A Shiny module UI.

See Also

Other progress: tar_built(), tar_canceled(), tar_errored(), tar_poll(), tar_progress_branches(),
tar_progress_summary(), tar_progress(), tar_skipped(), tar_started(), tar_watch_server(),
tar_watch()

tar_workspace Load a saved workspace and seed for debugging.

Description

Load the packages, workspace, and random number generator seed of target attempted with a
workspace file.

tar_workspace 161

Usage

tar_workspace(
name,
envir = parent.frame(),
packages = TRUE,
source = TRUE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target whose workspace to read.

envir Environment in which to put the objects.

packages Logical, whether to load the required packages of the target.

source Logical, whether to run _targets.R to load user-defined global object depen-
dencies into envir. If TRUE, then envir should either be the global environment
or inherit from the global environment.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If you activate workspaces through the workspaces argument of tar_option_set(), then un-
der the circumstances you specify, targets will save a special workspace file to a location in in
_targets/workspaces/. The workspace file is a compact reference that allows tar_workspace()
to load the target’s dependencies and random number generator seed as long as the data objects are
still in the data store (usually files in _targets/objects/). When you are done debugging, you
can remove the workspace files using tar_destroy(destroy = "workspaces").

Value

This function returns NULL, but it does load the target’s required packages, as well as multiple
objects into the environment (envir argument) in order to replicate the workspace where the er-
ror happened. These objects include the global objects at the time tar_make() was called and
the dependency targets. The random number generator seed for the target is also assigned with
set.seed().

162 tar_workspaces

See Also

Other debug: tar_load_globals(), tar_traceback(), tar_workspaces()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tmp <- sample(1)
tar_script({

tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "loaded"),
tar_target(y, stop(x))

)
}, ask = FALSE)
The following code throws an error for demonstration purposes.
try(tar_make())
exists("x") # Should be FALSE.
tail(.Random.seed) # for comparison to the RNG state after tar_workspace(y)
tar_workspace(y)
exists("x") # Should be TRUE.
print(x) # "loaded"
Should be different: tar_workspace() runs set.seed(tar_meta(y, seed)$seed)
tail(.Random.seed)
})
}

tar_workspaces List saved target workspaces.

Description

List target workspaces currently saved to _targets/workspaces/. See tar_workspace() for more
information.

Usage

tar_workspaces(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional tidyselect selector to return a tactical subset of workspace names. If
NULL, all names are selected.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

use_targets 163

Value

Character vector of available workspaces to load with tar_workspace().

See Also

Other debug: tar_load_globals(), tar_traceback(), tar_workspace()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
tar_script({

tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "value"),
tar_target(y, x)

)
}, ask = FALSE)
tar_make()
tar_workspaces()
tar_workspaces(contains("x"))
})
}

use_targets Use targets

Description

Set up targets for an existing project.

Usage

use_targets(
script = targets::tar_config_get("script"),
scheduler = targets::use_targets_scheduler(),
open = interactive(),
overwrite = FALSE,
job_name = targets::tar_random_name()

)

Arguments

script Character of length 1, where to write the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R.

scheduler Character of length 1, type of scheduler for parallel computing. See <books.ropensci.org/targets/hpc.html>
for details. The default is automatically detected from your system (but PBS
and Torque cannot be distinguished from SGE, and SGE is the default among
the three). Possible values:

164 use_targets

• "multicore": local forked processes on Linux-like systems (but same as
"multiprocess" for tar_make_future() options).

• "multiprocess": local platform-independent and multi-process.
• "slurm": SLURM clusters.
• "sge": Sun Grid Engine clusters.
• "lsf": LSF clusters.
• "pbs": PBS clusters. (batchtools template file not available.)
• "torque": Torque clusters.

open Logical, whether to open the file for editing in the RStudio IDE.

overwrite Logical of length 1, whether to overwrite the targets file and supporting files if
they already exist.

job_name Character of length 1, job name to supply to schedulers like SLURM.

Details

To set up a project-oriented function-oriented workflow for targets, use_targets() writes:

1. A target script _targets.R tailored to your system.

2. Template files "clustermq.tmpl" and "future.tmpl" to configure tar_make_clustermq()
and tar_make_future() to a resource manager if detected on your system. They should work
out of the box on most systems, but you may need to modify them by hand if you encounter
errors.

3. Script run.R to conveniently execute the pipeline using tar_make(). You can change this to
tar_make_clustermq() or tar_make_future() and supply the workers argument to either.

4. Script run.sh to conveniently call run.R in a persistent background process. Enter ./run.sh
in the shell to run it.

5. If you have a high-performance computing scheduler like Sun Grid Engine (SGE) (or select
one using the scheduler argument of use_targets()), then script job.sh is created. job.sh
conveniently executes run.R as a job on a cluster. For example, to run the pipeline as a job
on an SGE cluster, enter qsub job.sh in the terminal. job.sh should work out of the box on
most systems, but you may need to modify it by hand if you encounter errors.

After you call use_targets(), there is still configuration left to do:

1. Open _targets.R and edit by hand. Follow the comments to write any options, packages,
and target definitions that your pipeline requires.

2. Edit run.R and choose which pipeline function to execute (tar_make(), tar_make_clustermq(),
or tar_make_future()).

3. If applicable, edit clustermq.tmpl and/or future.tmpl to configure settings for your re-
source manager.

4. If applicable, configure job.sh, "clustermq.tmpl", and/or "future.tmpl" for your re-
source manager.

After you finished configuring your project, follow the steps at https://books.ropensci.org/
targets/walkthrough.html#inspect-the-pipeline: # nolint

https://books.ropensci.org/targets/walkthrough.html#inspect-the-pipeline
https://books.ropensci.org/targets/walkthrough.html#inspect-the-pipeline

use_targets_rmd 165

1. Run tar_glimpse() and tar_manifest() to check that the targets in the pipeline are defined
correctly.

2. Run the pipeline. You may wish to call a tar_make*() function directly, or you may run
run.R or run.sh.

3. Inspect the target output using tar_read() and/or tar_load().

4. Develop the pipeline as needed by manually editing _targets.R and the scripts in R/ and
repeating steps (1) through (3).

Value

NULL (invisibly).

See Also

Other help: tar_reprex(), targets-package, use_targets_rmd()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
use_targets(open = FALSE)
})
}

use_targets_rmd Use targets with Target Markdown.

Description

Create an example Target Markdown report to get started with targets.

Usage

use_targets_rmd(path = "_targets.Rmd", open = interactive())

Arguments

path Character of length 1, output path of the Target Markdown report relative to the
current active project.

open Logical, whether to open the file for editing in the RStudio IDE.

Value

NULL (invisibly).

See Also

Other help: tar_reprex(), targets-package, use_targets()

166 use_targets_rmd

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temporary directory.
use_targets(open = FALSE)
})
}

Index

∗ Target Markdown
tar_engine_knitr, 31
tar_interactive, 50
tar_noninteractive, 79
tar_toggle, 147

∗ branching
tar_branch_index, 9
tar_branch_names, 10
tar_branch_names_raw, 11
tar_branches, 8
tar_pattern, 93

∗ clean
tar_delete, 26
tar_destroy, 29
tar_invalidate, 50
tar_prune, 103

∗ configuration
tar_config_get, 17
tar_config_set, 18
tar_config_unset, 21
tar_envvars, 34
tar_option_get, 82
tar_option_reset, 83
tar_option_set, 84

∗ data
tar_load, 53
tar_load_everything, 54
tar_load_raw, 57
tar_meta, 71
tar_objects, 79
tar_pid, 95
tar_process, 97
tar_read, 104
tar_read_raw, 106

∗ debug
tar_load_globals, 56
tar_traceback, 148
tar_workspace, 160
tar_workspaces, 162

∗ existence
tar_exist_meta, 37
tar_exist_objects, 37
tar_exist_process, 38
tar_exist_progress, 39
tar_exist_script, 40

∗ help
tar_reprex, 109
targets-package, 4
use_targets, 163
use_targets_rmd, 165

∗ inspect
tar_deps, 27
tar_deps_raw, 28
tar_manifest, 66
tar_network, 75
tar_outdated, 90
tar_sitrep, 127
tar_validate, 150

∗ pipeline
tar_make, 59
tar_make_clustermq, 61
tar_make_future, 64

∗ progress
tar_built, 12
tar_canceled, 15
tar_errored, 36
tar_poll, 96
tar_progress, 99
tar_progress_branches, 100
tar_progress_summary, 101
tar_skipped, 130
tar_started, 132
tar_watch, 154
tar_watch_server, 158
tar_watch_ui, 159

∗ resources
tar_resources, 110
tar_resources_aws, 112

167

168 INDEX

tar_resources_clustermq, 114
tar_resources_feather, 115
tar_resources_fst, 117
tar_resources_future, 118
tar_resources_gcp, 119
tar_resources_parquet, 121
tar_resources_qs, 122
tar_resources_url, 123

∗ scripts
tar_edit, 31
tar_github_actions, 43
tar_helper, 48
tar_helper_raw, 49
tar_renv, 107
tar_script, 124

∗ targets
tar_cue, 23
tar_format, 41
tar_target, 134
tar_target_raw, 139

∗ time
tar_newer, 77
tar_older, 80
tar_timestamp, 144
tar_timestamp_raw, 145

∗ utilities to extend targets
tar_assert, 6
tar_condition, 16
tar_dir, 30
tar_language, 52
tar_test, 143

∗ utilities
tar_active, 5
tar_call, 13
tar_cancel, 14
tar_definition, 25
tar_envir, 33
tar_group, 46
tar_name, 74
tar_path, 92
tar_seed, 126
tar_source, 131
tar_store, 133

∗ visualize
tar_glimpse, 44
tar_mermaid, 68
tar_visnetwork, 151

all_of(), 13, 15, 26, 36, 45, 51, 53, 59, 62,

64, 66, 70, 72, 76, 78, 80, 81, 90, 98,
99, 127, 130, 132, 152

cross (tar_pattern), 93

head (tar_pattern), 93

library(), 107
list(), 125, 137, 142

map (tar_pattern), 93

sample (tar_pattern), 93
starts_with(), 13, 15, 26, 36, 45, 51, 53, 59,

62, 64, 66, 67, 69, 70, 72, 75, 76, 78,
80, 81, 90, 98–100, 127, 130, 132,
152

tail (tar_pattern), 93
tar_active, 5, 14, 25, 34, 47, 74, 93, 126,

131, 133
tar_assert, 6, 16, 30, 52, 144
tar_assert_chr (tar_assert), 6
tar_assert_dbl (tar_assert), 6
tar_assert_df (tar_assert), 6
tar_assert_envir (tar_assert), 6
tar_assert_equal_lengths (tar_assert), 6
tar_assert_expr (tar_assert), 6
tar_assert_file (tar_assert), 6
tar_assert_finite (tar_assert), 6
tar_assert_flag (tar_assert), 6
tar_assert_function (tar_assert), 6
tar_assert_function_arguments

(tar_assert), 6
tar_assert_ge (tar_assert), 6
tar_assert_identical (tar_assert), 6
tar_assert_in (tar_assert), 6
tar_assert_inherits (tar_assert), 6
tar_assert_int (tar_assert), 6
tar_assert_internet (tar_assert), 6
tar_assert_lang (tar_assert), 6
tar_assert_le (tar_assert), 6
tar_assert_lgl (tar_assert), 6
tar_assert_list (tar_assert), 6
tar_assert_match (tar_assert), 6
tar_assert_name (tar_assert), 6
tar_assert_named (tar_assert), 6
tar_assert_names (tar_assert), 6
tar_assert_nonempty (tar_assert), 6
tar_assert_nonmissing (tar_assert), 6

INDEX 169

tar_assert_not_dir (tar_assert), 6
tar_assert_not_dirs (tar_assert), 6
tar_assert_not_expr (tar_assert), 6
tar_assert_not_in (tar_assert), 6
tar_assert_nzchar (tar_assert), 6
tar_assert_package (tar_assert), 6
tar_assert_path (tar_assert), 6
tar_assert_positive (tar_assert), 6
tar_assert_scalar (tar_assert), 6
tar_assert_target (tar_assert), 6
tar_assert_target_list (tar_assert), 6
tar_assert_true (tar_assert), 6
tar_assert_unique (tar_assert), 6
tar_assert_unique_targets (tar_assert),

6
tar_branch_index, 9, 9, 11, 12, 94
tar_branch_names, 9, 10, 10, 12, 94
tar_branch_names(), 11
tar_branch_names_raw, 9–11, 11, 94
tar_branches, 8, 10–12, 94
tar_built, 12, 15, 36, 97, 99, 101, 102, 130,

132, 157, 159, 160
tar_call, 5, 13, 14, 25, 34, 47, 74, 93, 126,

131, 133
tar_cancel, 5, 14, 14, 25, 34, 47, 74, 93, 126,

131, 133
tar_cancel(), 102
tar_canceled, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 160
tar_condition, 8, 16, 30, 52, 144
tar_config_get, 17, 20, 22, 35, 82, 83, 89
tar_config_get(), 8, 10–13, 15, 26, 29, 31,

36–40, 46, 51, 53, 55, 58, 60, 63, 65,
68, 70, 71, 73, 76, 78, 80, 81, 91, 95,
97–100, 102–106, 108, 129, 130,
132, 144, 146, 148, 149, 151, 154,
161, 162

tar_config_set, 18, 18, 22, 35, 82, 83, 89
tar_config_set(), 8, 10–13, 15, 26, 29, 31,

35–40, 46, 51, 53, 55, 58, 60, 63, 65,
68, 70, 71, 73, 76, 78, 80, 81, 91, 95,
97–100, 102–106, 108, 129, 130,
132, 144, 146, 148, 149, 151, 154,
161, 162

tar_config_unset, 18, 20, 21, 35, 82, 83, 89
tar_config_unset(), 19, 20, 56
tar_cue, 23, 42, 138, 143
tar_cue(), 67, 90, 127–129

tar_definition, 5, 14, 25, 34, 47, 74, 93,
126, 131, 133

tar_delete, 26, 30, 51, 104
tar_deparse_language (tar_language), 52
tar_deparse_safe (tar_language), 52
tar_deps, 27, 28, 68, 77, 92, 129, 151
tar_deps(), 24, 28
tar_deps_raw, 27, 28, 68, 77, 92, 129, 151
tar_destroy, 27, 29, 51, 104
tar_dir, 8, 16, 30, 52, 144
tar_edit, 31, 44, 48, 49, 108, 125
tar_engine_knitr, 31, 50, 79, 147
tar_envir, 5, 14, 25, 33, 47, 74, 93, 126, 131,

133
tar_envvars, 18, 20, 22, 34, 82, 83, 89
tar_envvars(), 34
tar_error (tar_condition), 16
tar_errored, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 160
tar_exist_meta, 37, 38–40
tar_exist_objects, 37, 37, 39, 40
tar_exist_process, 37, 38, 38, 40
tar_exist_progress, 37–39, 39, 40
tar_exist_script, 37–40, 40
tar_format, 24, 41, 138, 143
tar_github_actions, 31, 43, 48, 49, 108, 125
tar_github_actions(), 35
tar_glimpse, 44, 71, 154
tar_glimpse(), 66, 165
tar_group, 5, 14, 25, 34, 46, 74, 93, 126, 131,

133
tar_group(), 86, 135, 141
tar_helper, 31, 44, 48, 49, 108, 125
tar_helper(), 49
tar_helper_raw, 31, 44, 48, 49, 108, 125
tar_interactive, 33, 50, 79, 147
tar_invalidate, 27, 30, 50, 104
tar_invalidate(), 26, 80
tar_language, 8, 16, 30, 52, 144
tar_load, 53, 55, 58, 73, 80, 96, 98, 105, 106
tar_load(), 51, 57, 165
tar_load_everything, 54, 54, 58, 73, 80, 96,

98, 105, 106
tar_load_everything(), 53
tar_load_globals, 56, 149, 162, 163
tar_load_raw, 54, 55, 57, 73, 80, 96, 98, 105,

106
tar_make, 59, 63, 66

170 INDEX

tar_make(), 13, 17–22, 25, 29, 33, 43, 45, 51,
56, 59–65, 68, 70, 74, 76, 85, 88,
90–92, 96, 98, 99, 103, 104, 108,
125–129, 150, 153, 156, 158, 161,
164

tar_make_clustermq, 61, 61, 66
tar_make_clustermq(), 19, 34, 85–88, 104,

136, 141, 142, 164
tar_make_future, 61, 63, 64
tar_make_future(), 34, 42, 67, 85–88, 104,

136, 141, 142, 164
tar_manifest, 27, 28, 66, 77, 92, 129, 151
tar_manifest(), 165
tar_mermaid, 46, 68, 154
tar_message (tar_condition), 16
tar_message_run (tar_condition), 16
tar_meta, 54, 55, 58, 71, 80, 96, 98, 105, 106
tar_meta(), 53, 55, 58, 73, 105, 106, 127
tar_name, 5, 14, 25, 34, 47, 74, 93, 126, 131,

133
tar_network, 27, 28, 68, 75, 92, 129, 151
tar_newer, 77, 81, 145, 146
tar_noninteractive, 33, 50, 79, 147
tar_objects, 54, 55, 58, 73, 79, 96, 98, 105,

106
tar_older, 78, 80, 145, 146
tar_option_get, 18, 20, 22, 35, 82, 83, 89
tar_option_get(), 21, 84
tar_option_reset, 18, 20, 22, 35, 82, 83, 89
tar_option_set, 18, 20, 22, 35, 82, 83, 84
tar_option_set(), 23, 41, 42, 67, 82, 83,

108, 110, 111, 113, 115–117,
119–121, 123–125, 161

tar_outdated, 27, 28, 68, 77, 90, 129, 151
tar_outdated(), 19
tar_path, 5, 14, 25, 34, 47, 74, 92, 126, 131,

133
tar_path(), 51, 87, 136, 142
tar_pattern, 9–12, 93
tar_pid, 54, 55, 58, 73, 80, 95, 98, 105, 106
tar_poll, 13, 15, 36, 96, 99, 101, 102, 130,

132, 157, 159, 160
tar_process, 54, 55, 58, 73, 80, 96, 97, 105,

106
tar_progress, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 160
tar_progress(), 73
tar_progress_branches, 13, 15, 36, 97, 99,

100, 102, 130, 132, 157, 159, 160
tar_progress_summary, 13, 15, 36, 97, 99,

101, 101, 130, 132, 157, 159, 160
tar_progress_summary(), 96
tar_prune, 27, 30, 51, 103
tar_read, 54, 55, 58, 73, 80, 96, 98, 104, 106
tar_read(), 51, 59, 106, 165
tar_read_raw, 54, 55, 58, 73, 80, 96, 98, 105,

106
tar_renv, 31, 44, 48, 49, 107, 125
tar_reprex, 5, 109, 165
tar_resources, 110, 114–117, 119, 120,

122–124
tar_resources_aws, 111, 112, 115–117, 119,

120, 122–124
tar_resources_aws(), 86, 135, 140
tar_resources_clustermq, 111, 114, 114,

116, 117, 119, 120, 122–124
tar_resources_feather, 111, 114, 115, 115,

117, 119, 120, 122–124
tar_resources_fst, 111, 114–116, 117, 119,

120, 122–124
tar_resources_future, 111, 114–117, 118,

120, 122–124
tar_resources_gcp, 111, 114–117, 119, 119,

122–124
tar_resources_parquet, 111, 114–117, 119,

120, 121, 123, 124
tar_resources_qs, 112, 114–117, 119, 120,

122, 122, 124
tar_resources_url, 112, 114–117, 119, 120,

122, 123, 123
tar_script, 31, 44, 48, 49, 108, 124
tar_script(), 31, 35, 40, 46, 48, 49, 60, 63,

65, 68, 70, 76, 91, 103, 108, 129,
149, 151, 154, 161

tar_seed, 5, 14, 25, 34, 47, 74, 93, 126, 131,
133

tar_sitrep, 27, 28, 68, 77, 92, 127, 151
tar_skipped, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 160
tar_source, 5, 14, 25, 34, 47, 74, 93, 126,

131, 133
tar_started, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 160
tar_store, 5, 14, 25, 34, 47, 74, 93, 126, 131,

133
tar_target, 24, 42, 134, 143

INDEX 171

tar_target(), 23–25, 38, 41, 42, 67, 72, 78,
81–84, 93, 94, 108, 110–113,
115–117, 119–125, 139, 140

tar_target_raw, 24, 42, 138, 139
tar_target_raw(), 67, 82–84
tar_test, 8, 16, 30, 52, 143
tar_throw_file (tar_condition), 16
tar_throw_run (tar_condition), 16
tar_throw_validate (tar_condition), 16
tar_tidy_eval (tar_language), 52
tar_tidyselect_eval (tar_language), 52
tar_timestamp, 78, 81, 144, 146
tar_timestamp_raw, 78, 81, 145, 145
tar_toggle, 33, 50, 79, 147
tar_traceback, 57, 148, 162, 163
tar_unscript, 149
tar_unscript(), 150
tar_validate, 27, 28, 68, 77, 92, 129, 150
tar_visnetwork, 46, 71, 151
tar_visnetwork(), 13, 44, 66, 154, 155, 157,

160
tar_warn_deprecate (tar_condition), 16
tar_warn_run (tar_condition), 16
tar_warn_validate (tar_condition), 16
tar_warning (tar_condition), 16
tar_watch, 13, 15, 36, 97, 99, 101, 102, 130,

132, 154, 159, 160
tar_watch(), 158, 159
tar_watch_server, 13, 15, 36, 97, 99, 101,

102, 130, 132, 157, 158, 160
tar_watch_server(), 154, 159
tar_watch_ui, 13, 15, 36, 97, 99, 101, 102,

130, 132, 157, 159, 159
tar_watch_ui(), 154, 158
tar_workspace, 57, 149, 160, 163
tar_workspace(), 29, 88, 148, 162, 163
tar_workspaces, 57, 149, 162, 162
targets-package, 4

use_targets, 5, 109, 163, 165
use_targets_rmd, 5, 109, 165, 165

	targets-package
	tar_active
	tar_assert
	tar_branches
	tar_branch_index
	tar_branch_names
	tar_branch_names_raw
	tar_built
	tar_call
	tar_cancel
	tar_canceled
	tar_condition
	tar_config_get
	tar_config_set
	tar_config_unset
	tar_cue
	tar_definition
	tar_delete
	tar_deps
	tar_deps_raw
	tar_destroy
	tar_dir
	tar_edit
	tar_engine_knitr
	tar_envir
	tar_envvars
	tar_errored
	tar_exist_meta
	tar_exist_objects
	tar_exist_process
	tar_exist_progress
	tar_exist_script
	tar_format
	tar_github_actions
	tar_glimpse
	tar_group
	tar_helper
	tar_helper_raw
	tar_interactive
	tar_invalidate
	tar_language
	tar_load
	tar_load_everything
	tar_load_globals
	tar_load_raw
	tar_make
	tar_make_clustermq
	tar_make_future
	tar_manifest
	tar_mermaid
	tar_meta
	tar_name
	tar_network
	tar_newer
	tar_noninteractive
	tar_objects
	tar_older
	tar_option_get
	tar_option_reset
	tar_option_set
	tar_outdated
	tar_path
	tar_pattern
	tar_pid
	tar_poll
	tar_process
	tar_progress
	tar_progress_branches
	tar_progress_summary
	tar_prune
	tar_read
	tar_read_raw
	tar_renv
	tar_reprex
	tar_resources
	tar_resources_aws
	tar_resources_clustermq
	tar_resources_feather
	tar_resources_fst
	tar_resources_future
	tar_resources_gcp
	tar_resources_parquet
	tar_resources_qs
	tar_resources_url
	tar_script
	tar_seed
	tar_sitrep
	tar_skipped
	tar_source
	tar_started
	tar_store
	tar_target
	tar_target_raw
	tar_test
	tar_timestamp
	tar_timestamp_raw
	tar_toggle
	tar_traceback
	tar_unscript
	tar_validate
	tar_visnetwork
	tar_watch
	tar_watch_server
	tar_watch_ui
	tar_workspace
	tar_workspaces
	use_targets
	use_targets_rmd
	Index

